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Abstract

We investigate the total stochastic entropy production of a two-level bosonic open quantum system
under protocols of time dependent coupling to a harmonic environment. These processes are
intended to represent the measurement of a system observable, and consequent selection of an
eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy
production depends on the evolution of the system variables and their probability density function,
and is expressed through system and environmental contributions. The continuous stochastic
dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged
stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environ-
mental disturbance mimicking a measuring device. Under the thermalising influence of time
independent coupling to the environment, the mean rate of entropy production vanishes
asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the
system responds to time dependent coupling characterises the irreversibility of quantum measure-
ment, and a comparison of its production for two coupling protocols, representing connection to and
disconnection from the external measuring device, satisfies a detailed fluctuation theorem.

1. Introduction

Most applied and theoretical quantum mechanics research is underpinned by the theory of open quantum
systems. Any realistic quantum system interacts with its environment, though the interaction in many cases is
weak. Open quantum systems are of interest due to the characteristic dynamical properties they display,
specifically irreversible dissipative behaviour on approach to a steady state, and decoherence, both of which are
not found in closed systems. These phenomena are of crucial importance in quantum technological applications
such as quantum computing [ 1] and in theoretical developments in quantum thermodynamics [2].

In this paper, we concern ourselves with the thermodynamic behaviour of an open quantum system, more
specifically with the stochastic entropy production associated with the evolution of its reduced density matrix
brought about by changes in interactions with the environment. Such a framework can naturally describe the
consequences arising from a time dependent Hamiltonian coupling of the system to its environment, but it can
also represent the effect of quantum measurements involving parts of the environment, such as a measuring
device. The field of stochastic thermodynamics began as a generalisation of the laws of thermodynamics applied
to stochastic systems [3], such as the behaviour of colloidal particles or molecular systems exposed to heat baths
[4]. These developments allow us to compute the entropy production associated with individual stochastic
trajectories of the evolving reduced density matrix. This stochastic entropy production can satisfy a detailed
fluctuation theorem describing the relationship between the effects of time-reversed versions of the coupling
protocol [5].

In order to apply the tools of stochastic thermodynamics to the quantum regime, a notion of quantum
trajectories must be established. Quantum trajectories have long been used in the field of quantum optics [6],

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. An open system consisting of a bosonic two-level system, interacting with an environment represented by three sets of
harmonic oscillators, each coupled via a different Pauli matrix.

and they are typically realised through the unravelling of a deterministic equation of motion for the variables
describing the system. Unravelling is the elaboration of the deterministic dynamics into a stochastic equation of
motion that is capable of describing randomness in system behaviour, such as fluctuations around the average
evolution. The deterministic dynamics implicitly describes an average over the range of random behaviour.
Randomness might be ascribed to outcomes of continuous measurements involving the environment [7], such
as photon counting or homodyne/heterodyne detection, though unitary evolution of a system together with its
environment where the state of the environment is not fully specified can also be represented using a framework
of stochastic unravelling.

To obtain these unravellings, we start with the stochastic Liouville-von Neumann (SLN) equation for the
system’s reduced density matrix [8—12], a non-Markovian stochastic differential equation derived from the
Feynman-Vernon path integral-based consideration of open quantum system behaviour [13]. Itis important to
note that the stochasticity in the SLN is merely a mathematical feature that requires averaging in order to
produce the exact deterministic behaviour of the reduced density matrix. We then derive the Markovian limit of
the noise-averaged SLN equation in order to make possible a simple unravelling of the deterministic dynamics
using a Kraus operator representation of physical stochasticity brought about by the environment. The
stochastic differential equation that emerges then describes physical randomness and can provide a basis for
deriving the stochastic entropy production.

We employ stochastic entropy production to quantify the irreversibility of the continuous measurement of
the quantum state of a two-level bosonic system. We develop a framework where coupling to an external device
causes the system to select an eigenstate of the measured observable, and subsequent decoupling returns the
system to the initial thermal state. We find that this requires the system to be coupled, initially with equal
strength, to three harmonic baths representing elements of the environment. Each bath couples to an observable
of the system represented by one of the Pauli matrices. The system and baths are illustrated in figure 1. The
resulting random exploration of the Bloch sphere, with bias brought about by the system Hamiltonian, produces
behaviour consistent with a thermal Gibbs state at high temperature. This situation is then disturbed by
increasing one of the environmental coupling strengths, as a representation of additional interaction associated
with a measuring device, which obliges the system to move towards and dwell in the vicinity of an appropriate
eigenstate according to the Born rule. In our case, we will be dealing with continuous measurements of the
system energy. Returning the coupling to its initial strength reverses this dynamical behaviour, such that we can
regard the whole sequence as a simple representation of the dynamics of quantum measurement. Having
established the stochastic dynamics, we can then derive the stochastic entropy production of measurement using
established analysis [5] and show that measurement is associated, on average, with positive entropy production.

Note that incorporating stochasticity into the dynamics is crucial to computing the irreversibility of a
process. It can be demonstrated that the mean evolution of the reduced density matrix towards stationarity
entirely misses the quantum selection of an eigenstate of the measured observable. Quantifying the irreversibility
of a stochastic trajectory, or indeed the average irreversibility over an ensemble of trajectories, requires the
incorporation of physical randomness into the dynamics.
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The plan for the paper is as follows: in section 2 the essential ideas of stochastic thermodynamics are
introduced, as well as the SLN equation describing a system coupled to several independent baths. In section 3
we obtain a Markovian approximation of the noise-averaged SLN equation by taking a high temperature limit
and assuming the relaxation times of the environment to be short. We then construct a stochastic unravelling of
the equation of motion by choosing appropriate Kraus operators and approximations. In section 4 we study
process protocols of variation in the strength of one of the bath couplings; and then our calculations of the
stochastic entropy production are presented, indicating that there is an entropic cost of measurement, and
showing adherence of the entropy production to the detailed fluctuation theorem.

2. Theory

Continuous or weak quantum measurements are central to the work we will be discussing. They bring about a
continuous change to the system being monitored, induced by the environment to which the system is coupled.
Continuous quantum measurements produce evolution described by a stochastic differential equation (SDE),
with an entropy production which can then be assessed by applying methods of stochastic thermodynamics. We
describe methods for stochastic entropy production in section 2.1, followed by the SLN equation in section 2.2,
which is the starting point for the dynamics we will be exploring.

2.1. Stochastic thermodynamics

The concept of entropy arose over a century ago from a consideration of the irreversibility of macroscopic
phenomena, but our understanding has evolved significantly since then. Insights into entropy production were
expanded by applying thermodynamic concepts to small and individual systems in the form of fluctuation
theorems. These were first introduced by Evans et al [14—17], and then similar ideas appeared in chaos theory
[18] and stochastic modelling [19, 20], and were also developed by Jarzynski [21] and Crooks [22, 23], amongst
others. These developments introduce the idea of entropy production associated with individual stochastic
trajectories.

Stochastic entropy production can be defined as the contrast in likelihoods of forward and reverse sequences
of system behaviour [4]. Specifically, it takes the form of the logarithm of a ratio of the probabilities of a forward
trajectory driven by a forward protocol of driving forces, and the corresponding reversed trajectory driven by a
reverse protocol. These protocols are defined such that one is the time-reversed version of the other, e.g., if the
system Hamiltonian varies in a specific way for the forward protocol, the exact opposite time dependence takes
place in the reverse protocol. It may be shown that irreversible behaviour such as relaxation towards a stationary
state is then accompanied by positive mean stochastic entropy production.

We can write the total stochastic entropy production associated with the evolution of a set of time-
dependent coordinates x(f) for 0 < t < Tas

pF(x(0), 0P (x(7)]x(0))

A tot = 1 N
o) = e, DPRE (1% (0)

ey

where x' is a set of coordinates evolving to form a time-reversed trajectory during the reverse protocol.
Concretely, the reverse trajectory is defined as x'() = ex(7 — 1), where the elements of € are +1 and —1 for even
and odd variables, respectively. In this study we will only be dealing with even variables, such that the starting
and finishing points of the reversed traj ectoryxT(O) and x'(7) are x(7) and x(0), respectively. Itis a detailed
reversal of the sequence of events described by the forward trajectory. For simplicity, our notation disregards an
inversion in coordinates that are odd under time reversal symmetry when defining the reverse trajectory [5],
since no odd variables are involved here. p F(x, t)is the probability density function (pdf) over the coordinates
obtained from solving the appropriate Fokker-Planck equation for the forward protocol, while Pf and PR are
the conditional probability densities for a trajectory from x(0) to x(7) under the forward protocol, and for the
time reversed trajectory from x'(0) to x"(7) under the reverse protocol, respectively.

