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Abstract 

Adjustment for baseline covariates in randomized trials has been shown to lead to gains in power and can protect 
against chance imbalances in covariates. For continuous covariates, there is a risk that the the form of the relation‑
ship between the covariate and outcome is misspecified when taking an adjusted approach. Using a simulation 
study focusing on individually randomized trials with small sample sizes, we explore whether a range of adjustment 
methods are robust to misspecification, either in the covariate–outcome relationship or through an omitted covari‑
ate–treatment interaction. Specifically, we aim to identify potential settings where G-computation, inverse probability 
of treatment weighting (IPTW), augmented inverse probability of treatment weighting (AIPTW) and targeted maxi‑
mum likelihood estimation (TMLE) offer improvement over the commonly used analysis of covariance (ANCOVA). 
Our simulations show that all adjustment methods are generally robust to model misspecification if adjusting for a 
few covariates, sample size is 100 or larger, and there are no covariate–treatment interactions. When there is a non-
linear interaction of treatment with a skewed covariate and sample size is small, all adjustment methods can suffer 
from bias; however, methods that allow for interactions (such as G-computation with interaction and IPTW) show 
improved results compared to ANCOVA. When there are a high number of covariates to adjust for, ANCOVA retains 
good properties while other methods suffer from under- or over-coverage. An outstanding issue for G-computation, 
IPTW and AIPTW in small samples is that standard errors are underestimated; they should be used with caution 
without the availability of small-sample corrections, development of which is needed. These findings are relevant for 
covariate adjustment in interim analyses of larger trials.

Keywords  Covariate adjustment, Randomized controlled trials, Misspecification, ANCOVA, G-computation, IPTW, 
AIPTW, TMLE

Background
Whether to adjust for baseline covariates in the analy-
sis of randomized clinical trials is a question that has 
attracted controversy. In trials, the aim is to estimate the 
marginal effect of the treatment. While unadjusted anal-
yses in individually randomized trials are unbiased on 
average, there are several reasons why covariate adjusted 
approaches are attractive. Firstly, if covariates are used in 
the randomization procedure by, for example, permuted 
blocks or minimization, it is necessary to adjust for the 
covariates [1]. Secondly, adjusting for covariates that are 
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not used for randomization can lead to statistical advan-
tages. Adjustment for covariates that are correlated with 
the outcome (prognostic covariates), such as the out-
come measured at baseline, typically leads to increases in 
power. Kahan et al. [2] showed that adjustment for prog-
nostic covariates leads to substantial increases in power 
for moderate to large trials for continuous, binary and 
time-to-event outcomes. Covariate adjustment can offer 
protection against chance imbalance in the distribution 
of the covariates between treatment groups, which is 
particularly relevant for smaller trials [3]. Guidelines for 
clinical trials typically mention these potential benefits 
and caution against “fishing” for covariates that impact 
the statistical significance of the treatment effect [4].

Researchers have also addressed the topic of covariate 
adjustment from a finite population perspective, find-
ing that concerns raised about the possibility of covari-
ate adjustment decreasing precision [5] were largely 
resolved in large samples [6]. In the current manuscript, 
we instead take the perspective of an infinite super-popu-
lation from which we consider our trial population to be 
drawn.

Covariate adjustment is often achieved by a regres-
sion approach modelling the effects of the treatment 
and covariates. We refer to this in the continuous out-
come case as the analysis of covariance (ANCOVA) and 
in the binary outcome case as direct regression adjust-
ment, which we abbreviate to direct RA. The marginal 
treatment effect of interest may be a parameter of the 
model, or it may be a derived quantity of the model. For 
estimands that are collapsible, such as the difference in 
means for a continuous outcome or the risk difference 
for a binary outcome, the marginal effect of treatment is 
a parameter of the model if there are no covariate–treat-
ment interactions. For non-collapsible estimands such 
as the odds ratio for a binary outcome, adjusting for 
covariates changes the estimand for parameters directly 
estimated by the model [7, 8], so the marginal treatment 
effect must be a derived quantity. In the special case 
where treatment–covariate interactions exist, a regres-
sion-based approach does not allow the direct estimation 
of the marginal effect, so the marginal effect is a derived 
quantity.

Practitioners may be reluctant to adopt a covariate-
adjusted approach [1], due to the potential for mis-
specifying the model relating the outcome, treatment 
and covariates. This issue is particularly pronounced 
when covariates are continuous, since the functional 
form of the relationship between the covariate and out-
come needs to be specified. In addition to concerns 
around non-collapsibility of the estimand, misspecifi-
cation of this functional form could potentially lead to 
reduced power and could also lead to bias for continuous 

outcomes where sample size is small [9]. There may also 
be reluctance to adopt an adjusted approach in smaller 
trials due to the loss in degrees of freedom. These con-
cerns may also lead to reluctance in taking a covariate 
adjusted approach in interim analyses of larger trials. 
The European Medicines Agency [10] recommend using 
a simple functional form (e.g. linear or categorization) 
if the relationship between a continuous covariate and 
outcome is unknown, and discourage the inclusion of 
covariate–treatment interactions. Recent draft guidelines 
from the Food and Drug Administration [11] suggest that 
interactions may be included, but the primary analysis 
should still estimate the average treatment effect. Kahan 
et al. [12] studied the impact of several adjustment meth-
ods, including categorization of continuous variables, 
modelling the effect of the covariate with a linear effect, 
with fractional polynomials and cubic splines. They 
investigated the effect on power, bias and type I error of 
moderate to large trials ( n = 200 to 600). Their recom-
mendation is to use fractional polynomials or restricted 
cubic splines.

In addition to ANCOVA, we consider covariate adjust-
ment methods that are less commonly used in the analy-
sis of randomized trials: G-computation, also known as 
standardization or marginalization, which requires a 
model for the covariate–outcome relationship but targets 
the marginal estimand; inverse probability of treatment 
weighting (IPTW), which does not require modelling of 
the covariate–outcome relationship but instead mod-
els the treatment allocation mechanism in order to bal-
ance covariates between arms; and two approaches, 
augmented inverse probability of treatment weighting 
(AIPTW) and targeted maximum likelihood estimation 
(TMLE), which involve specification of both types of 
models but require only one to be consistently estimated. 
G-computation was used for covariate adjustment in a 
trial investigating antiretroviral treatment with standard 
care [13]. IPTW as a covariate adjustment approach has 
been demonstrated in re-analyses of trials [14–16].

