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Abstract 

Over the past few years, the study of genetics has been revolutionised by rapid progress in genome-

wide association studies (GWAS), leading to the uncovering of a large proportion of genetic variants 

associated with biomarkers, lifestyle factors and disease incidence. However, understanding how these 

variants mechanistically influence disease phenotypes and/or translating GWAS findings into drug 

targets have proved challenging.  

The challenges facing epidemiological studies in distinguishing between causation and association 

have drawn much interest to the Mendelian randomisation (MR) approach. MR can be viewed as a 

platform to integrate novel genetic information generated in GWAS or molecular studies (QTL) to 

inform about causal associations between an exposure and a disease outcome; the demonstrated causal 

association is less likely to be affected by confounding or reverse causation. 

This advancement led me to apply the MR approach to uncover the causal link between several 

environmentally modifiable exposures and the risk of developing multiple sclerosis (MS), as well as 

the severity of MS. Additionally, I broadened our approach by applying MR to the druggable genome 

to identify and prioritise new drug targets for MS. 

Overall, I found genetic evidence that high-density lipoprotein and a range of features linked to obesity 

(body mass index, weight, fat mass and fat percentage) and stroke, are risk factors for MS development. 

Additionally, I found genetic evidence supports the casual role of obesity in worsening MS severity. 

Most importantly, this thesis prioritises several genes (RAC2, CCR4, SLAMF7 and SIK3) with the 

potential to serve as druggable genes in MS. This finding offers a platform for informing the design of 

MS preventive strategies. 



4 
 

Impact Statement 

Multiple sclerosis (MS) is a multifactorial disease influenced by both genetic and environmental 

factors. MS is the most common neurological disability, and about 2.8 million people live with MS 

worldwide. Thus far, MS has no cure, and the primary goal of licenced disease-modifying therapies 

(DMTs) is to modify the disease’s course and slow disability. However, DMTs are hampered by 

potentially serious adverse reactions and require careful monitoring through a specialist MS clinic. In 

addition, many MS DMTs cost beyond US $90,000 annually, which is a major deterrent, particularly 

in low- and middle-income countries. Presently, a need exists for more research to discover new and 

better MS interventions and preventive measures. Nevertheless, discovering novel drugs for human 

diseases is a lengthy, complex and costly process. 

Although the aetiology of MS remains unclear, observational studies have reported associations 

between several risk factors and increased MS risk; however, whether these associations are causal 

remains unclear. 

Accurate assessment of environmental risk factors is crucial not only to understand MS risk aetiology 

but also to improve prevention strategies, identify novel therapeutic targets and delay disease 

progression. 

By leveraging the availability of large-scale GWASs by applying the MR approach, this thesis 

contributes to uncovering causal relationships between several environmentally modifiable exposures 

and the risk of developing MS and the risk of worsening MS severity, which has received less attention 

in the research field. Interestingly, this thesis sheds light on the possible critical role of ischemic stroke 

in increasing the risk of developing MS.  
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Demonstrating causation would aid the understanding of these factors’ roles in MS pathogenesis, 

enrich our MS aetiology knowledge and may carry meaningful implications for MS patient care by 

aiding clinical diagnosis—and perhaps treatment. 

Drug repurposing is an alternative strategy with the potential to complement traditional drug discovery 

by mitigating high monetary- and time-related costs. By performing MR of the druggable genome, this 

thesis also provides valuable evidence to identify opportunities for MS prevention and informs on 

potential drug targets. 

This thesis is novel in its application of MR methods to demonstrate how human genetic variation can 

provide insights into potential risk factors and inform drug design to improve MS patient health.  
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Chapter 1  Introduction 

 

1.1. Introduction to multiple sclerosis 
 

Multiple sclerosis (MS), the most common neurological disability, is an autoimmune-mediated, 

demyelinating disorder that affects the central nervous system (CNS) (Thompson A, 2018, Brownlee 

et al., 2017). MS is characterised by inflammation causing episodic attacks, multifocal demyelination 

and axonal loss, leading to changes in sensation, mobility, balance, sphincter function, vision, and 

cognition(Brownlee et al., 2017) . In 1996, the US National Multiple Sclerosis Society (NMSS) 

Advisory Committee on Clinical Trials in MS defined the clinical subtypes of MS into four different 

subtypes: relapsing-remitting (RRMS), secondary progressive (SPMS), primary progressive (PPMS), 

and progressive relapsing (PRMS) (Lublin et al., 2014) (Figure 1.1). These demyelinated plaques 

consist of a defined (Lublin et al., 2014). 

 

• RRMS is the most common form, found in about 85% of MS patients, and is characterised by 

periods of relapse (flare-up of symptoms) or episodes of neurological dysfunction over days or 

weeks, followed by remission with full or partial periods of recovery over months or years 

(Mansilla et al., 2021, Lublin et al., 2014). During RRMS, inflammatory attacks on myelin and 

nerve fibres occur (Ghasemi et al., 2017). During these inflammatory episodes, activated 

immune cells cause various neurological symptoms, such as visual impairments, tingling and 

numbness, episodic bouts of fatigue, intestinal and urinary system disorders, spasticity and 

learning, memory impairment and weakness (Ghasemi et al., 2017).  
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• Nearly 15%−30% of patients with RRMS eventually progress into SPMS, in which there is a 

steadily progressive worsening of neurologic function (accumulation of disability) over time, 

with or without relapses (Thompson A, 2018, Lublin et al., 2014). It is difficult to determine 

exactly when the transition from RRMS to SPMS starts, but the research data suggest an 

average time to the progressive phase of about 19 years after the onset of RRMS (Klineova and 

Lublin, 2018). However, an earlier progression to SPMS is associated with a higher age at RR 

onset, male gender (albeit not consistently in all studies), spinal cord symptoms and incomplete 

relapse recovery (Klineova and Lublin, 2018). RRMS patients experience symptoms of 

increased weakness, intestinal and urinary system disorders, fatigue, stiffness, mental disorders 

, psychological impairment and sensory symptoms (Ghasemi et al., 2017).  

 

• PPMS affecting approximately 10 % of all MS patients (Wolinsky et al., 2007) . Patients with 

PPMS experience steadily worsening neurologic function from onset without any distinct 

relapses or remissions (Wolinsky et al., 2007, Lublin et al., 2014, Klineova and Lublin, 2018). 

PPMS patients often experience symptoms that indicate a spinal cord progressive disease, 

including problems with walking, weakness, stiffness, and trouble with balance (Ghasemi et 

al., 2017).  
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Figure 1. 1: Multiple sclerosis disease course adapted from Ford, 2020. 

 

1.2. Immune pathogenesis of multiple sclerosis 
 

Loss of immunological tolerance to self-antigens is the hallmark of autoimmune diseases, including 

MS. It has been shown that the immune system identifies CNS myelin as foreign and is subsequently 

activated to attack it (Schaeffer et al., 2015a). Two mechanisms have been proposed to explain the 

initiation of MS: molecular mimicry and bystander activation.  

 

The molecular mimicry mechanism occurs when peptides of infectious agents share sequences or have 

structural similarities with self-antigens (Schaeffer et al., 2015a). This similarity may trigger activation 

of T and/or B cells, leading to a crossing of the blood-brain barrier (BBB) and tissue damage upon 

recognition of antigens in the brain (Schaeffer et al., 2015a). Many molecular mimics (bacteria and 

viruses) have been identified in MS studies (Libbey et al., 2007). For example, myelin basic protein 

(MBP), the major constituent of the myelin sheath of oligodendrocytes, is one autoantigen that shares 

https://www.sciencedirect.com/topics/medicine-and-dentistry/immunological-tolerance
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similar T-cell receptor (TCR) motifs and major histocompatibility complex (MHC)-II binding with 

viruses, such as herpes simplex virus (HSV) (Schaeffer et al., 2015a) (Figure 1.2).  

 

 

Figure 1. 2: Possible mechanism of cross-reactivity between self-antigens (e.g. myelin basic protein) 

and pathogen agents (e.g. Epstein–Barr virus, herpes simplex virus). This figure was reproduced 

from Schaeffer et al., 2015. 

The second mechanism is bystander activation of T-cells, which occurs non-specifically during 

infections (in a TCR-independent manner) (Schaeffer et al., 2015a) (Figure 1.3). Classical T-cell 

activation occurs mainly by engagement of the TCR, which triggers several signalling cascades that 

result in cytokine production, differentiation, proliferation and/or apoptosis (Pacheco et al., 2019). In 

bystander activation of T-cells (TCR-independent manner), activation is mediated through indirect 

signals that favour an inflammatory milieu, such as inflammatory cytokines, superantigens and toll-

like receptor activation (Schaeffer et al., 2015a, Pacheco et al., 2019). Bystander activation of 

autoreactive T-cells might also occur via APCs (Schaeffer et al., 2015a). In this process, virus 
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infections trigger the activation of APCs, such as dendritic cells, which then activate preprimed 

autoreactive T-cells to initiate the autoimmune response (Schaeffer et al., 2015a, Fujinami et al., 2006). 

 

In addition, bystander activation of autoreactive T cells can also be initiated by virus-specific T-cell 

(depending on specific TCR recognition) (Schaeffer et al., 2015a, Fujinami et al., 2006, Pacheco et al., 

2019). For example, activated virus-specific T-cells migrate to the infected CNS, where the virus-

infected cells present viral peptides in the context of MHC to T-cells (Schaeffer et al., 2015a, Fujinami 

et al., 2006, Pacheco et al., 2019). These immune cells recognise the infected cells and release 

cytokines that kill the infected cells (Schaeffer et al., 2015a, Fujinami et al., 2006, Pacheco et al., 

2019). This results in the secretion of inflammatory cytokines, such as tumour necrosis factor (TNF), 

lymphotoxin and nitric oxide, by dying cells, leading to the destruction of the uninfected neighbouring 

cells and the release of autoantigens (Schaeffer et al., 2015a, Fujinami et al., 2006, Pacheco et al., 

2019). Under infectious circumstances, the presentation of these autoantigens may activate 

autoreactive T-cells (Schaeffer et al., 2015a, Fujinami et al., 2006, Pacheco et al., 2019).  
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Figure 1.3: Immune pathogenesis of multiple sclerosis. (a) Antigen-specific T-cell activation (classic 

T-cell activation) requires three distinct signals. Signal 1 is antigen-specific signalling generated due 

to the engagement of the T-cell receptor with pathogenic peptides presented by major 

histocompatibility complex molecules. Signal 2 is costimulatory signalling generated due to the 

interaction of CD28 with one of the B7 molecules (CD80 and CD86). Signal 3 is polarising signalling 

generated due to the various cytokine milieus produced by dendritic cells. (b) On the other hand, 

bystander T-cell activation is the concept of T-cell activation independent of antigen stimulation. 

