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Abstract
Background: Advanced head and neck squamous cell carcinoma (HNSCC) is associated with a poor 
prognosis, and biomarkers that predict response to treatment are highly desirable. The primary aim 
was to predict progression-free survival (PFS) with a multivariate risk prediction model.
Methods: Experimental covariates were derived from blood samples of 56 HNSCC patients which 
were prospectively obtained within a Phase 2 clinical trial (NCT02633800) at baseline and after the 
first treatment cycle of combined platinum-based chemotherapy with cetuximab treatment. Clinical 
and experimental covariates were selected by Bayesian multivariate regression to form risk scores to 
predict PFS.
Results: A ‘baseline’ and a ‘combined’ risk prediction model were generated, each of which 
featuring clinical and experimental covariates. The baseline risk signature has three covariates and 
was strongly driven by baseline percentage of CD33+CD14+HLADRhigh monocytes. The combined 
signature has six covariates, also featuring baseline CD33+CD14+HLADRhigh monocytes but is 
strongly driven by on-treatment relative change of CD8+ central memory T cells percentages. The 
combined model has a higher predictive power than the baseline model and was successfully vali-
dated to predict therapeutic response in an independent cohort of nine patients from an additional 
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Phase 2 trial (NCT03494322) assessing the addition of avelumab to cetuximab treatment in HNSCC. 
We identified tissue counterparts for the immune cells driving the models, using imaging mass 
cytometry, that specifically colocalized at the tissue level and correlated with outcome.
Conclusions: This immune-based combined multimodality signature, obtained through longitudinal 
peripheral blood monitoring and validated in an independent cohort, presents a novel means of 
predicting response early on during the treatment course.
Funding: Daiichi Sankyo Inc, Cancer Research UK, EU IMI2 IMMUCAN, UK Medical Research 
Council, European Research Council (335326), Merck Serono. Cancer Research Institute, National 
Institute for Health Research, Guy’s and St Thomas’ NHS Foundation Trust and The Institute of 
Cancer Research.
Clinical trial number: NCT02633800.

Editor's evaluation
While immune checkpoint inhibitors (anti-PD-1 targeted agents) are now FDA-approved for 
the treatment of locally advanced and recurrent or metastatic head and neck cancer, predic-
tive biomarkers are lacking. In this study, the co-authors have developed an algorithm that they 
conclude predicts the clinical outcome to multimodality immunotherapy. While this machine learning 
approach is intriguing, prospective validation of the proposed immune-based signature is essential 
to begin to incorporate such an approach into the clinic.

Introduction
Recurrent (R) or metastatic (M) head and neck squamous cell carcinoma (HNSCC) is associated with a 
poor prognosis. For many years, the standard-of-care first-line systemic treatment was the EXTREME 
regimen, consisting of a platinum-based chemotherapy regimen and cetuximab, an anti-EGFR mono-
clonal antibody (Van Cutsem et al., 2009). The KEYNOTE-048 trial in 2019 changed the treatment 
paradigm for these patients by incorporating pembrolizumab, an immune checkpoint inhibitor, into the 
first-line setting (Burtness et al., 2019). However, the EXTREME regimen remains a first-line standard-
of-care for a substantial number of patients, specifically those with programmed death ligand 1 (PD-
L1) negative tumours or those with contraindications to the use of anti-PD1 immunotherapy.

While effective, these regimens are associated with significant toxicities. One of the key challenges 
for the treating physician is to identify the patients who would benefit from either of these treatment 
regimens. A predictive biomarker signature for patients with advanced HNSCC will help individualize 
discussions with patients regarding the risk-benefit balance of treatment and may guide patients who 
are likely to perform poorly towards alternative therapy regimens or clinical trials.

The absence of predictive biomarkers in this patient cohort represents a significant clinical unmet 
need. Until the development of PD-L1 as a biomarker for immunotherapy, efforts to generate 
biomarkers in HNSCC have focused on gene expression profiles, which are dependent on the avail-
ability of tumour tissue and are only performed on pre-treatment samples (Bossi et al., 2016; You 
et al., 2019). Signatures based on a single biological modality and taken at a single timepoint may be 
insufficient to predict outcomes, as response to therapy relies on a dynamic interplay between cancer 
genomics, immune profile, tumour microenvironment, and clinicopathological characteristics of the 
patient receiving treatment (Cheerla and Gevaert, 2019; Huang et al., 2019).

Efforts to develop a machine learning model to stratify survival risk by combining genetic and clin-
icopathological characteristics have revealed some success in advanced oral squamous cell carcinoma 
(Tseng et al., 2020). We hypothesize that a multimodal analysis, taking into account both clinico-
pathological and laboratory-based biological covariates at different timepoints, would provide better 
predictive value. Furthermore, by only including covariates that can be obtained from a blood biopsy, 
patients could be easily screened for discovered biomarkers.

We prospectively collected peripheral blood samples from a Phase 2 trial in R/M HNSCC 
(NTC02633800) (Forster et  al., 2019), which utilized cetuximab with platinum therapy as a back-
bone, and conducted a parallel exploratory analysis with the aim of generating a biomarker signature 
which would predict outcomes to treatment. We hypothesized that the detailed definition of a broad 
immune cell signature could contribute to the development of assays employing liquid biopsies to 

https://doi.org/10.7554/eLife.73288
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predict clinical outcomes. We also incorporated the analysis of two circulating microRNAs (miRNAs) 
from exosomes: miR-21-5p and miR-142-3p, which have previously demonstrated prognostic and 
predictive utility (Summerer et al., 2015; Vahabi et al., 2021). As the trial investigated the efficacy 
of an anti-ErbB3 antibody, patritumab, administered alongside an anti-EGFR antibody, we simultane-
ously analysed EGFR-ErbB3 dimerization using Förster resonance energy transfer (FRET) and included 
it in our analysis.