In randomized trials, both unadjusted and a range of 
adjusted estimators of marginal treatment effect can be 
shown to belong to a class of methods which produce 
consistent and asymptotically normal treatment effect 
estimators, irrespective of whether the covariate adjust-
ment is correctly specified [17, 18]. White et al. [19] cau-
tioned against using non-canonical link functions (as 
might be done to estimate a non-standard marginal esti-
mand in a direct regression approach) as it can lead to 
bias under the null hypothesis. While there are a range 
of estimators that are protected against the risks of mis-
specification in sufficiently large samples, the properties 
of adjustment methods in small trials have received lim-
ited attention.
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In this study, we focus on the question of whether 
adjusting for continuous baseline covariates is beneficial 
in smaller sized trials where there is risk of misspecifica-
tion of the covariate–outcome relationship. We consider 
the specific case of a trial with a binary treatment where 
randomization is 1:1 on the individual level (no blocking/
stratification is used), and the marginal treatment effect 
is of interest. We use a simulation study to explore the 
extent to which the known benefits of adjustment in large 
trials—gain in power while estimates remain unbiased 
and coverage remains at the nominal level—are retained 
in smaller-sized trials in the presence of model misspeci-
fication. In particular, we wish to identify whether any of 
the lesser-known adjustment approaches offer improve-
ment over the commonly used ANCOVA. As this study 
is designed to identify corner cases that tease out differ-
ences between these related approaches, our simulation 
study explores a number of extreme settings that are 
unlikely to be encountered in practice, but can provide 
insight into the properties of these methods.

Methods
We consider continuous or binary outcomes, Y. We 
denote the potential outcome when a participant is given 
treatment z by Y z , where z = 0 is the control and z = 1 is 
the active treatment. We denote a baseline covariate by X. 
For a continuous outcome, the marginal treatment effect 
is defined by taking the difference between the marginal 
mean of the outcomes under the active treatment, and 
the marginal mean of the outcomes under the control:

For a binary outcome, we consider two estimands of 
interest, the risk difference (RD):

and the marginal odds ratio (OR),

For a continuous outcome, an unadjusted analysis 
involves fitting the following model, and taking the esti-
mated coefficient β̂ as the treatment effect estimate, 
which is the difference between the sample mean of the 
outcomes under the active treatment and the sample 
mean of the outcome under the control:

For a binary outcome, we consider two unadjusted 
models. Firstly, a binomial model with an identity link 

(1)E(Y 1)− E(Y 0).

(2)P(Y 1 = 1)− P(Y 0 = 1),

(3)
P(Y 1 = 1)/P(Y 1 = 0)

P(Y 0 = 1)/P(Y 0 = 0)
.

(4)E(Y | Z) = α + βZ.

function to estimate the risk, where the left-hand side of 
Eq. (4) is P(Y = 1 | Z) , then the coefficient β is the risk 
difference. Secondly, a binomial model with a logit link 
function can be used to estimate the log-odds, where the 
left-hand side of Eq. (4) is log P(Y=1)

P(Y=0) and β represents the 
marginal log odds ratio.

Regression approaches
The most common approach to covariate adjustment in 
trials is through an analysis of covariance (ANCOVA), 
where the expectation of the outcome given the treat-
ment and covariate is specified by a linear model:

The treatment effect estimate is given by β̂x , where the 
subscript emphasizes that the coefficient for treatment 
is adjusted for the covariate value x. This model can be 
extended to include additional covariates and/or non-
linear functions of covariates, in which case X is a vec-
tor including functions of the covariate values. The 
ANCOVA treatment estimate has very desirable robust-
ness properties in large samples; it is consistent [9], and 
its standard error is consistent where randomization is 
1:1, even when the model is misspecified [18].

The are two ways in which the adjusted model in Eq. 
(5) could be misspecified. Firstly, ANCOVA models 
the relationship between the covariate and outcome as 
linear; in other words, the effect of a one-unit increase 
in the covariate on the outcome is constant for all val-
ues across the range of the covariate. The true under-
lying covariate–outcome relationship could be a more 
complex non-linear relationship. To address this issue 
of potential non-linearity, the model can be adapted to 
allow a more flexible specification involving splines, 
which can capture non-linearities in the covariate–
outcome relationship. The range of the covariate is 
split into m sections and, within each section, the 
covariate–outcome relationship is specified by a cubic 
polynomial. The m− 1 resulting curves are joined at 
knots to create a smooth function. The addition of 
splines leads to an additional m+ 1 degrees of freedom 
required to fit the model. In this study, we place knots 
at equally spaced quantiles of the covariate. Secondly, 
there may be interactions between the treatment and 
covariate that are not reflected in the model. While 
ANCOVA will lead to consistent estimators even if the 
model is misspecified in large samples [4], the prop-
erties of estimators for smaller sample sizes are less 
known.

For a binary outcome, an analogous adjusted model 
can be specified for the risk or log-odds. As discussed 
earlier, covariate adjustment changes the estimand in 
the case of the odds ratio, so an adjusted regression 

(5)E(Y | Z,X) = α + βxZ + γX .
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model may not be a pragmatic approach. For further 
discussion of estimands for binary outcomes using the 
counterfactual framework, see, for example, Didelez 
and Stensrud [20] or  Daniel et al [8]. With the risk dif-
ference as the estimand, smaller sample sizes can lead 
to well-known convergence problems [21].

G‑computation
G-computation is a standardization approach which can 
be used to obtain an adjusted estimate of the marginal 
treatment effect. A model for the mean outcome in terms 
of Z and Y is specified:

and used to predict the expected value of both potential 
outcomes for each individual. The mean outcome E(Y 1) , 
under a possibly counterfactual assignment to treatment, 
is then estimated by the sample average of the predicted 
outcomes Ŷ 1 , and analogously, the mean outcome under 
the control arm E(Y 0) is computed:

The treatment effect estimate is the difference between 
the estimated mean outcomes under the two treatments. 
If m(Z,  X) is Eq. (5), the resulting treatment effect esti-
mate is equal to the ANCOVA estimate. However, the 
covariate–outcome relationship can be modelled sepa-
rately in each treatment group, which is equivalent to 
including a main effect and interaction between the 
treatment and covariate in Eq. (5), and marginalizing (as 
described above) to obtain an overall estimate of treat-
ment effect. A nonlinear covariate–outcome relationship 
could also be specified, for example by the use of splines. 
An advantage of this approach is that it separates the 
final estimation of the treatment effect from the model-
ling of the outcome.