Bystander-activated T-cells can respond rapidly to inflammatory mediators, such as cytokine and Toll-

like receptors, signalling in a T-cell receptor-independent manner (Lee et al., 2020a). TLR2: Toll-like 

receptor 2, TLR4: Toll-like receptor 4. This figure was reproduced from Lee et al., 2020. 

 

 

1.3. Pathophysiology of multiple sclerosis 
 

The pathological hallmark of MS is the presence of demyelinated plaque or lesion within the CNS 

(grey and predominantly white matter) (Schaeffer et al., 2015a). These demyelinated plaques consist 

of a defined hypocellular area characterised by the loss of myelin and the formation of an astrocytic 

scar (Schaeffer et al., 2015a). Evidence has also established that transected axons, a consistent 

consequence of demyelination, are common in the plaques of MS, and axonal transection might be the 

pathologic correlate of the irreversible neurologic impairment in MS (Trapp et al., 1998). 

Lesions are found in different areas within the CNS, including the optic nerves, periventricular white 

matter, brainstem, cerebellum and spinal cord white matter, and they often surround medium-sized 

blood vessels (Schaeffer et al., 2015a). A cascade of pathobiological events characterises the 

pathological process of MS, ranging from autoreactive T-cell activation and breakdown of BBB to 

demyelination and axonal degeneration (Figure 1.4). 

 

In the periphery, autoreactive CD4+ T cells are activated by APCs, which present via the MHC class II 

receptor, an amino acid similar to myelin peptides synthesised in the CNS (Celarain and Tomas-Roig, 

2020). This interaction activates the differentiation of the CD4+ T naïve cells into CD4+ T helper (Th) 
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cells (Celarain and Tomas-Roig, 2020). Upon activation, the Th1 subtypes release pro-inflammatory 

cytokines (IL-1, IFN- γ, TNF, IL-12, IL-17), which initiate different events, including recruiting other 

pro-inflammatory cells, such as cytotoxic CD8+ T, B-cells and monocytes, expressing ligands (i.e. 

integrins, chemokine receptor 6; CCR6) on the T-cell surface and adhesion molecules of BBB 

endothelial cells (i.e. C-C Motif Chemokine Ligand 20; CCL20) (Cervantes-Gracia and Husi, 2018, 

Celarain and Tomas-Roig, 2020). These proinflammatory cells then migrate across the disrupted BBB 

through the endothelium and the endothelial basal lamina into the CNS parenchyma (Schaeffer et al., 

2015a, Celarain and Tomas-Roig, 2020).  

The activation and recruitment of leukocytes lead BBB endothelial cells to reorganise their membrane 

in multiple cup-shaped microdomains enriched with cellular adhesion molecules, such as vascular cell 

adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) (Schaeffer et 

al., 2015a). These molecules surround the migrating cells to enable their passage across the 

endothelium cells (Schaeffer et al., 2015a). Under healthy conditions, the brain is protected by intact 

BBB, which tightly regulates the passage of substances from the blood circulation to the brain and 

orchestrates immune surveillance of the CNS (Celarain and Tomas-Roig, 2020). In MS, MRI clinical 

observations of acute and chronic active lesions reveal a disruption in the BBB, which enables the 

infiltration of lymphocytes and leukocytes into the CNS (Schaeffer et al., 2015a) . Indeed, the release 

of proinflammatory cytokines, such as IFN-γ and TNF-α, contributes to BBB disruption by activating 

cerebral endothelial cells and modulating the BBB phenotype through the induction of several 

inflammatory genes (Celarain and Tomas-Roig, 2020, Schaeffer et al., 2015a). These genes affect BBB 

integrity through several mechanisms, such as the inhibition of junctional protein expression, resulting 

in massive lymphocyte trafficking into the brain (Celarain and Tomas-Roig, 2020, Schaeffer et al., 

2015a). Activated T-cells that migrate across the BBB also affect BBB integrity by expressing matrix 

metalloproteinases, which contribute to BBB breakdown (Celarain and Tomas-Roig, 2020, Schaeffer 

et al., 2015a). Once CD4+ T cells are in the CNS, they reactivate upon interaction with the resident 

APCs, leading to the release of a variety of proinflammatory cytokines and chemokines that result in 
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astrogliosis and microgliosis (Celarain and Tomas-Roig, 2020, Schaeffer et al., 2015a). The infiltrated 

cytotoxic CD8+ T cells attack oligodendrocytes, causing their destruction and neuronal death (Celarain 

and Tomas-Roig, 2020). The B-cells contribute to myelin destruction through several mechanisms, 

including complement-mediated opsonisation, which facilitates phagocytosis by macrophages, 

complement-mediated cytolysis or stimulation of antibody-dependent cell-mediated cytotoxicity by 

binding to natural killer (NK) cells (Schaeffer et al., 2015a). 
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Figure 1.4: The mechanisms of MS pathophysiology reproduced from (Celarain and Tomas-Roig, 

2020). In the periphery, autoreactive CD4+ T cells are activated by antigen-presenting cells (APCs) 

that present, in conjunction with class II MHC molecules, antigens similar to myelin. (1) Following 

this interaction, CD4+ T naïve cells differentiate into CD4+ T helper cells (Celarain and Tomas-Roig, 

2020). (2) These cells subsequently release proinflammatory cytokines (such as interferon-gamma; 

IFN-γ), which recruit other pro-inflammatory cells, such as cytotoxic CD8+ T, B-cells and macrophages 

(Celarain and Tomas-Roig, 2020). (3) These proinflammatory cells migrate to the blood-brain barrier 

and pass into the CNS (Celarain and Tomas-Roig, 2020). Inside the brain, plasma B-cells generate 

autoantibodies against CNS self-antigens, contributing to myelin sheath damage (Celarain and Tomas-

Roig, 2020). This process is exacerbated when infiltrated cytotoxic CD8+ T cells attack 

oligodendrocytes, causing their destruction and neuronal death. Monocytes, on the other hand, 

contribute to demyelination through myelin phagocytosis (Celarain and Tomas-Roig, 2020). (4) In 

parallel, infiltrated CD4+ T cells are reactivated upon interaction with myelin fragments presented by 

resident APCs, leading to (5) proinflammatory cytokine and chemokine release and (6) astrogliosis 

and microgliosis (Celarain and Tomas-Roig, 2020). 

 

1.4. Epidemiology 
 

MS usually starts between the ages of 20 and 40 years, but approximately 1–4% of cases can occur in 

childhood, and around 2–10% occur after 50 years of age (Ghasemi et al., 2017, Schaeffer et al., 

2015a). There is wide geographical variance in the incidence and prevalence of MS depending on 

gender, age, geographic distribution and ethnic origin (Simpson et al., 2011, Schaeffer et al., 2015a). 

Women are more susceptible to MS compared with men; the prevalence is three times higher in 

females than in males (Schaeffer et al., 2015a). The reasons for this are not fully understood, but one 

explanation has been suggested: the possible involvement of sex hormones in susceptibility to MS 

(Harbo et al., 2013, Schaeffer et al., 2015a). It has been shown that high levels of progesterone, 

oestradiol and oestriol during pregnancy ameliorate the disease course of MS (Harbo et al., 2013). 

Further, in the animal model of MS experimental autoimmune encephalomyelitis (EAE), a milder 

disease course was observed under the influence of estrogen (Harbo et al., 2013). 
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Approximately 2.8 million people worldwide are affected by MS (Walton et al., 2020). Regionally, 

Europe has the greatest MS prevalence, followed by the Americas, whereas it is lowest in Southeast 

Asia and Africa (Walton et al., 2020). The higher MS incidence in some regions, such as European 

countries, is possibly due to living in countries at higher latitudes, resulting in reduced exposure to 

sunlight and thereby low vitamin D levels (Tao et al., 2016, Wood, 2017).  

Table 1. Table 1.1 shows the number of people living with MS worldwide in 2013 and 2020, with the 

indication that the MS prevalence in 2020 is 30% higher than that in 2013 (Walton et al., 2020). The 

trend in MS prevalence could be related to many factors, including the greater awareness of the disease, 

increased accessibility to high-quality health care, earlier diagnosis, and the long-term survival of 

patients with MS (Walton et al., 2020). 

 

 

Table 1.1: Worldwide prevalence of multiple sclerosis per 100,000 people in 2013 and 2020 

 
 

Number of 

countries 

included  

2013 prevalence per 

100,000 population  

[95% CI] 

2020 prevalence per 

100,000 population  

[95% CI] 

Increase; 

absolute (%) 

Global 81 29.26 [29.21, 29.30] 43.95 [43.90, 44.01] 14.69 (50%) 

African 6 5.52 [5.41, 5.62] 8.76 [8.64, 8.89] 3.24 (59%) 

Americas 15 62.89 [62.72, 63.05] 117.49 [117.27, 117.71] 54.6 (87%) 

E. Mediterranean 14 23.91 [23.77, 24.04] 33.00 [32.85, 33.15] 9.09 (38%) 

European 35 108.25 [108.01, 108.49] 142.81 [142.53, 143.08] 34.56 (32%) 

South East Asia 4 5.44 [5.41, 5.48] 8.62 [8.58, 8.66] 3.18 (58%) 

Western Pacific 7 3.64 [3.61, 3.67] 4.79 [4.75, 4.82] 1.15 (32%) 

 

This table is adapted from Walton et al., 2020. Abbreviations: CI, confidence intervals; E. 

Mediterranean, Eastern Mediterranean. 
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1.5. Aetiology of multiple sclerosis 
 

Although the aetiology of MS remains unclear, the present evidence suggests that the cause of MS is 

multifactorial, including genetic and environmental determinants (Jacobs et al., 2021, Ghasemi et al., 

2017). A large fraction of MS risk is explained by lifestyle and environmental factors, while genetic 

predisposition to MS only explains a small fraction (Olsson et al., 2017). Environmental factors include 

exposure to smoking, low vitamin D levels due to insufficient sun exposure and/or dietary intake, 

obesity, viral and bacterial agents, such as Epstein-Barr virus, organic solvents and shift work (Olsson 

et al., 2017). Interestingly, these nongenetic factors can influence pathogenetic mechanisms, and some 

of them can be modified (Olsson et al., 2017). For example, a recent longitudinal analysis comprising 

more than 10 million young adults on active duty in the US military, 955 of whom were diagnosed 

with MS during their period of service, tested the hypothesis that MS is caused by Epstein–Barr virus 

(Bjornevik et al., 2022). The results revealed that the risk of MS prevalence increased 32-fold after 

infection with Epstein–Barr virus but was not increased after infection with other viruses, including 

the similarly transmitted cytomegalovirus (Bjornevik et al., 2022). This finding suggests that Epstein–

Barr virus could be a potential modifier of MS. 