Denoting the pdfs of the total entropy production As,,, in forward and reverse protocols as PF (As,,,) and
PR(Asy,;), respectively, it is possible in certain circumstances to relate them as follows [24, 25]:

PF(Astot)

eASmt — S
PR (—Asgr)

(2

which is called the detailed fluctuation theorem. This result states that the probability of a negative stochastic
entropy production for a reverse protocol is not zero, in spite of the usual demands of the second law, though it is
exponentially smaller than the probability of a positive production of the same magnitude during the
corresponding forward protocol.
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2.1.1. Physical interpretation of stochastic entropy production for a quantum system

The physical interpretation of stochastic entropy production in the context of the evolution of a quantum system
needs to be discussed: in particular it should be emphasised that it is not the same as a change in the von
Neumann entropy.

A classical analogue of the type of quantum process we wish to consider is the free expansion of an ideal gas,
where there is no heat dissipation but nevertheless an entropy increase. This is a reflection of an impaired
subjective knowledge of the coordinates of the particles of the gas when the confining volume is increased.
Entropy is uncertainty with regard to configuration, in our interpretation, and it typically increases in processes
characterised by underspecified initial conditions or by coarse grained dynamical variables. Entropy production
does not necessarily require a heat dissipation to the environment.

As in the case of free expansion, the average of the stochastic entropy production As,,, that accompanies the
evolution of an open quantum system expresses a change in subjective uncertainty with regard to the
coordinates of the quantum state of the world. For our situation of interest, we subject the system to a form of
environmental coupling that drives it continuously towards one of its eigenstates. This is what we mean by the
process of quantum measurement. We model the evolution of the reduced density matrix of the system, but the
lack of information with regard to the initial state of the environment, and its coarse grained nature, make this an
underspecified problem. The dynamics of the open system are effectively stochastic. The future configuration of
the system and its environment is therefore unpredictable and the growth of this uncertainty is represented by
the expectation value of As;,;. The physical meaning and interpretation of this quantity is to be understood in
these terms.

Such a framework for defining entropy change provides a measure of the irreversibility of the evolution for a
given environmental disturbance. The definition in equation (1) involves a comparison between the likelihoods
of forward and reverse sequences of events. A departure of As,,, from zero indicates that the dynamics generates
one of the sequences preferentially. Such a measure of irreversibility plays an important role in classical
situations, indicating the direction of time that favours processes such as dispersion and thermalisation. It plays
asimilar role in a quantum framework where it can characterise an approach to equilibrium as well as the
selection of an eigenstate under quantum measurement. Indeed we can conceive of processes that are reversible
in the sense that the average of As,,, is zero: this would arise, as in classical circumstances, when the variation in
environmental coupling becomes quasistatic. Quantum measurement need not be irreversible, neither in the
dynamical nor in the entropic sense.

Von Neumann entropy, on the other hand, can be viewed as an uncertainty associated with the random
outcomes arising from projective measurement of a system in a basis where the density matrix is diagonal,
namely a Shannon entropy —>_; P; In P, where P; is the probability of projection into eigenstate i of the
observable. The mean stochastic entropy production, in contrast, does not make reference to projective
measurement, and concerns changes in the uncertainty in quantum state under dynamics before any projective
measurement is performed.

2.1.2. SDEs and Fokker-Planck equation
We need to construct an appropriate evolution equation for the reduced density matrix [7]. Kraus operators
define mappings of the density matrix between an initial and final state, and continuous stochastic trajectories of
the density matrix can be generated using a sequence of Kraus operator maps each defined for an infinitesimal
time interval dt.

The general Kraus representation of the evolution of a density matrix p in a time interval dt is given by

pt + dty = Mip(tH) M}, 3)
k

where M, are the Kraus operators, labelled by the index k. The map should be trace preserving, which requires
the operator sum identity Y°, M My = I to be satisfied (I is the identity operator). The Kraus operators depend
on dt, and for continuous evolution we require the Kraus operators to differ incrementally from the identity, i.e.
M, o I, whendt — 0.

An interpretation of equation (3) is that each Kraus operator can implement a stochastic action on the
system by the environment, namely

Mip(H)M]

t+dt)=pt) +dp=—-—""—""—,
g P T T Mep (M)

4)

where pis a member of an ensemble of density matrices representing the uncertain current state of the system.
The trace of pis clearly preserved. The operation takes place with a conditional probability given by
P = Tr(Myp(t) M, ,j ) such that the average over all possible transformations of p(f) is given by

4
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5 O 5 p i, 5)
=TI MopOM) 5
and a further averaging over the ensemble of p(¢) yields equation (3), with the over-bar therefore denoting an
ensemble average. For this interpretation to be physically acceptable p must remain positive definite under the
mapping equation (3). This approach can then lead to a Lindblad equation for the ensemble averaged density
matrix p [26]:

. 1
dp = _1[H5ys> pldt + Z(Lka]I - E{L;Llo p})dta (6)
k

with /o = 1, system Hamiltonian H,,;and Lindblad operators L; related to the M;. Such a deterministic Lindblad
equation can be unravelled into a stochastic differential equation to simulate stochastic interactions such as
continuous measurements [27]. We show how this framework can be implemented for our two-level bosonic
system in section 3.

To calculate stochastic quantum entropy production, forward and reverse Kraus operators would be needed
to construct forward and reverse stochastic trajectories, respectively. This was first proposed by Crooks [28] by
considering forward and reverse changes in the density matrix with respect to the invariant equilibrium state of
the system. This approach has been used to calculate the entropy production corresponding to quantum jump
unravellings [29-33], although the method would not be appropriate for systems without an equilibrium state
[34, 35]. Other recent developments instead construct the reverse Kraus operators from the time reversal of the
forward operators [34-36].

However, we need not seek reverse Kraus operators for situations where the trajectories are continuous and
the stochastic evolution is Markovian. We need only derive a set of It SDEs for the forward dynamics (according
to appropriate forward Kraus operators) from which the entropy production associated with the evolution of the
reduced density matrix may be computed using the approach developed in [5]. We could construct SDEs for
each element of the density matrix, though it is more convenient, and physically more transparent, to consider
the dynamics of quantum expectation values of various physical operators, as we shall see.

Together with the set of SDEs, we require an associated Fokker-Planck equation for the pdf of the chosen
system variables. Let us therefore consider an It6 SDE for a vector of dynamical variables x involving a vector of
Wiener increments dW, a vector of deterministic rate functions A and a matrix of noise coefficients B:

dx = A(x, t)dt + B(x, t)dW. (7)
The corresponding Fokker-Planck equation that describes the evolution of the pdf p(x, t) is [37]
D i, 0pe, 1)+ 3 2Dy, 0, 1) ®)
at a ] 1 > > ; 8 1 > P b >

Xi Xj

Opx, t) _ >
where D = %BBT is the diffusion matrix. We shall find that D is diagonal for our model which simplifies

matters.

2.1.3. Stochastic entropy production

From the definition in equation (1), it is possible to divide the total entropy production into two contributions
associated with the environment and the system, respectively. This division is somewhat arbitrary and is
introduced largely for ease of interpreting the behaviour. We calculate the total entropy production using the
approach of [5], first separating the deterministic part of equation (7) into two contributions:

dx = A" (x, t)dt + A (x, t)dt + B(x, t)dW, 9)

where A" and A™ are the irreversible and reversible contributions to A, respectively. Specifically, if dx; (the i-th
component of dx) is even with respect to time reversal, then A/ dt is also even. Since dt is odd, A;*" has to be
odd: A/ transforms in the opposite way to x; under the time reversal. By similar reasoning AY” transforms in the
same way as x;. This separation is necessary for the calculation of the entropy production [5].

Explicit expressions for calculating the two contributions of the entropy production have been derived.
For a system with a diagonal diffusion matrix D, the incremental environmental stochastic entropy production
is[5]:

N ir rev 4 irr irr rev

Al ATV A A A! :

Aoy = S| Al gy, — ATAZ yp  OAT 5 OAT 4 L 9Dy
— | Dii Dj; Ox; Ox; Dj; Ox;
i=1
Alev _Ajrr » 27).. \?
+ — 0D, 9 DZ” dr+ 9D ) 4 , (10)
D;; Ox; Ox; D;;\ 0x;
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where Nis the number of dynamical variables contributing to the entropy production. Note that this expression
(10) contains Wiener increments and hence the environmental entropy production As,,,, is explicitly a
stochastic variable.