By extracting information from patient samples at baseline and after the first cycle of treatment 
within this trial, we aimed to generate a multimodal predictive signature for the systemic therapy based 
on a novel Bayesian multivariate model. The immune populations driving the risk signature were then 
prospectively validated in an independent cohort of patients from a Phase 2 trial evaluating avelumab 
in combination with cetuximab in R/M HNSCC (the EACH trial; NCT03494322). Blood samples were 
collected at baseline and post first dose of cetuximab before administration of avelumab. Validation 
was performed against the best overall response, as assessed by iRECIST, showing strong correlation 
between biomarkers identified in the risk signature and therapeutic response despite changes in treat-
ment regimen. We then used imaging mass cytometry driven by the risk signature to identify correlate 
changes in systemic immune populations with intra-tumoural immune subsets that colocalize at the 
tumoural level and appear to be key to response. This risk signature can serve as a non-invasive risk 
stratification for patients with R/M HNSCC using only peripheral blood, guiding the clinician toward 
the likelihood of success early during the treatment course.

Materials and methods
Study design
The clinical study design of the Phase 2 study (NCT02633800) and its associated exploratory analysis 
are shown in Figure 1A. Eighty-seven patients were enrolled in the clinical trial. Peripheral blood 
samples were collected at baseline before initiation of treatment (C1) and immediately before the 
second cycle of treatment (C2). Thirty-one patients were excluded due to incomplete paired biolog-
ical datasets, leaving 56 patients for analysis. Amongst these patients, there was no difference in PFS 
as demonstrated by Kaplan-Meier survival curve analysis (Figure 1—figure supplement 1) regardless 
of whether the patients received patritumab, which reflected the results published in the clinical trial. 
The baseline clinical characteristics of these 56 patients are shown in Supplementary file 1 together 
with a comparison that shows there is no significant difference between the clinicopathological char-
acteristics pertaining to the discovery cohort and the whole cohort of study.

PBMC samples were analysed using flow cytometry to generate unique immunological subpop-
ulations. Exosomes were extracted from the serum and analysed for EGFR-ErbB3 dimerization and 
miRNA-21-5p and miRNA-142-3p (Figure 1B). These analyses yielded a total of 29 unique biological 
covariates. Each covariate was obtained in pairs (C1 and C2), generating a total of 58 laboratory-based 
covariates for the multivariate analysis (Figure 1B). To mitigate individual baseline variations between 
patients, the biological data obtained from the C2 timepoint was evaluated as relative change with 
respect to the baseline value of the same covariate at C1 (in the form of log2-fold change [lfc] of the 
variable of interest) instead of absolute values of those parameters. A list of the laboratory-based and 
clinical covariates is provided in Supplementary file 2.

The baseline clinical characteristics, as well as value of the laboratory-based covariates at baseline 
and after one cycle of treatment, did not significantly differ between the placebo and patritumab 
cohorts (Supplementary file 3). Therefore, in this exploratory analysis, samples from both the control 
and investigational arms were analysed together. The effect of adding the investigational product, 
patritumab, on progression-free survival (PFS) was evaluated by including it as an independent clinical 
covariate, denoted as ‘Drug’, in our multivariate analysis.

Written informed consent was obtained. Approval was obtained from ethics committees (Research 
Ethics Committee reference: 15/LO/1670).

The design of the EACH trial (NCT03494322) that was used to validate the signature is shown in 
Figure 5—figure supplement 1A. The aim of the EACH trial was to evaluate the safety and anti-
tumour activity of avelumab and cetuximab in R/M squamous cell carcinomas. Sixteen patients were 
enrolled in the study. Four patients were excluded due to lack of blood samples at both timepoints. 
One patient was excluded due to lack of outcome data. Two patients only had a baseline biopsy. 

https://doi.org/10.7554/eLife.73288
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Figure 1. Peripheral blood samples from the clinical trial were prospectively analysed using a multimodality platform. (A) Schematic of clinical trial 
design and timepoints at which peripheral blood was obtained. (B) Fifty-six (n=56) paired blood samples, obtained pre-treatment (C1) and after one 
cycle of treatment (C2) were subjected to flow cytometry, Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) 
imaging, and droplet digital polymerase chain reaction (ddPCR) analysis.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Kaplan-Meier curve of progression-free survival in study cohort.

Figure supplement 2. Gating strategies for definition of peripheral blood immune populations.

https://doi.org/10.7554/eLife.73288
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Written informed consent was obtained from all patients. Study approval was obtained from ethics 
committees (Research Ethics Committee reference: 18/LO/0021). PBMCs underwent a quality control 
step to check viability which resulted in the exclusion of one of the patients (Figure 5—figure supple-
ment 1B). One patient died before their first response evaluation scan and was therefore classified as 
having progressive disease as the cause of death was identified to be the illness.

Statistical analysis
To examine whether the covariates indicated different prognostic outcomes, we built a model for 
predicting PFS. Using Bayesian multivariate proportional hazards regression, covariates were ranked 
and selected by predictive importance (Grigoriadis et al., 2018). We derived two models using sepa-
rate datasets: firstly, a baseline predictive model containing a dataset of 42 baseline covariates (29 
laboratory parameters at baseline (C1) and 13 clinical characteristics). The second, a combined predic-
tive model, consists of 71 covariates, that is, the 42 baseline covariates and a further 29 derived from 
the on-treatment change of the value of a lab-based parameter relative to its value in the same patient 
at baseline denoted as lfc of that variable.