Compelling evidence supports the important role of genetic determinants in MS aetiology. Thus far, 

more than 100 candidate genes within and out of MHC regions have been found to be associated with 

MS risk. Different strategies have been used to identify these candidate genes, including population-

based association studies, family-based linkage methods and systematic genome screens (Olsson et al., 

2017). 

 

Epidemiological data also suggest an interaction between genetic predispositions and environmental 

factors, whereby the effect of certain loci may depend on exposure to environmental risk factors  

(Jacobs et al., 2021, Olsson et al., 2017). For example, evidence from a population-based case-control 

study suggested that smoking’s influence on MS risk can be modified by the human leukocyte antigen 

(HLA) genotype (Hedström et al., 2011). This study found that smokers carrying HLA-DRB1*15 and 
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lacking HLA-A*02 had a 14-fold (odds ratio 13.5, 95% CI 8.1–22.6) increased risk compared to non-

smokers without these genetic risk factors (odds ratio 4.9, 95% CI 3.6–6.6) (Hedström et al., 2011). 

1.6. Comorbidity in multiple sclerosis 
 

Comorbidity, defined as the total burden of illness other than the disease of interest (MS), in patients 

with MS has drawn much interest in recent years due to its high prevalence and breadth of adverse 

impacts (Marrie, 2017). Several well-designed population-based studies have sought to assess the 

prevalence of comorbidities among patients with MS. For example, in a recent systematic review, 

Marrie et al. reported the incidence and prevalence of the most common comorbidities in MS, 

including depression, anxiety, hypertension, hyperlipidaemia, and chronic lung disease (Marrie et al., 

2015) . In addition, other studies have investigated the incidence or prevalence of many autoimmune 

diseases, cancers, ischaemic heart disease, and stroke among patients with MS (Marrie et al., 2015).  

Together, these studies shed light on how these comorbid diseases adversely affect MS by accelerating 

disability progression, increasing changes visible on MRI, increasing mortality, reducing quality of 

life, and delaying diagnosis (Marrie and Horwitz, 2010, Marrie, 2017, Magyari and Sorensen, 2020). 

They are also improved our knowledge awareness of the comorbidity prevention or treatment using 

lifestyle modification and readily available treatments (Marrie, 2017). 

 

The reason for the co-occurrence of diseases is unknown, but it is likely true that common genes 

and/or similarities in immunologic features contribute to the susceptibility of an individual to 

more than one disease (Nielsen et al., 2006, Marrie and Horwitz, 2010). Common risk factors can 

also lead to an increased co-occurrence of diseases, although common environmental factors, such as 

obesity and smoking, are another possible explanation (Marrie and Horwitz, 2010). Furthermore, 

diseases might co-occur due to one of several aetiological mechanisms, including associated risk 

factors, direct causation, heterogeneity, and independence (Marrie and Horwitz, 2010).  
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1.7. Diagnosis of multiple sclerosis  
 

There is no exact measure or laboratory marker for the diagnosis of MS. The diagnosis of MS is based 

on the integration of clinical, imaging, and laboratory findings, such as those from magnetic resonance 

imaging (MRI), lumbar punctures for cerebrospinal fluid (CSF) analysis, evoked potentials, and blood 

sample analysis (Thompson A, 2018). Clinical expertise is necessary to obtain evidence of 

dissemination in time and space and, importantly, to exclude other neurological conditions (Thompson 

A, 2018). MRI  is the most sensitive test for assisting in excluding other conditions, permitting earlier 

diagnosis at an increased certainty with successive versions of the diagnostic criteria (Thompson A, 

2018).  

 

The McDonald criteria are employed to diagnose MS. These criteria were established by the 

International Panel on Diagnosis of Multiple Sclerosis in 2001 and revised several times in 2017 

(Table 1.2). The goal of the criteria is to ensure an earlier and more accurate diagnosis of MS and 

minimise the uncertainty period for the patient and clinician (Ford, 2020). This provides appropriate 

management, including confirmation of the diagnosis for the patient and access to effective therapies 

(Ford, 2020). 
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Table 1.2: 2017 McDonald criteria for the diagnosis of multiple sclerosis  

 

Number of attacks at 

clinical presentation 

Number of lesions with objective clinical 

evidence 

Additional data needed for diagnosis of 

multiple sclerosis 

≥2 ≥2 Nonea 

≥2 

1 (as well as clear-cut historical evidence of 

a previous attack involving a lesion in a 

distinct anatomical location) 

Nonea 

≥2 1 

Dissemination in space demonstrated by 

an additional clinical attack implicating a 

different CNS site 

  Or by MRI 

1 ≥2 
Dissemination in time demonstrated by an 

additional clinical attack 

  Or by MRI 

  Or demonstration of CSF-specific 

oligoclonal bands 

1 1 

Dissemination in space demonstrated by 

an additional clinical attack implicating a 

different CNS site 

  Or by MRI 

  And dissemination in time demonstrated 

by an additional clinical attack 

  Or by MRI 

  Or demonstration of CSF-specific 

oligoclonal bands 

 

a = No additional tests are needed to demonstrate dissemination in space and time. However, unless 

MRI is not possible, brain MRI must be obtained in all patients in whom a diagnosis of multiple 

sclerosis is being considered. In addition, spinal cord MRI or CSF examination should be considered 

in patients with insufficient clinical and MRI evidence supporting multiple sclerosis, with a 

presentation other than a typical clinically isolated syndrome or with atypical features. If imaging or 

other tests (e.g. CSF) are undertaken and are negative, caution needs to be taken before making a 

diagnosis of multiple sclerosis, and alternative diagnoses should be considered. Abbreviations: CNS, 

central nervous system; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging. This table is 

adapted from (Ford, 2020). 

 

Many other conditions have symptoms similar to those of MS. Therefore, clinicians need to be vigilant 

of atypical clinical findings or investigation results (Ford, 2020). One approach to solving such issues 

is the differential diagnosis of MS, which is the process of discovering the cause of symptoms by ruling 
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out other possible causes. The differential diagnosis of MS is wide and varies depending on the site of 

presentation, for instance, the optic nerve or spinal cord (Table 13) (Ford, 2020). Non-specific 

symptoms with white matter lesions on MRI can be a common cause of misdiagnosis of common 

disorders, such as migraine or small vessel vascular disease in the elderly (Ford, 2020).  

 

Table 1.3: Differential diagnosis of multiple sclerosis 

Autoimmune/inflammatory CNS infections Metabolic 
Vascular 

conditions 
Other 

Neuromyelitis optica spectrum 

disorder (NMOSD) 
CNS syphilis 

Vitamin 

B12 deficiency 

Small vessel 

disease 

CNS 

lymphoma 

Acute disseminated 

encephalomyelitis (ADEM) 
Lyme disease Copper deficiency Stroke Paraneoplastic 

Myelin oligodendrocyte 

glycoprotein (MOG) antibody 

disease 

Human T-

lymphotropic virus 

(HTLV) 

Mitochondrial 

disease 
CADASIL  

Sjögren's syndrome HIV Leukodystrophies Susac's syndrome  

CNS lupus   
Anti-phospholipid 

antibody 

syndrome 

 

Sarcoidosis     

Behçet's     

CNS vasculitis     

 

This table is adapted from (Ford, 2020). Abbreviations: CADASIL, cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy; CNS, central nervous system. 

 

1.8. Disability measures in multiple sclerosis 
 

MS is a leading cause of disability. Therefore, in measuring disability, it is crucial to determine a 

patient’s current and potential future severity to understand whether interventions affect the disease 

course and mitigate disease progression (Manouchehrinia et al., 2021).  
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The commonly used scales for assessing the level of disability in clinical practice include the expanded 

disability status scale (EDSS), MS severity score and age-related MS severity score (Manouchehrinia 

et al., 2021, Kurtzke, 1983). The EDSS is a measure that rates the impairment in MS patients on a 

scale ranging from 0 (no neurological impairment) to 10 (death as a result of MS) and comprises an 

assessment of eight functional systems conducted by a neurologist during a standard clinical 

examination (Kurtzke, 1983) (Figure 1.5). The EDSS is widely used as an outcome variable in MS 

clinical trials, possibly because it is easy to administer and often applied in clinical practice to monitor 

patients’ progression over time (Manouchehrinia et al., 2017). However, evidence indicates that EDSS 

is not linear (Twork et al., 2010). This means, for example, that the difference between patients who 

walked with aid and wheelchair-bound patients was smaller than the difference between patients 

walking without help and patients being dependent on a walking aid in most health-related quality of 

life domains (Twork et al., 2010). 

 

The is an algorithm that relates scores on the EDSS to the distribution of disability in patients with 

comparable disease durations (Roxburgh et al., 2005). The MS severity score is designed to predict 

disease severity. For example, if the patient accumulated disability at a faster-than-average rate 

compared to the patients with similar disease duration, then he/she experienced rapid disease 

progression (severe MS) (Kister and Kantarci, 2020). By contrast, the inverse is true if the patient has 

a lower-than-average disability relative to their peers with similar disease duration; in that case, the 

patient is classified as having mild MS (Kister and Kantarci, 2020). The MS severity score is widely 

used in different settings and has been shown to have a better statistical power to identify differences 

in disability between groups of patients than the other available measures of disease progression 

(Manouchehrinia et al., 2017).  

However, the only drawback of this scale is its dependence on the date of disease onset, which is 

commonly assigned retrospectively and often missing, imprecise or unobtainable, resulting in a loss 

of data and subsequently loss of statistical power (Manouchehrinia et al., 2017). 
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The age-related MS severity score is another disability measure ranking EDSS scores based on the 

patient’s age at the time of assessment (Manouchehrinia et al., 2017). It has been shown that age-

related MS severity score is a more versatile tool and could minimise study biases and loss of statistical 

power caused by inaccurate or missing onset dates (Manouchehrinia et al., 2017). This is because this 

scale uses an individual’s age instead of the onset date (Manouchehrinia et al., 2017, Manouchehrinia 

et al., 2021). 

 

 

Figure 1.5: The Kurtzke expanded disability status scale. Reproduced from (Leddy and Dobson, 

2020). 

 

1.9. Treatment for multiple sclerosis 
 

Currently, there is no cure or preventive measure for MS, and the approved treatments are disease-

modifying therapies (DMTs) aimed at modifying the course of MS by slowing down disease 

progression, reducing relapses, decreasing long-term neurologic dysfunction, managing symptoms 

and, in some cases, modestly improving disability (Baecher-Allan et al., 2018, Hauser and Cree, 2020).  
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Table 1.4: Summary of approved disease-modifying therapies for multiple sclerosis 

 

Drug (Date of 

Approval) Commercial 

Name 

Target Mechanism of Action Efficacy Adverse Events Authorisation 

IFNβ (1993) 

(IFNβ-1b Betaseron, 

Extavia) (IFNβ-

1a Avonex, Rebif, 

Plegridy) 

Binds to type I 

IFN receptor on 

human cells 

Inhibits T cell division, matrix metallo-

proteinase, BBB migration, and 

proinflammatory cytokines. Induces Tregs, 

suppressive transitional 

CD19+CD24++ CD38++ B cells 

Reduction in annualized 

relapse rate in RRMS. 

