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Catapulting towards massive and large spatial quantum superposition
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A large spatial quantum superposition of size O(1–10) μm for mass m ∼ 10−17–10−14 kg is required to probe
the foundations of quantum mechanics and test the classical and quantum nature of gravity via entanglement in
a laboratory. In this paper, we will show that it is possible to accelerate the two spin states of a macroscopic
nanocrystal sourced by the inhomogeneous nonlinear magnetic field in a Stern-Gerlach-type setup. We will
assume that the electronic spin can be embedded at the center of the nanocrystal, such as the nitrogen-vacancy
(NV) center of diamond. Our analysis will be generic to any dopant or any material. We will show that we
can create a desired superposition size within 1–2 s by catapulting the trajectories of the two spin states with a
modest magnetic field gradient and then recombine the trajectories for a coherent interference. We will show the
demanding nature of the precision required in the magnetic field to recover a 99% spin coherence confidence
level at the moment of interference.
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I. INTRODUCTION

Gravity is one of the weakest interactions of nature, and
it is very special because of its universality. Unlike any other
known interactions, it is not yet clear whether gravity respects
the rules of quantum mechanics at a microscopic level [1]. No
experimental proof validates whether the gravitational interac-
tion is indeed quantum. The spacetime we have witnessed so
far in gravitational experiments is extremely classical without
any hint of quantumness [2].

The conventional wisdom is that the gravitational effects
will become important only when we approach the Planck-
ian length or time scale, making it extremely challenging to
test the quantum nature of gravity in a laboratory. Further-
more, neither tests from the cosmological perturbations in the
cosmic microwave background radiation [3] nor the positive
detection of primordial gravitational waves [4] confirms the
quantum nature of gravity; as a matter of fact, neither do any
other astrophysical tests [5]. They all have many astrophysical
uncertainties, making it extremely challenging to conclude
the true nature of gravity. Also, the feeble nature of the
gravitational interaction makes it extremely hard to detect the
graviton as an individual quantum [6].

Despite all these challenges, there is one hope for gravity.
The gravitational interaction is a long-range interaction like
in the case of quantum electrodynamics, hence it gives us a
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unique possibility to test its quantum properties in the infrared
spectrum.

Recently, a tabletop experiment has been proposed to ex-
plore such a quantum origin of gravity with the help of
quantum superposition and quantum entanglement [7,8]. The
protocol known as the quantum-gravity-induced entanglement
of masses (QGEM) is based on the quantum interaction of
gravity with the quantum state of matter to generate the en-
tanglement. The latter is purely a quantum observable and
has no classical analog. If gravity is indeed quantum, it
will entangle the two masses in quantum spatial superposi-
tions [9,10]. In the canonical approach to quantum gravity, the
gravitational interaction is being mediated by the hypothetical
massless spin-2 graviton, whose quantum properties can be
studied [10]; see also Refs. [7,11] for the path integral ap-
proach and Ref. [12] for the Arnowitt-Deser-Misner (ADM)
approach. The critical point to note here is that a creation
of a spatial superposition is governed by its own dynamical
degree of freedom, which conserves the equations of motion
governed by the electromagnetic properties of the material.
To understand the theoretical aspects of the entanglement, we
will always need to consider the dynamical aspects of two
masses; see Ref. [10].

A large spatial superposition for a massive object tests
the foundations of quantum mechanics [13,14], tests the
equivalence principle of gravity [15,16], falsifies spontaneous
collapse mechanisms [17,18], and places bounds on decoher-
ence mechanisms [19,20]. Furthermore, as an application of a
massive quantum interferometer, we can use them as a quan-
tum sensor [21] and to probe very high frequency gravitational
waves [22].

To realize some of these ambitious experiments, especially
QGEM, we will require a large spatially localized state of

2643-1564/2022/4(4)/043157(17) 043157-1 Published by the American Physical Society

https://orcid.org/0000-0003-4782-7163
https://orcid.org/0000-0001-8860-1510
https://orcid.org/0000-0002-0967-8964
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043157&domain=pdf&date_stamp=2022-12-02
https://doi.org/10.1103/PhysRevResearch.4.043157
https://creativecommons.org/licenses/by/4.0/


ZHOU, MARSHMAN, BOSE, AND MAZUMDAR PHYSICAL REVIEW RESEARCH 4, 043157 (2022)

superposition �Z ∼ O(10–100) μm for large masses of or-
der m ∼ 10−15–10−14 kg [7,23]. We are assuming that the
superposition is in the z direction. These requirements are
far beyond the scales achieved to date in any laboratory (e.g.,
macromolecules m ∼ 10−22 kg over �Z ∼ 0.25 μm, or atoms
of mass m ∼ 10−25 kg over �Z ∼ 0.5 m [14,24–27]).

Despite numerous challenges, there are already physical
schemes to obtain small �Z and m [28–52], and there are
arguments presented on how to achieve large superposition in
a vacuum by using the Stern-Gerlach principle in the presence
of a magnetic field gradient [45,50,53]. Based on these ideas,
a feasibility experiment has been performed with the help
of atoms, showing that such a Stern-Gerlach interferometer
(SGI) for massive objects can indeed be realizable [48]. Of
course, we will now need to increase the mass by nearly
six to seven orders of magnitude, which will pose a serious
technical, if not fundamental, challenge.

In this paper, we aim to improve the existing mechanism
for creating a large spatial superposition [7,45,50,53]. In this
paper we will consider the effect of a spatially dependent non-
linear magnetic field to create the superposition as opposed
to the spatially dependent linear magnetic field in Ref. [53].
We will utilize the nonlinear magnetic field profile to further
increase the spatial superposition size. We will concentrate on
the one-dimensional interferometer, which avoids the issues
related to the two-dimensional SGI [54]. We will be focus-
ing on applying a much lower magnetic field gradient first
described in the original paper about QGEM [7]. We are as-
suming that the electronic spin can be embedded at the center
of the nanocrystal, such as in the case of a nitrogen-vacancy
(NV) center in diamond. Our discussions will be generic to
any dopant and material, but for illustration, we will use
material properties similar to those of diamond. Also, we will
avoid the low region of the magnetic field for the Majorana
spin flip [55,56], discussed below.

