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Abstract
We investigate the total stochastic entropy production of a two-level bosonic open quantum system
under protocols of time dependent coupling to a harmonic environment. These processes are
intended to represent themeasurement of a systemobservable, and consequent selection of an
eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy
production depends on the evolution of the system variables and their probability density function,
and is expressed through system and environmental contributions. The continuous stochastic
dynamics of the open system is based on theMarkovian approximation to the exact, noise-averaged
stochastic Liouville-vonNeumann equation, unravelled through the addition of stochastic environ-
mental disturbancemimicking ameasuring device. Under the thermalising influence of time
independent coupling to the environment, themean rate of entropy production vanishes
asymptotically, indicating equilibrium. In contrast, a positivemean production of entropy as the
system responds to time dependent coupling characterises the irreversibility of quantummeasure-
ment, and a comparison of its production for two coupling protocols, representing connection to and
disconnection from the externalmeasuring device, satisfies a detailed fluctuation theorem.

1. Introduction

Most applied and theoretical quantummechanics research is underpinned by the theory of open quantum
systems. Any realistic quantum system interacts with its environment, though the interaction inmany cases is
weak.Open quantum systems are of interest due to the characteristic dynamical properties they display,
specifically irreversible dissipative behaviour on approach to a steady state, and decoherence, both of which are
not found in closed systems. These phenomena are of crucial importance in quantum technological applications
such as quantum computing [1] and in theoretical developments in quantum thermodynamics [2].

In this paper, we concern ourselves with the thermodynamic behaviour of an open quantum system,more
specifically with the stochastic entropy production associatedwith the evolution of its reduced densitymatrix
brought about by changes in interactionswith the environment. Such a framework can naturally describe the
consequences arising from a time dependentHamiltonian coupling of the system to its environment, but it can
also represent the effect of quantummeasurements involving parts of the environment, such as ameasuring
device. Thefield of stochastic thermodynamics began as a generalisation of the laws of thermodynamics applied
to stochastic systems [3], such as the behaviour of colloidal particles ormolecular systems exposed to heat baths
[4]. These developments allow us to compute the entropy production associatedwith individual stochastic
trajectories of the evolving reduced densitymatrix. This stochastic entropy production can satisfy a detailed
fluctuation theoremdescribing the relationship between the effects of time-reversed versions of the coupling
protocol [5].

In order to apply the tools of stochastic thermodynamics to the quantum regime, a notion of quantum
trajectoriesmust be established.Quantum trajectories have long been used in the field of quantumoptics [6],
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and they are typically realised through the unravelling of a deterministic equation ofmotion for the variables
describing the system.Unravelling is the elaboration of the deterministic dynamics into a stochastic equation of
motion that is capable of describing randomness in systembehaviour, such asfluctuations around the average
evolution. The deterministic dynamics implicitly describes an average over the range of randombehaviour.
Randomnessmight be ascribed to outcomes of continuousmeasurements involving the environment [7], such
as photon counting or homodyne/heterodyne detection, though unitary evolution of a system together with its
environment where the state of the environment is not fully specified can also be represented using a framework
of stochastic unravelling.

To obtain these unravellings, we start with the stochastic Liouville-vonNeumann (SLN) equation for the
system’s reduced densitymatrix [8–12], a non-Markovian stochastic differential equation derived from the
Feynman-Vernon path integral-based consideration of open quantum systembehaviour [13]. It is important to
note that the stochasticity in the SLN ismerely amathematical feature that requires averaging in order to
produce the exact deterministic behaviour of the reduced densitymatrix.We then derive theMarkovian limit of
the noise-averaged SLN equation in order tomake possible a simple unravelling of the deterministic dynamics
using aKraus operator representation of physical stochasticity brought about by the environment. The
stochastic differential equation that emerges then describes physical randomness and can provide a basis for
deriving the stochastic entropy production.

We employ stochastic entropy production to quantify the irreversibility of the continuousmeasurement of
the quantum state of a two-level bosonic system.We develop a frameworkwhere coupling to an external device
causes the system to select an eigenstate of themeasured observable, and subsequent decoupling returns the
system to the initial thermal state.Wefind that this requires the system to be coupled, initially with equal
strength, to three harmonic baths representing elements of the environment. Each bath couples to an observable
of the system represented by one of the Paulimatrices. The system and baths are illustrated infigure 1. The
resulting random exploration of the Bloch sphere, with bias brought about by the systemHamiltonian, produces
behaviour consistent with a thermal Gibbs state at high temperature. This situation is then disturbed by
increasing one of the environmental coupling strengths, as a representation of additional interaction associated
with ameasuring device, which obliges the system tomove towards and dwell in the vicinity of an appropriate
eigenstate according to the Born rule. In our case, wewill be dealingwith continuousmeasurements of the
system energy. Returning the coupling to its initial strength reverses this dynamical behaviour, such that we can
regard thewhole sequence as a simple representation of the dynamics of quantummeasurement. Having
established the stochastic dynamics, we can then derive the stochastic entropy production ofmeasurement using
established analysis [5] and show thatmeasurement is associated, on average, with positive entropy production.

Note that incorporating stochasticity into the dynamics is crucial to computing the irreversibility of a
process. It can be demonstrated that themean evolution of the reduced densitymatrix towards stationarity
entirelymisses the quantum selection of an eigenstate of themeasured observable. Quantifying the irreversibility
of a stochastic trajectory, or indeed the average irreversibility over an ensemble of trajectories, requires the
incorporation of physical randomness into the dynamics.

Figure 1.Anopen system consisting of a bosonic two-level system, interacting with an environment represented by three sets of
harmonic oscillators, each coupled via a different Paulimatrix.
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The plan for the paper is as follows: in section 2 the essential ideas of stochastic thermodynamics are
introduced, as well as the SLN equation describing a system coupled to several independent baths. In section 3
we obtain aMarkovian approximation of the noise-averaged SLN equation by taking a high temperature limit
and assuming the relaxation times of the environment to be short.We then construct a stochastic unravelling of
the equation ofmotion by choosing appropriate Kraus operators and approximations. In section 4we study
process protocols of variation in the strength of one of the bath couplings; and then our calculations of the
stochastic entropy production are presented, indicating that there is an entropic cost ofmeasurement, and
showing adherence of the entropy production to the detailed fluctuation theorem.

2. Theory

Continuous orweak quantummeasurements are central to theworkwewill be discussing. They bring about a
continuous change to the systembeingmonitored, induced by the environment towhich the system is coupled.
Continuous quantummeasurements produce evolution described by a stochastic differential equation (SDE),
with an entropy productionwhich can then be assessed by applyingmethods of stochastic thermodynamics.We
describemethods for stochastic entropy production in section 2.1, followed by the SLN equation in section 2.2,
which is the starting point for the dynamics wewill be exploring.

2.1. Stochastic thermodynamics
The concept of entropy arose over a century ago from a consideration of the irreversibility ofmacroscopic
phenomena, but our understanding has evolved significantly since then. Insights into entropy productionwere
expanded by applying thermodynamic concepts to small and individual systems in the formoffluctuation
theorems. These werefirst introduced by Evans et al [14–17], and then similar ideas appeared in chaos theory
[18] and stochasticmodelling [19, 20], andwere also developed by Jarzynski [21] andCrooks [22, 23], amongst
others. These developments introduce the idea of entropy production associatedwith individual stochastic
trajectories.

Stochastic entropy production can be defined as the contrast in likelihoods of forward and reverse sequences
of systembehaviour [4]. Specifically, it takes the formof the logarithmof a ratio of the probabilities of a forward
trajectory driven by a forward protocol of driving forces, and the corresponding reversed trajectory driven by a
reverse protocol. These protocols are defined such that one is the time-reversed version of the other, e.g., if the
systemHamiltonian varies in a specificway for the forward protocol, the exact opposite time dependence takes
place in the reverse protocol. Itmay be shown that irreversible behaviour such as relaxation towards a stationary
state is then accompanied by positivemean stochastic entropy production.