The second contribution, the incremental systemn stochastic entropy production, is related to the change in
the logarithm of the pdf p(x; t) of the system, obtained from the Fokker-Planck equation:

dAsy, = —d(Inp(x, 1))
dlnp(x, t)

=———Zdr— >

ot ;

Jlnp(x, t)
Ox;

ZD”@ lnp(x, t) " (11

l

where the second line is obtained using It6’s Lemma. The total stochastic entropy production is then given by
the sum of the environmental and system contributions, dAs,,, = dAs,,; + dAs,,,. From these individual
stochastic contributions, it is possible to obtain the averaged system and environmental entropy productions by
cumulative summing up of their respective incremental stochastic contributions, followed by the averaging over
many realisations of the noises and hence system evolution.

The averaged total entropy production also has an analytical form. For certain circumstances, namely
sufficient elapsed time for the pdf to become time independent, and the maintenance of a condition of detailed
balance, this average is given by the Kullback—Leibler divergence between the initial and final pdfs [5]:

D(%, tinit)

. (12)
P(x, tﬁnul)

<<Astot>> = fdxp(x) tinit)ln

The double angled brackets denote averages over all noise histories and initial coordinates, over the time interval
from t;,,;; to tg,qr arising from all initial states in the ensemble. Likewise, the averaged system entropy production
also has an analytical form, usually taken to be

<<A55ys>> = ASG = *fdxp(& tﬁnal)lnp(x; tﬁnal) + fdxp(x: tinit)lnp(x) Z'init‘): (13)

namely the difference in the Gibbs entropy of the final and initial probability densities. This result again emerges
only under certain conditions, and we investigate additional contributions in section 3.3.

2.2. Stochastic Liouville-von Neumann equation

Having described some of the background concepts of stochastic entropy production, we now introduce the
stochastic dynamics under consideration. As briefly discussed in the Introduction, a non-Markovian SLN
equation can provide an exact treatment of the dynamics of the open system reduced density matrix, implicitly
after averaging over all manifestations of the noises associated with the environment (see below). The approach
involves taking an average over stochastic solutions of the equation resulting in a deterministic trajectory from
which physical predictions can be obtained [12, 38].

However, in order to unravel the SLN equation in a straightforward way, we need to start from a Markovian
limit of the system behaviour, such that the system interacts with an environment that does not possess any
memory. Another perspective is to consider the environmental correlation times, which in a Markovian limit are
very short when compared to the characteristic timescales for the dynamics of the open system. In this section we
obtain the deterministic Markovian equation of motion for the physically meaningful, ensemble averaged
reduced density matrix of our system. In section 3 that follows, the unravelling procedure is considered.

Many non-Markovian methods for open quantum systems begin their development with the full density
matrix of the environment and system and proceed to take a partial trace in order to derive an equation of
motion exclusively for the reduced density matrix of the system. The Feynman-Vernon influence functional
formalism is one such method, where the reduced density matrix of the open system is represented as a path
integral over all environmental modes made up of an infinite number of harmonic oscillators [13]. Methods
which rely on this include quasi-adiabatic path integrals [39], hierarchical equations of motion [40, 41],
stochastic Schrodinger equations [42] and the Stochastic Liouville-von Neumann (SLN) equation and its
variations [8—12]. Other methods that do not rely on the Feynman-Vernon functional include projection
operator methods such as the Nakajima-Zwanzig equation [43—45].

The SLN equation is a stochastic differential equation containing complex cross-correlated coloured noises
representing the environment; to arrive at the appropriate deterministic description, an average needs to be
taken over such noises. Note again that the outcome of such a process will describe the evolution of an average of
an ensemble of physical density matrices, according to the framework of interpretation set out in section 2.1.2.

The SLN equation describes an open quantum system, with coordinates g, coupled to a large number of
harmonic oscillators that represent the environment. Here we shall consider the system to be coupled to three
independent sets of oscillators; the reason for doing so will become apparent. The SLN formalism [9] can easily
be extended to accommodate this. The Hamiltonian coupling of the system to the k" set of oscillators is taken to

6
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be linear in the oscillator coordinates £, where ilabels the oscillators, but it can depend on a general coupling
operator fi(q) of the system coordinates g. The full Hamiltonian can be written as follows

Htotal(Q) {gzk} t) - sys(Q) t) + Z env; k(glk) Z sikfk(q) t) > (14)

where H,,,,.1(§;x) is the Hamiltonian for the k ™ set of environmental oscillators, and H,, is the Hamiltonian of
the open system. To derive the SLN equation, the initial density matrix of the full system is taken to be the tensor
product of the reduced density matrix of the system p,(f,) and the environmental density matrix p¢(ty), i.e.

Po = py(to) @ pety), where £, is an initial time. We shall be considering a weak coupling limit so this partitioned
state is an appropriate approximation for the system we are investigating.

Based on the Hamiltonian of equation (14), it is possible to obtain a stochastic differential equation for the
(unphysical) stochastic reduced density matrix p,(f) of the system driven by a pair of complex coloured Gaussian
noises, (1), and (1), for each oscillator set k [8—11]. It should be stressed again that these stochastic noises are
purely mathematical constructs, and do not generate individual physical trajectories [11, 12]. Physical results
only arise when the noise-driven trajectories are averaged over their many realisations. The SLN equation (with
h=1)becomes:

dp,(1) _
dt

Vk(t)

—i[Hys p(H)] + 12(77;((0[13(, p(D)] + {fi> Ps(t)}) (15)
where the square brackets correspond to a commutator, and the curly brackets to an anticommutator. Each set
of environmental oscillators is connected independently to the open system and the associated noises satisfy the
following correlations:

(MO (") = j:o %Ik(w)coth(%ﬁkw) cos (w(t — t')) = K]"'(t — t'), (16)

(MO vty = =2i0( — t') j:o d?w]k(w)sin (w(t —t) =K' — 1), (17)

where Ji(w) is the spectral density of the k ™ oscillator set, B, = 1/kpTyis its inverse temperature (with kg being
set to 1 hereafter), ©(t — t’) the Heaviside function, and the angled brackets denote an average over the
environmental noises; all other correlation functions are zero. There exist several ways to construct the coloured
noises, with each scheme affecting the convergence of results in different ways [38].

2.3.Noise-averaged SLN equation

We need to average equation (15) with respect to realisations of the environmental noises (to be denoted by
single angle brackets) to obtain an exact and deterministic evolution equation for the physical reduced density
matrix of the open system. Taking the average of both sides of equation (15) and denoting the physical density
matrix averaged over the noises as p = (p,), we write:

dp (1)

i = _l[HsyS) p()] + 12( fk’ ﬁk(t)ﬂs(t)ﬂ + —{fk) <Vk(t)ps(t)>}) (18)

In order to calculate the averages of the stochastic density matrix multiplied by the noises that appear in the right
hand side, the Furutsu-Novikov theorem may be used [46, 47]. For a set of noises (; with the correlation

<§i(t)Cj(f/)> = F(t, t), (19)
the Furutsu-Novikov theorem states that
20
6¢;(t) @0

where A[(] is a functional of the noises and 5A[C] /6¢;is its functional derivative with respect to ¢;. The averaged
product of a noise and a noise-dependent functional may therefore be transformed into an integral. We use
equations (20) in (18) to obtain the required explicit expressions for the averages of the noises multiplied by p.:

dp(®) _ . _ , N R AQ) ey | SP0)
a0 0l +Izk:[f o ke t)<6nk(t/) AR = O\

] t 0
+ éZ{fk,fo ArK (1 — t)<ﬂ>}. (1)
k

on ()

From equation (17) we observe the presence of the Heaviside function ©(¢ — '), which vanishes for ¢ > ¢. The
integrals in equation (21) have an upper limit t, which implies that K}’ (t' — t) = 0 in thelast term since ¢’ is

(GOALC) = f aEy t/)< sAIC) >

7
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always smaller than ¢ due to the integration limits. Hence, the last term is zero and can be dropped; only the
commutator terms remain. We then need to calculate the functional derivatives, and after some manipulation,
see appendix A.1, we obtain

dp(t) _

" —i[Hys, p(t)] — f(f dt'Km(t — ) [ fir (Upt, Y E)V UL, 1) py(2)
k

— p (U, HfEHU(t', )]
+ %fot dt'K” (t — t)D [ frr (Up(t, LAV UL, Dp (1) + p (D) U, fEY UL, D), (22)
k

where U, and U_ are forward and reverse propagators, respectively (see appendix A.1). Equation (22) is the
most general form of the averaged SLN equation, as no approximations have been made so far. Note its non-
Markovian nature. Also note that it describes the evolution of a reduced density matrix averaged over physical
fluctuations, along the lines of equation (6). However, this equation still contains the stochastic density matrix p,
and hence is not a self-contained equation for the physical ensemble-averaged density matrix p. To be able to
work with an equation depending exclusively on the latter, some simplifications need to be made; this will be
done in the next section.