Typically, we will require experimental configurations with
a magnetic field which originates in a single current-carrying
wire or a permanent magnet, where the magnetic field goes as
|B| ∝ 1/z, where z is the distance from the current source. The
magnetic field can then be expanded around a small region.
Such configurations were considered in Ref. [53]. However,
as we will see below, if we consider the nonlinear part of the
magnetic field dependence, we can generate an even larger
superposition size at a shorter time scale. Indeed, a detailed
discussion of obtaining such a magnetic field profile will re-
quire separate consideration, such as a quadrupole field from
coils in an anti-Helmholtz configuration.

We will further assume that we can achieve the required
level of internal cooling of the nanocrystal and the external
cooling for maintaining the coherence of the spin for 1–2 s;
see the bounds on ambient temperatures in Refs. [7,23,57].
We will also assume that the crystal is ideal; in this respect, we
are assuming that the impurities are very small, such that the
spin coherence can be maintained. The internal cooling for the
crystal will also suppress the phonon vibration sufficiently to
maintain the spin coherence [7]. Given that all these effects are
under control, we will ask, how large a superposition size can
we achieve for objects of mass 10−17, 10−16, and 10−15 kg?

We will apply the inhomogeneous magnetic field profile
and the bias magnetic field. We will consider the nonlinear

dependence of the magnetic field in one direction, z, without
loss of any generality. In this regard, we will create the su-
perposition primarily in the z direction. We will first create
a velocity difference between the two paths of the spins by
creating anharmonic oscillations and create a sufficiently large
velocity difference between the two paths to catapult the tra-
jectories as far as possible to create a large �Z . Then we will
bring the trajectories back to cause the two paths to interfere,
and we will study the spin coherence [58,59].

While creating the spatial superposition, we will lose the
spin coherence; therefore, to create interference, we will need
to ensure that the spin coherence is restored at the moment
of interference. We will demand that the spin coherence be
99%, which will place a severe constraint on the two paths and
hence any fluctuations they incur in creating the superposition.
We will see that our analysis following Refs. [58,59] will
put a stringent constraint on the magnetic field fluctuations,
which we can tolerate. We will also assume that the entire
setup is performed in a free-fall experiment, such that the
Earth’s gravitational acceleration can be negligible. The latter
is necessary for avoiding any gravity-induced and relative
acceleration noise; the details can be found in Ref. [21].

The paper is organized as follows. In Sec. II, we will
discuss the foundations of the SGI setup and discusses the
nonlinear magnetic field profile and the constraints on the
magnetic field. In Sec. III, we will discuss various stages of
the two trajectories for masses 10−17, 10−16, and 10−15 kg. In
Sec. IV, we will discuss the scaling behavior of the superpo-
sition size. In Sec. V, we will discuss the constraint on the
magnetic field fluctuation, which we can tolerate for the spin
coherence, and in Sec. VI, we will conclude our paper.

II. STERN-GERLACH INTERFEROMETER

We can write the Hamiltonian of the spin embedded in the
nanocrystal as [45,53,60]

H = p̂2

2m
+ h̄DŜ

2 − χmm

2μ0
B2 − μ̂ · B, (1)

where m is the mass of the nanocrystal and p̂ and Ŝ are
momentum and spin operators, respectively. D is the NV
zero-field splitting. χm is the magnetic susceptibility. μ0 is
the vacuum permeability, μ̂ = −gμBŜ is the spin magnetic
moment, where g ≈ 2 is the Landé g factor, μB = eh̄

2me
is the

Bohr magneton, e is the electron charge, and me is the electron
rest mass. B is the magnetic field. We will assume that the
spin is embedded in the center of the nanocrystal. We will not
consider the effects of external torque in this paper; we are
assuming that we can engineer a situation so that the torque
and the rotational effects of the mass are negligible or decou-
pled from the translation (for possible mechanisms to cool
rotation, see Refs. [61–65]). At this point, we also consider
an idealized system with no impurities. Of course, in reality,
we will need to consider the impurities. However, for this toy
model, we will not consider these effects here for the time
being. Note that we are neglecting the gravitational potential
here. We will be interested in experimenting with a free-fall
setup to minimize gravity gradient noise and dephasing due to
Earth’s gravitational potential; see the discussion in Ref. [21].
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With these assumptions, the last two terms in Eq. (1) rep-
resent the potential energy

Û = −χmm

2μ0
B2 − μ̂ · B, (2)

from which we can calculate the acceleration of the nanocrys-
tal as

â = − 1

m
∇Û = χm

2μ0
∇B2 − geh̄

2mme
∇Ŝ · B. (3)

Equation (3) shows that if the specific form of the magnetic
field is determined, then the acceleration can be calculated to
obtain the trajectory of the nanocrystal in the magnetic field.

We will assume that the magnetic field takes the following
simple form:

B = (B0 + ηz2 − ηx2)ẑ − 2ηzxx̂, (4)

where B0 is a fixed constant magnetic field. We will ex-
plain below why we need this bias magnetic field to align
the NV spin in the z direction. The η is a coefficient with
the dimension T/m2, while ηz will determine the magnetic
field gradient [66]. Here, we have assumed that at the initial
moment the coordinate of the NV center along the x axis is
zero (x = 0) and that the embedded spin is aligned in the z
direction (Sx = 0).

Let us now calculate ∇B2 = 2(B0 + ηz2)2ηzẑ and ∇Ŝ ·
B = (2ηzSz )ẑ, respectively, and then combine the results to
get the expression for the acceleration.

az =
(

χm

μ0
(B0 + ηz2)2ηz − Sz

geh̄

mme
ηz

)
ẑ. (5)

The initial state superposition is given by (|↑〉z + |↓〉z )/
√

2,
the internal spin of the NV center, and the z direction for the
wave packet separation.