We canwrite the total stochastic entropy production associatedwith the evolution of a set of time-
dependent coordinates x(t) for 0� t� τ as




( ) ( ( ) ) ( ( )∣ ( ))
( ( ) ) ( ( )∣ ( ))

( )† †
t

t t t
D =x

x x x

x x x
s
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ln

0 , 0 0

, 0
, 1tot

F F

F R

where x† is a set of coordinates evolving to form a time-reversed trajectory during the reverse protocol.
Concretely, the reverse trajectory is defined as x†(t)= εx(τ− t), where the elements of ε are+1 and−1 for even
and odd variables, respectively. In this studywewill only be dealingwith even variables, such that the starting
andfinishing points of the reversed trajectory x†(0) and x†(τ) are x(τ) and x(0), respectively. It is a detailed
reversal of the sequence of events described by the forward trajectory. For simplicity, our notation disregards an
inversion in coordinates that are odd under time reversal symmetrywhen defining the reverse trajectory [5],
since no odd variables are involved here. pF(x, t) is the probability density function (pdf) over the coordinates
obtained from solving the appropriate Fokker-Planck equation for the forward protocol, while F and R are
the conditional probability densities for a trajectory from x(0) to x(τ)under the forward protocol, and for the
time reversed trajectory from x†(0) to x†(τ) under the reverse protocol, respectively.

Denoting the pdfs of the total entropy productionΔstot in forward and reverse protocols as ( )DP sF
tot and

( )DP sR
tot , respectively, it is possible in certain circumstances to relate them as follows [24, 25]:

( )
( )

( )=
D
-D

De
P s

P s
, 2s

F
tot

R
tot

tot

which is called the detailed fluctuation theorem. This result states that the probability of a negative stochastic
entropy production for a reverse protocol is not zero, in spite of the usual demands of the second law, though it is
exponentially smaller than the probability of a positive production of the samemagnitude during the
corresponding forward protocol.
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2.1.1. Physical interpretation of stochastic entropy production for a quantum system
The physical interpretation of stochastic entropy production in the context of the evolution of a quantum system
needs to be discussed: in particular it should be emphasised that it is not the same as a change in the von
Neumann entropy.

A classical analogue of the type of quantumprocess wewish to consider is the free expansion of an ideal gas,
where there is no heat dissipation but nevertheless an entropy increase. This is a reflection of an impaired
subjective knowledge of the coordinates of the particles of the gas when the confining volume is increased.
Entropy is uncertainty with regard to configuration, in our interpretation, and it typically increases in processes
characterised by underspecified initial conditions or by coarse grained dynamical variables. Entropy production
does not necessarily require a heat dissipation to the environment.

As in the case of free expansion, the average of the stochastic entropy productionΔstot that accompanies the
evolution of an open quantum system expresses a change in subjective uncertainty with regard to the
coordinates of the quantum state of theworld. For our situation of interest, we subject the system to a formof
environmental coupling that drives it continuously towards one of its eigenstates. This is whatwemean by the
process of quantummeasurement.Wemodel the evolution of the reduced densitymatrix of the system, but the
lack of informationwith regard to the initial state of the environment, and its coarse grained nature,make this an
underspecified problem. The dynamics of the open system are effectively stochastic. The future configuration of
the system and its environment is therefore unpredictable and the growth of this uncertainty is represented by
the expectation value ofΔstot. The physicalmeaning and interpretation of this quantity is to be understood in
these terms.

Such a framework for defining entropy change provides ameasure of the irreversibility of the evolution for a
given environmental disturbance. The definition in equation (1) involves a comparison between the likelihoods
of forward and reverse sequences of events. A departure ofΔstot from zero indicates that the dynamics generates
one of the sequences preferentially. Such ameasure of irreversibility plays an important role in classical
situations, indicating the direction of time that favours processes such as dispersion and thermalisation. It plays
a similar role in a quantum frameworkwhere it can characterise an approach to equilibrium aswell as the
selection of an eigenstate under quantummeasurement. Indeedwe can conceive of processes that are reversible
in the sense that the average ofΔstot is zero: this would arise, as in classical circumstances, when the variation in
environmental coupling becomes quasistatic. Quantummeasurement need not be irreversible, neither in the
dynamical nor in the entropic sense.

VonNeumann entropy, on the other hand, can be viewed as an uncertainty associatedwith the random
outcomes arising fromprojectivemeasurement of a system in a basis where the densitymatrix is diagonal,
namely a Shannon entropy-å P Plni i i where Pi is the probability of projection into eigenstate i of the
observable. Themean stochastic entropy production, in contrast, does notmake reference to projective
measurement, and concerns changes in the uncertainty in quantum state under dynamics before any projective
measurement is performed.

2.1.2. SDEs and Fokker-Planck equation
Weneed to construct an appropriate evolution equation for the reduced densitymatrix [7]. Kraus operators
definemappings of the densitymatrix between an initial andfinal state, and continuous stochastic trajectories of
the densitymatrix can be generated using a sequence of Kraus operatormaps each defined for an infinitesimal
time interval dt.

The general Kraus representation of the evolution of a densitymatrix r̄ in a time interval dt is given by

¯ ( ) ¯ ( ) ( )†år r+ =t dt M t M , 3
k

k k

whereMk are theKraus operators, labelled by the index k. Themap should be trace preserving, which requires
the operator sum identity †å =M Mk k k to be satisfied ( is the identity operator). TheKraus operators depend
on dt, and for continuous evolutionwe require theKraus operators to differ incrementally from the identity, i.e.

µMk , when dt→ 0.
An interpretation of equation (3) is that eachKraus operator can implement a stochastic action on the

systemby the environment, namely

( ) ( )
( )

( ( ) )
( )

†

†r r r
r
r

+ = + =t dt t d
M t M

M t MTr
, 4

k k

k k

where ρ is amember of an ensemble of densitymatrices representing the uncertain current state of the system.
The trace of ρ is clearly preserved. The operation takes placewith a conditional probability given by

( ( ) )†r=p M t MTrk k k such that the average over all possible transformations of ρ(t) is given by
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and a further averaging over the ensemble of ρ(t) yields equation (3), with the over-bar therefore denoting an
ensemble average. For this interpretation to be physically acceptable ρmust remain positive definite under the
mapping equation (3). This approach can then lead to a Lindblad equation for the ensemble averaged density
matrix r̄ [26]:

¯ [ ¯ ] ¯ { ¯} ( )† †⎛
⎝

⎞
⎠

år r r r= - + -d i H dt L L L L dt,
1

2
, , 6sys

k
k k k k

withÿ= 1, systemHamiltonianHsys and Lindblad operators Lk related to theMk. Such a deterministic Lindblad
equation can be unravelled into a stochastic differential equation to simulate stochastic interactions such as
continuousmeasurements [27].We showhow this framework can be implemented for our two-level bosonic
system in section 3.

To calculate stochastic quantum entropy production, forward and reverse Kraus operators would be needed
to construct forward and reverse stochastic trajectories, respectively. This was first proposed byCrooks [28] by
considering forward and reverse changes in the densitymatrix with respect to the invariant equilibrium state of
the system. This approach has been used to calculate the entropy production corresponding to quantum jump
unravellings [29–33], although themethodwould not be appropriate for systemswithout an equilibrium state
[34, 35]. Other recent developments instead construct the reverse Kraus operators from the time reversal of the
forward operators [34–36].

However, we need not seek reverse Kraus operators for situations where the trajectories are continuous and
the stochastic evolution isMarkovian.Weneed only derive a set of Itô SDEs for the forward dynamics (according
to appropriate forwardKraus operators) fromwhich the entropy production associatedwith the evolution of the
reduced densitymatrixmay be computed using the approach developed in [5].We could construct SDEs for
each element of the densitymatrix, though it ismore convenient, and physicallymore transparent, to consider
the dynamics of quantum expectation values of various physical operators, as we shall see.