2.4. Markovian limit of the SLN equation

Equation (22) in its exact non-Markovian form is difficult to work with as it still contains the stochastic density
matrix. A self-contained equation for the physical density matrix p(¢) can be obtained, however, in the
Markovian limit by approximating certain properties of the environment. We begin by assuming that all the sets
of oscillators coupled to the system have the same temperature Ty, = T, and the same spectral density. This is not
anecessary assumption or approximation in our analysis, but it will simplify our notations. Next we take the
limit in which the temperature of the environment T'is very large such that T'is much greater than any
characteristic energy quantum of its harmonic oscillators, fw < 1, and we will also adopt the same Ohmic
spectral density J(w) = aw for all oscillator sets, where o is a proportionality constant. In this case we can use the
first order expansion of coth (37”) ~ 5%’ following [48], and obtain the following results for the correlation
functions of equations (16) and (17):

Km(t — ¢y ~ fo > %"aw;—w cos (w(t — 1)) = %O‘(S(t — ), (23)

and
K™(t — t') = 2iaO(t — t/)ﬂ[l [ duw cos (w(t — t’))]
otlL o
. L O o .
= —2iaO(t — t)g[;j; dw cos (w(t — t ))]
= —2iaO(t — t’)ié(t — t). (24)
ot’

Note that the correlation functions are the same for all the oscillator sets, hence we have dropped the index k
here. Equations (23) and (24) appear in [49], although a different route to obtain them was taken, specifically that
of introducing a cutoff in the spectral density and allowing it to be much larger than the dynamical timescales of
the system. Inserting equations (23) and (24) into equation (22) leads to the Markovian limit of the averaged SLN
equation that contains only p(t). The equation takes a similar form to that found in other work [48]:

DO _ i sy - e am] - o)+ el
~ = ilHy (0] zkj[ oo 5l PO = SHlHon i1 PO} + 3 { 8t,p(t)}]
i 0
= —i[Hys p(D)] + Z(ﬁ[fk, [foo PON + =1 f,, {[Hys f]> p(O}] — ﬂ[fk, {—k, p(t)}]}
p Ié] 2 2 ot

(25)

but unlike the result published in [48], this equation contains a term involving the time dependence of the
system coupling operators f;.

3. System setup and equations of motion

In the last section we obtained the Markovian limit of the evolution equation for the ensemble averaged reduced
density matrix. Here we shall unravel this equation, namely add noise terms, with the intention that individual

8
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trajectories correspond to different physical realisations of the quantum state diffusion, or continuous stochastic
evolution, of the system under the influence of an underspecified environment [50-54]. The underspecification
of the environment is what leads to a change in the configurational uncertainty of the system plus its
environment, and therefore a production of entropy, as alluded to in section 2.1.1.

3.1. Setup of the system and the unravelling procedure
3.1.1. Two-level system and choice of environments
We consider a two-level bosonic system with Hamiltonian

Hys = eoy, (26)

where o, is the usual Pauli matrix and € has the dimension of energy. A more complicated Hamiltonian could be
used but would make our core message less clear, namely that in order to perform a measurement of an
observable, the coupling of the system to the environment by way of that observable needs to be elevated. We can
therefore proceed with a simple framework of environmental couplings through the Pauli matrices, as will be
seen shortly. We take the system Hamiltonian to be constant in time. We require the environmental interaction
with the open system to be consistent with a thermal state subject to our earlier assumptions of weak coupling
and high temperature. This means that the insertion of p o< I — 8Hjy; should cause the right hand side of
equation (25), with time independent f;, to vanish:

d_f X *i[Hsysa I - ﬁHsys] + %Z([fk’ [fk> I— ﬂHsys]] + %[fka {[ﬂHsysy fk]: I - 6Hsys}])
k

= _%;[fka {[Hsys: fk]) Hsys}]- (27)
The anticommutator vanishes exactly for our choice of Hamiltonian where Hszys o ['and the implication is that
any choice of the operators f;, through which the system interacts with the environment, is consistent with the
appropriate stationary thermal state. Since the f; are hermitian according to the structure of the Hamiltonian in
equation (14), itis natural, in our case, to employ three coupling operators proportional to the Pauli matrices.
Furthermore, it is natural for the initial strength of the coupling to be the same for each operator, in order that
the system-environment interaction should be isotropic. Note that the same framework, if needed, could then
be employed for system Hamiltonians proportional to o, or 0, as well as the choice in equation (26).

This coupling scheme has the added advantage that it allows us to model the act of measurement of the
system energy in a straightforward way, merely by elevating the strength of the coupling to the operator . This
represents an additional interaction between the system and an external measuring device, and in the next
section we shall see that the unravelled system dynamics under such an interaction can indeed correspond to the
stochastic selection of one of the energy eigenstates. Specifically, the Hamiltonian, equation (26), has two
eigenvectors | £ €) with eigenvalues e, respectively, and the environmental coupling to o, drives the reduced
density matrix stochastically towards the form | + €) (4 ¢| or | — €){ — ¢|. However, the scheme of coupling to
the three Pauli matrices means that these eigenstates are not fixed points of the dynamics: the tendency is only for
the system to dwell in the vicinity of one or other of the eigenstates, to an extent that depends on the strength of
environmental coupling to o.

To summarise, we shall couple three independent sets of harmonic oscillators to our open system using
operators:

fx = Y00x> fy = Y0y and fz =)o, (28)

where for simplicity we replace labels k by the Cartesian indices x, y and z. 7, is the coupling coefficient between
the system and the environment, and 6(f) = () — 7, is the coupling coefficient between the system and the
device measuring H,,. If ¥(¢) is increased from an initial value of o, we can model measurement of the system
energy while under the influence of a thermal bath. We can calculate the stochastic entropy production related to
this process. Furthermore, we can model the detachment of the measuring device by a protocol where (%)
returns to 7 allowing the system to re-thermalise, and again compute the associated entropy production.

Note also that, with this choice of the coupling, the last term in equation (25) containing the time derivative
of the fi vanishes exactly; this is obvious for constant f, and f,, while for f it follows from the fact that 9f,./ Ot is
proportional to o

3.1.2. Unravelled stochastic equation

To obtain a form of equation (25) that allows for a straightforward stochastic unravelling, we would need to
write it in a Lindblad form with positive coefficients [7]. It would be possible to do so by extending the Hilbert
space and then adding stochasticity [55, 56], though that approach will not be taken here. Instead we construct
Lindblad operators that match the dynamics of equation (25) in accordance with our high temperature
approximation SH,,, < 1.
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We shall now show that the Markovian averaged (deterministic) SLN equation (25) is equivalent, to lowest
order in (e, to the Lindblad equation when an appropriate choice of the Lindblad operators is made. Indeed,
consider the Lindblad equation (6) using operators

L= A(fk — 16 fk]), (29)

where A = 2—(; . By inserting these operators into equation (6) we obtain

; 2 2
dp = i[Hsys - %Z[Hsys: sz], P]dt + ;(%[fk) [fk> ,5]] + /\Iﬂ[fk’ {[Hsys: fk]’ P}])dt

k

2
- 1)\_6; ﬂz([Hsyw fk] /_) [HsyS) fk] - % { [Hsys> fk]Z > p} )dt (30)
We note that [Hy, sz] vanishes when sz o I, which holds in our case. The final contribution on the right hand
side s a factor BHj,, smaller in magnitude than the penultimate term, and therefore can be neglected. With these
considerations we recover the Markovian averaged SLN equation (25) confirming the suitability of the Lindblad
operators in equation (29).

Starting from equations (6) and (29) we can now construct an unravelling consistent with the quantum state
diffusion (QSD) approach [50-54]. Using the set of Kraus operators [26, 57, 58]

M.y o (]1 — iHy,dt — %L;Lkdt + Lk«/E), (31)

consistent with the development in section 2.1.2, and substituting equation (31) into equation (4) we obtain (see
[26,58]):

. . 1 . .
dp = —i[Hys, pldt + Z[(Lkak' - E{L,j Ly, P})dt + (pL{ + Lip — Trlp(Le + L] )]p)dwk], (32)
k

where we use p to denote the physical reduced density matrix of the system that evolves stochastically, and where
environmental noise is represented by a set of independent Wiener increments dW;. Notice that upon averaging
over the Wiener noises this evolution equation corresponds to equation (6) and hence p corresponds to the
noise averaged reduced density matrix p. Equation (32) finally provides us with the dynamics and the means by
which to determine the irreversibility of system behaviour in various cases.