The above equation (5) shows that the wave packet only
separates in the z direction and that in the x coordinate of the
NV center the acceleration is always zero. The spin state in
the x and y basis will experience a rapid Larmor precession;
therefore averaging the spin yields no net force along the x
axis in our case. This means that as long as B0 in Eq. (4) is not
zero, we can ensure that the spin direction is approximately
aligned along the z axis and avoid the Majorana spin flips;
see Ref. [53]. However, this is an ideal situation. In the actual
experiment, the spin would have a Larmor precession around
the z axis. The minimum allowable value of B0 in Eq. (4)
can be determined by both the Larmor precession frequency
and the adiabatic condition of the frequency which forbids the
particle motion along the x axis; see, for details, Ref. [53]. The
Larmor precession frequency is given by

ωL = ge

2me
|B(x, z)|, (6)

which will be required to satisfy the adiabatic condition ω̇L 

ω2

L [53]. Combining Eqs. (4) and (6), and the adiabaticity
condition, we are able to obtain the minimum magnetic field,
labeled Bmin. The minimum Larmor precession frequency cor-
responding to the minimum magnetic field that satisfies the
adiabatic condition is

ωmin
L = ge

2me
Bmin. (7)

In this paper, we will set B0 � Bmin, and B0 is the minimum
magnetic field coordinates experienced by the wave packet; so
the adiabatic condition is always satisfied during the evolution
of the wave packet. We will take B0 ≈ 5.7 × 10−4 T, which
ensures that the adiabatic condition is always satisfied in this
paper.

III. CATAPULTING TRAJECTORIES

Note that the difference between the two wave packet
trajectories is mainly caused by the difference in the spin
eigenvalues of the second term on the right-hand side in
Eq. (5). We would expect to get a large superposition
size by increasing the value of η. However, increasing the
value of η will only increase the motional frequency of the
wave packet and will not directly increase the superposi-
tion size �Z . Furthermore, it maintains the superposition
size for a longer period. We clearly see this result in
Fig. 1. When we fix the mass of the nanocrystal and in-
crease the value of η, we find that the motional frequency
of the wave packet increases with η while the maximum
superposition size remains almost unchanged, such that it
can reach �Z ∼ 40 μm within τ ∼ 1.2 s for the case m =
10−17 kg. Similar results were found for the other two masses
considered.

Although the superposition size does not increase with η,
we can increase the velocity difference between the two wave
packets in a short time by increasing the value of η (as shown
in Fig. 2). When there is a large velocity difference between
the two wave packets and the spatial position coincides, we
can adjust the magnetic field so that the two wave packets are
located at the lowest point of the potential energy (which is
z = 0). By doing so, we can catapult the two wave packets
around in the magnetic field and achieve a large superposition
size.

We will now discuss the trajectories of the wave packets.
Let us first consider the case where the nanocrystal has a
mass of 10−17 kg. A similar analysis will arise for all the
other masses under consideration. We will discuss the im-
plementation in three stages. The purpose of the first stage
is to obtain a large velocity difference between the two tra-
jectories in a short time (around, say, 0.2 s) by applying
(η = 1 × 108 T/m2) [67]. The purpose of the second stage
is to generate, and then close, a large spatial superposition
of the two trajectories. To do this, we decrease the acceler-
ation of the wave packets by decreasing the value of η. By
adjusting the value of η to an appropriate value, we can get
a large superposition size in a relatively short coherent time
scale (∼1 s) [69,70]. When the spatial positions of the two
wave packets coincide again, we begin the third stage. We
then adjust the magnetic field gradient and the position of
the particle in the potential energy. Doing so carefully will
close the interferometer, causing the spatial and momentum
differences to become zero in both arms (Fig. 3). Figure 4
shows these steps graphically. The behavior of the nanocrys-
tals in the magnetic field for masses of 10−16 and 10−15 kg
is very similar to that for a mass of 10−17 kg, and we have
included the numerical results for both those cases (10−16 and
10−15 kg) in Appendix C. We can also consider these stages
in more detail.
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FIG. 1. Trajectories of the two wave packets under different magnetic field gradients and the corresponding superposition size. η is a
parameter associated with the magnetic field profile. With the increase in the value of η [(a) and (d) 1.4 × 106, (b) and (e) 2.4 × 106, and
(c) and (f) 3.4 × 106 T/m2], the motional frequency of the wave packet increases accordingly, but the maximum superposition size that can
be achieved over the same period of time remains almost unchanged (the maximum superposition size is about 40 μm within 1.2 s). The mass
here is 10−17 kg.

Initialization, t = 0. The wave packet enters the inhomo-
geneous magnetic field region. The initial velocity along the
z direction is ż(0) = 0, and the initial position z0 = 0. The
parameter η = 1 × 108 T/m2.

Stage I , 0 < t < T1. The two wave packets oscillate rapidly
in the magnetic field, and the velocity difference between
them grows larger and larger; see Figs. 4(a) and 4(g). The

magnetic field gradient is ηz ≈ −1 × 104 T/m at t = T1,
where η = 1 × 108 T/m2, z ≈ −1 × 10−4 m.

At t = T1. Since the difference in the change in the spatial
position [Fig. 4(j)] between the two wave packets is opposite
to that of the difference in the velocity, it is possible to find a
moment when the velocity difference is large enough and the
superposition size is 0. This moment is marked T1. At time

FIG. 2. The velocity curve for the two wave packets under different η and the corresponding velocity difference. By increasing the value
of η [(a) and (d) 1.4 × 106, (b) and (e) 2.4 × 106, and (c) and (f) 3.4 × 106 T/m2], the maximum velocity difference that can be achieved over
the same period of time also increases (around 400, 700, and 1100 μm/s in less than 1.2 s, respectively). The mass here is 10−17 kg.
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FIG. 3. The velocity difference and the superposition size when the two wave packets’ trajectories are closed for the interference for
(a) m = 10−17 kg, (b) m = 10−16 kg, and (c) m = 10−15 kg. Here, T3 has different values for the different masses.

T1, if we adjust the magnetic field such that the coordinate
of the two wave packets in the magnetic field is z = 0 [see
Fig. 4(b)], then we find the value of η ∼ 1 × 105 T/m2, and
∂Bz = ηz = 0 at z = 0.

Stage II , T1 < t < T2. In this stage, the two wave packets
have different initial velocities at the new initial potential
position, which is equivalent to ejecting the two wave pack-
ets away from each other. Moreover, due to the reduction
in the magnetic field gradient, the spatial position difference
between the two wave packets can be significantly increased;
see Fig. 4(k).