Delays conversion to 

clinically definite MS in 

CIS. 

Post-injection flu-like 

symptoms, liver toxicity, and 

depression. Neutralizing Abs 

associated with reduced 

efficacy 

Approved 

Glatiramer 

Acetate (1997) 

Copaxone, Glatopa 

Random 

polymers of 

glutamic acid, 

lysine, alanine, 

and tyrosine to 

bind to MHC 

Competes with peptide binding to MHC, 

increases IL- 10, IL-4, TGFβ, and CD8 

Tregs, induces type II monocytes that cause 

a Th1 to Th2 shift 

Reduction in annualized 

relapse rate in RRMS. 

Post-injection idiosyncratic 

reactions, lymphadenopathy 
Approved 

Mitoxantrone (2000) 

Novantrone 

Interferes with 

DNA repair 

Causes nucleotide crosslinking and DNA 

strand breaks. Inhibits lymphocyte and 

monocyte migration, B cell function, and 

secretion of TNFα, IL-2 and IFNγ 

Reduction in annualized 

relapse rate and disease 

progression in clinically 

worsening RRMS and 

SPMS. 

Bone marrow suppression, 

cardiomyopathy, leukemia 

Not approved for use 

in MS in the UK, 

Natalizumab (2004) 

Tysabri 

CD49d, the α4 

subunit of 

VLA4 integrin 

(humanized 

mAb) 

Blocks B and T cell migration into the CNS. 

Blocks VLA4 binding to VCAM-1 and 

fibronectin 

Reduction in annualized 

relapse rate in RRMS. 

Reactivation of the John 

Cunningham virus in the CNS 

may occur in some patients 

(PML), infusion reactions 

Approved 

Fingolimod (2010) 

Gilenya 

S1PR 

(Sphinosine-1- 

phosphate 

receptor) 

Sequesters lymphocytes in lymph nodes by 

inhibiting lymphocyte egress. Inhibits the 

migration of dendritic cells to secondary 

lymphoid organs 

Reduction in annualized 

relapse rate in RRMS. 

Bradycardia, infection, 

macular edema, lymphopenia 

rare PML cases 

Approved 

Teriflunomide (2012) 

Aubagio 

Inhibits 

dihydroorotate 

dehydrogenase 

Inhibits pyrimidine synthesis. Inhibits 

secretion of proinflammatory cytokines and 

T cell activation 

Reduction in annualized 

relapse rate in RRMS. 

Hair thinning, liver toxicity, 

teratogenesis 
Approved 

Dimethyl 

fumarate (2013) 

Tecfidera 

Nrf2 pathway Activates the Nrf2 transcriptional pathway 
Reduction in annualized 

relapse rate in RRMS. 

GI side effects, flushing, 

lymphopenia, and rare PML 
Approved 

Alemtuzumab (2014) 

Lemtrada 

CD52 on T and 

B cells 

(humanized 

mAb) 

Depletes B and T cells via ADCC and 

complement 

Reduction in annualized 

relapse rate in RRMS. 

Autoimmune diseases 

including thyroid, immune 

thrombocytopenia purpura, 

and glomerulonephritis 

Approved 

Daclizumab (2016) 

Zinbryta 

CD25, anti-

IL2R 

(humanized 

mAb) 

Prevents IL-2 signaling through the high 

affinity IL-2R. Augments CD56+ NK cell 

activity 

Reduction in annualized 

relapse rate in RR. 
Liver toxicity, skin reactions 

* Withdrawn from the 

market in March 

2018. 

Ocrelizumab (2017) 

Ocrevus 

CD20+ B cells 

(humanized 

mAb) 

Depletes CD20+ B cells. Reduces 

pathogenic B cell antigen presentation 

Decreased annualized 

relapse rate in RRMS. 

Reduced disease 

progression in PPMS. 

Infusion reactions, risk of non-

melanoma skin cancer, 

infections, 

hypogammaglobulinemia. 

Approved 

Cladribine (2017) 

 

 

  

Adenosine 

deaminase 

Depletes immune cells by inducing 

lymphocyte apoptosis. Sustained reduction 

in CD4 and CD8 T cells and transient 

reduction in B cells 

Reduction in annualized 

relapse rate in RRMS. 
Infection, lymphopenia Approved 

Siponimod (2019) 

Mayzent 

sphingosine-1-

phosphate (S1P) 

receptor 

modulator 

Siponimod binds with high affinity to both 

S1P receptors 1 and 5 to block the ability of 

lymphocytes to release from the lymph 

nodes, decreasing the number of 

lymphocytes found in the peripheral blood. 

For the treatment of 

relapsing forms of MS, to 

include clinically isolated 

syndrome, RRMS, and 

active SPMS in adults. 

a Headache, back pain, 

bradycardia, dizziness, fatigue, 

influenza, urinary tract 

infection, lymphopenia, 

nausea and alanine amino 

transferase increases. 

Approved 

Ponesimod (2021) 

Ponvory 

sphingosine 1-

phosphate 

receptor 1 

Ponesimod modulates this response by 

stimulating and internalizing S1P1R on 

lymphocytes, effectively blinding them to 

concentration gradients of S1P, reducing the 

number of lymphocytes in blood 

To treat adults with 

relapsing forms of MS, 

including CIS, RRMS, 

and active SPMS 

b Anxiety, dizziness, dyspnoea, 

increased alanine 

aminotransferase, influenza, 

insomnia and peripheral 

oedema 

Approved 

Ofatumumab (2020) 

Arzerra, Kesimpta 
CD20 

Ofatumumab binds to CD20, this binding 

allows ofatumumab to persist on the B 

lymphocyte cell surface for an extended 

period and recruit immunological molecules 

or FcR-expressing innate effectors, such as 

macrophages, that mediate immune effector 

functions with strong cytotoxic effects. 

For the treatment of adult 

patients with relapsing 

forms of MS, including 

active SPMS, CIS, and 

RRMS 

c  Rash, erythema, upper 

respiratory tract infection, 

throat irritation, fatigue, 

headache, back pain and 

flushing. 

Approved 
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This table is reproduced from (Baecher-Allan et al., 2018). Drug information for Siponimod, 

Ponesimod and Ofatumumab obtained from drug bank (https://go.drugbank.com/ ). Authorizing 

information collected from gov.uk (https://www.gov.uk/ ) Abbreviations: RRMS, relapsing remitting 

MS; SPMS, secondary progressive MS; IFN, interferons; CIS, clinically isolated syndrome; MHC, 

major histocompatibility complex; BBB, blood brain-barrier; Th, T helper; TGFβ, the transforming 

growth factor beta; IL, interleukin; TNFα, tumour necrosis factor; IFNγ, interferons gamma; VLA4, 

very late activation protein 4 receptor, alpha 4 subunit; VCAM-1,vascular cell adhesion molecule; 

CNS, central nervous system; PML, progressive multifocal leukoencephalopathy; Nrf2, nuclear factor 

erythroid 2–related factor 2; ADCC, antibody-dependent cellular cytotoxicity; NK, natural killer cell. 

*The drug was withdrawn from the market in March 2018 following reports of serious and potentially 

fatal immune reactions affecting the brain (including encephalitis and meningoencephalitis), liver, and 

other organs. 

a (Kappos et al., 2018), b  (Olsson et al., 2014), c (Sorensen et al., 2014). 

 

All mentioned agents in Table 1.2 act by modulating and/or suppressing the immune system at different 

levels and with different mechanisms of action, which may make them more effective. However, the 

efficacy, tolerability and safety profile vary greatly across therapies for MS, ranging from 

combinations of modest safety and effect to options that are highly effective but at increased risk of 

serious adverse events, which may be fatal in rare cases (Gajofatto and Benedetti, 2015). For example, 

interferon- β and glatiramer acetate treatment need frequent subcutaneous or intramuscular injections 

and are only moderately effective, but very rarely have life-threatening adverse effects, while 

teriflunomide and dimethyl fumarate are administered orally and have equal or better efficacy, but 

have more potentially severe adverse effects (Soelberg Sorensen, 2017). Fingolimod, natalizumab and 

alemtuzumab are highly effective therapies, but have more serious adverse effects, some of which may 

be life-threatening (Soelberg Sorensen, 2017). In addition, the most available DMTs have a favourable 

impact on RRMS, while there are only a few available DMTs for the other forms of MS (e.g., 

Siponimod in SPMS and Ocrelizumab in PPMS) (Thompson A, 2018) . Therefore, there is an unmet 

clinical deemed for developing highly effective therapies with a better safety profile, which is even 

more significant when considering preventive drugs for individuals at high risk of disease (Jacobs et 

https://go.drugbank.com/
https://www.gov.uk/
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al., 2020). One response to this situation is drug repurposing, a strategy to speed up the traditional 

process of drug discovery by identifying a novel clinical use for drugs that have already proven to be 

safe and effective in humans and are approved for other indications (Sultana et al., 2020). In the third 

and fourth chapters, I describe drug repurposing opportunities for MS. 

1.10. Genome‐wide association studies in multiple sclerosis 
 

Genome-wide association studies (GWAS) have made major progress in discovering the risk loci 

associated with MS in the last decade. These loci were found to be involved in a wide range of 

biological pathways related to the risk of developing MS. Most importantly, GWAS studies were able 

to identify MS loci outside the MHC for the first time. Several GWASs and meta-analyses were 

conducted by the International Multiple Sclerosis Consortium (IMSGC). The most informative studies 

include the GWAS in collaboration with the Welcome Trust Case Control Consortium 2 (WTCCC2), 

which involved 13,990 cases and 24,672 controls (discovery plus replication) of European descent 

(Sawcer et al., 2011). In this study, a total of 52 non-MHC loci were identified, in which 23 previously 

reported risk loci were replicated, and a further 29 novel risk loci were identified as genome-wide 

significant (Sawcer et al., 2011). Most of these loci were found nearby genes encoding for immune-

related proteins, and the other loci were previously associated with other autoimmune diseases 

(Didonna and Oksenberg, 2015).  

 

Two years later, the follow-up to the 2011 GWAS was conducted using the ImmunoChip custom 

genotyping array and involving 29,300 subjects with MS and 50,794 healthy controls (discovery plus 

replication) of European ancestry (Beecham et al., 2013a). In this landmark study, a total of 97 

genome-wide significant loci outside the MHC region were identified; of these loci, 48 were new and 

49 corresponded to previously identified susceptibility loci for MS (Beecham et al., 2013a).  