For binary outcomes, a binomial model with logit link 
can be used to predict the potential outcomes on the 
probability scale. The sample averages can be attained 
to estimate P(Y 1 = 1) and P(Y 0 = 1) , and the odds ratio 
or risk difference can be computed. There are particular 
advantages to using G-computation for the binary out-
come case. Firstly, if the summary measure of interest 
is the risk difference, convergence problems that affect 
direct regression approaches can be avoided. Secondly, if 
the odds ratio is the estimand of interest, G-computation 
achieves covariate adjustment while retaining the mar-
ginal estimand; the issue of adjustment changing the esti-
mand is avoided.

G-computation can be written as an M-estimator, 
which relies on large-sample approximations to derive 

(6)m(Z,X) = E(Y | Z,X),

(7)E(Y z) =
1

n

n

i=1

m̂(Zi = z, xi).

standard errors and confidence intervals [22]. The stand-
ard errors are underestimated when sample sizes are 
small [23], which translate to undercoverage and false 
gains in power. Bartlett [24] showed that the estimates of 
marginal means E(Y z) are consistent for canonical gen-
eralized linear models, even if the model is misspecified. 
Therefore, in large samples, we expect the difference in 
marginal means (for the continuous outcome case) and 
the risk difference, marginal odds ratio and relative risk 
(in the binary outcome case) to be consistently estimated, 
even if the model is misspecified.

IPTW
Propensity score-based methods have largely been used 
in observational studies to address confounding and 
selection bias; however, Williamson et  al. [14] demon-
strated they lead to similar large-sample properties as 
ANCOVA, such as increases in power, when applied to 
randomized controlled trials. Inverse probability of treat-
ment weighting (IPTW) involves specifying a model 
for the propensity score, which is the probability that a 
participant is assigned the active treatment, given val-
ues of their covariates: e(X) = P(Z = 1|X). It may seem 
counter-intuitive to estimate the propensity score in a 
simple trial setting, since randomization implies that the 
true propensity score is 0.5. However, chance imbalance 
of covariates will be reflected in estimated propensity 
scores, which can then be re-balanced using a weighting 
approach. The propensity score can be estimated using 
logistic regression, by modelling Z as a binomial distribu-
tion, where:

Outcomes for participants that received the active treat-
ment are weighted by 1

ê(xi)
 , and outcomes for participants 

that received the placebo are weighted by 1
1−ê(xi)

 . The 
estimated weighted mean is given by:

and the treatment effect estimate is the difference 
between the estimated weighted mean outcomes under 
the two treatments. We note that this is fitting a model 
for the mean outcome, such as in Eq. (4), where the out-
comes are weighted by the inverse probability of being 
assigned the arm that they were randomized to. The 
regression approach can more easily be adapted to pro-
vide valid standard errors. For binary outcomes, a bino-
mial model is specified for the mean outcome instead, 
with a linear link function for the risk difference, or a 
logistic link function for the marginal odds ratio.

(8)logit{e(X)} = δ + κX .

(9)Ê(Y z) =
1

n

n∑

i=1

yiI(Zi = z)

ê(xi)zi
(
1− ê(xi)

)(1−zi)
,
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A major attraction of this approach is that it avoids 
modelling the covariate–outcome relationship, and the 
potential for covariate–treatment interactions does not 
need to be considered. In certain settings, for example in 
1:1 randomization, the propensity score is correctly spec-
ified. Further, and similarly to G-computation, a feature 
of IPTW for binary outcomes is that the marginal esti-
mand for the odds ratio is estimated. IPTW also belongs 
to the class of M-estimators whose variance estimators 
rely on large-sample properties [22] which have been 
found to perform poorly in some small sample settings 
[15].

AIPTW and TMLE
Finally, we consider two approaches, augmented inverse 
probability-of-treatment weighting (AIPTW) and tar-
geted maximum likelihood estimation (TMLE), that 
require a model for the covariate–treatment relationship 
as well as a model for the treatment assignment. They 
are known as doubly robust estimators as only one of the 
two models needs to be correctly specified to be consist-
ent for the treatment effect [25]. In the trial setting with 
1:1 randomization, since the propensity score is correctly 
specified, we obtain consistent estimators even if the out-
come model is misspecified.

Augmented inverse probability-of-treatment weighting 
(AIPTW) requires a model for the mean outcome, which 
is then used to to obtain predictions of the potential out-
comes, as in G-computation. It also requires a model for 
the propensity score so that inverse probability of treat-
ment weights can be calculated. These weights are then 
used to add an error-correcting term to the G-computa-
tion estimator, which is the sum of weighted differences 
between the observed outcomes and predicted outcomes:

Similarly to G-computation and IPTW, AIPTW belongs 
to the class of M-estimators which rely on large sample 
properties for the variance estimator [22].

Targeted maximum likelihood estimation (TMLE) 
requires an initial model of the covariate–outcome 
relationship, which could be a regression model as in 
G-computation, or it could be a flexible machine learn-
ing model [25]. A model for treatment assignment, 
such as Eq. (8), is then specified to obtain propensity 
scores. The propensity scores are required to compute 
so-called clever covariates for each individual, which 
are then used to estimate the fluctuation parameter 
for the efficient influence function using a maximum 

(10)
Ê(Y z) =

1

n

n∑

i=1

m̂(Zi = z, xi)

︸ ︷︷ ︸
G-computation estimator

−
1

n

n∑

i=1

m̂(Z=z, xi)− yi

ê(xi)zi
(
1− ê(xi)

)(1−zi)
I(Zi = z)

︸ ︷︷ ︸
error-correcting term

.

likelihood procedure [26]. The fluctuation parameter 
corrects the initial estimate for E(Y | Z,X) . This tar-
geting step optimizes the bias-variance trade-off for the 
treatment effect [27]. The difference between the aver-
age of predicted potential outcomes under the treat-
ment and the average of predicted potential outcome 
under the control is then computed to obtain the mar-
ginal treatment effect estimate. Standard errors can be 
estimated using the efficient influence function evalu-
ated for the empirical distribution, or through non-par-
ametric approaches such as the bootstrap [28]. TMLE 
is asymptotically efficient for the point estimate if both 
the propensity score model and the model for the out-
come are correctly specified [29]. Consistency of the 
estimated standard error requires that both models are 
correctly specified [30].