At t = T2. The two wave packets meet again after a half
time period of motion, and we mark the time of their meeting
as T2; see Fig. 4(b). At time T2, we need to adjust the coor-
dinates of the wave packet in the magnetic field and select
an appropriate value of η, so that the trajectory of the two
wave packets can be closed in a relatively short time (∼1 s).
At time T2, the magnetic field of the wave packet is adjusted to
zT2 = −102.8 μm. Parameter η is adjusted to 3.4 × 107 T/m2.

Stage III , T2 < t < T3. The two wave packets still oscillate
rapidly in the magnetic field, but their spatial position differ-
ence and velocity difference will be smaller and smaller; see
Figs. 4(i) and 4(l).

At t = T3. The trajectories of the two wave packets are
closed. The superposition size is zero, and the velocity differ-
ence is zero; see Fig. 3(a). We will analyze this case separately
in the context of spin coherence.

In this experimental setup, the magnetic field was changed
twice, but we did not consider the effect of the change in the
magnetic field here. Note that the magnetic field changes in
a short time, so it will only cause a small disturbance to the
wave packet trajectory, but we are here taking this effect to be
negligible. In fact, we can introduce switching functions of the
magnetic field, for example, as discussed in Ref. [53], and our
main results will not be adversely affected. It is worth noting
that the parameter η used in stage I is as high as 108 T/m2, and
the corresponding maximum magnetic field gradient is ∂Bz ∼
104 T/m (which can be achieved in the laboratory [71]), since
the maximum magnetic field coordinates experienced by the
wave packet is only 100 μm [see Fig. 4(a) and Appendix C,
Figs. 15(a) and 16(a), for different masses].

Since we initialize the coordinates of the NV center in the
magnetic field in stage II and stage III , the coordinates of
the NV center in the magnetic field are inconsistent with their
spatial coordinates in the latter two stages. To avoid confusion,

unless otherwise specified, the coordinates mentioned in this
paper refer to the coordinates of the NV center in the magnetic
field.

We have set the value of η at the first stage to be η ∼ 1 ×
108 T/m2, which limits the time of the first stage to about
0.2 s, and we set the limit of the time of the second stage to
about 0.5 s and require the trajectories of the two wave packets
to be closed within 1.5 s; then we can get the motion of the
wave packets and the superposition size with different masses
as shown in Fig. 4 and Appendix C, Figs. 15 and 16.

IV. SCALING BEHAVIOR

We can use Eq. (5) to roughly analyze the motion of the
wave packet for any masses. By substituting the values of
each physical quantity into Eq. (5), it can be shown that when
the mass m � 10−17 kg, the motion of the wave packet is
mainly dominated by ηz2 in the first term on the right-hand
side of the equation. This term has nothing to do with mass;
that is, as long as the values of η and the initial position
are determined, the maximum velocity of the wave packet
can be determined. This result can be seen in Fig. 4(d) and
Appendix C, Figs. 15(b) and 16(b). The velocity difference
between the two wave packets is caused by the second term
on the right-hand side of Eq. (5). The value of this term is
inversely proportional to the mass. Since the size of the veloc-
ity difference determines the superposition size, the maximum
superposition size we can achieve should also be inversely
proportional to the mass, i.e., �Z ∼ 1/m. This result is also
borne out from our numerical results, as shown in Fig. 4(k)
and Appendix C, Figs. 15(k) and 16(k).

It should be noted that in order to compare the behavior of
the wave packets with different masses, the values of η and the
initial position are chosen properly at different stages of the
experiment, but this does not mean that for the wave packets
with different masses we can only take these parameter values.
For example, if we do not limit the time of the second stage of
the experiment to about 0.5 s, we can choose a smaller value
of η and get a larger superposition size.

We first perform a linear fitting of the velocity difference
in stage I . The fitting formula is

�Vfit =
(

5.4 × 10−13 kg

m

)( T1

1 s

)
10−6 m/s, (8)
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FIG. 4. Dynamical aspects for the mass m = 10−17 kg during the three experimental stages: (a)–(c) the magnetic field coordinates (potential
coordinates) experienced, (d)–(f) the velocities, (g)–(i) the velocity differences, and (j)–(l) the superposition size. We set different values of
η and the initial position of the wave packet in the magnetic field at different stages. Stage I, η = 1 × 108 T/m2, with an initial coordinate
z = 100 μm. Stage II, η = 1 × 105 T/m2, with an initial coordinate z = 0 μm. Stage III, η = 3.4 × 107 T/m2, with an initial coordinate z =
−102.8 μm. The initial coordinates here refer to the initialization coordinates of the NV center in the magnetic field at different experimental
stages. Times T1 and T2 are determined by constraining the moment when the superposition size is zero (with an accuracy of 10−6 μm). Time
T3 is the moment when both the velocity difference between the two wave packets and the superposition size are zero.

where �Vfit is the maximum velocity difference reached in
stage I . T1 is a variable here, representing the end time
of stage I . The values of mass m are 10−17, 10−16, and
10−15 kg, respectively. The linear fitting results are shown in
Fig. 5.

Next, we take the velocity difference obtained in stage I as
the initial velocity of the wave packet to study the trajectory
of the wave packet in stage II . In Sec. V and Appendix A
we discuss the fitting of wave packet trajectories. Now we
only need to move the simple harmonic motion [Eq. (26)] by

the −π/2 phase to fit the trajectory of the wave packet with
the initial velocity Vfit and initial position z = 0. The fitting
formula of the wave packet trajectory in stage II is

z(t ) = �Z0 cos
(√

At − π

2

)
, (9)

where �Z0 and
√

A are the amplitude and frequency of the
wave packet motion, respectively. The specific expression of
A is found later, in Eq. (27). Combining Eqs. (8) and (9) gives
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FIG. 5. The linear fitting of the velocity difference for stage I under different masses. The red solid line is a linear fitting of the maximum
velocity difference. T1 is a variable here, representing the end time of stage I . The masses from left to right are 10−17, 10−16, and 10−15 kg,
respectively. We have set η = 1 × 108 T/m2.

the amplitude, and thus maximum superposition size, as

�Z0 = �Vfit√
A

=
(

5.4 × 10−13 kg

m

)(
1 Hz√

A

)( T1

1 s

)
10−6 m.