Together with the set of SDEs, we require an associated Fokker-Planck equation for the pdf of the chosen
system variables. Let us therefore consider an Itô SDE for a vector of dynamical variables x involving a vector of
Wiener increments dW, a vector of deterministic rate functionsA and amatrix of noise coefficientsB:

( ) ( ) ( )= +x A x B x dd t dt t W, , . 7

The corresponding Fokker-Planck equation that describes the evolution of the pdf p(x, t) is [37]

( ) ( ) ( ) ( ( ) ( )) ( )⎡

⎣
⎢

⎤

⎦
⎥å å

¶
¶

=
¶
¶

- +
¶
¶

x
x x x x

p t

t x
A t p t

x
D t p t

,
, , , , , 8

i i
i

j j
ij

where = BBD T1

2
is the diffusionmatrix.We shallfind thatD is diagonal for ourmodel which simplifies

matters.

2.1.3. Stochastic entropy production
From the definition in equation (1), it is possible to divide the total entropy production into two contributions
associatedwith the environment and the system, respectively. This division is somewhat arbitrary and is
introduced largely for ease of interpreting the behaviour.We calculate the total entropy production using the
approach of [5],first separating the deterministic part of equation (7) into two contributions:

( ) ( ) ( ) ( )= + +x A x A x B x dd t dt t dt t W, , , , 9irr rev

whereAirr andArev are the irreversible and reversible contributions toA, respectively. Specifically, if dxi (the i-th
component of dx) is evenwith respect to time reversal, then A dti

rev is also even. Since dt is odd,Ai
rev has to be

odd:Ai
rev transforms in the opposite way to xi under the time reversal. By similar reasoningAi

irr transforms in the
sameway as xi. This separation is necessary for the calculation of the entropy production [5].

Explicit expressions for calculating the two contributions of the entropy production have been derived.
For a systemwith a diagonal diffusionmatrixD, the incremental environmental stochastic entropy production
is [5]:
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whereN is the number of dynamical variables contributing to the entropy production.Note that this expression
(10) containsWiener increments and hence the environmental entropy productionΔsenv is explicitly a
stochastic variable.

The second contribution, the incremental system stochastic entropy production, is related to the change in
the logarithmof the pdf p(x, t) of the system, obtained from the Fokker-Planck equation:

( ( ))
( ) ( ) ( ) ( )å å

D =-

=-
¶

¶
-

¶
¶

-
¶

¶

x

x x x

d s d p t

p t

t
dt

p t

x
dx D

p t

x
dt

ln ,

ln , ln , ln ,
, 11

sys

i i
i

i
ii

i

2

2

where the second line is obtained using Itôʼs Lemma. The total stochastic entropy production is then given by
the sumof the environmental and system contributions, dΔstot= dΔssys+ dΔsenv. From these individual
stochastic contributions, it is possible to obtain the averaged system and environmental entropy productions by
cumulative summing up of their respective incremental stochastic contributions, followed by the averaging over
many realisations of the noises and hence system evolution.

The averaged total entropy production also has an analytical form. For certain circumstances, namely
sufficient elapsed time for the pdf to become time independent, and themaintenance of a condition of detailed
balance, this average is given by theKullback–Leibler divergence between the initial and final pdfs [5]:

( ) ( )
( )

( )òááD ññ = x x
x

x
s d p t

p t

p t
, ln

,

,
. 12tot init

init

final

The double angled brackets denote averages over all noise histories and initial coordinates, over the time interval
from tinit to tfinal arising fromall initial states in the ensemble. Likewise, the averaged system entropy production
also has an analytical form, usually taken to be

( ) ( ) ( ) ( ) ( )ò òááD ññ = D = - +x x x x x xs S d p t p t d p t p t, ln , , ln , , 13sys G final final init init

namely the difference in theGibbs entropy of the final and initial probability densities. This result again emerges
only under certain conditions, andwe investigate additional contributions in section 3.3.

2.2. Stochastic Liouville-vonNeumann equation
Having described some of the background concepts of stochastic entropy production, we now introduce the
stochastic dynamics under consideration. As briefly discussed in the Introduction, a non-Markovian SLN
equation can provide an exact treatment of the dynamics of the open system reduced densitymatrix, implicitly
after averaging over allmanifestations of the noises associatedwith the environment (see below). The approach
involves taking an average over stochastic solutions of the equation resulting in a deterministic trajectory from
which physical predictions can be obtained [12, 38].

However, in order to unravel the SLN equation in a straightforwardway, we need to start from aMarkovian
limit of the systembehaviour, such that the system interacts with an environment that does not possess any
memory. Another perspective is to consider the environmental correlation times, which in aMarkovian limit are
very short when compared to the characteristic timescales for the dynamics of the open system. In this sectionwe
obtain the deterministicMarkovian equation ofmotion for the physicallymeaningful, ensemble averaged
reduced densitymatrix of our system. In section 3 that follows, the unravelling procedure is considered.

Many non-Markovianmethods for open quantum systems begin their development with the full density
matrix of the environment and system and proceed to take a partial trace in order to derive an equation of
motion exclusively for the reduced densitymatrix of the system. The Feynman-Vernon influence functional
formalism is one suchmethod, where the reduced densitymatrix of the open system is represented as a path
integral over all environmentalmodesmade up of an infinite number of harmonic oscillators [13].Methods
which rely on this include quasi-adiabatic path integrals [39], hierarchical equations ofmotion [40, 41],
stochastic Schrödinger equations [42] and the Stochastic Liouville-vonNeumann (SLN) equation and its
variations [8–12]. Othermethods that do not rely on the Feynman-Vernon functional include projection
operatormethods such as theNakajima-Zwanzig equation [43–45].

The SLN equation is a stochastic differential equation containing complex cross-correlated coloured noises
representing the environment; to arrive at the appropriate deterministic description, an average needs to be
taken over such noises. Note again that the outcome of such a process will describe the evolution of an average of
an ensemble of physical densitymatrices, according to the framework of interpretation set out in section 2.1.2.

The SLN equation describes an open quantum system, with coordinates q, coupled to a large number of
harmonic oscillators that represent the environment. Here we shall consider the system to be coupled to three
independent sets of oscillators; the reason for doing sowill become apparent. The SLN formalism [9] can easily
be extended to accommodate this. TheHamiltonian coupling of the system to the k th set of oscillators is taken to
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be linear in the oscillator coordinates ξik, where i labels the oscillators, but it can depend on a general coupling
operator fk(q) of the system coordinates q. The fullHamiltonian can bewritten as follows

( { } ) ( ) ( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

å åx x x= + -H q t H q t H f q t, , , , , 14total ik sys
k

env k ik
i

ik k;

whereHenv;k(ξik) is theHamiltonian for the k th set of environmental oscillators, andHsys is theHamiltonian of
the open system. To derive the SLN equation, the initial densitymatrix of the full system is taken to be the tensor
product of the reduced densitymatrix of the system ρq(t0) and the environmental densitymatrix ρξ(t0), i.e.
ρ0= ρq(t0)⊗ ρξ(t0), where t0 is an initial time.We shall be considering aweak coupling limit so this partitioned
state is an appropriate approximation for the systemwe are investigating.