A comparison of the models required in these methods 
are illustrated in Fig. 1.

Simulations
We performed simulation studies to compare covari-
ate adjustment methods where the covariate–outcome 
model has been misspecified in small parallel design 
two-arm trials with 1:1 randomization. We note that our 
simulation settings include a number of extreme settings 
which are unlikely to be encountered or implemented in 
practice, such as the splines with 20 degrees of freedom, 
adjusting for 17 or more covariates, or the harmonic rela-
tionship between covariate and outcome. While unreal-
istic, exploring these settings allows us to pinpoint the 
settings where one method of covariate adjustment may 
offer advantages over another.

In our “Main Simulation” section, we explored the 

setting with one covariate, no covariate–treatment 
interaction, and a continuous outcome. Three smaller 
simulation studies vary these three design features in 
turn. The  “Extension 1:  Multiple covariates”  section 
expands the main simulation to consider multiple covari-
ates, with a continuous outcome and no interaction. 
The “Extension 2: Interaction” section adds a covari-
ate–treatment interaction to the main simulation, with 
one covariate and a continuous outcome. The  “Exten-
sion 3: Binary outcome” section considers the setting 
of a binary outcome where there is a single covariate 
and no interaction. In each setting, we were interested 
in estimating the effect of treatment and comparing the 
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following performance measures for a number of analysis 
approaches:

•	 Bias
•	 Coverage of the 95% confidence interval
•	 Model-based and empirical standard error
•	 Power
•	 Type I error rate

In each setting, total sample sizes of 25, 50 and 100 were 
considered where possible, and 1000 repetitions of the 
simulation were performed. The simulation was performed 
in R version 4.1.1 [31]. We provide an overview of the data 
generating mechanism, estimand and analysis approaches 
in each of the four settings. Full details of the data gener-
ating mechanisms are provided in Additional file 1, and R 
code is provided in Additional files 2, 3, and 4.

Main simulation
In this setting, we generated a continuous outcome from 
the model,

where ǫi ∼ N (0, 42) , and the binary treatment Zi takes 
value 1 for the active arm and 0 for the placebo arm. The 
treatment was allocated randomly with a 0.5 probability 
of a participant receiving the active treatment. We con-
sidered the case with a treatment effect ( β = 40 ) and 
without treatment effect ( β = 0 ). The covariate is gener-
ated according to f (Xi) , where Xi is drawn from a stand-
ard normal distribution and the function f (·) denotes 
five possible covariate–outcome relationships: linear, 
two-tier, flattening, quadratic and harmonic, as illustrated 
in Fig. 2. These relationships range from those which may 
plausibly be encountered in trials, through to difficult 
distributions unlikely to be encountered in practice, in 
order to explore the properties of the adjustment meth-
ods in a number of settings.

The average treatment effect, β , is the estimand of 
interest. We consider the following methods for esti-
mating β:

(11)Yi = α + βZi + f (Xi)+ ǫi,

Fig. 1  Comparison of methods for unadjusted and adjusted analyses, adapted from [27]

Fig. 2  Main simulation. True relationships between the continuous outcome and treatment studied in the simulation with the dots depicting the 
datapoints in a single simulated dataset of 100 participants. Red indicates the active treatment and blue indicates the control
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•	 Unadjusted analysis, equivalent to a t-test as in Eq. 
(4)

•	 ANCOVA as in Eq. (5) using an F-test
•	 G-computation, implemented using stdGlm() in 

the stdReg package [32], where a single model, as in 
Eq. (5), is fitted to both arms

•	 G-computation with interaction where separate mod-
els assuming linear effects of covariates are fitted for 
each arm

•	 IPTW where the model for treatment assignment is 
as in Eq. (8), implemented using psw() in the PSW 
package [33]. The standard errors are corrected to 
account for the propensity score estimation

•	 AIPTW, where the model for treatment assignment 
is as in Eq. (8) and the model for the outcome is as in 
Eq. (5), implemented using psw() in the PSW pack-
age [33]

•	 TMLE where the model for treatment assignment 
is as in Eq. (8) and the model for the outcome is as 
in Eq. (5), implemented using tmle() in the TMLE 
package [34]. The standard error is computed using 
the efficient influence function evaluated for the 
empirical distribution

We explored the addition of splines in a selection of 
these methods for sample size 50 and 100: splines with 
4 or 20 degrees of freedom in the regression approach, 
splines with 4 degrees of freedom in G-computation and 
splines with 4 degrees of freedom in IPTW. In all uses of 
splines in this study, knots are placed at equally spaced 
quantiles of the covariate. Splines are implemented using 
the ns() function in the splines package [31]. For 
IPTW, splines are implemented with PSweight() in 
the PSWeight package [35].

Extension 1: Multiple covariates
This setting has a continuous outcome, multiple covari-
ates and no interaction. We consider a scenario where 21 

covariates are measured for each individual, of which 17 
are continuous and 4 are binary. The covariates are gen-
erated to mimic typical demographic and health-related 
covariates in a trial setting. Briefly, 17 covariates (13 
continuous and 4 binary) are predictive of the outcome, 
of which three continuous covariates are highly predic-
tive of the outcome. There are four additional noise 
covariates. The outcome is generated with a number of 
linear and non-linear effects from the covariates and 
some covariate–covariate interactions, but no covari-
ate–treatment interactions. We considered the case with 
a treatment effect ( β = 40 ) and without treatment effect 
( β = 0 ). The estimand of interest is the the marginal dif-
ference in means. We explored adjusting for:

•	 The three highly predictive covariates only
•	 A larger selection of 17 potentially predictive covari-

ates
•	 All 21 covariates, which include noise variables

Due to the high number of parameters in the models for 
adjustment, we considered sample sizes of n = 50 and 
n = 100 only. For each of the three cases, we used the fol-
lowing analysis methods:

•	 Unadjusted analysis
•	 ANCOVA
•	 G-computation
•	 G-computation with interaction
•	 IPTW
•	 AIPTW
•	 TMLE

Extension 2: Interaction
This setting has a continuous outcome, one covariate and 
a covariate–treatment interaction. Four different interac-
tion settings were considered, as  illustrated in Fig.  3. A 

Fig. 3  Extension 2. True relationships between the continuous covariate and outcome with interaction are shown: small interaction, large 
interaction, different shapes, and effect absent in one group. The dots depict the datapoints in a single simulated dataset of 100 participants, where 
the red dots indicate the active treatment and the blue dots indicate the control



Page 8 of 18Tackney et al. Trials           (2023) 24:14 

single covariate was generated from a N(0,  1) distribu-
tion. In the first setting, this covariate has a small inter-
action with the treatment. In the second setting, the 
covariate has a larger interaction in which the treatment 
effect changes direction. In the third setting, the covari-
ate–outcome relationship has different shapes in each 
arm (exponential under the active treatment and linear 
under the placebo). Finally, in the last setting, the covari-
ate is the square of a standard normal distribution and 
therefore has a skewed distribution. There is no effect of 
the covariate on the outcome for the active treatment, 
but there is an effect under the placebo. We demonstrate 
in the Appendix that the bias due to misspecification in 
a model including a covariate–treatment interaction is 
likely to be pronounced where there is a skewed covari-
ate with different types of misspecification in each arm, 
prompting the addition of this last scenario in our sim-
ulation. This proof is the first report of this property, to 
our knowledge.

We consider the following methods of estimating the 
treatment effect:

•	 Unadjusted analysis
•	 ANCOVA
•	 G-computation
•	 G-computation with interaction
•	 IPTW
•	 AIPTW
•	 TMLE

Extension 3: Binary outcome
This setting has a binary outcome, one covariate and 
no interaction. We generate the covariate X from a 
standard normal distribution. The outcomes are gen-
erated using Eq.  11 on the logit scale, where the func-
tion f (·) denotes five possible covariate–outcome 
relationships: linear, two-tier, flattening, quadratic and 
harmonic. Settings with a treatment effect (with a con-
ditional odds ratio of 0.2) and without treatment effect 
were considered. Due to potential convergence issues in 
smaller sample sizes, we considered only the sample size 
n = 100.

We considered the following estimands of interest: the 
risk difference, the marginal odds ratio (for all methods 
except direct RA with logistic link), and the data gener-
ating conditional odds ratio (for direct RA with logistic 
link). We consider the following methods for estimating 
the effect of interest:

•	 Unadjusted binomial regression with linear link for 
the risk difference or logistic link for the marginal 
odds ratio.

•	 Direct regression adjustment (RA) with logistic link 
for the data generating conditional odds ratio. An 
adjusted binomial model with a linear link for the 
risk difference leads to convergence issues so is omit-
ted.

•	 G-computation for the risk difference or marginal 
odds ratio.

•	 IPTW for the risk difference or marginal odds ratio.
•	 AIPTW is included for the risk difference, but 

omitted for the marginal odds ratio as it is not read-
ily available in the software used.

•	 TMLE for the risk difference or marginal odds 
ratio.

Results
Main simulation
Figure  4 displays the results for the main simulation 
for the analytic methods for n = 100 . In all plots in the 
main simulation and in the extensions, Type I error rate 
mirrors the coverage levels so are omitted from figures. 
All analytic methods considered produce unbiased esti-
mates. We observe that the variability around the esti-
mated effect is larger for the non-linear relationships. 
At this sample size, we observe that the adjustment 
methods generally achieve nominal coverage, except for 
G-computation with interaction, IPTW and AIPTW, 
which lead to undercoverage in the highly non-linear 
quadratic relationship. All adjustment methods pro-
duce gains in power for the linear, two-tier and flat-
tening relationships. For the quadratic and harmonic 
relationships, which are poorly approximated by a lin-
ear relationship, adjustment methods which assume 
a linear covariate–outcome relationship provide no 
increase in power, but do not lead to any loss in power. 
We note that this particular simulation was run with 
5000 repetitions as apparent bias purely due to chance 
was observed for the two-tier case with 1000 repeti-
tions. This is shown in Fig. 2 in Additional file 1.

Figure  5 displays results for n = 25 , and results for 
n = 50 are provided in Additional file 1. For these smaller 
sample sizes, we observe that standard errors produced 
by IPTW, G-computation and AIPTW are smaller than 
the empirical standard error, leading to undercoverage, 
high type I error and false gains in power.

In Fig. 6, the results for ANCOVA, G-computation and 
IPTW with and without the use of splines are shown for 
n = 100 for the linear, flattening and quadratic relation-
ships. Additional file 1 displays these results for n = 50 . 
We observe that the use of splines leads to considerable 
gains in power for the non-linear relationships, and gen-
erally does not incur bias or affect type I error. When the 
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relationship is linear, the addition of splines generally 
does not affect bias, type I error or power. We observe 
that the discrepancy between the model-based and 
empirical standard errors is particularly pronounced for 
the IPTW approach with splines and the G-computation 
approach with splines when n = 50 due to the additional 
parameters in the model from the splines.

Extension 1: Multiple covariates
Figure 7 displays the results for the continuous outcome 
case with multiple covariates when n = 50 . All methods 
are unbiased regardless of the number of predictors, and 
all adjustment methods lead to gains in power when there 
are three predictors. When there are a large number of 
predictors, ANCOVA retains nominal coverage and type 
I error, but there are concerns with the other approaches. 
For IPTW, the model-based standard errors overesti-
mate the empirical standard error, leading to slight over-
coverage. With AIPTW, G-computation and TMLE, the 
model-based standard errors underestimate the empiri-
cal standard errors, leading to undercoverage and high 
type I error. Underestimation of the standard error based 

on the efficient influence function for the TMLE has been 
reported in the literature [28, 36]. The results for AIPTW 
and IPTW when there are a high number of covariates 
should be interpreted with caution as they lead to con-
vergence issues; see Table S1 in Additional file 1 for more 
details. Results for n = 100 are provided in Additional 
file  1, where we observe similar patterns, although the 
issues are alleviated at the larger sample size.