3.1.3. Equations of motion for components of the coherence vector
With the particular environmental couplings defined in equation (28) (k = x, y, z), and with 7y, = 1, we obtain
Lindblad operators:

L, = )\(Jx — i%a},), L,= )\(Uy + i%ax), L, = \yo,. (33)

Instead of simulating the dynamics of elements of the density matrix directly, we will evolve the coherence or
Bloch vector defined by the three components r; = Tr(g; p). This is consistent with a representation of the
reduced density matrix in the form

1
p= E(H +r-0). (34)
We obtain from equation (32) the following equations:

dr, = —2er,dt — 2N (1 + YD) redt + A(Ber, + 2(1 — 12)dW, — 2Arr,dW, — 29Arr,dW, (35)
dr, = 2eredt — 2N (1 + yH)rdt — 2Arer,dWy + A(Ber, + 2(1 — ryz))dWy — 29Aryr,dW, (36)

dr, = —4X(Be + r,)dt — Are(Be + 21,)dW, — Ar,(Be + 21,)dW, + 29A(1 — r2)dW,. (37)

Notice how important it is to consider the stochastic evolution of the coherence vector rather than the averaged
behaviour. For the latter situation, described by d (r,) = —2¢ (r,)dt — 2X(1 4 %) (r,) dt, etc, any initial state
resultsin (r,) — 0, (r,) — Oand (r,) — — (Beatlong times and hence is not disturbed by the evolution of yaway
from unity. What does change in these circumstances is the pdf of the system variables, and hence higher
moments of the components of the coherence vector. The noise-averaged Lindblad equation for p cannot
capture the stochastic selection of an eigenstate under measurement.

10
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3.1.4. Equations of motion in cylindrical coordinates
Next we derive the equations of motion for the convenient set of coordinates 1, @), where
1,
r2=rl+ rf + 12 and ¢ = arctan(—y). (38)
Tx

Using It6’s Lemma, see appendix A.2, we can obtain:

dr2 =4X(r? — 1)(y2r2 — A2+ 2 — 2 — 2)dt + 4\Jr? — rlcosp(1 — rH)dW,

+ 4P = rZsing(1 — r)dW, + 4 (1 — r)dW, (39)
dr, = —aN(Be + r,)dt — A(Be + 21,)\[r* — 12 cos § AW,
— A(Be + 2r)3Jr2 — 2 sing dW, + 290 (1 — r2)dW,, (40)
and
d6 = 2edt — A(ﬁ“zrj—_z):jwdm + A(ﬁ”zrj—_z);os‘ﬁdm. 1)

z z

Due to the coordinate singularities, suitable care needs to be taken with regard to initial state choices and the
dynamics themselves.

3.1.5. Initial state simplification

We see from equation (39) that r = 1 is a fixed point of the dynamics. Defining a pure state by the condition
Tr(p?) = 1,itcan be shown that r = 1 corresponds to a pure state by inserting p in its coherence vector
representation 34. In order to reduce the computational difficulty of solving the equations, we set r = 1 and
consider

dr, = —4X(Be + r,)dt — N(Be + 21,) 1 — 12 cos p AW,

— M(Be + 2r,)y1 — rZsing dW, + 29A(1 — r2)dW, (42)
d = 2edy — NP L D0 |\ Ber: § 2)cosd 43)

Hence, the coherence vector describing our system will always lie on the surface of the Bloch sphere, and the pdf
will depend only on two variables: r, and ¢. These equations form the basis of our simulations with
corresponding results to be presented in section 4.

3.2. Fokker-Planck equation

The definition of the entropy production in equation (1) requires an evolving pdf for the system coordinates over
time, and hence we need to derive and solve the associated Fokker-Planck equation. To do so, we need
expressions for the vector A and matrices Band D = %BBT, obtained by comparing their definitions in
equation (7) with the equations of motion (42) and (43). We get

A, —4X(Be + 1. ))
A= - ),
(AO) ( 2e @
—(Be + 21,)\J1 — 12 cos¢p —(Be + 2r)1 — rising 2y(1 — r2)
B=)\ (Ber, +2) sin ¢ (Ger, + 2) cos ¢ 0 ) (45)
NI J1 =72
and hence
(D 0
with
Be Y
D,, = 2N(1 — rj)((j) + Ber, + (1 — y)r} + 72), (47)

11
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and

(HETYZ)Z + Ber, + 1

Dy = 2N

(43)

2
1—1;

There exists no ¢ dependence in either A or D, and the latter matrix is indeed diagonal, as anticipated. With these
expressions, the Fokker-Planck equation for the pdf p(r,, ¢, t) becomes:

0
or,

0 0
Ep(rz’ ¢r t) - [_Azp(rza ¢3 t) + a_rz(Dzzp(rm ¢> t))]

9 0
+ %[—Aop(rz, ¢, 1) + %@wp(rz: 2 f>>]
0

= [%2(—2525%2 + 128e (1 — 13 + 16(1 — v, (1 — r2)p(rs, ¢, 1)

or,
2
+2X%(1 — rzz)((%) + Ber, + (1 — 72)r22 + 72)§p(rz, o, t)}
12
Ber, \?
9 (%) +Bent1 g
+ % _26P(TZ) ¢) t) + 2)\2 1 — 1'22 %P(rz’ ¢’ t) . (49)

The Fokker-Planck equation can be simplified further if we assume the initial pdfto be independent of ¢. There
is no explicit ¢ dependence in equation (49), so an initial pdf that is ¢ independent will always remain so. This
leads us to the simplification p(r,, ¢, f) — p(r,, 1), and a more succinct equation:

0 o | X sy 2 2 ) 5
Ep(rz, t) = a_rz 7(—2ﬂ €, + 128 (1 — 1) + 16(1 — y3)r,(1 — r))p(ry, 1)
2
+2X(1 - rf)((%) + Ber, + (1 — A1 + vz)aip(rz, r)}. (50)
Iz

The stationary solution p(r,) of this Fokker-Planck equation, corresponding to setting Op(r,, t)/0t = 0, can be
obtained analytically using tools such as Mathematica. For y = 1, we have:

1
Py (r)ye1 = F(l — )" (1 + )" (3% 4 4Ber, + 477 + 4(1 — ¥?)°
Y

8 262(] 4 242 _4arctanh[ﬂe2rz(lv2)]
Be (B%e*( 79) ) N ey
X exp > G

(4 _ 6262)27 4,72 — 4 + 6262

while for ¥ = 1 we have

1
Pst(f’z =1 = ﬁ(l — 1)1+ Tz)b(/ﬁzf2 + 4/6572 + 4)d’ (52)
1
where N, is ay-dependent normalisation factor, and the exponents are given by
2 2 _ 2.2 _ 2.2
a=— pe b= — pe ’C:_l_‘_4(4+—3ﬁ6)’d:_1+8(4+—356)’ (53)
2 4 fe 2 — fBe (—4 + B%?? (—4 + B*e?)?

where we note that ¢ = d. The stationary pdfs in equations (51) and (52) are shown in figure 2 for anumber of
values of .

We can see that the coupling strength « has a very significant effect on the stationary probability density of
the system coordinate r,. Increasing -y concentrates the pdf closer to the boundaries and in an asymmetric
manner due to the system Hamiltonian bias €. By evolving - from unity to a larger value, we can capture the
effect of a measurement of the system energy, as this would cause individual trajectories to dwell in the vicinity of
the eigenstates of H,at 7, = & 1, or equivalently at system energies Tr (Hy); p) = €1, equal to te.

3.3. Average system entropy production and boundary contributions

Using its definition in equation (11), the incremental stochastic system entropy production over each time step
dt can be calculated from the time-dependent pdf p(r,, t) obtained from the Fokker-Planck equation (50). We
then average over many realisations of the behaviour. However, we noticed in practice that combining the
average stochastic system entropy production with the average stochastic environmental entropy production

12
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Figure 2. Stationary pdf solutions of the Fokker-Planck equation (50) for different values of . Parameters used are 5 = 0.1 and e = 1.

equation (10), obtained numerically for time independent environmental coupling, does not yield a vanishing
average total stochastic entropy production that we would expect for a system in a stationary state with zero
probability current. We have therefore investigated this situation further. The incremental system entropy
production averaged over r, and the noises for our system may be written as

1
d{{Asyy) = i d{Asy) pes, ), (54)

where d(As,) is the noise averaged increment in system entropy production, which is a function of r,and .
(Hereafter, we occasionally drop ’stochastic’ for simplicity of terminology). Integrating by parts twice and
retaining the boundary terms, see appendix A.3 for details, we obtain:

(55)

1
d((Asys)) = dSg — U Inp(r, )] dr — [DM] dt,
-1

Tz

where dSg is the increment in the Gibbs entropy of the system, shown in equation (13), and ] is the
r,-component of the probability current defined in appendix A.3.