(10)

For the sake of discussion, let
√

A = (π/0.4) Hz. That is, the
half period of wave packet motion is 0.4 s, which is consistent
with the time set in stage II of the experiment in this paper.
It can be seen from Eq. (10) that the maximum superposition
size of the ejection trajectory is inversely proportional to the
mass of the nanocrystal. The scaling behavior of the superim-
posed size is shown in Fig. 6.

This formula is similar to Eq. (11) of Ref. [53]. In Ref. [53],
we only considered the magnetic field gradient, so there is
only one parameter in the equation. In our case, we need to
consider the initial velocity of the wave packet in addition to
the gradient, so we need to add a parameter T1, which repre-
sents the initial velocity of the wave packet. If we fix the value
of T1, that is, the magnitude of the initial velocity, then our
expression is the same as Eq. (11) of Ref. [53]. However, since
we have two parameters to play with, we obtain a larger size
of superposition compared with Ref. [53]. For instance, for
m = 10−15 kg, we can obtain �Z = 16 μm with our current
proposal in a total time of flight of roughly 1.4 s. In Ref. [53],
we had obtained �Z = 0.11 μm for the same time period.

FIG. 6. The scaling behavior of the superposed size (stage II )
under different masses obtained by catapulting the trajectories. The
maximum superposition size we can achieve is inversely proportional
to the mass of the nanocrystal. Here,

√
A = π/0.4 Hz.

When discussing the scaling behavior of the superposition
size by numerically fitting the velocity difference in stage I
and the trajectory of the wave packet in stage II , we should
make the following points.

(i) The maximum velocity difference achieved in stage I is
determined by the gradient parameter η and the initial position
of the nanocrystal in stage I . The greater the value of η and the
initial position, the greater the maximum velocity difference.
The fitting formula for the velocity difference in Eq. (8) only
holds for η = 1 × 108 T/m2, initial position = 100 μm.

(ii) Time T1 in Eq. (8) is a variable, with an upper bound
determined by both the maximum velocity difference and
the mass of the nanocrystal. In this paper, the maximum
velocity difference that can be achieved in stage I is about
1.4 × 105 μm/s. Therefore the upper bound on T1 is about 2.6,
26, and 260 s for masses equal to 10−17, 10−16, and 10−15 kg,
respectively.

(iii) As can be seen from Eq. (10), by decreasing the value
of

√
A, we can get a larger superposition size, but correspond-

ingly, we also need a longer time to close the wave packet
trajectory.

(iv) In Eq. (8), the reason for using the velocity difference
obtained in stage I to calculate the amplitude directly is that
the velocity of the two wave packets corresponding to the
linear fitting velocity difference in stage I is almost the same
with the direction being opposite. The amplitude calculated
from the velocity difference is equal to the sum of the am-
plitudes of the two wave packets and gives the maximum
superposition size.

V. RECOVERING SPIN COHERENCE

The SGI splits the two wave packets in the superposition
state. First, they lose their spin coherence and then recombine
to recover the spin coherence. We first use the definition of the
spin coherence given in Ref. [59] to calculate the expression
of the spin coherence in the case of our magnetic field profile
and then study what experimental conditions are needed to
recover the spin coherence. Heisenberg’s equation of motion
is given by

ih̄
dÂH (t )

dt
= [ÂH (t ), ĤH (t )], (11)

where ÂH (t ) and ĤH (t ) are the Hermitian and the Hamilto-
nian operator in the Heisenberg picture, respectively. Using
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Eq. (11), we can get the equation of motion for the position,

d r̂(t )

dt
= 1

ih̄
[r̂(t ), ĤH (t )] = p(t )

m
, (12)

and the equation of motion for the momentum,

d p̂(t )

dt
= 1

ih̄
[ p̂(t ), ĤH (t )]

= χmm

2μ0
∇(B[r(t )]2) + ∇(μ(t ) · B[r(t )]). (13)

By integrating Eqs. (12) and (13), the formal solution of the
evolution of the position and the momentum with time can be
written as [59]

p(t ) = p0 +
∫ t

0

(
χmm

2μ0
∇(B[r(t ′)]2)

−∇(μBσ · B[r(t ′)]a†(t ′)a(t ′))
)

dt ′, (14)

r(t ) = r0 + t

m
p0 + 1

m

∫ t

0
(t − t ′)

(
χmm

2μ0
∇(B[r(t ′)]2)

−∇(μBσ · B[r(t ′)]a†(t ′)a(t ′))
)

dt ′, (15)

where r0 and p0 are the initial position and the momentum,
respectively, σ is the spin operator, and a†(t ) and a(t ) are
creation and annihilation operators with S(t ) = σa†(t )a(t ).
Since the beams’ trajectories are split by an inhomogeneous
magnetic field along the z direction, the wave packet motion
along the z direction is studied next. With a bit of rearrange-
ment, Eqs. (14) and (15) become

pz(t ) − pz = �pz, (16)

z(t ) − z0 − t

m
pz = �z, (17)

where

�pz =
∫ t

0

(
χmm

2μ0

∂

∂z
Bz(t ′)2 − μBσz

∂

∂z
Bz(t ′)

)
dt ′, (18)

�z = 1

m

∫ t

0
(t − t ′)

(
χmm

2μ0

∂

∂z
Bz(t ′)2 − μBσz

∂

∂z
Bz(t ′)

)
dt ′

(19)

are the variations in the z component of the position and the
momentum. rz and pz are the initial z component of the po-
sition and the momentum, respectively. We take into account
that the wave function of a massive particle localized in the
position space at t = 0 is a Gaussian wave packet

ψ (z, 0) =
(

1

2πδz2

)1/4

e− z2

4δz2 , (20)

with a minimum uncertainty δzδpz = h̄/2. In Appendix B, we
study the evolution of the wave packet in the presence of the
nonlinear magnetic field. We show that the expected value of
the position of each arm of the interferometer coincides with
the classical trajectories in Eq. (5).

FIG. 7. Comparison of the approximate and exact trajectories of
the two wave packets. Here, m = 10−17 kg, η = 1 × 106 T/m2, and
Ccorrect = 27.3467.