The relative efficiency of the predictive model was assessed by using C-index (a metric proposed 
by Harrell et  al., 1984, to evaluate the accuracy of predictions made by an algorithm) and rank 
correlation of the signature-generated risk scores with survival time. The number of significant covari-
ates in each prediction signature was determined with the aim of avoiding overfitting of the signature 
to the study data using the ‘batch regression’ option of the Saddle Point Signature software (Saddle 
Point Science Ltd., London, UK), according to methods that were previously published (Barber et al., 
2020; Shalabi et al., 2018). Systematic iterative covariate rejection and cross-validation (5000 iter-
ations) allowed for the selection of an optimal covariate set to avoid overfitting though inclusion of 
too many covariates. The optimal set can be chosen in two ways, either based on the peak predic-
tion performance of cross-validation or the more stringent method that equally penalizes validation 
performance and overfitting (defined as the deviation between training and validation performance). 
All signatures presented were chosen using the more stringent criterion and data for all covariates is 
also presented for the purposes of identifying covariates that may be important but do not quite meet 
the criterion. The regression included covariates representing the missingness of the data to account 
for the possibility that patient or sample selection/rejection (for any reason) is biased with respect to 
outcome and therefore could be informative.

Covariates were normalized to zero mean and unit standard deviation such that the importance 
and significance of covariates can be judged by their assigned beta value (β) in the proportional 
hazards model, and corresponding hazard ratio (HR) equal to e2β. A negative β value reflects a lower 
risk of developing an event. The Saddle Point Signature software additionally judges the performance 
of similar randomized data, which most often has β values around zero and within a critical range, such 
that any real covariate that has a β value outside this critical range can be judged to be performing 
significantly better than randomized data. For standard correlation tests between numeric covariates, 
Pearson correlation was used and denoted as r. For correlation tests against categorical outcomes, or 
where correlations may not be linear (e.g. PFS), Kendall rank correlation was used which was denoted 
as τ. Kaplan-Meier curves and log rank tests were generated using the R survival package. Correla-
tions were performed with the R ​cor.​test function. C-index values were calculated using the Hmisc R 
package.

Validation of the signatures was performed by calculating the risk score for each patient in the 
validation trial (EACH) using the combined risk signature covariate weights and performing a correla-
tion test versus the iRECIST outcome for that trial. The covariates were obtained from flow cytometry 
analysis on the PBMCs of the validation cohort and patient age at registration. As detailed tumour site 
information was not available for the validation cohort, these covariates were replaced in the signature 
by the average values from the discovery cohort.

Flow cytometry
Frozen PBMC samples were thawed and stained with Fixable viability dye (Yellow Live/Dead, Thermo 
Fisher Scientific) followed by two different panels of membrane markers. Two different panels were 
used, a simple one for the discovery cohort and a more thorough panel for the validation cohort (full 
list of both antibody panels in Supplementary file 4 and Supplementary file 5). These two panels 

https://doi.org/10.7554/eLife.73288
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allow definition of immune cell populations as described in Figure 1—figure supplement 2. Patients’ 
samples and corresponding Fluorescence Minus One (FMO) Controls were acquired in a Fortessa II 
flow cytometer (BD, Berkshire, UK) and analysed with FlowJo software (Tree Star).

Isolation of serum exosomes
Exosomes were prepared using an optimized centrifugation method (Monypenny et  al., 2018). 
Diluted serum was centrifuged at 300 × g for 10 min to remove cell debris, 5000× g for 20 min to 
remove large vesicles and membrane fragments, and 12,200× g for 30 min to deplete microvesicles. 
This was followed by 100,000 × g ultracentrifugation for 120 min at 4°C to pellet exosomes with 
a TLA-55 rotor (Beckman Coulter). After a second 100,000 × g ultracentrifugation for 60 min, the 
resulting pellets were washed and resuspended in PBS. Purified exosomal fractions were diluted and 
used for nanoparticle tracking analysis using a Nanosight LM-14 system.

RNA extraction and miRNA expression analysis
RNA from cancer patients’ serum exosomes was extracted using the TRIzol Plus RNA Purification Kit 
(Thermo Fisher, UK) according to the manufacturer’s instructions. Quantification of gene expression in 
circulating exosomes was performed by droplet digital polymerase chain reaction (ddPCR) (Bio-Rad 
QX100 system). Normalization of the RNA, between cycle 1 and cycle 2 therapy of each patient, was 
performed using the expression levels of the housekeeping gene 18S (Assay ID, Hs99999901_s1). 
For each sample, equal volume of RNA was used as template and cDNA synthesis performed using 
the SuperScript VILO MasterMix (Thermo Fisher, UK) according to the manufacturer’s instructions. 
MicroRNAs were reverse-transcribed individually using the TaqMan MicroRNA Reverse Transcription 
Kit (Thermo Fisher, UK). For each sample, the normalized amount of RNA was reverse-transcribed in 
a 15 μl reaction using the standard protocol and primers specific for each miRNA: miR-21-5p (assay 
ID, 000397), miR-142-3p (assay ID, 000464). Then, 7.5 μl of cDNA was added to a 20 μl reaction 
containing 12.5 μl 2× ddPCR Supermix for Probes (Bio-Rad) and 1 μl 20× TaqMan miRNA PCR primer 
probe set; each reaction was carried out in duplicate. Thermo cycling conditions were as follows: 95°C 
for 10 min, then 50 cycles of 95°C for 10 s and 61°C for 30 s and a final inactivation step at 98°C for 
12 min. PCR products were analysed using the QuantaSoft Software (Bio-Rad).