In equation (13) we noted that d((As,,,)) = dS; held only under certain conditions, now shown to be where
the boundary terms in equation (55) vanish. For example, the current J, and often the pdf and its derivatives
vanish at the boundaries of the parameter space, and diffusion coefficients can also go to zero, eliminating the
boundary terms For our system, although D,, = O atr, = &£ 1, it can be shown that the gradient Op(r, 1)/0r, is
singular at the boundaries for the stationary solution of the Fokker-Planck equation, and that by implication this
applies to nonstationary situations as well. There is therefore a need to correct the usual result d((As,)) = dSc.

In contrast to this analysis, we observe a mean system entropy production consistent with zero when our
system is in a stationary state, which suggests that the numerically obtained time dependent pdfis not sufficiently
accurate near the boundaries, or the sampling of these regions by the generated trajectories is too limited, to
produce the appropriate additional contributions. Our approach, therefore, is to estimate the boundary terms
analytically for the stationary pdf and to add them to the numerical results.

Using the stationary pdfs given in equations (52) and (51), together with the diffusion coefficient D,, given in
equation (46), it may be shown that the boundary correction involving J, in equation (55) vanishes at
equilibrium, and so does dSg. This allows us to write the mean stationary system entropy production increment
for general yas

Op, (), |
d < <Assys> >st = - [Dzz M:I dt, (56)
or, |,
which does not vanish. In fact, for y = 1 and to lowest order in [, it is possible to obtain a simple analytical
expression:
d{(Asy )i~ = — X (Be)?dt. (57)

This shows that the exact boundary correction can be obtained analytically for v = 1, though it becomes harder
for v == 1. In the latter case we have a more complicated form of p(r,), and hence it is necessary to expand it
analytically in terms of small B¢ before calculating the boundary correction.

13



10P Publishing

J. Phys. Commun. 6 (2022) 125003 D Matos et al

3.4. Average environmental entropy production

With the choice of the couplings and Hamiltonian, we can calculate the environmental entropy production from
equation (11). We need to determine A" and A™" from equations (42) and (43). This is done by understanding
how the components of the coherence vector and the various contributions to A transform under time reversal.
For a system without spin degrees of freedom, the time reversal operator is given by © = K, where Kis the
operation of complex conjugation [59] and the time reversal operation on the Pauli matrices produces

B0,07 ! =g, 00,07 = -0, 00,07 =g, (58)

Thus r,and r, are even under time reversal, and r, is odd, and hence ¢ is also odd, and we can separate the
coefficients of the dt terms in equations (42) and (43) into their A" and A" components. We can write

irr _4)\2(ﬁ6 + rz) rev 0
A = ( ) ) ar = (D). (59)

and obtain an expression for the environmental entropy production using equation (10), since we already have
the form of D from equation (46).

4, Simulations and results

In this section we describe two protocols designed to represent the dynamics of connecting the system to and
disconnecting it from a measuring device, respectively, and we compute the associated stochastic entropy
production for each.

4.1. The computational procedure
In order to demonstrate adherence to the detailed fluctuation theorem we consider two simple protocols that are
atime reversal of each other:

+ Connecting a measuring device (protocol M): begin at t = 0 with the system thermalised for v = 1 and the
initial pdf defined as in figure 2; for ¢ > 0 perform simulations of equations (42) and (43) using y = 2;

+ Disconnecting a measuring device (protocol M): begin at ¢ = 0 with the system thermalised for y = 2 and the
initial pdf defined as in figure 2; then, for t > 0 perform simulations of equations (42) and (43) using y = 1.

The thermalisation of the system is defined by the pdf given by the stationary Fokker-Planck equation as plotted
in figure 2. For both protocols, the initial value of r, for a trajectory is randomly sampled from the appropriate
pdf ps(r,) corresponding to either v = 1 or v = 2, while the value of ¢ is randomly sampled from a uniform pdf
in the range [0, 27). Whenever we specify a particular value of v, we will be referring to the value used for the
dynamics (i.e., for ¢ > 0), unless we explicitly mention the thermalisation condition (¢ = 0). For both protocols
several parameters of the system are kept constant: the environmental inverse temperature 3 = 0.1, the
Hamiltonian parameter e = 1, the proportionality constant in the spectral density o = 0.01,and A = /0.2.

In order to calculate the system entropy production, we solve the Fokker-Planck equation (50) for r,and
observe the behaviour of the system pdf going from a stationary state at a particular value of v to another
stationary state defined by a different . The protocols will drive the system between two stationary states
obtained from the Fokker-Planck equation at different y values. The evolution from one stationary pdf to the
other occurs over a timescale of order t = 1, for both protocols.

In summary, the computational procedure is as follows:

1. Obtain the solution p(r,, t) of the Fokker-Planck equation (50) using the appropriate stationary pdf to select
the initial condition (at ¢ = 0) for the trajectories; in both cases the boundary conditions at r, = £ 1 are
chosen corresponding to a zero probability current J, defined in appendix A.3. Note that each pdfis obtained
onagrid of r, values.

2. Startaloop over the noises (independently for each protocol):
(a) generate noises dW,, dW, and dW, for each time step df;

(b) run the stochastic dynamics for ,(t) and ¢(#) for both protocols using equations (42) and (43) based on
initial values sampled from the corresponding -dependent stationary pdf;

(c) foreach timeincrement dtand using obtained values of r,(f) and ¢(t), calculate the incremental
contributions to the environmental, dAs,,,,, and system, dAs,,, = —d(In p(r,, t)), stochastic entropy
productions via respectively, equation (10) and the first line of equation (11); in the latter case the
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Figure 3. Left panel: a set of 10 random trajectories that were initialised at r, = 0 for protocol M (y = 2), displaying the drifting
behaviour of the system towards the eigenstates driven by the measuring device. Right panel: a normalised histogram for protocol M
based on one million individual trajectories at t = 2, and compared with p, (r,),—, of equation (51) obtained by solving the Fokker-
Planck equation.

increment of the logarithm of the pdfis calculated as a difference between its values at two consecutive
times. The values of the pdf p(r,, t) for these times at the required value of r, are obtained by linearly
interpolating each pdf between the two nearest r, values on the grid;

(d) theincremental total stochastic entropy production, at each time step dft, is calculated as a sum,
AAs;o = dAse,, + dAsg,; accumulate these contributions over an entire trajectory;

(e) gobackto step 2(a) to run another trajectory; the calculation is repeated the required number of times
using different manifestations of the noises. The stochastic entropy production is averaged over the
trajectories. Each protocol will have its corresponding independent ensemble of entropy productions.

3. Once the averaged values of the entropy production increments are obtained from a large ensemble of
trajectories, the boundary term from equation (55) is added to the ensemble average d ({ As,,)) as

ap, (1) ]1
-1

60
or, (60)

d<<A5tot>> = d<<A56nv>> + d<<A55)’5>> - [DZZ

for the specific value of 7. This yields the increment of the mean total stochastic entropy production
d{{As,,)) for the given time step dt, separately for the two protocols.

4.2. Dynamics of r,and ¢

The thermalstate p,, of the system is approximately proportional to e~ PHys

for weak system-environment

coupling. In the derivation of equation (32) we have assumed 3H,,; < 1, s0 we can write p, g~ %(]I — [(Hyy)and
hence obtain the average of r,as 7, = Tr (o, By = — e ~ —0.1for our parameters. We find that our numerics
supports this: by running one million realisations of the dynamics for protocol M (representing the connection
of the measuring device), we observe that the averaged value of r, does indeed remain constant throughout the
simulation. Furthermore, the dynamics of ¢ maintains a pdf that is constant in ¢ which matches the
assumptions used to derive equation (50). While the averaged system behaviour remains unchanged, the
stochastic trajectories differ significantly, as shown in figure 3. Note that each individual trajectory, if run for a
sufficiently long time, would dwell in the vicinity of either of the boundaries r, = + 1, jumping between the two.
Once the system reaches stationarity (equilibrium), the ensemble of trajectories adopts the stationary density

p, (1), associated with the corresponding value of 7. One would expect this to match the density obtained from
solving the Fokker-Planck equation from section 3.2. As can be seen from figure 3 (right panel), this is indeed the
case in our simulations.