Based on theHamiltonian of equation (14), it is possible to obtain a stochastic differential equation for the
(unphysical) stochastic reduced densitymatrix ρs(t) of the systemdriven by a pair of complex colouredGaussian
noises, ηk(t), and νk(t), for each oscillator set k [8–11]. It should be stressed again that these stochastic noises are
purelymathematical constructs, and do not generate individual physical trajectories [11, 12]. Physical results
only arise when the noise-driven trajectories are averaged over theirmany realisations. The SLN equation (with
ÿ= 1) becomes:

( )
[ ( )] ( )[ ( )] ( ) { ( )} ( )⎛

⎝
⎞
⎠

å
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r h r
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r= - + +
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t
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2
, , 15s

sys s
k

k k s
k
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where the square brackets correspond to a commutator, and the curly brackets to an anticommutator. Each set
of environmental oscillators is connected independently to the open system and the associated noises satisfy the
following correlations:
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w b w wá ¢ ñ = - ¢ º - ¢hh
¥

t t
d

J t t K t tcoth
1

2
cos , 16k k k k k

0

( ) ( ) ( ) ( ) ( ( )) ( ) ( )òh n
w
p

w wá ¢ ñ = - Q - ¢ - ¢ º - ¢hn
¥

t t i t t
d

J t t K t t2 sin , 17k k k k
0

where Jk(ω) is the spectral density of the k
th oscillator set,βk= 1/kBTk is its inverse temperature (with kB being

set to 1 hereafter), ( )Q - ¢t t theHeaviside function, and the angled brackets denote an average over the
environmental noises; all other correlation functions are zero. There exist several ways to construct the coloured
noises, with each scheme affecting the convergence of results in different ways [38].

2.3. Noise-averaged SLN equation
Weneed to average equation (15)with respect to realisations of the environmental noises (to be denoted by
single angle brackets) to obtain an exact and deterministic evolution equation for the physical reduced density
matrix of the open system. Taking the average of both sides of equation (15) and denoting the physical density
matrix averaged over the noises as r̄ r= á ñs , wewrite:

¯ ( ) [ ¯ ( )] [ ( ) ( ) ] { ( ) ( ) } ( )⎛
⎝

⎞
⎠

år
r h r n r= - + á ñ + á ñ

d t

dt
i H t i f t t f t t, ,

1

2
, . 18sys

k
k k s k k s

In order to calculate the averages of the stochastic densitymatrixmultiplied by the noises that appear in the right
hand side, the Furutsu-Novikov theoremmay be used [46, 47]. For a set of noises ζiwith the correlation

( ) ( ) ( ) ( )z zá ¢ ñ = ¢t t F t t, , 19i j ij

the Furutsu-Novikov theorem states that

( ) [ ] ( ) [ ]
( )

( )òåz z
d z
dz

á ñ = ¢ ¢
¢

t A dt F t t
A

t
, , 20i

j

t

ij
j0

whereA[ζ] is a functional of the noises and δA[ζ]/δζj is its functional derivative with respect to ζj. The averaged
product of a noise and a noise-dependent functionalmay therefore be transformed into an integral.We use
equations (20) in (18) to obtain the required explicit expressions for the averages of the noisesmultiplied by ρs:

¯ ( ) [ ( ) ¯ ( )] ( )
( )
( )

( )
( )
( )

( )
( )
( )

( )

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨⎩

⎫
⎬⎭

å

å

ò ò

ò

r
r

dr
dh

dr
dn

dr
dh

=- + ¢ - ¢
¢

+ ¢ - ¢
¢

+ ¢ ¢ -
¢

hh hn

hn

d t

dt
i H t t i f dt K t t

t

t
dt K t t

t

t

i
f dt K t t

t

t

, ,

2
, . 21

sys
k

k

t

k
s

k

t

k
s

k

k
k

t

k
s

k

0 0

0

From equation (17)we observe the presence of theHeaviside function ( )Q - ¢t t , which vanishes for ¢ >t t.The
integrals in equation (21) have an upper limit t, which implies that ( )¢ - =hnK t t 0k in the last term since ¢t is
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always smaller than t due to the integration limits. Hence, the last term is zero and can be dropped; only the
commutator terms remain.We then need to calculate the functional derivatives, and after somemanipulation,
see appendix A.1, we obtain

¯ ( ) [ ¯ ( )] ( ) [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ]

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ] ( )

å

å

ò

ò

r
r r

r

r r
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+ ¢ - ¢ á ¢ ¢ ¢ + ¢ ¢ ¢ ñ

hh

hn

+ +

- -

+ + - -

d t

dt
i H t dt K t t f U t t f t U t t t

t U t t f t U t t

dt K t t f U t t f t U t t t t U t t f t U t t

, , , ,

, ,

1

2
, , , , , , 22

sys
t

k
k k s

s k

t

k
k

k k s s k

0

0

whereU+ andU− are forward and reverse propagators, respectively (see appendix A.1). Equation (22) is the
most general formof the averaged SLN equation, as no approximations have beenmade so far. Note its non-
Markovian nature. Also note that it describes the evolution of a reduced densitymatrix averaged over physical
fluctuations, along the lines of equation (6). However, this equation still contains the stochastic densitymatrix ρs
and hence is not a self-contained equation for the physical ensemble-averaged densitymatrix r̄. To be able to
workwith an equation depending exclusively on the latter, some simplifications need to bemade; this will be
done in the next section.

2.4.Markovian limit of the SLN equation
Equation (22) in its exact non-Markovian form is difficult toworkwith as it still contains the stochastic density
matrix. A self-contained equation for the physical densitymatrix ¯ ( )r t can be obtained, however, in the
Markovian limit by approximating certain properties of the environment.We begin by assuming that all the sets
of oscillators coupled to the systemhave the same temperatureTk≡ T, and the same spectral density. This is not
a necessary assumption or approximation in our analysis, but it will simplify our notations. Next we take the
limit inwhich the temperature of the environmentT is very large such thatT ismuch greater than any
characteristic energy quantumof its harmonic oscillators, βω= 1, andwewill also adopt the sameOhmic
spectral density J(ω)= αω for all oscillator sets, whereα is a proportionality constant. In this casewe can use the

first order expansion of ( ) »bw
bw

coth
2

2 , following [48], and obtain the following results for the correlation
functions of equations (16) and (17):
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0

Note that the correlation functions are the same for all the oscillator sets, hencewe have dropped the index k
here. Equations (23) and (24) appear in [49], although a different route to obtain themwas taken, specifically that
of introducing a cutoff in the spectral density and allowing it to bemuch larger than the dynamical timescales of
the system. Inserting equations (23) and (24) into equation (22) leads to theMarkovian limit of the averaged SLN
equation that contains only ¯ ( )r t . The equation takes a similar form to that found in other work [48]:
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, , ,
2

, ,
2

,

, , ,
2

, , ,
2

, , ,

25

sys
k

k k sys k
k

sys
k

k k k sys k k
k

but unlike the result published in [48], this equation contains a term involving the time dependence of the
system coupling operators fk.

3. System setup and equations ofmotion

In the last sectionwe obtained theMarkovian limit of the evolution equation for the ensemble averaged reduced
densitymatrix. Herewe shall unravel this equation, namely add noise terms, with the intention that individual
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trajectories correspond to different physical realisations of the quantum state diffusion, or continuous stochastic
evolution, of the systemunder the influence of an underspecified environment [50–54]. The underspecification
of the environment is what leads to a change in the configurational uncertainty of the systemplus its
environment, and therefore a production of entropy, as alluded to in section 2.1.1.