ErbB3-EGFR dimer quantification in exosomes
Exosomes were imaged on an ‘Open’ fluorescence lifetime imaging microscopy (FLIM) system (Barber 
et al., 2013). Analysis was performed with the TRI2 software (v2.7.8.9, CRUK/MRC Oxford Institute 
for Radiation Oncology, Oxford) as described previously (Barber et al., 2009; Rowley et al., 2016). 
Interfering effects of autofluorescence were minimized with a lifetime filtering algorithm and the FRET 
efficiency value for each patient calculated by: FRET = 1− ‍

τDA
τD ‍ , where τD and τDA are the average 

lifetime of Alexa Fluor 546 in the matching donor (D) and donor-acceptor (DA) images.

Imaging mass cytometry
Formalin-fixed paraffin-embedded (FFPE) histological slides were stained with a panel of metal conju-
gated antibodies (full list of antibodies listed in Supplementary file 6).

In brief, antigen retrieval was performed on a Ventana Bench Mark Ultra with CC1 buffer (Roche, 
950-224). Slides were blocked for 1 hr at room temperature in 5% BSA, 5 mg/ml human IgG in PBS, 
and stained overnight at 4°C in 4% BSA, PBS. DNA counterstain was performed with Iridium (Flui-
digm, 201192B) 125 nM in PBS for 30 min at room temperature.

Ablation and data acquisition of multiple regions of interest per tissue section were performed on 
a Fluidigm Hyperion. Imaging analysis was performed using the following R packages: RandomForest 
for classification and regression, Raster and SF for image manipulation and segmentation. Scripts are 
available in the GitHub link provided in the Data availability section of this manuscript.

https://doi.org/10.7554/eLife.73288
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Results
The model with baseline covariates reveal immune subpopulations and 
age predict PFS
Bayesian multivariate proportional hazards regression was performed on the 42 covariates derived 
at baseline (C1) and PFS outcome. We utilized the stringent selection criteria based on a propor-
tional hazards regression model to minimize overfitting based on the cross-validation performance 
(Figure 2A). This revealed two baseline immune subpopulations with a β value which exceeded the 
critical β value threshold, that is, CD14+CD16+CD33+CD11b+ monocytes thereafter referred to as 
CD33+CD14+ monocytes according to previous nomenclature (Cravens et  al., 2007) and double 
negative (CD27-IgD-) B cells (DN B cells), as well as one clinical covariate – age (Figure 2B). Missing-
ness covariates were included in this analysis and did not affect the outcome of the signature.

Evaluation of the individual β values reveal that baseline CD33+CD14+ monocytes and DN B cells 
have a β value of –1.05 and –0.53, respectively, and hence a higher baseline value of both popula-
tions is predictive of better PFS. Age, with a β value of 0.47, is associated with poorer PFS. The HRs 
of the individual covariates are depicted in Figure 2C. The baseline risk scores correlated strongly 
with PFS (C-index=0.60, τ=−0.33, p=0.0005). The risk score equation is given in Supplementary 
file 7.

The risk scores generated from this signature were split at the median value to generate low-risk 
and high-risk cohorts (Figure 2D). The median PFS of the low-risk and high-risk cohorts are 8.3 and 
3.6 months, respectively (log rank p-value = 6.0e-5).

Figure 2. High baseline CD33+CD14+ monocytes and double negative B cells predict progression-free survival (PFS). (A) Covariates were ranked for 
importance and selected by a proportional hazards regression model with cross-validation. (B) Proportional hazards regression revealed three covariates 
which exceed the beta critical value – CD33+CD14+ monocytes, double negative B cells, and age. (C) Forest plot of the three covariates within PFS 
risk score with dotted line indicating the range, around 1, of typical random covariates. (D) PFS risk signature performance, low risk score (n=27) and 
high-risk score (n=26). Log rank p-value = 6.0e-5, with numbers at risk demonstrated under Kaplan-Meier curve. The multivariate analysis resulted in risk 
signatures that are linear combinations of weighted covariates. Their ability to predict outcome is demonstrated with data split by signature value.

https://doi.org/10.7554/eLife.73288
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Incorporating laboratory-based covariates after one cycle of treatment 
improves ability to predict PFS benefit
We subsequently evaluated if the incorporation of early laboratory-based changes into the signature 
improves its predictive ability. A separate predictive model incorporating an additional 29 new covari-
ates, that is, relative on treatment changes in laboratory-based parameters at cycle 2 with respect to 
the value at baseline (C1).

As before, we used a proportional hazards regression to determine a set of variables which predict 
PFS. A total of six covariates were identified – three immune subpopulations with negative β values 
and hence associated with better survival, that is, baseline CD33+CD14+ monocytes, baseline CD4+ 
memory regulatory T cells (HLA-DR-CD45RO+Tregs), and an increase in CD8+ effector memory T cells 
(CD45RO+CCR7-). An increase in two subpopulations, CD8+ central memory T cells (CD45RO+CCR7+) 
and CD3 T cells, was associated with inferior PFS. The hypopharyngeal primary tumour site was also 
associated with a poorer PFS (Figure 3A and B).

A multivariate analysis employing linear combinations of these six weighted covariates generated 
a risk signature. The combined risk scores exhibited a stronger correlation with PFS than the baseline 
risk scores (C-index=0.69, τ=−0.49, p=7e-7). Their ability to predict outcome is demonstrated with 
data split by risk score, shown in Figure 3C. In this combined predictive signature, the median PFS 
of the low-risk and high-risk cohorts are 6.8 and 3.6 months, respectively (log rank p-value 0.004) 
(Figure 3C). The risk score equation is given in Supplementary file 7.