In this situation, the spin coherence can be written
as [58,59]

〈σ̂x(t )〉 = cos[�(t )] exp

(
−1

2

[(
�z

δz

)2

+
(

�p

δp

)2])
, (21)

where

�(t ) = 1

h̄
gμB

∫ t

0
Bz(t ′)dt ′ (22)

is the accumulated Larmor precession angle. We are eval-
uating the expectation value with respect to the spin state

1√
2
(|↑〉z + |↓〉z ). If �(t ) = 2nπ (n is an integer), �z = 0, and

�p = 0, then 〈σ̂x(t )〉 = 1, and the spin coherence is com-
pletely restored. In real experiments, we cannot control the
experimental conditions with arbitrary precision. Assume that
the experimental error is bounded by certain parameters, given
by [58]

|δ�(t )| � ε1,

∣∣∣∣�z(t )

δz

∣∣∣∣ � ε2√
2
,

∣∣∣∣�p(t )

δp

∣∣∣∣ � ε3√
2
, (23)

where ε1, ε2, and ε3 are much less than 1, and the specific
value depends on our requirements of the experimental accu-
racy. Performing Taylor expansion of Eq. (21) and then taking
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FIG. 8. The deviation between the approximate trajectory and
the exact trajectory. Here, m = 10−17 kg, η = 1 × 106 T/m2, and
Ccorrect = 27.3467.

the first-order term gives

〈σ̂x(t )〉 � 1− 1

2

(
|δ�(t )|2+

∣∣∣∣�z(t )

δz

∣∣∣∣
2

+
∣∣∣∣�p(t )

δp

∣∣∣∣
2)

� 1− ε2.

(24)
Here, we assumed ε1 = ε2 = ε3 = ε for simplicity. When
ε = 0.1, the confidence level for spin coherence is 99%. Next,

TABLE I. Constraints on the magnetic field accuracy required
for different masses. The value of spin Sz does not affect the order
of the magnitude of accuracy required in η. We have demanded
that we recover the spin coherence up to 99%. This table shows
the constraints on the magnetic field accuracy from stage II of the
trajectory. Similar constraints on η for the stage I part of the trajectory
can be found; see Appendix A, Table II.

Mass (kg) Sz ( �η

η
)z ( �η

η
)pz

10−17 1 � 3.7 × 10−4 � 6.9 × 10−8

−1 � 3.8 × 10−4 � 7.1 × 10−8

10−16 1 � 2.1 × 10−4 � 2.2 × 10−8

−1 � 2.1 × 10−4 � 2.2 × 10−8

10−15 1 � 1.2 × 10−4 � 6.9 × 10−9

−1 � 1.2 × 10−4 � 7.0 × 10−9

TABLE II. Constraints on the magnetic field accuracy for differ-
ent masses during stage I. The bounds on η are based on recovering
99% spin coherence. The value of spin Sz does not affect the order of
magnitude of the accuracy.

Mass (kg) Sz ( �η

η
)z ( �η

η
)pz

10−17 1 � 9.3 × 10−6 � 4.3 × 10−11

−1 � 9.3 × 10−6 � 4.3 × 10−11

10−16 1 � 5.2 × 10−6 � 1.4 × 10−11

−1 � 5.2 × 10−6 � 1.4 × 10−11

10−15 1 � 2.9 × 10−6 � 4.3 × 10−12

−1 � 2.9 × 10−6 � 4.3 × 10−12

we need to make an approximation for Eq. (5), so that we can
analytically solve the equation of motion, which is convenient
for estimating the trajectory deviation caused by the impreci-
sion of magnetic field control.

We model Eq. (5) with the following acceleration
expression:

d2z(t )

dt2
= az =

(
Ccorrect

χm

μ0
B0 − Sz

geh̄

mme

)
ηz, (25)

where Ccorrect is a dimensionless correction factor. The value
of this correction factor is related to η. When η is taking dif-
ferent values, we need to adjust the correction factor to make
the approximate trajectory as close to the exact trajectory as
possible.

In this paper, we have considered the masses m ∼ 10−17,
10−16, and 10−15 kg; substituting the values of other physi-
cal quantities into Eq. (25), we can find that the coefficient
(Ccorrect

χm

μ0
B0 − Sz

geh̄
mme

) < 0, which gives rise to the following
harmonic oscillator equation with a solution of Eq. (25):

z(t ) = z0 cos(
√

At ), (26)

where A is the square of frequency

A = −
(

Ccorrect
χm

μ0
B0 − Sz

geh̄

mme

)
η > 0 (27)

and z0 is the amplitude. Here, we select the value of η corre-
sponding to the second stage of the experiment to calculate the
minimum accuracy required to control the magnetic field. This
is because the fluctuation in the magnetic field is inversely
proportional to A. The greater the value of A, the higher the
accuracy requirements for the magnetic field control. Also,
the value of A is proportional to η [Eq. (27)]. The larger

Spinp

FIG. 9. Comparison of approximate and exact trajectories of two
wave packets. Here, m = 10−17 kg, η = 1 × 108 T/m2, Ccorrect =
2526.82, and pz = 0.
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FIG. 10. The deviation between the approximate trajectory and
the exact trajectory for Sz = ±1. Here, m = 10−17 kg, η = 1 ×
108 T/m2, Ccorrect = 2526.82, and pz = 0.

the η, the larger A is. The value of η used in stage II of
the experiment is the smallest, so the accuracy required to
control the magnetic field will be the lowest at this stage; see
expressions (37) and (38) below.

For m = 10−17 kg (see Fig. 4), the value of η = 1 ×
106 T/m2 at stage II, and the corresponding correction factor
Ccorrect = 27.3467. The corrected approximate trajectory is
compared with the exact trajectory as shown in Fig. 7 [72].

We can compare the approximated trajectory with the exact
trajectory (see Fig. 7 for m = 10−17 kg for 1.4 s and Fig. 8 for
a longer time period, 5 s) for both the wave functions, i.e.,
up- and down-spin trajectories. Figure 8 shows the deviation
of the approximate trajectory from the exact trajectory. We
can see that the maximum deviation between the trajectories
within 4 s is less than 10 μm.