3.1. Setup of the system and the unravelling procedure
3.1.1. Two-level system and choice of environments
Weconsider a two-level bosonic systemwithHamiltonian

 ( )s=H , 26sys z

whereσz is the usual Paulimatrix and òhas the dimension of energy. Amore complicatedHamiltonian could be
used butwouldmake our coremessage less clear, namely that in order to perform ameasurement of an
observable, the coupling of the system to the environment byway of that observable needs to be elevated.We can
therefore proceedwith a simple framework of environmental couplings through the Paulimatrices, as will be
seen shortly.We take the systemHamiltonian to be constant in time.We require the environmental interaction
with the open system to be consistent with a thermal state subject to our earlier assumptions of weak coupling
and high temperature. Thismeans that the insertion of r̄ bµ - Hsys should cause the right hand side of
equation (25), with time independent fk, to vanish:

  ¯ [ ] [ [ ]] [ {[ ] }]

[ {[ ] }] ( )

⎛
⎝

⎞
⎠

å

å

r
b
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b

b b b

ab

µ- - + - - + -

=-

d

dt
i H H f f H f H f H

f H f H

, , ,
1

2
, , ,

2
, , , . 27

sys sys
k

k k sys k sys k sys

k
k sys k sys

The anticommutator vanishes exactly for our choice ofHamiltonianwhere µHsys
2 and the implication is that

any choice of the operators fk, throughwhich the system interacts with the environment, is consistent with the
appropriate stationary thermal state. Since the fk are hermitian according to the structure of theHamiltonian in
equation (14), it is natural, in our case, to employ three coupling operators proportional to the Paulimatrices.
Furthermore, it is natural for the initial strength of the coupling to be the same for each operator, in order that
the system-environment interaction should be isotropic. Note that the same framework, if needed, could then
be employed for systemHamiltonians proportional toσx orσy as well as the choice in equation (26).

This coupling scheme has the added advantage that it allows us tomodel the act ofmeasurement of the
system energy in a straightforwardway,merely by elevating the strength of the coupling to the operatorσz. This
represents an additional interaction between the system and an externalmeasuring device, and in the next
sectionwe shall see that the unravelled systemdynamics under such an interaction can indeed correspond to the
stochastic selection of one of the energy eigenstates. Specifically, theHamiltonian, equation (26), has two
eigenvectors |± ò〉with eigenvalues±ò, respectively, and the environmental coupling toσz drives the reduced
densitymatrix stochastically towards the form |+ ò〉〈+ ò| or |− ò〉〈− ò|. However, the scheme of coupling to
the three Paulimatricesmeans that these eigenstates are notfixed points of the dynamics: the tendency is only for
the system to dwell in the vicinity of one or other of the eigenstates, to an extent that depends on the strength of
environmental coupling toσz.

To summarise, we shall couple three independent sets of harmonic oscillators to our open systemusing
operators:

( ) ( )g s g s g s= = =f f f t, and , 28x x y y z z0 0

where for simplicity we replace labels k by theCartesian indices x, y and z. γ0 is the coupling coefficient between
the system and the environment, and δγ(t)= γ(t)− γ0 is the coupling coefficient between the system and the
devicemeasuringHsys. If γ(t) is increased from an initial value of γ0, we canmodelmeasurement of the system
energywhile under the influence of a thermal bath.We can calculate the stochastic entropy production related to
this process. Furthermore, we canmodel the detachment of themeasuring device by a protocol where γ(t)
returns to γ0 allowing the system to re-thermalise, and again compute the associated entropy production.

Note also that, with this choice of the coupling, the last term in equation (25) containing the time derivative
of the fk vanishes exactly; this is obvious for constant fx and fy, while for fz it follows from the fact that∂fk/∂t is
proportional toσz.

3.1.2. Unravelled stochastic equation
To obtain a formof equation (25) that allows for a straightforward stochastic unravelling, wewould need to
write it in a Lindblad formwith positive coefficients [7]. It would be possible to do so by extending theHilbert
space and then adding stochasticity [55, 56], though that approachwill not be taken here. Insteadwe construct
Lindblad operators thatmatch the dynamics of equation (25) in accordancewith our high temperature
approximationβHsys= 1.
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We shall now show that theMarkovian averaged (deterministic) SLN equation (25) is equivalent, to lowest
order inβò, to the Lindblad equationwhen an appropriate choice of the Lindblad operators ismade. Indeed,
consider the Lindblad equation (6) using operators

[ ] ( )⎛
⎝

⎞
⎠

l b= -L f H f
1

4
, , 29k k sys k

where l = a
b

2
. By inserting these operators into equation (6)we obtain

¯ [ ] ¯ [ [ ¯ ]] [ {[ ] ¯}]
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sys k
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k k k sys k

k
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2
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2
2 2

Wenote that [ ]H f,sys k
2 vanishes when µf

k
2 , which holds in our case. Thefinal contribution on the right hand

side is a factorβHsys smaller inmagnitude than the penultimate term, and therefore can be neglected.With these
considerations we recover theMarkovian averaged SLN equation (25) confirming the suitability of the Lindblad
operators in equation (29).

Starting from equations (6) and (29)we can now construct an unravelling consistent with the quantum state
diffusion (QSD) approach [50–54]. Using the set of Kraus operators [26, 57, 58]

 ( )†⎛
⎝

⎞
⎠

µ - - M iH dt L L dt L dt
1

2
, 31k sys k k k

consistent with the development in section 2.1.2, and substituting equation (31) into equation (4)we obtain (see
[26, 58]):

[ ] { } ( [ ( )] ) ( )† † † †⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

år r r r r r r r= - + - + + - +d i H dt L L L L dt L L L L dW,
1

2
, Tr , 32sys

k
k k k k k k k k k

wherewe use ρ to denote the physical reduced densitymatrix of the system that evolves stochastically, andwhere
environmental noise is represented by a set of independentWiener increments dWk. Notice that upon averaging
over theWiener noises this evolution equation corresponds to equation (6) and hence r̄ corresponds to the
noise averaged reduced densitymatrix ρ. Equation (32)finally provides uswith the dynamics and themeans by
which to determine the irreversibility of systembehaviour in various cases.

3.1.3. Equations ofmotion for components of the coherence vector
With the particular environmental couplings defined in equation (28) (k= x, y, z), andwith γ0= 1, we obtain
Lindblad operators:

  ( )⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

l s
b

s l s
b

s lgs= - = + =L i L i L
2

,
2

, . 33x x y y y x z z

Instead of simulating the dynamics of elements of the densitymatrix directly, wewill evolve the coherence or
Bloch vector defined by the three components ( )s r=r Tri i . This is consistent with a representation of the
reduced densitymatrix in the form

( · ) ( )sr = + r
1

2
. 34

Weobtain from equation (32) the following equations:

 ( ) ( ( )) ( )l g l b l gl= - - + + + - - -dr r dt r dt r r dW r r dW r r dW2 2 1 2 1 2 2 35x y x z x x x y y x z z
2 2 2

 ( ) ( ( )) ( )l g l l b gl= - + - + + - -dr r dt r dt r r dW r r dW r r dW2 2 1 2 2 1 2 36y x y x y x z y y y z z
2 2 2

  ( ) ( ) ( ) ( ) ( )l b l b l b gl= - + - + - + + -dr r dt r r dW r r dW r dW4 2 2 2 1 . 37z z x z x y z y z z
2 2

Notice how important it is to consider the stochastic evolution of the coherence vector rather than the averaged
behaviour. For the latter situation, described by  ( )l gá ñ = - á ñ - + á ñd r r dt r dt2 2 1x y x

2 2 , etc, any initial state
results in 〈rx〉→ 0, 〈ry〉→ 0 and 〈rz〉→− βò at long times and hence is not disturbed by the evolution of γ away
fromunity.What does change in these circumstances is the pdf of the system variables, and hence higher
moments of the components of the coherence vector. The noise-averaged Lindblad equation for r̄ cannot
capture the stochastic selection of an eigenstate undermeasurement.
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3.1.4. Equations ofmotion in cylindrical coordinates
Nextwe derive the equations ofmotion for the convenient set of coordinates (r2, rz,f), where

( )⎜ ⎟
⎛
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⎞
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f= + + =r r r r
r

r
and arctan . 38x y z

y

x

2 2 2 2

Using Itôʼs Lemma, see appendix A.2, we can obtain:
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. 41z
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Due to the coordinate singularities, suitable care needs to be takenwith regard to initial state choices and the
dynamics themselves.