EGFR-ErbB3 FRET on exosomes may contribute to predictive signature
While the combined predictive signature comprised predominantly of immunological parameters, 
there is a suggestion that FRET difference may carry a degree of predictive value. In Figure 3A (fourth 
covariate from the bottom), the difference in EGFR-ErbB3 FRET (​FRET.​delta) was associated with 
a negative β value which suggests a better PFS. However, the stringency that we have applied to 
optimal covariate selection means that this covariate fell marginally short of featuring in the eventual 
predictive signature. Nonetheless, this is the first time that this assay, (explained in Figure 4B), has 
been used within the context of a randomized controlled trial in exosomes and the suggested predic-
tive value of the dimer warrants some discussion. Figure 4A displays intensity images and donor 
lifetime map of exosomes labelled with anti-EGFR and anti-ErbB3 antibodies.

By dividing the patients with available FRET values by the median ​FRET.​delta (n=43), there was a 
suggestion that patients with a high ​FRET.​delta exhibited a better PFS than patients with a low ​FRET.​
delta. This difference was not statistically significant (log rank p-value = 0.2) (Figure 4C). The predic-
tive capacity of this univariate is limited (τ=–0.13, p=0.2, C-index=0.586). Nonetheless, these results 
suggest a trend within a small patient cohort and can be explored in future prospective studies. While 
none of the remaining exosome derived perimeters correlated with PFS, miRNA signatures have been 
implicated as a useful classifier for myeloid cell subsets (Bronte et  al., 2016). By correlating the 
miRNA changes in our study with this monocytic subpopulation, a significant correlation was identified 
between the log fold changes of miR-21-5p with the corresponding log fold changes of CD33+CD14+ 
monocytes (r=0.43, p=0.02, Figure 4—figure supplement 1).

Validation of the risk signature in an independent cohort
The validation cohort of 16 patients was obtained from the EACH trial (NCT03494322) which evalu-
ated the combination of avelumab with cetuximab in HNSCC patients. As the risk signature consisted 
predominantly of immune subpopulations, we successfully obtained PBMCs from eight patients at the 
pre-treatment timepoint and after one cycle of cetuximab hence matching the timepoints of the orig-
inal cohort. PFS data in the validation cohort was not entirely available at the time of analysis, hence 
we used best objective response (BOR) using iRECIST criteria to validate the combined risk signature. 
We confirmed that in the original test cohort, patient PFS data strongly and inversely correlated with 
BOR (τ=−0.52, p=3e-6) (Figure 5A). Age and site information were not available for the validation 
cohort and were replaced in the risk signatures by average values from the discovery cohort.

The combined risk signature strongly correlated with a poorer treatment outcome (τ=0.73, 
p=0.02) (Figure 5B). Separately, each of the variates showed similar trends in the validation cohort 
to those observed in the test cohort yet only two key immune populations showed interesting strong 
correlations (Figure 5—figure supplement 2). High pre-treatment levels of CD33+CD14+monocytes 

https://doi.org/10.7554/eLife.73288
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Figure 3. Model incorporating laboratory changes after one cycle of treatment exhibit improved predictive value. (A) Proportional hazards regression 
revealed five immune subpopulations which exceed the beta critical value – baseline CD33+CD14+ monocytes, baseline CD4+ memory regulatory T 
cells, log2-fold change (lfc) of CD8+ effector memory T cells, lfc of CD8+ central memory T cells, and lfc of CD3+ T cells. The primary tumour site of 
hypopharynx also featured in the signature. A negative beta value is associated with lower risk score and hence better progression-free survival. (B) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73288


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Barber, Mustapha, Flores-Borja et al. eLife 2022;11:e73288. DOI: https://doi.org/10.7554/eLife.73288 � 10 of 22

significantly correlated with a worse disease outcome in all patients except for a single outlier who 
exhibited a complete response to treatment. A post-treatment increase in CD8+ central memory cells 
(lfcCD8CM) also correlated with a poorer treatment outcome. Interestingly, both covariates were the 
strongest drivers of the risk signature in the discovery cohort with the baseline level of CD33+C-
D14+monocytes being a key covariate in both signatures. Given this result we assessed their ability 
to predict PFS as univariates in the original cohort. Figure 5C shows Kaplan-Meier curves of PFS by 
median of each of these covariates. We observed a modest split that reached significance only in the 
case of baseline CD33+CD14+ monocyte (log rank p-value = 0.03) and not in the case of lfcCD8CM 
cells (log rank p-value = 0.1). lfcCD8CM more strongly predicted PFS (C-index=0.74, τ=−0.36, 
p=0.01) than base line CD33+CD14+ monocytes (C-index=0.39, τ=0.22, p=0.07). Due to the consis-
tency with which the CD33+CD14+ monocyte population appeared across our study, we wanted to 
further characterize this population to determine its phenotype hence we expanded the antibody 

Forest plot of the three covariates within progression-free survival risk score. (C) Progression-free survival risk signature performance, low risk score 
(n=29) and high-risk score (n=24). Log rank p-value = 0.004, with numbers at risk demonstrated under Kaplan-Meier curve.