With the abovementioned approximations, we can now
address the question of spin coherence and any fluctuations
in the magnetic field, i.e., any deviation �η in the value of η

due to an inaccuracy in the control of the magnetic field. Then
the deviation of the trajectory can be expressed as

�z(t ) =z0 − z0 cos(
√

A + �At ) � z0
�A2

4A
t2, (28)

where

�A = −
(

Ccorrect
χm

μ0
B0 − Sz

geh̄

mme

)
�η. (29)

Here, we have used
√

At = 2nπ (n is a positive integer),
and then we have cos(

√
At ) = 1, sin(

√
At ) = 0. Combining

FIG. 11. The evolution of the wave packet for Sz = −1. The
shadow in the figure corresponds to the probability density that the
NV center is located at a certain spatial location at a certain time.
The darker the color of the shadow, the greater the value of the prob-
ability density. Here, initial width of wave packet δz ≈ 5 × 10−3 μm,
m = 10−17 kg, and η = 1 × 106 T/m2.

FIG. 12. The standard deviation for the z position and momen-
tum for Sz = −1, where δz = (〈z2〉 − 〈z〉2)

1
2 , δp = (〈p2〉 − 〈p〉2)

1
2 .

The standard deviation of the wave packet position and momentum
shows a periodic oscillation behavior in the quartic potentials. Here,
m = 10−17 kg, and η = 1 × 106 T/m2.

Eqs. (23) and (27)–(29), we can get

(
�η

η

)
z

�
(

2
√

2ε

z0At2
δz

) 1
2

, (30)

where the subscript z represents the accuracy required to ob-
tain from the positional uncertainty.

Similarly, by using the last inequality about the momentum
in Eq. (23), we can also obtain a requirement for the accuracy
of the magnetic field. The momentum can be obtained by
taking the derivative of Eq. (26):

pz(t ) = m
dz

dt
= −mz0

√
A sin(

√
At ). (31)

Since the initial momentum is zero, we can directly express
the deviation of momentum as

�pz(t ) = −mz0

√
A + �A sin(

√
A + �At )

� mz0

(√
A + �A

2
√

A

)
sin

((√
A + �A

2
√

A

)
t

)

= 1

4

mz0t

A
(�A + A)2 − 1

4
mz0At . (32)

FIG. 13. The uncertainty of the position and the momentum of
the wave packet for Sz = −1. The uncertainty changes periodically
with time and satisfies the uncertainty principle δzδp � h̄/2. Here,
m = 10−17 kg, and η = 1 × 106 T/m2.
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FIG. 14. Comparison between the expectation value of the NV
center’s position and the classical trajectory of the NV center.
The two trajectories coincide. Here, m = 10−17 kg, and η = 1 ×
106 T/m2.

Here, we have also used cos(
√

At ) = 1 and sin(
√

At ) = 0.
Combining Eqs. (23), (27), (29), and (32), we can get

(
�η

η

)
pz

�
(

2
√

2ε

mz0At
δpz + 1

) 1
2

− 1, (33)

where the subscript pz represents the accuracy required from
the momentum uncertainty.

Using the approximate solution of the wave packet trajec-
tory [Eq. (26)], when time t satisfies

√
At = 2nπ , the variation

of the trajectory can be written as

(δz(t ))2 = (δz0)2 +
( t

m

)2

(δpz )2. (34)

If we require that the wave packet does not spread signifi-
cantly in time t , then the last term in Eq. (34) needs to be
satisfied [73]:

t

m
δpz

∼= δz0. (35)

Combining Eq. (35) with the minimum uncertainty δz =
δpz = (h̄/2)

1
2 , we can get

δz =
(

t h̄

2m

) 1
2

, δpz =
(

mh̄

2t

) 1
2

. (36)

By substituting Eq. (36) into Eqs. (30) and (33), we can get

(
�η

η

)
z

�
(

2εh̄
1
2

z0Am
1
2 t

3
2

) 1
2

, (37)

(
�η

η

)
pz

�
(

2εh̄
1
2

z0Am
1
2 t

3
2

+ 1

) 1
2

− 1. (38)

Using Eqs. (37) and (38), we obtain the magnetic field ac-
curacy required for masses to recover the spin coherence, as
shown in Table I.

In Table I we have used ε = 0.1, which corresponds to
recovering 99% spin coherence; z0 = 1 × 10−4 m, which is
the initial center position of the wave packet; t = 2π√

A
≈ 0.7 s,

which is the duration of experimental stage; and η = 1 ×
106 T/m2, which is the gradient parameter.

VI. CONCLUSION

In this paper, we have provided a simple mechanism
for creating a large spatial superposition with heavy masses
and with embedded spin. We have shown that it is possi-
ble to achieve �Z ∼ O(103) μm for m = 10−17 kg, �Z ∼
O(102) μm for m = 10−16 kg, and �Z ∼ O(10) μm for
m = 10−15 kg within ∼1.4 s. There is indeed an order-of-
magnitude gain in the splitting of the wave function compared
with our earlier proposal [53], where we had taken only the
gradient term in the magnetic field and could not achieve
such a large spatial superposition in a short time scale (within
1–1.5 s). In this regard, catapulting the trajectory of the two
wave packets has yielded a better result with a magnetic field
gradient of order O(102–104) T/m.

We highlighted that there are primarily three stages of
the trajectory. First, we create a large velocity difference be-
tween the two wave packets, which experience differential
spin-dependent forces. The anharmonic oscillations gradu-
ally increase the amplitude, and when the two trajectories
meet at z = 0, their velocity difference is large, and the
trajectories catapult to achieve a large spatial splitting. We
employ three different values of the η parameter which con-
trols the magnetic field gradient; see Fig. 4 and Appendix C,
Figs. 15 and 16. We have ensured that the interference is
completed within O(1–1.5) s, where the wave function over-
lap is such that the position and the momentum match to
interfere with the two paths. We have also analyzed the con-
ditions required to maintain the spin coherence. To achieve
99% coherence, we have obtained the stringent bound on
the magnetic field fluctuations. The most stringent condition
on the fluctuation in the magnetic field arises from stage I
(see Appendix A, Table II ), and similarly for stage II (see
Table I). We have also analyzed the spreading of the wave
function and showed that the wave packets evolve and do
not satisfy the minimum uncertainty principle throughout the
trajectory at every moment but that the largest δzδp � 4h̄
(this restriction only holds when the initial conditions are
δz ∼ 5 × 10−3 μm and the initial position z ∼ 5 × 10−2 μm)
and it oscillates with a period of roughly 0.5 s where it satisfies
the minimum uncertainty principle for m = 10−17 kg and for
η = 106 T/m2. However, the wave function’s classical and
quantum trajectories match extremely well; see Appendix B,
Fig. 14.