This demonstrates the stochastic behaviour of the system and the effect of the measurement interactions that
send r, to the vicinity of the eigenstates, while maintaining the same thermal averaged state throughout the
evolution. This exemplifies how crucial it is to represent the stochastic behaviour of quantum measurements
explicitly, and to recognise that all physical changes in the system are stochastic in nature. We show in figure 4
how the system explores the surface of the Bloch sphere biased by the Hamiltonian and under the influence of
the environment for a couple of individual trajectories for protocols M and M (connecting and disconnecting
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Figure 4. Example individual trajectories for the two protocols (y = 2, blue; v = 1, red), exploring the surface of the Bloch sphere.
Parameters used are: 3 = 0.1, € = 1, t,ya = 2,dt = 10>, and o = 0.01. Initial states for the protocols were randomly sampled from
the stationary solutions to the Fokker-Planck equation, for v = 1 and y = 2, respectively.
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-04
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Figure 5. Stochastic entropy production for protocol M with v = 2. The noise- and r,-averaged total stochastic entropy production is
shown with (solid black) and without (dotted black) the boundary correction. The red curve corresponds to a single stochastic
realisation. The dashed blue line denotes the asymptotic analytical average total stochastic entropy production for the process from
equation (12). The averages result from one million realisations for = 0.1, € = 1, ty0r = 2,dt = 107°,and o = 0.01.

the measurement device). The trajectory with v = 1 explores the Bloch sphere fairly broadly as seen in figure 2,
but for v = 2, the trajectory tends to dwell near the boundariesatr, = + 1.

4.3. Entropy production

The total stochastic entropy production is obtained by summing up the stochastic system entropy production in
equation (11), the stochastic environmental entropy production in equation (10), and (for the ensemble average)
the boundary correction term from equation (55). The results for protocol M with y = 2 are shown in figure 5.

Asis seen from the figure, without the boundary correction the mean stochastic entropy production
continues to increase which is inconsistent with a stationary system. The need for boundary correctionsis a
consequence of our choice of system variables: it arises from the singular pdf density at the boundaries.

The entropy production for protocol M with v = 1 is shown in figure 6. As with protocol M, these results
alsolead to a ceiling in the average total stochastic entropy production once the system equilibrates. We see that
the process of disconnecting the measurement device also leads to a positive mean entropy production; in fact,
the mean entropy production in this case is higher than for the connection process. Note that entropy
production tends to a constant asymptotically even for an individual trajectory. Both figures 5 and 6 display
excellent alignment between the analytically averaged total entropy production for late times, and its numerical
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----- ({Asy,)) analytical
—  {({As;y)) with correction
As,, stochastic

1.0 15 2.0
t

Figure 6. The black curve corresponds to noise- and r,-averaged total stochastic entropy production for protocol M, withy = 1,
including the boundary correction. The red curve is a single stochastic realisation, and the dashed blue curve is the asymptotic
analytical average total stochastic entropy production from equation (12). The averages are obtained from one million realisations for
B=0.1,e=1,tpe = 2,dt =10"",and o = 0.01. The boundary correction for 7y = 1 is significantly smaller than that for v = 2.
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Figure 7. Histograms displaying the asymptotic values of the total stochastic entropy production As,,, for protocol M (blue; v = 2)
and protocol M (green; y = 1) based on one million individual trajectories (realisations). Black lines show both sides of equation (2),
revealing the adherence to the detailed fluctuation theorem (2).

counterpart. This validates the approximations we have made, and the form we have used for the boundary
correction terms.

4.4. Entropy production pdf and detailed fluctuation theorem

Asacheck on the accuracy of the entropy production results, we verify that the detailed fluctuation theorem
equation (2) is satisfied. The detailed fluctuation relation concerns processes described by forward and reverse
protocols that are time reversals of one another, and where the final pdf under the forward protocol is the same
as the initial pdf under the reverse protocol. Figure 7 displays the asymptotic pdfs of total stochastic entropy
production for protocols M and M. These distributions should satisfy the detailed fluctuation relation. We
compare e®% with the ratio of numerical entropy pdfs PM (As,,,)/PM (— As,,;) and indeed find a very good
adherence excluding deviations at the extremes of the range due to insufficient sampling.

5. Discussion and conclusions

In this paper, we have considered the stochastic entropy production induced by continuous measurements of a
simple open quantum system. We began with the stochastic Liouville-von Neumann (SLN) equation for the
system dynamics, in which the environments are represented by coloured noises, taking the appropriate
stochastic average with respect to these noises and retaining the non-Markovian generality of the dynamics.
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Trajectories of the reduced density matrix generated by the SLN equation are not physical; only the averaged
evolution is of physical significance. In contrast, we require a stochastic dynamical unravelling that can be
interpreted as the outcome of a physical weak continuous measurement of the system in conjunction with
thermalising influences of the environment. To do so, we took the Markovian limit of the behaviour of the
environment in the SLN by assuming a high temperature with a specific choice of a two-level bosonic
Hamiltonian Hy, = €o. These steps enabled us to perform a Markovian stochastic unravelling described by an
It6 process, which then allowed us to derive an appropriate Fokker-Planck equation and understand how the pdf
of the reduced density matrix changes with the strength of the continuous measurements while coupled to a
thermalising bath. We set up a system that interacts with three independent harmonic baths through the three
Pauli matrices, allowing for a quasi-isotropic stochastic exploration of the Bloch sphere consistent with
residence in a thermal state. We take the view that a system under constant interaction with an underspecified
environment is best represented by an ensemble of reduced density matrices that conveys its uncertainty.

The measurement of system energy was then realised by increasing +, the strength of environmental
coupling to o, causing the system to dwell in the vicinity of one of the two energy eigenstates. We then obtained
the stochastic entropy production associated with each stochastic trajectory of the reduced density matrix. Note
thatif the pdf of the reduced density matrix is stationary for a particular set of environmental couplings, raising y
will cause the pdfto increase in the vicinity of the eigenstates of the system Hamiltonian but this will not change
the average energy of an ensemble of systems. A model of the dynamics and thermodynamics of measurement
requires the system to be represented by a member of an ensemble: the average behaviour will not suffice.

To calculate the entropy production associated with measurement, we used an analysis of the Markovian
system dynamics developed in [5]. This contrasts with the calculation of the stochastic entropy production for
quantum systems based on forward and reverse trajectories constructed using forward and reverse Kraus
operators [28, 31, 36]. We also computed the stochastic system entropy production by considering the evolution
of the pdf of the reduced density matrix of the system.

We found that the numerically calculated stochastic entropy production contains some subtle numerical
artefacts. These are corrected by calculating the mean analytical stochastic system entropy productionin a
stationary state, allowing us to obtain boundary correction terms that eliminate the artefacts.

We found that the increase and decrease in coupling strength , corresponding to the operation of a
measuring device, are both accompanied by a positive mean total stochastic entropy production. This is the
entropic cost of quantum measurement. Furthermore, we showed that the stochastic entropy production
associated with a quantum measurement is finite as the system achieves a new stationary state. Finally, we have
shown that the processes of attachment and detachment of a measuring device generate distributions of
stochastic entropy production that satisfy a detailed fluctuation relation. We aim to extend this approach next to
more complicated systems, to include non-Markovian dynamics and to relax the requirement for a high
temperature approximation.
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Appendix A.
A.1. Averaged SLN equation

Here we shall consider the calculation of the functional derivatives of p, with respect to the noises needed for the
derivation of equation (22). The formal solution of the SLN equation is given by

p(t) = Uit 0)p,(0) U0, 1), (61)

where U, and U_ are the appropriate forward and backward propagators defined as

Ui (t, 0) = ?+ exp [—ift dt’H+(t/)] (62)
0
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U0, 1) = T_exp [i f t dt/H_(t/)], (63)
0

where ﬁr and 7__ are the forward and backward time ordering operators, respectively, and

HL(t) = Hyu(t) — Z(nk(t) 3+ %) )fk (64)
k

are the Hamiltonian operators. Note that they are not adjoints of each other, see [ 11] for details. Hence the
functional derivative of the density matrix can be written as