 

In 2019, the IMSGC conducted the largest meta-analysis GWAS in MS, which consisted of 47,429 

MS subjects and 68,374 healthy control subjects (discovery plus two independent replications of data) 
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of European ancestry (Consortium*† et al., 2019). Remarkably, this study was able to identify 233 

statistically independent associations with MS susceptibility that are genome-wide significant, in 

which MHC contains 32 of these associations (Consortium*† et al., 2019) (more details in 

methodology section 2.2.3). Altogether, these findings enhance the catalogue of MS risk loci and 

enrich our knowledge of the immune system processes implicated in MS. 

 

Surprisingly, GWAS studies on MS severity have received relatively less attention. So far, the IMSGC 

has conducted only three GWAS to identify loci influencing disease severity (as measured in terms of 

MS severity score). The first GWAS study comprised 1470 MS cases (Briggs et al., 2011). The second 

study consisted of 7,069 MS cases obtained from the 2011 GWAS (Sawcer et al., 2011), while the 

third study employed 7,934 MS cases obtained from the discovery phase of the ImmunoChip GWAS 

(Beecham et al., 2013a). However, no single loci achieved genome-wide significance, indicating that 

MS susceptibility loci are unlikely to influence MS severity. This finding highlights the need for further 

larger studies with a primary focus on disease severity to enhance the power to identify loci that affect 

MS severity, which is essential to furthering our understanding of disease mechanisms and, most 

importantly, to guide the development of effective therapeutic approaches. 

 

1.11. Mendelian randomisation approach 
 

Epidemiological studies, such as observational and randomised controlled trials (RCTs), are the most 

straightforward studies to identify determinants (causes, risk factors) of health-related states and 

events. Although RCTs are considered the gold standard study design for inferring causality, RCTs 

can be limited by time (i.e. they are unlikely to be conducted in the short term) and RCTs make it 

unfeasible to randomise people to every risk factor due to ethical problems (Howell et al., 2018); for 

example, pregnant women cannot be randomised to drink wine during pregnancy. On the other hand, 

observational studies can be subject to biases from confounding, measurement error and reverse 

causation, leading to spurious associations, which can be difficult to eliminate even through statistical 
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adjustment (Howell et al., 2018). Additionally, observational studies cannot distinguish correlation 

from a causation relationship (Davey Smith and Hemani, 2014).  

One useful method to appraise causality within observational epidemiology, which is relatively quicker 

and easier than RCT studies and overcomes some of the limitations inherent in conventional 

epidemiologic studies, is Mendelian randomisation (MR) (Williams et al., 2020). 

1.11.1.  Mendelian randomisation for causal inference  
 

In simple terms, MR is a type of “instrumental variable” analysis that uses genetic variants, such as 

SNPs, robustly associated with exposures as proxies for the risk factors of interest to investigate their 

causal effect roles on outcomes (Bennett and Holmes, 2017, Burgess et al., 2017a, Howell et al., 2018). 

MR takes advantage of Mendel’s laws of inheritance, in which the germline genetic variants are 

randomly distributed during meiosis and independent of non-genetic factors, including environmental 

risk factors, confounding factors or disease processes (De Silva et al., 2011, Williams et al., 2020). 

Thus, using such genetic variants in MR analysis limits the bias associated with reverse causation and 

confounding in conventional epidemiologic studies. The fundamental principle utilised in this 

approach is as follows: if a genetic variant either alters the level of, or mimics the biological effects 

of, a modifiable biomarker that is causal in disease, then these genetic variants should also be related 

to disease risk to the extent predicted by the effect of the genetic variant on exposure to the biomarker 

(Smith et al., 2008, Bennett and Holmes, 2017). For example, nine SNPs were associated with lower 

low-density lipoprotein cholesterol (LDL-C) (Ference et al., 2012). Using all these SNPs in MR was 

associated with a highly consistent reduction in the risk of coronary heart disease (CHD) per unit lower 

LDL-C (Ference et al., 2012) (Figure 1.6).  

 

1.11.2. Mendelian randomisation for drug repurposing 
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The initial interest in MR was mainly focused on elucidating the causal effect of environmental 

exposures on medically relevant outcomes (Zheng et al., 2017). Since genotypes are assigned almost 

independently of environment when they are inherited from parents, MR can be described as ‘nature’s 

randomised controlled experiment’ in which germline genetic variants are regarded as randomised 

proxies for exposure of interest, in the same way that the allocation group in an RCT is a proxy for an 

intervention of interest (Howell et al., 2018, Sonehara and Okada, 2021) (Figure 1.6). MR offers 

virtual RCT opportunities without actual intervention (Sonehara and Okada, 2021). Therefore, a 

significant amount of attention has been directed to MR across a wide range of domains, including the 

development of pharmaceutical agents (i.e., drug target identification, repurposing, validation and side 

effect identification) (Zheng et al., 2017). This approach has been significantly potentiated by the 

comprehensive coverage of GWAS that has been made publicly available and the increasing 

availability of high-throughput genomic and proteomic technologies (Zheng et al., 2017, Acosta et al., 

2021).    

Drug repurposing MR studies use genetic variants acting in ‘cis’ on druggable protein levels or gene 

expressions that encode druggable proteins (i.e. proteins are known to be targeted by drugs) as a proxy 

for exposure to drugs (e.g. statins) to predict their causal association with an outcome (Gaziano et al., 

2021). Once the casual association is demonstrated, this result can be used to inform the potential 

repurposing of the drug to treat the disease.  

The distinction between conventional MR and drug target MR is that conventional MR establishes 

causal relationships between biomarkers or traits and an outcome, while drug target MR aims to 

address whether modifications of a specific drug target or protein will have an effect on the outcome 

(Acosta et al., 2021). 
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Figure 1.6: Schematic comparison between a randomised control trial (RCT) and Mendelian 

randomised (MR) study using LDL-C (low-density lipoprotein cholesterol), statin and CV 

(cardiovascular disease) as an example. The left-hand panel of the figure represents the RCT in which 

the participants are randomised into the intervention group (who received statin) and placebo (control 

group). In the intervention group, statin reduces LDL levels and prevent CV events, while there is no 

change in the LDL-C levels and CV event among placebos. The right-hand panel of the figure 

represents the MR in which the participants are randomly assigned to an exposed group who carries 

allele C, which represents the intervention arm in RCTs, and a control group who carries allele G 

(normal control alleles), which represents the placebo arm in RCTs. Allele C mimics lifelong exposure 

to lower levels of LDL-C. Thus, the carriers of allele C have a lower CV event, which mimics the 

statin intervention in RCT. This figure is adapted from (Bennett and Holmes, 2017). 
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1.12. Mendelian randomisation in multiple sclerosis  
 

Over the past several years, a massive investment in large-scale GWASs has resulted in discovering 

reliable genetic variants for a wide range of phenotypes, including modifiable environmental 

exposures, such as circulating vitamin levels, as well as complex human behaviours, including nicotine 

dependence (Jiang et al., 2018). These efforts provide an unprecedented opportunity for genetic 

epidemiology in particular by utilising the MR design (Jiang et al., 2018). The success of the MR 

approach in uncovering causal relationships between several environmentally modifiable exposures 

and the risk of developing MS has been demonstrated in numerous works. For example, MR showed 

that genetically lowered vitamin D levels and genetically elevated BMI were strongly associated with 

an increased risk of MS development (Mokry et al., 2016, Rhead et al., 2016). This finding is in 

agreement with observational studies that observed a correlation between vitamin D level, BMI and 

MS risk (Mokry et al., 2016, Rhead et al., 2016). Further, MR found evidence of an association 

between higher age at puberty and decreased risk of MS, which is in line with previous epidemiologic 

studies  (Harroud et al., 2019). 

On the other hand, MR reported conflicting results in the observational findings. For example, MR 

found no evidence for the causal role of coffee consumption on MS risk (Lu et al., 2020). This finding 

does not support observational studies that repeatedly report an association between coffee 

consumption and increased risk for MS  (Lu et al., 2020). Further, MR does not support a causal effect 

of genetically determined serum uric acid levels and adiponectin on the risk of MS, and these MR 

results also do not support previous studies that suggested a role for these molecules in the development 

of MS (Niu et al., 2020, Devorak et al., 2017). These conflicting results between MR and traditional 

observational epidemiology are possibly due to differences in the study population, small sample size, 

confounding, misclassification or reverse causality (Lu et al., 2020).  
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The above studies provide valuable insights into the aetiology of MS and highlight the advances that 

have been made in identifying causality in observational research. In Chapters Three, Five and Six, I 

sought to continue uncovering the causality between other risk factors that have not yet been studied 

or have been studied with limitations, with a primary focus on MS severity. 

1.13. Thesis motivation and aim 
 

Observational studies have reported associations between several risk factors and increased MS risk, 

as mentioned above. However, it is not clear whether these associations are causal. Accurate 

assessment of environmental risk factors is crucial not only to understand MS risk aetiology but also 

to improve prevention strategies, identify novel therapeutic targets and delay disease progression 

among MS patients. Therefore, taking advantage of the availability of large-scale GWASs, for my 

doctoral work, I aimed to apply MR to uncover causal relationships between several environmentally 

modifiable exposures and the risk of developing MS. I believe this would enrich our knowledge of MS 

aetiology and may carry meaningful implications for MS patients’ care by aiding clinical diagnosis 

and perhaps treatment. 

Although much attention has been directed to applying MR design to MS risk, MS severity has 

received less attention, perhaps because the MS severity GWASs are not publicly available. Therefore, 

I aimed to shed light on MS severity by requesting access to the GWAS datasets and then taking 

forward this data and applying an MR design to assess the causal role of several risk factors in the risk 

of worsening MS severity. To my knowledge, my work here is the first to apply MR to MS severity. 
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1.13.1. Specific objectives of this thesis 
 

Numerous epidemiological studies have reported an association between lipid and disability 

progression, but the role of lipids in MS risk development lacks attention. I used the MR approach to 

dissect the causal nature of the association between lipid, MS risk and severity (Chapter 3). 

Recently, statins have received much attention due to their beneficial pleiotropic effects. Several MR 

studies have been performed to explore the repositioning opportunities and side effects of statins. The 

findings from these studies suggest that statins may reduce the risk of developing health-related 

phenotypes, such as cancer. Additionally, the phase 2 trials of statins on SPMS showed promising 

results. These findings highly motivated me to perform MR analysis in an effort to examine whether 

statin can also be used to prevent MS risk and to delay MS severity (Chapter 3). 

Taking advantage of public expression quantitative trait locus datasets, I aimed to apply MR to the 

druggable genome in an effort to identify new drug-targeting mechanisms for MS with genetic 

support—more importantly, for MS severity (Chapter 4). 