Indeed, in all of our analysis, the time duration of the
spin coherence is an important factor for the experiment, but
the spin coherence times are perpetually rising (approaching
1 s [69,70], even 30 s [74,75]); adapting these to nanocrys-
tals remains an open problem, but there are no fundamental
constraints [76]. The spatial coherence times can be made
100 s; see Refs. [7,21,23]. There are indeed other challenges,
but the requisite pressures, temperatures, distances from other
sources, and fluctuations are achievable [23]. For example,
a decoherence rate below 0.1 Hz is achievable for diamond
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spheres of masses 10−14 kg. This is expected [7,23] for inter-
nal temperatures of 0.15 K, an environmental temperature of
1 K, and the environmental gas number density of 10−8 m−3.
In addition to these, we will need to take into account the
effect of the rotation of the diamond [65] and the excitation of
phonons [77] on the spin coherence. However, we will study
these effects separately.
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accuracy of z = 10−6 μm). Time T3 is the moment when both the velocity difference between the two wave packets and the superposition size
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FIG. 16. Dynamics for the mass m = 10−15 kg during the three experimental stages: (a)–(c) the magnetic field coordinates (potential
coordinates) experienced, (d)–(f) the velocities, (g)–(i) the velocity differences, and (j)–(l) the superposition size. We set different values
of η and the initial position of the wave packet in the magnetic field at different stages. Stage I , η = 1 × 108 T/m2, corresponding to the
coordinate z = 100 μm. Stage II , η = 6 × 106 T/m2, corresponding to the initial coordinate z = 0 μm. Stage III , η = 1 × 108 T/m2, with
an initial coordinate z = −30 μm. Times T1 and T2 are determined by constraining the moment when the superposition size is zero (with an
accuracy of z = 10−6 μm). Time T3 is the moment when both the velocity difference between the two wave packets and the superposition size
are zero.
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APPENDIX A: SPIN COHERENCE AND MAGNETIC FIELD
CONTROL FOR η = 1 × 108 T/m2

According to the analysis in Sec. V, we can calculate
the accuracy required for the magnetic field control under
the new magnetic field gradient by directly replacing the
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corresponding values of η and the correction factor. Now we
set η = 1 × 108 T/m2 and the corresponding correction factor
Ccorrect = 2526.82. Using Eqs. (5) and (26), we can compare
the approximate and the exact trajectories of the wave packets
as shown in Fig. 9.

Figure 10 shows the deviation of the approximate tra-
jectory from the exact trajectory. We can see that the
maximum deviation between trajectories within 1 s is less
than 9 μm.

Using Eqs. (37) and (38), we can get δη/η in the magnetic
field fluctuation for different masses, as shown in Table II.

In Table II we have used ε = 0.1, which corresponds to
maintaining 99% spin coherence; z0 = 1 × 10−4 m, which is
the initial center position of the wave packet; t = 60π√

A
≈ 0.2 s,

which is the duration of the experimental stage; and η = 1 ×
108 T/m2, which is the gradient parameter.

APPENDIX B: SPREADING OF THE WAVE PACKET

In Sec. V, we assumed that the wave packet is always kept
to a minimum uncertainty when calculating the accuracy re-
quired of the magnetic field control to restore spin coherence.
In this Appendix, we study the evolution of the wave packet
width in the quartic potentials, providing a theoretical basis
for our hypothesis in Sec. V.

The Schrödinger equation is

ih̄
d

dt
|�(t )〉 = Ĥ |�(t )〉. (B1)

By substituting the specific forms of the Hamiltonian [Eq. (1)]
and magnetic field [Eq. (4)] into the Schrödinger equation and
making the initial state the Gaussian wave packet shown in
Eq. (20), we can use the Trotter expansion method to numeri-
cally calculate the evolution of the wave packet [78] as shown
in Fig. 11.

It can be seen from Fig. 11 that the spreading of the wave
packet in the quartic potential exhibits a periodic oscillation
behavior. For the purpose of illustration, we will take a single
value of η = 106 T/m2 for mass m = 10−17 kg. A similar

analysis can be performed for different values of η, but the
physical properties will not alter much.

The uncertainty of the position and momentum of the wave
packet is shown in Fig. 12. The product of the uncertainty of
position and momentum satisfies the uncertainty principle, as
shown in Fig. 13. As can be seen from Fig. 13, the value of
δzδp changes periodically over time and returns to the mini-
mum uncertainty at the end of a period, which means that our
assumptions in Sec. V are reasonable.

In order to verify the correctness of the numerical results,
we compare the expectation value of the wave packet position
with the classical trajectory as shown in Fig. 14.

As can be seen from Fig. 14, the expectation value of the
wave packet position coincides with the classical trajectory
[Eq. (5)], which means that our numerical calculation of the
evolution of the wave packet is correct.

APPENDIX C: TRAJECTORIES FOR MASSES 10−16

AND 10−15 kg

The time evolution of the nanocrystals for different masses
in a nonlinear magnetic field shows a very similar pattern to
that of m = 10−17 kg. The main difference between these evo-
lutions is that the maximum velocity difference between the
wave packets with the opposite spin orientations is inversely
proportional to the mass for the same magnetic field gradient
parameter η (Fig. 6). The difference in velocity between the
wave packets then determines the superposition size that we
can obtain in the same time span. The magnetic field used to
control the motion of the wave packets in the second and third
stages will change accordingly for different masses and the
difference in velocity between the wave packets at the end of
the first stage. We have shown the numerical results of specific
parameters and the evolution of the nanocrystals in Figs. 15
and 16. An important point to note is that for the heaviest mass
m = 10−15 kg we can obtain the spatial superposition size of
15 μm, which is the required valued we require for testing
the quantum nature of gravity in a laboratory by including the
Casimir screening; see Ref. [23]. The simple scaling of the
superposition size �Z0 is given by Eq. (10).
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