Extension 2: Interaction
Figures 8 and 9 display the results for large interaction 
and absent in one group settings for Extension 2. Results 
for the small interaction and different shapes settings 
are shown in Additional file 1. For the small interaction 
and large interaction scenarios, all methods are unbi-
ased, and standard errors are reduced as sample size 
increases. As before, the falsely small standard errors 
for IPTW, AIPTW and G-computation lead to under-
coverage and false gains in power when sample size is 
small.

In the Different shapes and Absent in one group set-
tings, the effect of the covariate is different in each arm. 

Fig. 4  Main simulation results (continuous outcome, single covariate, no interaction) for sample size 100. The number of repetitions for 
this simulation is 5000. The performance of analytic methods in terms of bias, coverage and power for the five different covariate–outcome 
relationships is displayed. The effect of treatment is 40. Model-based standard errors are indicated in black and empirical standard errors are shown 
in red. Estimates are indicated with ±1.96× Monte Carlo standard error bars. Note that the error bars are too small to be seen for power, due to the 
scale of the plots
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In the Absent in one group setting, the covariate is very 
skewed and is associated with the outcome only in one 
arm. In these settings, we see large biases with some 
methods, and biases are present even when sample size 
is 100. In particular, in the extreme setting of Absent in 
one group setting, we see that the biases are particularly 
pronounced for the ANCOVA, the spline and G-compu-
tation. It appears that G-computation with interaction, 
IPTW and AIPTW do not suffer from bias as much as 
G-computation without interaction and the regression-
based methods. The undercoverage in the unadjusted 
approach in the absent in one group setting is due to 
unequal variances between the treatment and control 
groups; at sample size of 1000, the unadjusted approach 
achieves nominal coverage.

Extension 3: Binary outcome
Figure  10 displays results for the binary outcome case 
with the odds ratio as the estimand of interest when 
sample size is 100. For all methods except direct RA, 
bias in the estimate of the marginal log odds ratio is 

shown. For direct RA, bias in the estimated conditional 
log odds ratio  relative to the data generating condi-
tional log odds ratio is shown. For all relationships, we 
observe that estimates are unbiased. Coverage appears 
to be reasonable for all methods. We observe that, as in 
the continuous outcome case, adjustment leads to gain 
in power when the covariate–outcome relationship can 
be approximated by a linear relationship. For the highly 
nonlinear quadratic and harmonic relationships, there 
are no gains in power.

Figure 11 displays results for the binary outcome case 
with the risk difference as the estimand of interest when 
sample size is 100. Convergence issues occur in the 
adjusted approach (in over 90% of simulations for the 
linear, two-tier, and flattening relationships, over 60% 
of simulation for the quadratic relationship, and over 
3% of simulations for the harmonic relationship), so 
these results are omitted. All other adjustment meth-
ods produce unbiased estimates. Coverage and type I 
error appear reasonable although there is evidence of 
slight undercoverage for nonlinear relationships; for 
the two-tier relationship, AIPTW, G-computation and 

Fig. 5  Main simulation results (continuous outcome, single covariate, no interaction) for sample size 25. The performance of analytic methods in 
terms of bias, coverage and power for the five different covariate–outcome relationships are displayed. The effect of treatment is 40. Model-based 
standard errors are indicated in black and empirical standard errors are shown in red. Estimates are indicated with ±1.96× Monte Carlo standard 
error bars. Note that the error bars are too small to be seen for power, due to the scale of the plots
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Fig. 6  Main simulation results (continuous outcome, single covariate, no interaction) for sample size 100 for ANCOVA, G-computation and IPTW 
with and without the use of splines. The performance of analytic methods in terms of bias, coverage and power for the Linear, Flattening and 
Quadratic relationships are displayed. The effect of treatment is 40. Model-based standard errors are indicated in black and  empirical standard errors 
are indicated in red. Estimates are shown with ±1.96× Monte Carlo standard error bars. Note that the error bars are too small to be seen for power, 
due to the scale of the plots

Fig. 7  Extension 1 results (continuous outcome, multiple covariates, no interaction) for sample size 50. The performance of analytic methods in 
terms of bias, coverage and power are shown when there are 3 covariates, 17 covariates and 17 covariates plus 4 noise variables. The effect of 
treatment is 40. Model-based standard errors are shown in black and  empirical standard errors are shown in red. Estimates are shown with ±1.96× 
Monte Carlo standard error bars. Note: the error bars are too small to be seen for power, due to the scale of the plots. * AIPTW and IPTW have 
convergence issues when there are a high number of predictors; see Table S1 in Additional file 1 for more details
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TMLE lead to slight undercoverge, and for the flat-
tening relationship, G-computation and TMLE lead to 
slight undercoverage. The standard error is particu-
larly underestimated for TMLE. Similarly to the odds 
ratio, we observe that gains in power for adjustment are 
strongest when the covariate–outcome relationship is 
approximately linear.

Discussion
Adjustment for baseline covariates in clinical trials have 
been shown to be beneficial where sample size is mod-
erate to large. We investigated whether the benefits of 
adjustment—gain in power while estimates remain unbi-
ased and coverage remains at the nominal level—are 
retained when there is potential for misspecification of 

Fig. 8  Extension 2 results (continuous outcome, single covariate, interaction) for the large interaction scenario. The performance of analytic 
methods in terms of bias, coverage and power is displayed. Model-based standard errors are shown in black and  empirical standard errors are 
shown in red. Estimates are shown with ±1.96× Monte Carlo standard error bars. Note that the scale of the bias is different for the four graphs, and 
the error bars are too small to be seen for power, due to the scale of the plots

Fig. 9  Extension 2 results (continuous outcome, single covariate, interaction) for the absent in one group scenario. The performance of analytic 
methods in terms of bias, coverage and power is displayed. Model-based standard errors are shown in black and empirical standard errors are 
shown in red. Estimates are shown with ±1.96× Monte Carlo standard error bars. Note that the scale of the bias is different for the four graphs, and 
the error bars are too small to be seen for power, due to the scale of the plots
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the covariate–outcome relationship, and where sample 
size is small. We considered a wide range of adjustment 
methods including lesser-used methods such as IPTW, 
AIPTW, G-computation and TMLE, and considered 
whether they offer any advantages over the commonly 

used ANCOVA. See Table  1 for a summary of the ana-
lytic methods. We note that our simulations considered 
parallel design trial settings where randomization is 1:1 at 
the individual level, and our findings may not hold under 
other randomization schemes [37]. We also note that a 