Recent studies using MR suggest that the relationship between obesity and the development of MS is 

causal. These studies used loci associated with body mass index (BMI) as a measure of obesity. It has 

been shown that BMI and other anthropometric measures, such as height and non-fat, share common 

loci. Thus, the reported obesity-MS risk association may be driven by other measures. Therefore, I 

sought to perform MR analysis considering 21 anthropometric measures to distinguish between the 

contributions of fat and non-fat to the obesity-MS risk association and to assess the role of these 

measures on MS severity (Chapter 5). 

There is a considerable body of literature linking MS and stroke. Recent MR found no effect of genetic 

liability to MS on the risk of stroke. However, this study did not examine the causal effect of stroke 

on MS risk. Therefore, I aimed to conduct MR to investigate the potential for a causal effect of stroke 

on MS risk and severity (Chapter 6). 
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Chapter 2  Method 

2.1. Overview 
 

MR analysis was conducted in this thesis using a two-sample MR approach. This approach utilises 

genetic variants, specifically SNP, to estimate the casual effect of an exposure, such as a biomarker, 

on a disease outcome in a non-experimental (observational) setting (Burgess et al., 2015). The two-

sample MR approach uses only summary statistics in which the SNP-exposure associations and SNP-

outcome associations are estimated in different GWASs but the same underlying population (Burgess 

et al., 2015). To conduct a valid MR study, genetic variants should satisfy three key assumptions 

(Figure 2.1):  

1. The genetic variant should be strongly (p-value ≤ 5 × 10-8) associated with the risk 

factor of interest (the relevance assumption) (Burgess et al., 2015).  

2. The genetic variant should not be associated with confounders of the risk factor–

outcome association (the independence assumption) (Burgess et al., 2015).  

3. The genetic variant should only affect the outcome via the risk factor of interest, not 

via other casual pathways, either directly to the outcome or through confounders 

(Burgess et al., 2015, Zheng et al., 2017). This assumption is referred to as the exclusion 

restriction criterion or no pleiotropy  (Burgess et al., 2015, Zheng et al., 2017).  

Violation of any of these three assumptions could lead to unreliable causal estimates. These 

assumptions, however, cannot all be tested empirically (Burgess et al., 2015).  Only the first 

assumption can be tested to assess whether the association between genetic variants and risk factors is 

strong or weak by using the mean F-statistic (Bowden and Holmes, 2019, Bowden et al., 2016). 

Meanwhile, the second and third assumptions cannot be tested empirically because the unmeasured or 

unknown confounders with genetic variants cannot be assessed.  
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Therefore, I conducted several sensitivity analyses to detect and adjust for pleiotropy to ensure the 

reliability of the estimates (more details are provided below). 

 

 

Figure 2.1: Schematic diagram illustrating the three key assumptions for MR. 

 

A two-sample MR workflow in this thesis can be summarised into four main stages (Figure 2.2): 

1. Dataset identification and summary statistics extraction. 

2. Prioritising and validating the genetic instruments. 

3. Estimating the causal effect. 

4. Additional analyses (multivariable MR and bidirectional MR). 
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Figure 2.2: Schematic diagram outlining the standard analysis workflow for an MR study in general 

and for this thesis specifically. Effect size stands for Beta / log odds ratio. Abbreviation: SE, standard 

error; EA, effect allele; OA, other alleles; LD, linkage disequilibrium; SNP, single nucleotide 

polymorphism; IVW, inverse-variance weighted; MR, mendelian randomization. 
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2.2. Dataset identification and summary statistics extraction 

2.2.1. GWAS datasets descriptions overview 

 

This thesis uses genome-wide summary-level data from eight cohorts (Table 2.1) divided into two 

groups: the first group of datasets included GWAS data for exposures, such as the Global Lipids 

Genetics Consortium (GLGC), eQTLGen Consortium, the Genotype-Tissue Expression (GTEx) 

Consortium and the Neale lab consortium. The second group of datasets included the outcome GWAS 

datasets, MS risk GWAS and MS severity GWAS. All these datasets are publicly available and can be 

downloaded from the relevant website in Table 2.1, except the MS datasets were available upon 

request; I have requested MS risk-GWAS from the IMSGC and MS severity-GWAS directly from the 

corresponding author, Professor Jacob McCauley. In this section, I will briefly describe each dataset 

and the purpose of using it in turn. Together, these data provide genetic data on a large sample size, 

which offers opportunities for performing MR analyses. Such large sample sizes are required in MR 

to detect the small effect sizes that are common when using genetic data to study complex phenotypes 

51. For each dataset, I extracted the summary statistics of GWAS for each SNP, included β-

coefficients/log odds ratio (effect size), standard errors (SE) for the effect size, the effect alleles (‘EA’; 

the allele for which the effect size is calculated), non-effect alleles (‘OA’; the complementary allele of 

the effect allele), effect allele frequency (the relative frequency of the effect allele from 1000 G EUR 

sample) and p-values 52. All the datasets that I have used in this thesis were mapped to the human 

reference genome GRCh37. 
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Table 2.1:  Summary of GWAS used in the thesis. 

 

Trait (consortium) 
Sample 

size 
Date Website Reference 

Lipid fractions (GLGC) 188,578 2013 
http://csg.sph.umich.edu/willer/public/lipid

s2013/ 

(Willer et 

al., 2013) 

whole blood cis-eQTL 

(eQTLgen consortium) 
31,684 2021 https://www.eqtlgen.org/cis-eqtls.html 

(Võsa et 

al., 2021) 

whole blood cis-seQTL 

(GTx consortium) 
670 2020 https://www.gtexportal.org/home/datasets  

(Consorti

um, 2020) 

Anthropometric-related 

measures 

(Neale Lab UK Biobank 

GWAS) 361,194 
 

2018 

https://docs.google.com/spreadsheets/d/1kv

PoupSzsSFBNSztMzl04xMoSC3Kcx3CrjV

f4yBmESU/edit#gid=178908679 

http://ww

w.nealela

b.is/uk-

biobank 

HDL-C 

(Neale Lab UK Biobank 

GWAS) 

MS risk 115,803 2019 

https://imsgc.net/?page_id=31  

(Consorti

um*† et 

al., 2019) 

MS severity 7,069 2011 

(Sawcer 

et al., 

2011) 

Brain cis-eQTL 

(PsychENCODE) 
1,387 2018 http://resource.psychencode.org/#  

(Wang et 

al., 2018) 

Stroke and its subtypes 

(METASTROKE) 
521,612  

https://www.ebi.ac.uk/gwas/publications/29

531354  

(Malik et 

al., 2018) 

 
 

 

 

 

 

 

 

http://csg.sph.umich.edu/willer/public/lipids2013/
http://csg.sph.umich.edu/willer/public/lipids2013/
https://www.eqtlgen.org/cis-eqtls.html
https://www.gtexportal.org/home/datasets
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=178908679
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=178908679
https://docs.google.com/spreadsheets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=178908679
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://imsgc.net/?page_id=31
http://resource.psychencode.org/
https://www.ebi.ac.uk/gwas/publications/29531354
https://www.ebi.ac.uk/gwas/publications/29531354
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2.2.2. Exposure datasets 

2.2.2.1. Lipid fractions data 

 

The summary statistics data for the genetic instruments associated with blood lipid fractions (low-

density lipoprotein cholesterol (LDL-C), triglycerides (TG) and high-density lipoprotein cholesterol 

(HDL-C)) were taken from GLGC GWAS to investigate the association between lipids and MS (Willer 

et al., 2013). This GWAS study examined individuals of European ancestry, including 188,578 

participants from 60 studies. Individuals known to be on lipid-lowering medications were excluded 

from the study (Willer et al., 2013).  

This GWAS study identified 157 loci associated with blood lipid fractions that achieved genome-wide 

significance (p-value < 5 x 10−8). These loci were at a distance of one megabase (Mb) pair intervals 

and were nearly independent (pairwise r2 value < 0.10) (Willer et al., 2013). The effect estimates for 

each lipid fraction were in standard deviation (SD) units and were estimated using inverse normal 

transformed residuals of lipid levels after adjusting for age and sex (Willer et al., 2013). The MR results 

obtained with the GLGC datasets were replicated using the summary statistics data for lipid fractions 

from the Neale Lab consortium; refer to Section 2.2.2.3 for more details about the Neale Lab 

consortium.  

2.2.2.2.  Expression quantitative trait loci data 
 

To examine the causal links between the expression levels of a set of genes and MS, I obtained blood 

and brain cis-expression quantitative trait loci (cis-eQTL) from publicly available data, including 

eQTLGen, GTEx and PsychENCODE consortia. I used only cis-acting SNPs because they are 

regarded as a robust instrument and more likely to satisfy the key assumptions for MR due to their 

direct effects on the expression level of the proximal genes, in contrast to the trans-acting SNPs that 

affect the expression of distant genes and hence these SNPs are more prone to violate MR assumptions 

(Porcu et al., 2019). 
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The eQTLGen consortium performed a large-scale meta-analysis of up to 31,684 blood samples of 

individuals of European ancestry from 37 cohorts (Võsa et al., 2021). The cis-eQTL data is available 

for SNP located within less than one megabase  (Mb) around each of 16,987 genes in the eQTLGen 

consortium (Võsa et al., 2021). 

The GTEx project (version 8) measured gene expression in the whole blood of 670 individuals, where 

most of the donors were of European ancestry (Consortium, 2020). In this project, the cis-eQTL data 

is available for SNP located within two Mb window around the transcription start site (Consortium, 

2020). 

The PsychENCODE consortium performed a meta-analysis of eQTL studies of brain prefrontal cortex 

samples from1,387 individuals of mostly European ancestry (Wang et al., 2018). Only cis-eQTL data 

for SNPs located within one Mb window around each gene is available in the PsychENCODE 

consortium (Wang et al., 2018). 

2.2.2.3. Neale Lab UK Biobank GWAS 
 

To investigate the association between anthropometric measures and MS, summary statistics data for 

anthropometric-related measures were obtained from the Neale Lab consortium. This consortium was 

conducted on 4,236 phenotypes with a sample size of 361,194 persons of white-British ancestry from 

the UK Biobank. The UK Biobank is a population-based cohort that recruited over 500,000 participants 

aged 40–69 years in 2006–2010 to provide biological samples and comprehensive clinical information 

(Sudlow et al., 2015). The UK Biobank was established to identify the genetic and nongenetic 

determinants of human diseases in middle to older aged individuals (Sudlow et al., 2015).  

For anthropometric-related measures, summary statistics data were obtained for the genetic variants 

associated with 21 anthropometric-related measures. For the purpose of analysis, I divided these 

measures into two categories: the adiposity-related measures included BMI, weight, fat mass (FM) and 

fat percentage (FP) for the whole body, the upper limbs (right arm and left arm), lower limbs (right leg 
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and left leg) and trunk. The second category included height and non-fat mass (NFM) for the whole 

body, upper limbs, lower limbs and trunk.  