3.1.5. Initial state simplification
We see from equation (39) that r= 1 is afixed point of the dynamics. Defining a pure state by the condition

( )r =Tr 12 , it can be shown that r= 1 corresponds to a pure state by inserting ρ in its coherence vector
representation 34. In order to reduce the computational difficulty of solving the equations, we set r= 1 and
consider

 


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Hence, the coherence vector describing our systemwill always lie on the surface of the Bloch sphere, and the pdf
will depend only on two variables: rz andf. These equations form the basis of our simulationswith
corresponding results to be presented in section 4.

3.2. Fokker-Planck equation
The definition of the entropy production in equation (1) requires an evolving pdf for the system coordinates over
time, and hencewe need to derive and solve the associated Fokker-Planck equation. To do so, we need
expressions for the vectorA andmatricesB and =D BBT1

2
, obtained by comparing their definitions in

equation (7)with the equations ofmotion (42) and (43).We get
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There exists nof dependence in eitherA orD, and the lattermatrix is indeed diagonal, as anticipated.With these
expressions, the Fokker-Planck equation for the pdf p(rz,f, t) becomes:
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The Fokker-Planck equation can be simplified further if we assume the initial pdf to be independent off. There
is no explicitf dependence in equation (49), so an initial pdf that isf independent will always remain so. This
leads us to the simplification p(rz,f, t)→ p(rz, t), and amore succinct equation:
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The stationary solution pst(rz) of this Fokker-Planck equation, corresponding to setting∂p(rz, t)/∂t= 0, can be
obtained analytically using tools such asMathematica. For γ≠ 1, we have:

 
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while for γ= 1we have
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whereNγ is a γ-dependent normalisation factor, and the exponents are given by
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wherewe note that c≠ d. The stationary pdfs in equations (51) and (52) are shown infigure 2 for a number of
values of γ.

We can see that the coupling strength γ has a very significant effect on the stationary probability density of
the system coordinate rz. Increasing γ concentrates the pdf closer to the boundaries and in an asymmetric
manner due to the systemHamiltonian bias ò. By evolving γ fromunity to a larger value, we can capture the
effect of ameasurement of the system energy, as this would cause individual trajectories to dwell in the vicinity of
the eigenstates ofHsys at rz=± 1, or equivalently at system energies ( )r =H rTr sys z equal to±ò.

3.3. Average system entropy production andboundary contributions
Using its definition in equation (11), the incremental stochastic system entropy production over each time step
dt can be calculated from the time-dependent pdf p(rz, t) obtained from the Fokker-Planck equation (50).We
then average overmany realisations of the behaviour. However, we noticed in practice that combining the
average stochastic system entropy productionwith the average stochastic environmental entropy production
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equation (10), obtained numerically for time independent environmental coupling, does not yield a vanishing
average total stochastic entropy production that wewould expect for a system in a stationary state with zero
probability current.We have therefore investigated this situation further. The incremental system entropy
production averaged over rz and the noises for our systemmay bewritten as

( ) ( )òááD ññ = áD ñ
-

d s d s p r t dr, , 54sys sys z z
1

1

where d〈Δssys〉 is the noise averaged increment in system entropy production, which is a function of rz and t.
(Hereafter, we occasionally drop ʼstochastic’ for simplicity of terminology). Integrating by parts twice and
retaining the boundary terms, see appendix A.3 for details, we obtain:

[ ( )] ( ) ( )⎡
⎣⎢

⎤
⎦⎥

ááD ññ = - -
¶

¶-
-

d s dS J p r t dt D
p r t

r
dtln ,

,
, 55sys G z z zz

z

z
1

1

1

1

where dSG is the increment in theGibbs entropy of the system, shown in equation (13), and Jz is the
rz-component of the probability current defined in appendix A.3.

In equation (13)we noted that d〈〈Δssys〉〉= dSGheld only under certain conditions, now shown to bewhere
the boundary terms in equation (55) vanish. For example, the current Jz and often the pdf and its derivatives
vanish at the boundaries of the parameter space, and diffusion coefficients can also go to zero, eliminating the
boundary terms For our system, althoughDzz= 0 at rz=± 1, it can be shown that the gradient∂pst(rz, t)/∂rz is
singular at the boundaries for the stationary solution of the Fokker-Planck equation, and that by implication this
applies to nonstationary situations aswell. There is therefore a need to correct the usual result d〈〈Δssys〉〉= dSG.

In contrast to this analysis, we observe amean system entropy production consistent with zerowhen our
system is in a stationary state, which suggests that the numerically obtained time dependent pdf is not sufficiently
accurate near the boundaries, or the sampling of these regions by the generated trajectories is too limited, to
produce the appropriate additional contributions. Our approach, therefore, is to estimate the boundary terms
analytically for the stationary pdf and to add them to the numerical results.

Using the stationary pdfs given in equations (52) and (51), together with the diffusion coefficientDzz given in
equation (46), itmay be shown that the boundary correction involving Jz in equation (55) vanishes at
equilibrium, and so does dSG. This allows us towrite themean stationary system entropy production increment
for general γ as

( )
( )⎡

⎣⎢
⎤
⎦⎥

ááD ññ = -
¶

¶
g

-

d s D
p r

r
dt, 56sys st zz

st z

z 1

1

which does not vanish. In fact, for γ= 1 and to lowest order inβò, it is possible to obtain a simple analytical
expression:

( ) ( )l bááD ññ = -g=d s dt. 57sys st
1 2 2

This shows that the exact boundary correction can be obtained analytically for γ= 1, though it becomes harder
for γ≠ 1. In the latter case we have amore complicated formof pst(rz), and hence it is necessary to expand it
analytically in terms of smallβò before calculating the boundary correction.

Figure 2. Stationary pdf solutions of the Fokker-Planck equation (50) for different values of γ. Parameters used areβ = 0.1 and ò = 1.
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3.4. Average environmental entropy production
With the choice of the couplings andHamiltonian, we can calculate the environmental entropy production from
equation (11).We need to determineAirr andArev from equations (42) and (43). This is done by understanding
how the components of the coherence vector and the various contributions toA transformunder time reversal.
For a systemwithout spin degrees of freedom, the time reversal operator is given byΘ= K , whereK is the
operation of complex conjugation [59] and the time reversal operation on the Paulimatrices produces

( )s s s s s sQ Q = Q Q = - Q Q =- - - . 58z z y y x x
1 1 1

Thus rx and rz are even under time reversal, and ry is odd, and hencef is also odd, andwe can separate the
coefficients of the dt terms in equations (42) and (43) into theirAirr andArev components.We canwrite


( )( ) ( )⎛

⎝
⎞
⎠

l b= - + =A Ar4
0

, 0
2

, 59irr z rev
2

and obtain an expression for the environmental entropy production using equation (10), since we already have
the formofD from equation (46).

4. Simulations and results

In this sectionwe describe two protocols designed to represent the dynamics of connecting the system to and
disconnecting it from ameasuring device, respectively, andwe compute the associated stochastic entropy
production for each.

4.1. The computational procedure
In order to demonstrate adherence to the detailed fluctuation theoremwe consider two simple protocols that are
a time reversal of each other:

• Connecting ameasuring device (protocolM): begin at t= 0with the system thermalised for γ= 1 and the
initial pdf defined as infigure 2; for t> 0 perform simulations of equations (42) and (43) using γ= 2;

• Disconnecting ameasuring device (protocol M): begin at t= 0with the system thermalised for γ= 2 and the
initial pdf defined as infigure 2; then, for t> 0 perform simulations of equations (42) and (43) using γ= 1.

The thermalisation of the system is defined by the pdf given by the stationary Fokker-Planck equation as plotted
infigure 2. For both protocols, the initial value of rz for a trajectory is randomly sampled from the appropriate
pdf pst(rz) corresponding to either γ= 1 or γ= 2, while the value off is randomly sampled froma uniformpdf
in the range [0, 2π).Whenever we specify a particular value of γ, wewill be referring to the value used for the
dynamics (i.e., for t> 0), unless we explicitlymention the thermalisation condition (t= 0). For both protocols
several parameters of the system are kept constant: the environmental inverse temperatureβ= 0.1, the
Hamiltonian parameter ò= 1, the proportionality constant in the spectral densityα= 0.01, and l = 0.2 .