Fig. 10  Extension 3 results (binary outcome, single covariate, no interaction) for sample size 100 and odds ratio as the estimand of interest. 
The performance of analytic methods in terms of bias, coverage and power is shown for the five different covariate–outcome relationships. Bias 
calculated for the marginal log-odds for all methods except for direct regression adjustment (RA). Model-based standard errors are shown in black 
and  empirical standard errors are  shown in red. The conditional odds ratio is 0.2. * For direct regression adjustment (RA), the bias is the difference 
between the estimated conditional odds ratio, and the data generating conditional odds ratio. The standard errors for direct RA cannot be 
compared to the other approaches

Fig. 11  Extension 3 results (binary outcome, single covariate, no interaction) for sample size 100 and risk difference the estimand of interest. 
The performance of analytic methods in terms of bias, coverage and power are shown for the five different covariate–outcome relationships. 
Model-based standard errors are shown in black and  empirical standard errors  are shown in red
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number of settings explored in our simulations are unre-
alistic, but have been chosen as they may highlight areas 
where important differences between adjustment meth-
ods exist.

Should you adjust?
Our simulations showed that, for the continuous out-
come case where sample size is at least 100 and adjust-
ment is for a few covariates, and there are no strong 
covariate–treatment interactions, all methods have desir-
able properties.

In the continuous outcome case, where there is non-
linearity in the covariate–outcome relationship, meth-
ods that allow for non-linearities lead to greater gain 
in power than the common ANCOVA approach; these 
include the ANCOVA with spline, G-computation with 
interaction, G-computation with spline and IPTW. The 
recommendation by Kahan et  al. [12] to use splines to 
model the covariate–outcome relationship is relevant in 
smaller trials.

When covariate–treatment interactions exist, adjust-
ment methods can suffer from bias in small samples. 
The bias reduces with increasing sample size. If the 
interaction is non-linear and the covariate distribution 

is skewed, bias can present even in large samples. We 
prove this property and demonstrate it using simulation. 
Adjustment methods which allow for the presence of an 
interaction (including IPTW and G-computation with 
interaction) achieve an unbiased estimate at smaller sam-
ple sizes than the ANCOVA and other methods which do 
not allow for an interaction. If unexpected strong covari-
ate–treatment interactions exist, bias can be induced 
by adjustment, particularly in small samples. However, 
if substantial interaction effects are suspected to exist 
a priori then the relevance of the marginal estimand is 
questionable; trial designs that explore treatment effect 
heterogeneity may be more appropriate.

For the binary outcome case, the treatment coefficient 
from an adjusted binomial model with a logistic link 
function does not target the marginal estimand. Further, 
small sample sizes are likely to lead to convergence issues. 
For the adjusted binomial model with linear link func-
tion, convergence issues are present even with n = 100.

Which covariates should be adjusted for?
While the focus of our simulation study was not in the 
selection of covariates for adjustment in the design/
analysis stage of a trial, our simulations have shown that 

Table 1  Summary of analytic methods and their properties

Method Properties

Unadjusted Unbiased in all settings.

Typically reduced power compared to adjusted approaches.

ANCOVA/Adjusted Typically leads to increases in power.

Retains good properties if many covariates adjusted for.

No issues with estimation of standard errors in small samples.

Bias in non-linear interaction setting.

Marginal odds ratio cannot be targeted.

Convergence issues if risk ratio is of interest.

G-computation Undercoverage and high type I error in small sample sizes.

Bias in non-linear interaction setting; alleviated by allowing for interaction.

IPTW Covariate–outcome relationship need not be specified.

Undercoverage and high type I error in small sample sizes and adjusting for a few covariates.

Overcoverage if adjusting for many covariates.

Convergence issues if there are many covariates.

Slight bias in non-linear interaction setting.

AIPTW Either covariate–treatment or covariate–outcome relationship needs to be correct.

Undercoverage and high type I error in small sample sizes.

Convergence issues if there are many covariates.

Slight bias in non-linear interaction setting.

TMLE Either covariate–treatment or covariate–outcome relationship needs to be correct.

Standard errors can be underestimated if efficient influence function based estimators are used.

Slight bias in non-linear interaction setting.
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increase in power due to adjustment occurs when covari-
ates are prognostic of outcome and the covariate–out-
come relationship is linear or approximately linear, as 
shown previously by Kahan et al. [2]. If the relationship 
is non-linear but the adjustment approach allows for flex-
ibility in the modelling of this relationship via splines, 
gains in power can also be achieved. However, the choice 
of degrees of freedom for the splines should be sensible 
relative to the sample size.

If a large number of covariates are adjusted for, we 
found that the statistical properties of ANCOVA were 
similar when the number of covariates was a select few. 
However, for other adjustment methods, adjusting for a 
high number of covariates led to over- or under-coverage 
and high type I error.

Is it possible to improve on the ANCOVA?
We found that all methods performed well when sample 
sizes are moderate and covariate–treatment interactions 
are absent. We identified two settings where alternative 
adjustment methods to ANCOVA provide improvement. 
Firstly, where there are covariate–treatment interactions, 
G-computation with interaction, IPTW and AIPTW are 
potentially promising approaches. Secondly, our simula-
tions showed that adding non-linearities by splines with 
a suitable number of degrees of freedom help to gain 
power when the true covariate–outcome relationship is 
non-linear. If the true relationship approximately linear, 
the addition of spline terms generally do not lead to loss 
of power.

In addition, for binary outcomes with the odds ratio as 
the estimand of interest, an advantage of using AIPTW, 
IPTW, G-computation and TMLE is that these adjust-
ment approaches retain the marginal estimand, whereas 
regression-based approaches such as the ANCOVA and 
spline change the estimand.