The anthropometric-related measures were collected from UK Biobank participants by trained staff at 

a baseline assessment centre visit. The participants’ heights were obtained using the Seca 240 cm 

height measure. BMI was estimated as weight in kilograms (kg) divided by height in metres squared 

(m2). The participants’ weight and body composition data were collected using a Tanita BC-418 MA 

body composition analyser (Tanita, Tokyo, Japan). This device measures bioelectrical impedance in 

the body and produces a print-out of segmental readings of fat percentage, fat mass and non-fat mass 

for the whole body, limbs and trunk.  

The association summary statistics between the genetic variants and the anthropometric measures were 

generated using a linear regression model that included the first 20 principal components, age, sex, 

age2, sex∗age and sex∗age2 as covariates to adjust for both sexes (Howrigan, 2019). 

Further, to generate a heatmap plot, I downloaded the genetic correlation data between anthropometric 

measures from the Neale Lab (http://www.nealelab.is/blog/2019/10/10/genetic-correlation-results-for-

heritable-phenotypes-in-the-uk-biobank). These genetic correlation datasets are made publicly 

available, and they have been estimated through cross-trait linkage disequilibrium score regression 

using summary statistics data (McInnes et al., 2018). 

2.2.2.4. GWAS dataset for stroke 
 

Summary statistics for SNPs associated with stroke and its subtypes were derived from 

METASTROKE consortium, a large-scale multi-ancestry stroke GWAS meta-analysis study, 

including 521,612 subjects in total (67,162 stroke cases and 454,450 normal controls) (Malik et al., 

2018). I obtained the summary dataset for European participants only, which includes 34,217 cases 

and 406,111 controls for ischemic stroke (IS), 5,386 cases and 192,662 controls for small vessel strokes 

(SVS), 4,373 cases and 40,6111 controls for large-artery atherosclerotic stroke (LAS) and 7,193 cases 

http://www.nealelab.is/blog/2019/10/10/genetic-correlation-results-for-heritable-phenotypes-in-the-uk-biobank
http://www.nealelab.is/blog/2019/10/10/genetic-correlation-results-for-heritable-phenotypes-in-the-uk-biobank
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and 406,111 controls for cardioembolic stroke (CES). The phenotypic variance explained in IS, SVS, 

LAS, and CES were 0.9%, 0.8%, 1.7% and 1.4%, respectively. 

2.2.3. MS outcome data 
 

The most recent cohort of the IMSGC meta-analysis jointly analysed (one discovery cohort and two 

independent replication datasets) data from 47,429 cases with MS and 68,374 healthy controls of 

European descent to provide a comprehensive genetic evaluation of MS susceptibility (Consortium*† 

et al., 2019). In this GWAS, 233 genetic variants were identified with strong evidence (p-value < 5 × 

10-8) of association with MS susceptibility and explained about 39% of the genetic predisposition to 

MS (Consortium*† et al., 2019).  Of the 233 variants, 200 autosomal susceptibility variants are located 

outside of the MHC region and account for almost 19% of the MS heritability (Consortium*† et al., 

2019). In this thesis, I used the summary statistics data from the discovery cohorts, which included 

14,802 cases with MS and 26,703 healthy individuals as GWAS for MS risk. Due to complex linkage 

disequilibrium structures and a high potential for pleiotropy in the MHC region, 12 Mbps around this 

region (from 24 to 35 megabase pairs of chromosome 6; GRCh37) were excluded from MS discovery 

GWAS. For the purposes of MR bidirectional analysis (also known as reverse causation analysis), 

where MS risk is used as an exposure, I used summary statistics data for 200 autosomal susceptibility 

variants. Refer to Section 2.3.2.4.2 for more details about MR bidirectional analysis. 

For MS severity, I obtained the summary statistics data from Professor Jacob McCauley, the 

corresponding author of the original publication (Sawcer et al., 2011). The MS severity data has been 

generated from a genome-wide scan performed in MS cases (7,069 cases) to identify genetic variants 

that might influence MS severity (Sawcer et al., 2011). In this severity-based analysis, the MS cases 

obtained from the discovery phase of the primary analysis of susceptibility of the 2011 GWAS, which 

included 9,772 cases and 17,376 controls (Sawcer et al., 2011). Of the 9,772 cases, the disease severity 

(as measured by MS severity score) was available for only 7,069 cases, thus association analyses were 

only performed on 7,069 cases (Sawcer et al., 2011). No genetic variants with strong evidence (p-value 
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< 5 × 10-8) for association with MS severity were identified in that severity-based analysis (Sawcer et 

al., 2011). Therefore, I was not able to perform a bidirectional MR analysis using this data. 

2.3.  MR analysis 

2.3.1. Prioritising and validating the assessment of genetic variants 
 

In the MR approach, it is essential to ensure that the genetic instruments are robustly associated with 

the exposure of interest. Therefore, the selection process for the genetic instruments in this thesis 

followed the following steps: 

2.3.1.1. Identify the genetic instruments 
 

SNPs associated with exposure of interest at a GWAS threshold of statistical significance (p-value ≤ 

5 × 10-8) were selected. Using such a stringent threshold in MR studies helps avoid a false positive 

association between SNPs and the exposure of interest in GWAS and avoids weak instrument bias 

(Wang et al., 2021). 

2.3.1.2. Independence assessment 
 

The selected genetic instruments were clumped to generate an independent genetic instrument (SNP) 

because variants in linkage disequilibrium (LD) with other nearby variants may influence the outcome 

via other exposures rather than the exposure of interest. If that were the case, LD might violate the 

exclusion restriction MR assumption and bias MR estimates (VanderWeele et al., 2014). Thus, it is 

necessary to ensure that the selected genetic instruments for an exposure are independent unless 

measures are taken in the MR analysis to account for any correlation structures that arise through LD 

(Hemani et al., 2018b).  

To do so, I used the clump_data function in the “TwoSampleMR” R package, which uses European 

ancestry in the 1,000 genomes project as a reference panel (Hemani et al., 2018b). The clumping 

criterion was set to retain genetic instruments with the smallest p-values above the selected clumping 

threshold within a 10,000 (Kb) window (Hemani et al., 2018b). In this thesis, I used two clumping 
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thresholds: a stringent (r2 < 0.001/0.01) and a liberal (r2 < 0.2/0.4) clumping threshold. More details 

about how and which clumping threshold was used will be provided in the results chapters. 

2.3.1.3. Strength of the genetic instrument assessment 
 

 Next, to judge the strength of the association of instrument and exposure, I used the mean F-statistic 

and the R2 statistic, where higher values for both of these statistics indicate the suitability of genetic 

instruments for MR analysis. The F-statistic was calculated for each genetic instrument included in the 

analysis, and then the mean was obtained (Bowden and Holmes, 2019, Bowden et al., 2016). The mean 

F-statistic for independent (i.e. uncorrelated) genetic instruments can be estimated as follows (Bowden 

and Holmes, 2019, Bowden et al., 2016) : 

 

 

 

where j = SNP,  = the squared effect estimates of the SNP-exposure,   = the squared standard 

error of the SNP-exposure and L = the total number of SNPs. A mean F value of greater than 10 has 

been proposed to indicate a strong instrument (i.e. strongly predict the exposure) as well as to avoid a 

weak instrument, that is, the genetic variants that explain a small proportion of the overall variation in 

a given exposure (Sheehan and Didelez, 2011, Burgess et al., 2011). The effect of such weak 

instruments is shown to bias the inverse variance weighted (IVW) estimate towards the null (Bowden 

et al., 2016, Bowden and Holmes, 2019).  

 

𝑚𝑒𝑎𝑛 𝐹 =  
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The other important measure is the R2 statistic, which is the proportion of variance (R2) in the risk 

factor explained by the genetic variants included in the analysis. If the coefficient for the association 

of an SNP with the risk factor is given in standard deviation (SD) units (risk factor is continuous) 

(Burgess et al., 2016), R2 can be estimated from the given formula:(Au Yeung et al., 2018) 

 

where 𝑅𝑗
2 = 2 ×EAF × (1 − EAF) ×Beta2× Var, EAF = effect allele frequency, Beta = beta coefficient 

for the genetic instruments, and var = the variance of the risk factor, which is equal to one because the 

beta coefficient refers to a change in 1 standard deviation (Au Yeung et al., 2018). 

2.3.1.4. Harmonising genetic instruments across the dataset 
 

 Once the genetic instruments for the exposure of interest were selected, the effect estimates (i.e. 

summary statistics) for each genetic instrument on the outcome GWAS were obtained. As a next step, 

I carried out the harmonisation by using the harmonise_data function in the “TwoSampleMR” R 

package to ensure that the effect estimate of a given genetic instrument on the exposure and the effect 

estimate of the same instrument on the outcome dataset correspond to the same effect allele (Hemani 

et al., 2018b). Palindromic SNPs and SNPs with incompatible alleles were discarded from the analysis.  

SNPs whose alleles on the forward strand are similar to those on the reverse strand (C/G on forward is 

G/C on the reverse, or T/A on forward is A/T on the reverse) are called palindromic SNPs, which can 

lead to ambiguous effect alleles in the summary datasets for the exposure and outcome.   

Incompatible alleles are a situation in which the alleles of SNP-exposure and SNP-outcome are not 

similar. For example, a given SNP with T/C alleles for the exposure and T/G alleles for the outcome 

(Hemani et al., 2018b). This occurs due to either an error in the data or the use of different builds. 

𝑅2 =  ∑ 𝑅𝑗
2

𝑘

𝑗=1
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Thus, flipping will not resolve these differences among alleles, thus SNPs with such ambiguity are 

excluded from the analysis (Hemani et al., 2018b). 

 

2.3.1.5. Directionality assessment 
 

MR analysis assumes that the genetic instruments used to proxy the exposure of interest exert their 

primary association on that exposure and that any association with the outcome is a result of a causal 

effect of the exposure of interest on the outcome (Zheng et al., 2020, Zheng et al., 2019). However, 

this is not always the case, and there is a possibility that some genetic instruments are primarily 

associated with the outcome (Zheng et al., 2020, Zheng et al., 2019). Using such variants as genetic 

instruments to proxy the exposure of interest in MR analysis could, then, be misleading. This is because 

any existing causal relationship between the exposure and the outcome is, in reality, due to the causal 

effect of the outcome on the exposure of interest (Zheng et al., 2020). For this reason, at the final step 

in the selection and validity, I used the steiger_filtering function in the “TwoSampleMR” R package 

to restrict genetic instruments to those that have the primary strongest effects on the exposure to ensure 

the causal association is in one direction (i.e. exposure to outcome) and not in the opposite direction 

(i.e. outcome to exposure) (Zheng et al., 2020, Zheng et al., 2019, Hemani et al., 2018b).  