Figure 3 continued

Figure 4. Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) assay of circulating exosomes extracted from 
patients. (A) Time-resolved fluorescence intensity images and donor lifetime map of exosomes labelled with Anti-EGFR-IgG-Alexa 546 and Anti-ErbB3-
IgG-Cy5 extracellular antibodies. (B) Schematic illustration of the fluorescent labelling geometry on exosomes and distance dependence of FRET 
efficiency. (C) Progression-free survival of subpopulations divided by median FRET difference, FRET.delta low (n=21) and FRET.delta high (n=22). Log 
rank p-value = 0.2, with numbers at risk demonstrated under Kaplan-Meier curve.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation between miRNA-21 fold change and CD33+CD14+monocyte fold change after one cycle of treatment.

https://doi.org/10.7554/eLife.73288
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Figure 5. Validation of the combined risk score in the EACH cohort. (A) Correlation between progression-free survival (PFS) and best objective response 
(BOR) in the original cohort (τ=−0.52, p=3e-6). (B) Correlation between the combined risk signature and the BOR of the patients in the validation 
cohort (τ=0.74, p=0.02). (C) Kaplan-Meier curves of PFS split by median percentage of baseline CD33+CD14+ value. (D) Kaplan-Meier curves of PFS split 
by median value of on treatment fold change of CD8+ central memory T cells relative to baseline. lfc: log2-fold change. (E) Table summarizes C-index, 
rank correlation, and log rank p-value based on type and number of covariates in both cohorts.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The validation EACH trial.

Figure supplement 2. Correlation between each of the significant covariates derived in the combined risk signature with treatment outcome in the 
EACH cohort.

Figure supplement 3. Gating strategy for further characterization of CD33+CD14+ monocytic population using new patient cohort.

https://doi.org/10.7554/eLife.73288
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panel for the validation set and determined that these CD14+CD16+CD33+CD11b+ monocytes also 
express high levels of HLA-DR (Figure 5—figure supplement 3).

Imaging mass cytometry of tissue reveals correlation of 
CD33+HLADRhigh myeloid cell with tissue CD74+ macrophages 
interacting with tissue CD8+ memory T cells
Having established that two immune subsets in peripheral blood predict therapeutic response within 
a multivariate signature, we subsequently explored the relationship between the immune findings 
in peripheral blood with tumour infiltrating leukocytes (TILs). We obtained sufficient tissue from the 
biopsy at trial enrolment for in-depth profiling by imaging mass cytometry from nine patients.

Standard FFPE samples from these patients were stained using a custom immune focused imaging 
mass cytometry panel (Supplementary file 6). The cells were segmented and then classified into 
superpopulations using a trained machine learning approach. These segmented cells were divided 
into subpopulations by unsupervised clustering using uniform manifold approximation and projection 
(Figure 6A). The distribution of the superpopulations per patient is shown in Figure 6B, yet none of 
which correlated with PFS (Figure 6—figure supplement 1). The phenotypes of the subclusters are 
shown by heat maps (Figure 6C). The key populations were then manually annotated and, in some 
cases, merged to compensate for over clustering and analysed for their correlation with PFS as well 
as peripheral immune populations. The complete list of these correlations can be seen in Figure 6—
figure supplement 1. We focused on the two main populations highlighted by the validation cohort, 
being CD33+CD14+monocytes and CD8CM to understand how they are represented at the tumoural 
level. The peripheral intermediate monocyte population strongly correlated with a tissue CD14+C-
D33+CD74+CD68+ macrophage population while the CD8CM inversely correlated with CD45RO+C-
D27+CD8+ tissue resident memory T cell (CD8Trm) population. Both of those populations positively 
correlated with PFS. Interestingly, the peripheral CD33+ monocyte population strongly correlated with 
CD8Trm (Figure 6D). To understand whether this correlation resulted in cellular levels of interactions, 
we assessed the average number of cell-to-cell contact that CD8Trms had with each of the clustered 
subpopulations. We found these cells were significantly more likely to be in contact with a CD74+ 
macrophage than any other identified population suggesting this interaction is biologically driven and 
not random (Figure 6E).

Discussion
There is a clinical unmet need to identify predictive biomarkers for treatment in head and neck cancer. 
Gene expression profiling has revealed promising initial results in this domain but have been limited to 
HPV-positive HNSCC which inherently have better prognoses. The ratio of neutrophils to lymphocytes 
(NLR) in the peripheral blood of HNSCC patients prior to treatment has been extensively investigated 
for its ability to predict disease outcome. Two recent meta-analyses on the subject have identified that 
a high pre-treatment NLR correlated with worse OS with respective HRs of 1.69 (95% CI: 1.47–1.93; 
p<0.001) and HR of 1.78 (95% CI: 1.53–2.07; p<0.0001) (Mascarella et al., 2018; Takenaka et al., 
2018). Using our combined risk signature, we were able to predict disease outcome more accu-
rately across two separate treatment modalities. Other recent biomarker research has focused on 
predicting response to immune checkpoint blockade by analysing tissue-based biomarkers, such as 
PD-L1 expression levels, but when used in isolation have not been sufficiently predictive at identifying 
patients who would benefit (Burtness et al., 2019).