What areas need further investigation?
There are several possible extensions to our simulation 
study. Firstly, our study considered only linear interac-
tions between treatment and covariate; future work could 
explore performance of adjustment methods in the pres-
ence of more complex interaction terms, which could 
potentially be misspecified. Secondly, while we attempted 
to provide a thorough exploration of this area, we did not 
explore all possible combinations of settings in our simu-
lation study. In particular, we only explored the addition 
of spline terms in a selection of approaches (ANCOVA, 
G-computation and IPTW). We would expect similar 
improvements to be seen with the addition of splines 
to the AIPTW and TMLE approaches; further research 
could explore this. Thirdly, exploring the multiple 

covariates setting and the covariate–treatment interac-
tion setting when the outcome is binary is a potential area 
of future work. Fourthly, improved performance might 
be achieved by other covariate adjustment methods, such 
as the recently-proposed overlap weights. Zeng et al. [38] 
demonstrated that overlap weights lead to improved pre-
cision compared to ANCOVA, IPTW and AIPTW when 
there is potential for model misspecification. Future work 
could consider this, and other approaches.

An issue that was identified in our simulation stud-
ies is that, for smaller sample sizes, G-computation, 
AIPTW and IPTW lead to underestimation of the 
standard error. Small sample corrections have been 
proposed, for instance, by Tsiatis et  al. [4], and used 
in a trial setting by Van Lancker et  al. [39]. The bias-
corrected and accelerated (BCa) bootstrap has been 
shown to improve performance [40]. These small-
sample corrections could be usefully evaluated in sub-
sequent comparisons and incorporated into standard 
statistical software. Underestimation of standard errors 
can also occur for TMLE if efficient influence function 
based variance estimators are used; bootstrapping and 
stratified TMLE have been recommended as alterna-
tive approaches, which were not explored in this study 
[28, 36]. A further issue for TMLE is that, when using 
data-adaptive flexible models for the propensity score 
and outcome models, the estimated standard errors 
based on the efficient influence function are not dou-
bly-robust, in the sense that their validity requires both 
models to be correct. While our simulation results 
indicate that the estimates of the standard errors are 
robust to model misspecification, we caution that this 
may not hold in general. Recent proposals give double 
robust inference for TMLE and other doubly-robust 
estimators in some settings [30, 41, 42]. This is an area 
for further research.

Lastly, the application of data-adaptive approaches for 
covariate adjustment is an emerging area of research; 
future work could consider these approaches. Wil-
liams et  al. [40], for example, used machine learning 
approaches for variable selection to construct a model-
robust, covariate-adjusted estimator for time-to-event 
and ordinal outcomes.

Practitioners can be reassured that covariate adjust-
ment in settings commonly encountered in clinical trials 
generally leads to gains in power while estimates remain 
unbiased and coverage is at nominal level. The choice of 
method, ideally made in the planning stages of the trial, 
should take into account whether covariate–treatment 
interaction is likely and whether the sample size is suf-
ficient for the use of methods that rely on large-sample 
properties.
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Appendix
We demonstrate that bias can be incurred for the 
ANCOVA when there is a covariate–treatment 
interaction, the covariate has a skewed distribu-
tion and the covariate–outcome relationship is 
misspecified.

For the simple ANCOVA, as in Eq. (5), the least squares/
maximum likelihood parameter estimates of the effect of 
treatment βx and effect of covariate γ are given by:

We first show that γ̂ can be expressed as an inverse-
weighted average of the effect of the covariate for each 
arm. To do this, we fit a regression model for the effect of 
the covariate in each arm:

where ǫk ∼ N (0, σ 2
(k)).

The least squares/maximum likelihood estimates for the 
effect of the covariate in each arm, γ (1) and γ (0) are given 
by:

Further, the estimates of their variances are given by:

We assume that σ 2
(1) = σ 2

(0) and define inverse variance 
weights w0 and w1:

We can then write the the ANCOVA estimate of the 
treatment effect as an inverse-weighted average of the 
slopes within each arm:

β̂x = (y1 − y0)− γ̂ (x1 − x0),

𝛾̂ =

∑

zi(yi − y
1
)(xi − x1) +

∑

(1 − zi)(yi − y
0
)(xi − x0)

∑

zi(zi − x1)
2 +

∑

(1 − zi)(xi − x0)
2

.

Y =α(0) + γ (0)X + ǫ(0) if Z = 0

Y =α(1) + γ (1)X + ǫ(1) if Z = 1,

γ̂ (1) =

∑
zi(yi − y1)(xi − x1)∑

zi(xi − x1)2

γ̂ (0) =

∑
(1− zi)(yi − y0)(xi − x0)∑

(1− zi)(xi − x0)2

Var(γ̂ (1)) =
σ 2
(k)∑

zi(xi − x1)2
,

Var(γ̂ (0)) =
σ 2
(k)∑

(1− zi)(xi − x0)2
.

w1 =(σ 2)(−1)
∑

zi(xi − x1)
2,

w0 =(σ 2)(−1)
∑

(1− zi)(xi − x0)
2

γ̂ =
w1γ̂

(1) + w0γ̂
(0)

w1 + w0
.

We can then write the effect of treatment as follows:

The weights w1 and w0 tend in probability to 0.5. To sim-
plify our argument below, we replace the weights with 
these limits. Thus, we have that the expectation of the 
marginal estimator β̂ is:

where Eq. (12) follows since we have that γ̂ (1) is inde-
pendent of x0 , and γ̂ (0) is independent of x1 . Equation 
(13) follows since E

[
γ̂ (1)

]
= γ (1) , and E

[
γ̂ (0)

]
= γ (0) . 

Equation (14) follows since for a randomized experiment, 
E[x1] = E[x0].

The bias due to adjustment by ANCOVA in a trial 
setting with 1:1 randomisation can therefore be written 
as 0.5

[
Cov(γ̂ (1), x1)− Cov(γ̂ (0), x0)

]
 . This bias is there-

fore approximately zero in expectation for sufficiently 
large sample sizes. For finite samples, if the effect of 
the treatment is different in each arm, the covariate has 
skewness, and further, the ANCOVA leads to misspeci-
fication of the covariate–outcome relationship, this bias 
may be particularly pronounced.

Abbreviations
AIPTW	� Augmented inverse probability of treatment weighting
ANCOVA	� Analysis of covariance
Direct RA	� Direct regression adjustment
IPTW	� Inverse probability of treatment weighting
OR	� Odds ratio
TMLE	� Targeted maximum likelihood estimation
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