Sp. () SUL(t, 0) SU(0, t)
- 0) U0, 1) 4 UL(t, 0) p,(0) ———=. 65
50 () 50 () p(0)U(0, 1) + Ui (1, 0)p,(0) 5 () (65)
The derivatives of the forward and backward propagators with respect to arbitrary perturbations of the noises
are given by:
OULL 1) +(T) "
U, (t, U, d 66
o ~i [ U (7, t)dr (66)
SU(t, 1) 6 V- (T)
U(t', 1 U_(r, t)dr, 67
R =i [l v U (67)
where Vi (1) = — (17 (1) + ”(ZT) ) f, for convenience dropping the suffix k. We can now define the variation of

the propagators with respect to the noises 7(t) and 1(#). Starting with 7(#):

ng((t;)t/) = —i [} Uit, ?H=6(r — THF EOIUL(, tdr!
= iU(t, If (T) U7, 1),
7‘5(277((:)“ [} U, =60 — T IV, !
=—iU_(t', ) f (1) U(T, 1). (68)
For v(1):
(SUJr(t, t/) et / _l o / - !
5 IL/;, U (t, 7)[ 25(7 T)f(T)] U.(7/, t')dr

= %wt, f (D UL(r, 1),

SU(t', t)

!/ !/ 1 _ !/ / / /
) f u(t', )[ o(r T)f(T)]U,(T, t)dr
= %U_(t’, NF@UT, 1. )

This then allows us to write (1 (¢) p,(t)) as

ot o4 gt 5p5(t) W PR 6p5(t)
() p0) = [ d'K™ G t)<677(t’)> ek t)<5u<r')>

= [ dKm(t — ) (iU, )] (Y UL, 0)p(0) U0, 1)
— Ui(t, 0)p,(0)iU(0, tHf ()Y U(t', 1))

+ fo CArK™(E — 1) <éU+(t, tf ()Y U(t', 0)p,(0)U(0, t)

+ U (t, O)pS(O)%U,(O, Hf YU, 1) > (70)
Using this expression, we arrive at equation (22) given in the text.

A.2. Cylindrical coordinate equations of motion
We derive the equations of motion in cylindrical coordinates (7, 1, ¢) for general 7. With these coordinates, the
xand y components of the coherence vector are given by

e = AJ1? — r2 cos ¢ ry= 1t — 12 sin ¢. (71)
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From these expressions and using It6’s Lemma, we obtain the equations of motion for this set of coordinates:

or? 1 0% or? 10r? or? 1 0%
dr? = dr, + — dr,)? + —dr, + ——(dr,)* + dr, + = dr,)? 72
or, 2 0r? (=) or, 2 8ry2( ) Ory 2 Or? (@) 72)
0¢ 10% 0¢ 10% 0%
do = dr, + ——=(dr,)? + ——dr, + ———(dr,)*> + dr.dr,. 73
¢ arxr 28@?(” 8ryry 28#(@) Ory ryr Y (73)
The required derivatives are:
2 2 2
0 oy Uy Oy (74)
Oory o, [
92 9% 922
or? B 3rf B or? =2 (7
9 _ __ b 00 _ (76)
Ory 24 ry2 or, i+ ryz
0% iy 0% 21y 2% r}% — 1} 7
or? B (r: + ryz)2 8r}% B (2 + rf)2 Oryry B (r: + r}%)2 ’
which allows us to simplify equations (72) and (73):
dr? = 2r,dr, + (dr,)? + 2r,dr, + (dr,)? + 2redr + (dr)? (78)
do LAY W N F W S LSNP Sl 2PN (79)
= - e e T, — ————dr.dr,.
ntn ) A o o) R (oo T

We can calculate (dr)?, (dr,)%, (dr,)* and dr,dr, using equations (35)—(37) and the substitution dW;dW, = 6;dt,
keeping linear terms in dt:

(dr)?* = N(Ber, + 2(1 — r))?dt + 4Xrlrydt + 4X~r]r}dt (80)

(dr,)? = 4)\2r,fry2dt + X(Ber, +2(1 — rf))zdt + 4)\2'yzry2rzzdt (81)

(dr,)? = Nr}(Be + 2,)%dt + Nr)(Be + 2r,)%dt + 4Ny (1 — r))%dt (82)

diodr, = —2XNrer,(Ber, + 2(1 — rD)dt — 2XNrer,(Ber, + 2(1 — rf))dt + 4N 21, el dt. (83)

After some algebra and dropping quadratic terms in 3, we obtain
(dr)? = 4R [r}(r} + 1} + %)) + Ber.(1 — 1)) + 1 — 2r7]dt
(dr,)* = 4)\2[r§(rf + rf + 722 + Ber,(1 — rf) +1 - Zryz]dt
(dr)* = AN [Ber,(r2 + 1) + r2(r2 + r}) — 292 + 721 + ). (84)
The sum of equations (84) is given by
(dr)* + (dn)* + (dr.)* = AN[=297r] + 20er, + v (1 + 1)
+ (2 = (2 4 4] = 2) + 2]dr. (85)
Moving on to the 2r;dr; terms:
2rdr, = —dererydt — AN(1 + YA ridt + 22X (Ber, + 2(1 — 12)dW, — AArir, dW, — dyArir,dW,
2r,dr, = 4ererydt — 4N(1 + vz)ryzdt — 4/\rxr§dWx + 2Xr,(Ber, + 2(1 — ryz))dWy — 47/\rfrdez
2rdr, = —8Nrldt — 8NPerdt — 2)rer,(Be + 21,)dW, — 2Ary1,(Be + 2r,)dW, + 4y, (1 — r2)dW,.
(86)
Adding up equations (86) leads to
2redr + 2r,dry, + 2r,dr, = —AN Q217 + (1 4+ ) (r? — r2))dt — 8N Berdt + 4hr (1 — r2)dW,
+ 4, (1 — r2)dW, + 4\, (1 — rH)dW,. (87)
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By adding equations (85) and (87) we obtain the final expression for dr’:

2
dr2 = 4N (r2 — DY} — 2+ 12 — 1] — 2dt + 4\[1 — r—zzrcosgb(l — rHdW,
r
2
+4)\ (1 — —ersin(b(l — AW, + 4\, (1 — rHdW,.
r

For the calculation of d¢, the contributions linear in dr; are:

i dry + — E: sdr, = — > [2¢(r} + r;)dt — A (Ber, + 2)dW, + Ar(Ber, + 2)dW,].

2 2
rx+ry r+r rx—i—ry

The terms quadratic in dr;lead to

2

72*7‘
)~ )+ s = o
R D e A=

Tx Ty

allowing us to write the final expression for d¢ as

(Ber, + 2)sm</>dw; n /\(ﬁerz + Z)COS(Z)dWy.

r? — r?

dp = 2edt — A

2
re—r;

A.3. Averaged system entropy production and boundary terms

(88)

(89)

(90)

€3]

We derive an analytical expression for d((As,,,)), the noise- and coordinate-averaged, incremental stochastic

system entropy production, written as
1
d{(Asy)) = [ (D) p(z, e,
where d(As,) is given by the noise averaged form of equation (11). We proceed as follows:

1 Olnp(r, t) Olnp(r, t) 0*lnp (1, t)
d<<Assys>>=fl(— Pl - SR 0 ) - p, SEC

f ( alnp(rz, t) Blnp(rz, t) gt

dt)p (1, t)dr,

2
D, 0 lnp(zrz, t)

r; Z

dt)p(rz, t)dr,.

Integrating the last term by parts, and introducing the r, component of the probability current,

O(Dzp (15, 1))

, = A, 7 b)) —
J p(r; 1) or,

that appears in the Fokker-Planck equation (8)

op(r, 1) 0O

ot N or,’
we can write:
1 Olnp(r, t) Olnp(r, t) 0Dy p(ry, 1) Olnp(ry, t)
d((Asy)) = [ 1((—%7tdt—Azgirzdt)p(rz, 0+ grz . . dt)drz
1
_ I:DZZMP(T«Z’ t)] dr
or, o

1
—f ( Blnp(rz, t)p(rz) t)dt_]zalnp(rz, t)dt)drz B [Dzz 8p(arz, t)] "
1

or, r,

Next we integrate the second term inside the integral by parts and replace the r, derivative of the probability

current with the left hand side of the Fokker-Planck equation (95):

(92)

(93)

(94

(95)

(96)
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9lnp(r, 1)

d({Asys) = fll( p(r,, H)dt + Inp(r,, t)%dt)drz — U Inp(r,, O], dt

ot
1
- I:DZZM:I dt
or, »
=/ (MP% ndt + Inp(r, t)wdt)drz = U:Inp(r, DI dt
-1 ot ot
1
- I:DZZM:I dt
or, »
d 1 8 (rz, t) 1
B _(Zflp(rz’ Dlnp(r, t)dfz)df ~ U Inp(r, DT dt — [Dzz—pﬁrz ]ldt
1
— dS6(t) — [ Inp(r, DI dt — [DH%] it o)
T, 1

where dS is the increment of the Gibbs entropy, see equation (13).
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