While unimodal biomarkers may offer some predictive value, the biology of HNSCC and likeli-
hood of response to treatment is likely to be dictated by an interplay between tumour immunity, 
genomic signatures, and a host of clinicopathological characteristics which can only be assessed by 
a multivariate analysis. There has been an increased interest in peripheral blood-based liquid biop-
sies in recent years, particularly in the context of PBMC analysis (Nixon et al., 2019). The ability to 
extract predictive biomarkers from a blood-based liquid biopsy mitigates certain limitations posed by 
tissue biopsies – particularly the tissue accessibility, technical expertise to obtain the biopsy, patient 
frailty, and the amount of tissue available. The ease of obtaining liquid biopsies also facilitates longi-
tudinal monitoring of response to treatment. Moreover, PBMCs offer a much more systemic snapshot 
of the immune response which overcomes intra-tumoural heterogeneity that results in non-uniform 

https://doi.org/10.7554/eLife.73288
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Figure 6. Imaging mass cytometry analysis on tissue sections from nine patients. (A) Uniform manifold approximation and projections (UMAP) of 
the segmented cells from the combined patient sections showing their distribution across the superpopulations. (B) Relative abundance of the cells 
across the patient samples arranged in increasing order of progression-free survival (PFS). (C) Marker expression pattern across each of the clustered 
subpopulations. (D) Correlations between peripheral PBMC populations and tissue immune populations or between tissue immune populations and 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.73288
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distribution of biomarkers. The potential of PBMCs to unravel the tumoural immune landscape is 
slowly being realized, thanks to advancements in the fields of high-dimensional flow cytometry, single-
cell RNA sequencing, and cytometry by time of flight. However, such techniques generate an exces-
sive number of variables which require powerful statistical analysis tools to overcome pitfalls such as 
overfitting (Shalabi et al., 2018).

To our knowledge, the current study is one of the first examples of integrating multiple biological 
covariates derived from peripheral blood and patient clinical data to generate a signature which 
predicts treatment response and that has been validated across multiple therapeutic modalities.

By employing cross-validation iterations to estimate training and validation errors, implementing 
advanced overfitting correlation protocols, using built-in corrections for informative data missingness, 
and probabilistic covariate removal, we were able to derive a robust optimal covariate set which 
correlates with PFS. This combination of analyses has been shown to produce robust signatures that 
do generalize to uncaptured data (Barber et al., 2020).

The biological components of the predictive model warrant discussion. The only clinical covariate 
to feature in the combined risk signature was the hypopharyngeal SCC sub-site, which was adversely 
correlated with PFS. This corroborates previous findings that the 5-year relative survival of patients 
with hypopharyngeal SCC is consistently the worst amongst different anatomical HNSCC sub-sites 
(Gatta et al., 2017; Machiels et al., 2020). The propensity of hypopharyngeal tumours to present at 
the de novo advanced stage (Cadoni et al., 2017) and the density of submucosal lymphatics in this 
anatomical region translates into these patients inherently performing worse – lending support to the 
robust nature of our predictive signature. The notable absence of patritumab (denoted as ‘Drug’) in 
our predictive signatures is also consistent with the outcome of the Phase 2 clinical trial where the 
addition of this investigational medicinal product did not produce any benefit to PFS (Forster et al., 
2019).

Another key discovery in this study is the significance of analysis of sequential samples even at 
early stages of therapy. This, we believe, is important for the analysis of lab-based biological variables. 
There is a high level of inter-individual heterogeneity in the relative abundance of PBMC subpopu-
lations even between healthy donors. This inherently weakens the predictive power of covariates 
based on raw PBMC populations. We observe this phenomenon in our dataset as the combined risk 
signature had higher predictive power than the baseline one. By opting to present the biological data 
obtained from the first post-treatment biopsy as change relative to the baseline biopsy, we obtained a 
much more predictive risk signature in our combined model. This is highlighted in the post-treatment 
change in CD8CM percentage relative to baseline value which is not only the strongest predictor of 
PFS in the combined model, but also has a greater univariate predictive value than the whole base-
line signature. This validates the potential of our approach has in deconvoluting observed biological 
phenomena due to patient heterogeneity from that induced by drug treatment, both of which are key 
to biomarker discovery.

We also validated our risk signature in a second cohort thus allowing us to successfully identify 
predictive biological biomarkers for therapy across different treatment modalities. The fact that the 
first trial involved targeted therapies and the second a combination of anti-EGFR and anti-PD-L1 
therapy, yet the same blood kinetic change can still distinguish between responders and non-
responders is novel and has not been seen before according to our knowledge. The limitation is 
that the independent validation cohort is small despite the fact that the result we obtained with the 
present number of validation samples did reach significance (Kandall tau = 0.725, with p-value 0.018). 
This further highlights the power of multivariate analysis as none of the univariates identified in the 
test cohort independently predicted treatment outcome in the validation cohort, yet the risk signa-
ture strongly correlated with a poorer outcome. We believe that understanding the interplay of key 
immune subsets between the tumoural microenvironment and the circulation will be key to biomarker 
development. We focused on two covariates from the risk signature based on their predictive power 

PFS. (E) Average number of interactions between the CD8+ tissue resident memory T cells and each of the clustered subpopulations. Arrow indicates 
the population of tissue macrophage that corresponds to peripheral CD33+CD14+monocyte.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Correlations of the clustered superpopulations with progression-free survival (PFS).

Figure 6 continued
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in both cohorts. Analysis of immune populations at the tissue level allowed us to identify tissue coun-
terparts of peripheral CD33+HLADR+ monocytes and CD8CM that not only colocalized at the tissue 
level but also were favourable to a good outcome. Hence, we hypothesize to have uncovered a two-
checkpoint system for predicting response to systemic therapy which merits further investigation.