In order to calculate the system entropy production, we solve the Fokker-Planck equation (50) for rz and
observe the behaviour of the systempdf going from a stationary state at a particular value of γ to another
stationary state defined by a different γ. The protocols will drive the systembetween two stationary states
obtained from the Fokker-Planck equation at different γ values. The evolution fromone stationary pdf to the
other occurs over a timescale of order t= 1, for both protocols.

In summary, the computational procedure is as follows:

1. Obtain the solution p(rz, t) of the Fokker-Planck equation (50) using the appropriate stationary pdf to select
the initial condition (at t= 0) for the trajectories; in both cases the boundary conditions at rz=± 1 are
chosen corresponding to a zero probability current Jz defined in appendix A.3.Note that each pdf is obtained
on a grid of rz values.

2. Start a loop over the noises (independently for each protocol):

(a) generate noises dWx, dWy and dWz for each time step dt;

(b) run the stochastic dynamics for rz(t) andf(t) for both protocols using equations (42) and (43) based on
initial values sampled from the corresponding γ-dependent stationary pdf;

(c) for each time increment dt and using obtained values of rz(t) andf(t), calculate the incremental
contributions to the environmental, dΔsenv, and system, ( ( ))D = -d s d p r tln ,sys z , stochastic entropy
productions via respectively, equation (10) and thefirst line of equation (11); in the latter case the
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increment of the logarithmof the pdf is calculated as a difference between its values at two consecutive
times. The values of the pdf p(rz, t) for these times at the required value of rz are obtained by linearly
interpolating each pdf between the two nearest rz values on the grid;

(d) the incremental total stochastic entropy production, at each time step dt, is calculated as a sum,
dΔstot= dΔsenv+ dΔssys; accumulate these contributions over an entire trajectory;

(e) go back to step 2(a) to run another trajectory; the calculation is repeated the required number of times
using differentmanifestations of the noises. The stochastic entropy production is averaged over the
trajectories. Each protocol will have its corresponding independent ensemble of entropy productions.

3. Once the averaged values of the entropy production increments are obtained from a large ensemble of
trajectories, the boundary term fromequation (55) is added to the ensemble average ááD ññd stot as

( )
( )⎡

⎣⎢
⎤
⎦⎥

ááD ññ = ááD ññ + ááD ññ -
¶

¶ -

d s d s d s D
p r

r
. 60tot env sys zz

st z

z 1

1

for the specific value of γ. This yields the increment of themean total stochastic entropy production
d〈〈Δstot〉〉 for the given time step dt, separately for the two protocols.

4.2.Dynamics of rz andf
The thermal state r̄eq of the system is approximately proportional to b-e Hsys for weak system-environment

coupling. In the derivation of equation (32)we have assumedβHsys= 1, sowe canwrite ¯ ( )r b» - Heq sys
1

2
and

hence obtain the average of rz as ¯ ( ¯ )s r b= = - » -r Tr 0.1z z eq for our parameters.Wefind that our numerics
supports this: by running onemillion realisations of the dynamics for protocolM (representing the connection
of themeasuring device), we observe that the averaged value of rz does indeed remain constant throughout the
simulation. Furthermore, the dynamics offmaintains a pdf that is constant infwhichmatches the
assumptions used to derive equation (50).While the averaged systembehaviour remains unchanged, the
stochastic trajectories differ significantly, as shown infigure 3.Note that each individual trajectory, if run for a
sufficiently long time, would dwell in the vicinity of either of the boundaries rz=± 1, jumping between the two.
Once the system reaches stationarity (equilibrium), the ensemble of trajectories adopts the stationary density

( )gp rst z associatedwith the corresponding value of γ. Onewould expect this tomatch the density obtained from
solving the Fokker-Planck equation from section 3.2. As can be seen from figure 3 (right panel), this is indeed the
case in our simulations.

This demonstrates the stochastic behaviour of the system and the effect of themeasurement interactions that
send rz to the vicinity of the eigenstates, whilemaintaining the same thermal averaged state throughout the
evolution. This exemplifies how crucial it is to represent the stochastic behaviour of quantummeasurements
explicitly, and to recognise that all physical changes in the system are stochastic in nature.We show infigure 4
how the system explores the surface of the Bloch sphere biased by theHamiltonian and under the influence of
the environment for a couple of individual trajectories for protocolsM and M (connecting and disconnecting

Figure 3. Left panel: a set of 10 random trajectories that were initialised at rz = 0 for protocolM (γ = 2), displaying the drifting
behaviour of the system towards the eigenstates driven by themeasuring device. Right panel: a normalised histogram for protocolM
based on onemillion individual trajectories at t = 2, and comparedwith ( )g=p rst z 2 of equation (51) obtained by solving the Fokker-
Planck equation.
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themeasurement device). The trajectorywith γ= 1 explores the Bloch sphere fairly broadly as seen infigure 2,
but for γ= 2, the trajectory tends to dwell near the boundaries at rz=± 1.

4.3. Entropy production
The total stochastic entropy production is obtained by summing up the stochastic system entropy production in
equation (11), the stochastic environmental entropy production in equation (10), and (for the ensemble average)
the boundary correction term fromequation (55). The results for protocolMwith γ= 2 are shown infigure 5.

As is seen from the figure, without the boundary correction themean stochastic entropy production
continues to increase which is inconsistent with a stationary system. The need for boundary corrections is a
consequence of our choice of system variables: it arises from the singular pdf density at the boundaries.

The entropy production for protocol M with γ= 1 is shown infigure 6. Aswith protocolM, these results
also lead to a ceiling in the average total stochastic entropy production once the system equilibrates.We see that
the process of disconnecting themeasurement device also leads to a positivemean entropy production; in fact,
themean entropy production in this case is higher than for the connection process. Note that entropy
production tends to a constant asymptotically even for an individual trajectory. Both figures 5 and 6 display
excellent alignment between the analytically averaged total entropy production for late times, and its numerical

Figure 4.Example individual trajectories for the twoprotocols (γ = 2, blue; γ = 1, red) , exploring the surface of the Bloch sphere.
Parameters used are:β = 0.1, ò = 1, =t 2max , dt = 10−5, andα = 0.01. Initial states for the protocols were randomly sampled from
the stationary solutions to the Fokker-Planck equation, for γ = 1 and γ = 2, respectively.

Figure 5. Stochastic entropy production for protocolMwith γ = 2. The noise- and rz-averaged total stochastic entropy production is
shownwith (solid black) andwithout (dotted black) the boundary correction. The red curve corresponds to a single stochastic
realisation. The dashed blue line denotes the asymptotic analytical average total stochastic entropy production for the process from
equation (12). The averages result fromonemillion realisations forβ = 0.1, ò = 1, =t 2max , dt = 10−5, andα = 0.01.
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counterpart. This validates the approximationswe havemade, and the formwehave used for the boundary
correction terms.

4.4. Entropy production pdf and detailedfluctuation theorem
As a check on the accuracy of the entropy production results, we verify that the detailedfluctuation theorem
equation (2) is satisfied. The detailed fluctuation relation concerns processes described by forward and reverse
protocols that are time reversals of one another, andwhere the final pdf under the forward protocol is the same
as the initial pdf under the reverse protocol. Figure 7 displays the asymptotic pdfs of total stochastic entropy
production for protocolsM and M. These distributions should satisfy the detailed fluctuation relation.We
compare De stot with the ratio of numerical entropy pdfs ( ) ( )D -DP s P sM

tot
M

tot and indeedfind a very good
adherence excluding deviations at the extremes of the range due to insufficient sampling.