Firstly, a favourable therapeutic outcome requires the presence of high pre-treatment levels of 
CD14+CD16+CD33+HLADRhigh monocytes. These correlated with a similar population of CD74+CD68+ 
population of tumoural myeloid cells. Myeloid cells are plastic yet given the similarity in the marker 
expression patterns between the peripheral CD33+CD14+CD16+HLADRhigh monocyte population and 
the CD14+CD33+CD74+CD68+ tissue macrophages, as well as the strong correlation between their 
corresponding blood and tissue abundance (Figure 6D), we hypothesize that they represent the same 
group of cells that gain CD68 expression as they enter the tissue. This monocyte population matches 
the population of intermediate monocytes described in the literature shown to have a key role in 
antigen presentation (Cravens et al., 2007; Zawada et al., 2011; Wong et al., 2011). Given the 
correlation between tissue levels CD8+ memory T cell, peripheral intermediate monocytes, and the 
tissue colocalization of the CD8+ memory T cells with the CD74+ macrophages, we can imagine a role 
for our myeloid population in inducing post-treatment expansion of CD8CM potentially via a mech-
anism involving cross-presentation of antigens released by drug-induced cancer cell death (Colbert 
et  al., 2020). Indeed, cetuximab treatment can be a source of tumour-derived antigens as it has 
been shown to increase TCR diversity in peripheral T cells as well as cross-presentation by antigen-
presenting cells (Kansy et al., 2018; Srivastava et al., 2013). Ideally, we would require analysis of the 
draining lymph node to fully understand how these cells move between the tumour and the circulation 
and their contribution to the expansion of the CD8CM, a role generally accomplished by dendritic 
cells at the level of the lymph node. Nevertheless, monocyte-derived macrophages have been shown 
to activate and expand tissue resident memory T cells (Trm) (Snyder et al., 2021; Low et al., 2020; 
Muntjewerff et al., 2020; Chu et al., 2020).

An on-treatment increase in the level of circulating CD8CM significantly correlated with a worse 
disease outcome in patients who received two regimens of systemic treatments within two trials. Inter-
estingly, high levels of pre-treatment CD8CM cells correlating with a favourable treatment outcome 
in HNSCC has been previously and independently reported by the Whiteside group indirectly vali-
dating our results (Czystowska et al., 2013). While an increase in CD8CM correlating with a poorer 
outcome in both our datasets seems counter-intuitive, it is key to realize that this increase is only seen 
at the levels of peripheral CD8CM which inversely correlate with tissue Trm (Figure 6D). Using single-
cell sequencing and mapping of T cell receptor clonality at the levels of TILs and peripheral T cells, 
researchers have definitively proven that tumour reactive T cell clones can be found in the periphery 
(Fairfax et al., 2020; Kok et al., 2020; Pauken et al., 2021; Padrón et al., 2022). The movement of 
these cells between the tumour and draining lymph node was recently investigated using photoac-
tivable T cells in mice which showed that there is continuous recruitment of memory T cells from the 
periphery into the tumour which replenishes the pool of tissue Trm identified by CD103 and TCF1 
expression. However, this recruitment is usually matched by an egress of Trm cells out of the tumour to 
the draining lymph nodes which is accompanied by decreased expression CXCR6 (Li et al., 2022). The 
peripheral origin of Trm cells is still under investigation with recent data suggesting that CD8CM are 
not only capable of homing into the inflamed tissue but also undergoing transcriptional reprogram-
ming to a stable Trm phenotype (Matos et al., 2022). We hypothesize that the predictive power of the 
population of peripheral CD8CM stems from its ability to home to the tumour and contribute to the 
Trm population which has recently been identified as key player in anti-tumour immunity in HNSCC as 
well as other cancers mainly in the context of immunotherapy but also in chemo/radiotherapy (Han 
et al., 2021; Ida et al., 2021; Savas et al., 2018; Djenidi et al., 2015; Luoma et al., 2022). Unfor-
tunately, one key shortcoming of our study is the lack of Trm-specific markers such as CD103, CD69, 
and TCF1 from the imaging mass cytometry panel of antibodies which we believe contributed to this 
anti-correlation not being stronger.

The accumulation of clonally expanded memory T cells in the periphery in poor responders is the 
potential result of tumour-induced T cell exclusion which we can infer from the negative correlation 
observed between peripheral and tumour infiltrating memory T cells (Jerby-Arnon et al., 2018). In 
this model CD8+ memory T cells are being generated only in patients having a large pre-treatment 
pool of competent APCs yet these anti-tumour CD8+ memory cells cannot enter the tumour from the 
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periphery hence accumulating in circulation. Our group is now focused on understanding the different 
aspects of this model mainly with regards to the specific tumour exclusion of CD8CM T cells.

Another limitation of our work to discuss is the absence of overall survival (OS) data within our 
current dataset. It would have been interesting to assess whether the immune markers predict survival 
in the longer term. However, the accuracy of the predictive signature for OS is often diluted by a 
variety of subsequent treatment regimens.

The present study shows that the combination of biomarkers established prospectively by liquid 
biopsies early in the treatment course offers potential for the provision of personalized treatments to 
patients (Nenclares et al., 2021). The risk signature drove the discovery of synergies between the 
systemic and tumoural immune response. Identifying such complex biological interplay as having a 
role in disease outcome is impossible without multivariate analysis. The post-stratification survival 
curves in our study demonstrate markedly different PFS outcomes as a testament to this robust statis-
tical model and could represent an invaluable guide to clinicians during the initial stages of treatment.
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The following dataset was generated:
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R, Wong F, Vicencio 
JM, Galazi M, 
Opzoomer J, Arnold 
J, Kordasti S, Doyle J, 
Greenberg J, Dillon 
M, Harrington K, 
Forster MF, Coolen 
T, Ng T

2021 Head and Neck Cancer 
Multivariate Blood Data

https://​doi.​org/​10.​
5522/​04/​16566207.​v1

UCL Research 
Data Repository, 
10.5522/04/16566207.v1
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