5.Discussion and conclusions

In this paper, we have considered the stochastic entropy production induced by continuousmeasurements of a
simple open quantum system.We beganwith the stochastic Liouville-vonNeumann (SLN) equation for the
systemdynamics, inwhich the environments are represented by coloured noises, taking the appropriate
stochastic averagewith respect to these noises and retaining the non-Markovian generality of the dynamics.

Figure 6.The black curve corresponds to noise- and rz-averaged total stochastic entropy production for protocol M, with γ = 1,
including the boundary correction. The red curve is a single stochastic realisation, and the dashed blue curve is the asymptotic
analytical average total stochastic entropy production from equation (12). The averages are obtained fromonemillion realisations for
β = 0.1, ò = 1, =t 2max , dt = 10−5, andα = 0.01. The boundary correction for γ = 1 is significantly smaller than that for γ = 2.

Figure 7.Histograms displaying the asymptotic values of the total stochastic entropy productionΔstot for protocolM (blue; γ = 2)
and protocol M (green; γ = 1) based on onemillion individual trajectories (realisations). Black lines showboth sides of equation (2),
revealing the adherence to the detailedfluctuation theorem (2).
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Trajectories of the reduced densitymatrix generated by the SLN equation are not physical; only the averaged
evolution is of physical significance. In contrast, we require a stochastic dynamical unravelling that can be
interpreted as the outcome of a physical weak continuousmeasurement of the system in conjunctionwith
thermalising influences of the environment. To do so, we took theMarkovian limit of the behaviour of the
environment in the SLNby assuming a high temperature with a specific choice of a two-level bosonic
HamiltonianHsys= òσz. These steps enabled us to perform aMarkovian stochastic unravelling described by an
Itô process, which then allowed us to derive an appropriate Fokker-Planck equation and understand how the pdf
of the reduced densitymatrix changes with the strength of the continuousmeasurements while coupled to a
thermalising bath.We set up a system that interacts with three independent harmonic baths through the three
Paulimatrices, allowing for a quasi-isotropic stochastic exploration of the Bloch sphere consistent with
residence in a thermal state.We take the view that a systemunder constant interactionwith an underspecified
environment is best represented by an ensemble of reduced densitymatrices that conveys its uncertainty.

Themeasurement of system energywas then realised by increasing γ, the strength of environmental
coupling toσz, causing the system to dwell in the vicinity of one of the two energy eigenstates.We then obtained
the stochastic entropy production associatedwith each stochastic trajectory of the reduced densitymatrix. Note
that if the pdf of the reduced densitymatrix is stationary for a particular set of environmental couplings, raising γ
will cause the pdf to increase in the vicinity of the eigenstates of the systemHamiltonian but this will not change
the average energy of an ensemble of systems. Amodel of the dynamics and thermodynamics ofmeasurement
requires the system to be represented by amember of an ensemble: the average behaviourwill not suffice.

To calculate the entropy production associatedwithmeasurement, we used an analysis of theMarkovian
systemdynamics developed in [5]. This contrasts with the calculation of the stochastic entropy production for
quantum systems based on forward and reverse trajectories constructed using forward and reverse Kraus
operators [28, 31, 36].We also computed the stochastic system entropy production by considering the evolution
of the pdf of the reduced densitymatrix of the system.

We found that the numerically calculated stochastic entropy production contains some subtle numerical
artefacts. These are corrected by calculating themean analytical stochastic system entropy production in a
stationary state, allowing us to obtain boundary correction terms that eliminate the artefacts.

We found that the increase and decrease in coupling strength γ, corresponding to the operation of a
measuring device, are both accompanied by a positivemean total stochastic entropy production. This is the
entropic cost of quantummeasurement. Furthermore, we showed that the stochastic entropy production
associatedwith a quantummeasurement isfinite as the system achieves a new stationary state. Finally, we have
shown that the processes of attachment and detachment of ameasuring device generate distributions of
stochastic entropy production that satisfy a detailed fluctuation relation.We aim to extend this approach next to
more complicated systems, to include non-Markovian dynamics and to relax the requirement for a high
temperature approximation.
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AppendixA.

A.1. Averaged SLN equation
Herewe shall consider the calculation of the functional derivatives of ρswith respect to the noises needed for the
derivation of equation (22). The formal solution of the SLN equation is given by

( ) ( ) ( ) ( ) ( )r r= + -t U t U t, 0 0 0, , 61s s

whereU+ andU− are the appropriate forward and backward propagators defined as

( ) ( ) ( )⎡
⎣

⎤
⎦

 ò= - ¢ ¢+ + +U t i dt H t, 0 exp 62
t

0
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( ) ( ) ( )⎡
⎣

⎤
⎦

 ò= ¢ ¢- - -U t i dt H t0, exp , 63
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0

where + and - are the forward and backward time ordering operators, respectively, and
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are theHamiltonian operators. Note that they are not adjoints of each other, see [11] for details. Hence the
functional derivative of the densitymatrix can bewritten as
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The derivatives of the forward and backward propagators with respect to arbitrary perturbations of the noises
are given by:
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2
, for convenience dropping the suffix k. We can nowdefine the variation of

the propagators with respect to the noises η(t) and ν(t). Starting with η(t):
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This then allows us towrite ( ) ( )h rá ñt ts as

( ) ( ) ( )
( )
( )

( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ò ò

ò

ò

h r
dr
dh

dr
dn

r

r

r

r

á ñ = ¢ - ¢
¢

+ ¢ - ¢
¢

= ¢ - ¢ á ¢ ¢ ¢

- ¢ ¢ ¢ ñ

+ ¢ - ¢ ¢ ¢ ¢

+ ¢ ¢ ¢

hh hn

hh

hn

+ + -

+ - -

+ + -

+ - -

t t dt K t t
t

t
dt K t t

t

t

dt K t t iU t t f t U t U t

U t iU t f t U t t

dt K t t
i

U t t f t U t U t

U t
i

U t f t U t t

, , 0 0 0,

, 0 0 0, ,

2
, , 0 0 0,

, 0 0
2

0, , . 70

s
t s t s

t
s

s

t
s

s

0 0

0

0

Using this expression, we arrive at equation (22) given in the text.

A.2. Cylindrical coordinate equations ofmotion
Wederive the equations ofmotion in cylindrical coordinates (r2, rz,f) for general γ.With these coordinates, the
x and y components of the coherence vector are given by

( )f f= - = -r r r r r rcos sin . 71x z y z
2 2 2 2
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From these expressions and using Itôʼs Lemma,we obtain the equations ofmotion for this set of coordinates:
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The required derivatives are:
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which allows us to simplify equations (72) and (73):
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Wecan calculate ( )drx 2, ( )dry 2, ( )drz 2 and drxdryusing equations (35)–(37) and the substitution dWidWj= δijdt,
keeping linear terms in dt:

( ) ( ( )) ( )l b l l g= + - + +dr r r dt r r dt r r dt2 1 4 4 80x z x x y x z
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After some algebra and dropping quadratic terms inβ, we obtain
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The sumof equations (84) is given by
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Moving on to the 2ridri terms:
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Adding up equations (86) leads to
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By adding equations (85) and (87)we obtain the final expression for dr2:
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For the calculation of df, the contributions linear in dri are:
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The terms quadratic in dri lead to
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allowing us towrite thefinal expression for df as
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A.3. Averaged system entropy production and boundary terms
Wederive an analytical expression for d〈〈Δssys〉〉, the noise- and coordinate-averaged, incremental stochastic
system entropy production, written as

( ) ( )òááD ññ = áD ñ
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where d〈Δssys〉 is given by the noise averaged formof equation (11).We proceed as follows:
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Integrating the last termby parts, and introducing the rz component of the probability current,
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that appears in the Fokker-Planck equation (8)
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Nextwe integrate the second term inside the integral by parts and replace the rz derivative of the probability
current with the left hand side of the Fokker-Planck equation (95):
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where dSG is the increment of theGibbs entropy, see equation (13).
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