 

The steiger_filtering function infers the causal direction between phenotypes by flagging the genetic 

instrument with ‘TRUE’ if the instrument explains more of the exposure variances than the outcome 

variances, which indicates causality in the expected direction, i.e. the exposure influences the outcome 

(Zheng et al., 2020). If a genetic instrument explains more of the outcome variances than the exposure 

variances, this instrument will be flagged as ‘FALSE’, which indicates causality in the reverse 

direction, i.e. the outcome influences the exposure (Zheng et al., 2020). In each MR analysis, I kept 

only variants that were ‘TRUE’. 
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2.3.2. Estimating the causal effect  

2.3.2.1. Overview 

In this section, the statistical analysis was carried out using different MR methods to estimate the causal 

effect of the risk factor of interest on MS. I used the IVW method as the primary analysis to estimate 

the causal effects. I then carried out several sensitivity analyses to assess the reliability of the estimates 

obtained from IVW. Briefly, sensitivity analyses included MR-Egger, weighted median and MR-

radial. In addition, as a part of sensitivity analyses, I also used Cochran’s Q, the I2 statistic and the 

MR-Egger intercept to assess the heterogeneity and pleiotropy, respectively, across the genetic 

variants. Further, multivariable MR and bidirectional MR analyses were used to obtain the direct effect 

of an exposure on MS and to examine MS's influences on a range of risk factors, respectively. Table 

2.2 shows the methods used to estimate and evaluate the causal effect estimate. Figure 2.3 shows the 

interpretation scheme followed in this thesis to interpretation the results. 

Table 2.2: The methods used to estimate and evaluate the causal effect estimate 

 

 Method Purpose 

MR estimate test IVW 
To estimate the causal effect of an exposure 

on an outcome 

Sensitivity tests 
MR-Egger To assess the reliability of the IVW estimate 

Weighted median To assess the reliability of the IVW estimate 

Pleiotropic assessment 

MR-Egger intercept To detect pleiotropy 

Cochran’s Q and I2 tests To detect heterogeneity 

MR-Radial To detect invalid variants 

Further Analysis 

Multivariable MR 

analysis 

To estimate the direct causal effect of an 

exposure of interest on the outcome that 

does not act through the other exposures 

included in the model. 

Bidirectional MR 

To explore whether the liability to the 

outcome would exert a change in the 

exposure. 
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Figure 2.3: A flowchart illustrating how the MR results have been interpreted in the present thesis. 

Abbreviations: MR, Mendelian randomization; SNP, single nucleotide polymorphisms; IVW, inverse‐

variance weighted. 

Note: Caution should be taken when removing the SNPs from the analysis, as this strategy would 

reduce the SE and may lead to over-fitting.  

Obtain the IVW causal estimate 

Does the direction of MR effect estimate of IVW consistent with the direction of 

MR effect estimate of sensitivity analyses (e.g. MR-Egger and weighted median)?  

NO 

Indicates the presence of invalid SNPs 

in the MR analysis 

Check pleiotropy assessment tests  

If  

Cochran’s Q p-value and MR-Egger intercept p-

value statistically significant (p-value < 0.05) 

 

 

Use MR-radial and/or scatter plot to detect the 

invalid /outliers’ SNPs 

Remove the invalid SNPs and repeat the analysis. 

Does the effect estimate with and without 

outliers’ instruments changed?  

How are the results of the pleiotropy assessment 

tests after removing invalid instruments? 

 

Yes 

Indicates all the SNPs are valid and / or 

balanced pleiotropy in the MR analysis 

Check pleiotropy assessment tests  

If  

Cochran’s Q p-value and MR-Egger intercept p-

value statistically non-significant (> 0.05),  

suggesting MR result is robust. 

 

If  

Cochran’s Q p-value statistically significant and 

MR-Egger intercept p-value statistically non-

significant, suggesting MR result is still robust.  

 

 

In this case, heterogeneity can be explained by other 

factors which assumed not to cause bias in the MR 

estimate. For example, heterogeneity may arise due 

to the use of SNPs that influence the exposure via 

different biological mechanisms. 
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2.3.2.2. Inverse-variance weighted  
 

IVW is a straightforward way to obtain unbiased causal effect estimates from multiple SNPs. In the 

IVW analysis, the causal estimate of the exposure on the outcome for each SNP is first obtained 

separately using the Wald ratio (or ratio estimate) approach. The Wald ratio estimate is obtained by 

dividing the SNP-outcome association estimate by the SNP-exposure association estimate  (Burgess 

et al., 2017b).  

 

The Wald ratio estimates from each SNP were then pooled in a multiplicative random-effects model 

and weighted using the inverse standard error (SE) of the SNP-outcome association estimates as 

weightings to obtain the average casual effect, indicating the increase in outcome per unit change in 

the exposure (Burgess et al., 2013, Burgess and Bowden, 2015). The purpose of using the inverse 

variance of the SNP-outcome association as weight is to allow more robust SNPs to make a larger 

contribution to the causal estimate (Hemani et al., 2018b).  

 

The IVW can be performed using a fixed or random-effects model. I preferred the multiplicative 

random-effects model to the fixed-effect model because it accounts for heterogeneity between Wald 

estimates and allows for balanced horizontal pleiotropy (Rees et al., 2019). In other words, the IVW 

multiplicative random-effects model allows each SNP to have different mean effects due to horizontal 

pleiotropy if the average effect of the pleiotropy is zero (so-called balanced horizontal pleiotropy) 

(Hemani et al., 2018b). The fixed-effect model does not account for heterogeneity because it assumes 

that all the SNPs provide exact causal estimates, meaning none exhibit horizontal pleiotropy (Burgess 

et al., 2019). In addition, the IVW multiplicative random-effects model was also preferred to the 

additive random-effect model because the latter upweights outlying estimates, which are likelier to 

represent pleiotropic variants (Burgess et al., 2019).  
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IVW has the greatest statistical power to detect causal effects, but if an SNP exhibits horizontal 

pleiotropy, the IVW effect estimate is liable to be biased. Therefore, I undertook several sensitivity 

analyses to assess the validity of the IVW results. I mainly focused on sensitivity analyses that relax 

the assumption of no horizontal pleiotropy and have different assumptions to the IVW and to each 

other (Hemani et al., 2018b). In contrast to the IVW method, these methods have a lower power to 

detect a causal effect. Thus, these sensitivity analyses were mainly to assess whether the magnitude 

and direction of effect estimates were consistent across methods and cannot replace the IVW (as the 

main estimator) unless there is evidence of horizontal pleiotropy.  

2.3.2.3. Sensitivity analyses 
 

2.3.2.3.1. MR–Egger method 

MR-Egger is an extension of IVW that also combines Wald ratio estimates from each SNP in the 

random-effects model and uses the inverse SE of the SNP-outcome association estimates as weightings 

to obtain the casual estimate of the exposure on the outcome. Unlike IVW, MR–Egger regression 

yields an unbiased estimate, even if all the genetic variants exhibit horizontal pleiotropy (Burgess and 

Thompson, 2017). This would be the case if the horizontal pleiotropy was independent of the SNP’s 

effects on the exposure, referred to as the InSIDE (instrument strength independent of direct effect) 

assumptions (Burgess and Thompson, 2017).  

The MR-Egger estimates consist of two parts: the causal estimate of the exposure on the outcome 

adjusted for horizontal pleiotropy and the intercept term, which is interpreted as an estimate of the 

average pleiotropic effect across the genetic variants (i.e. the average direct effect of an SNP with the 

outcome) (Burgess and Thompson, 2017, Bowden et al., 2015). When the horizontal pleiotropy effect 

is absent, the intercept term will be equal to zero, and the estimates from MR-Egger and IVW will be 

consistent (Bowden et al., 2015). However, in the existence of horizontal pleiotropy effects, the 

intercept term will differ from zero, and the effect estimates from MR-Egger and IVW will be different 

(Bowden et al., 2015). More details about the MR-Egger intercept can be found in Section 2.3.2.3.3.2. 
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The MR-Egger is mainly used as a sensitivity tool and does not replace IVW unless there is evidence 

of horizontal pleiotropy. This is because, in contrast to IVW, MR-Egger has the lowest power to detect 

the causal effect, as the SE from MR-Egger is larger than the SE from IVW to account for pleiotropy. 

Moreover, precision in the MR-Egger method requires SNPs to have a wide range of associations with 

the exposure  (Burgess and Thompson, 2017, Bowden et al., 2016). Thus, when all the genetic variants 

have the same magnitude of association with the exposure, the MR-Egger p-value would not be 

significant (Bowden et al., 2016). Furthermore, whilst IVW is less severe to outliers, the MR-Egger is 

very sensitive to outliers.  This means that if one genetic variant has a greater association with the 

exposure than others, this variant will have a large impact on the effect estimate in the MR-Egger 

regression and can reverse the sign (i.e. direction) of the MR-Egger effect estimate (Burgess and 

Thompson, 2017). 

2.3.2.3.2. Weighted median 

 

The weighted median is the median of the weighted Wald ratio estimates using the inverse SE of the 

SNP-outcome association estimates as weights (Bowden et al., 2016). Unlike MR-Egger, the weighted 

median does not require the InSIDE assumption; it assumes that up to 50% of the weight comes from 

valid genetic variants and allows the other 50% of the weight of the estimate to come from invalid 

genetic instruments (Bowden et al., 2016, Burgess and Thompson, 2017). Therefore, the weighted 

median preserves greater precision in the estimates than MR-Egger (i.e. the weighted median has an 

SE smaller than the MR-Egger SE) (Bowden et al., 2016). However, the estimate will be biased when 

a single genetic variant is pleiotropic and contributes more than 50% of the weight to the overall effect 

estimate or if a group of variants are pleiotropic and, together, they contribute more than 50% of the 

weight (Au Yeung et al., 2018). 
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2.3.2.3.3. Pleiotropic assessment 

 

MR studies are vulnerable to pleiotropic effects because, in the human genome, a single genetic variant 

commonly influences multiple traits (Hemani et al., 2018a). Thus, assessing whether genetic variants 

included in the analysis have pleiotropic effects on the outcome is a crucial step in estimating the causal 

effect reliably. To do so, I used three statistical tests that are widely employed in MR analyses: 

Cochran’s Q statistic, the I2 statistic and the MR-Egger intercept. 

 

2.3.2.3.3.1. Cochran’s Q and I2 tests 

One of the major sources of heterogeneity in MR is pleiotropy; thus, Cochran’s Q statistic represents 

a diagnostic tool that is used to test whether differences between Wald ratio estimates from each SNP 

are the result of chance variations or represent violations of no horizontal pleiotropy assumptions. 

Cochran’s Q statistic is a chi-squared distribution with degrees of freedom equal to the number of 

SNPs minus one under the null hypothesis that all the genetic variants have the same effect (i.e. 

homogeneity) (Greco et al., 2015). If the Cochran’s Q statistic value is higher than the degree of 

freedom and the p-value of Cochran’s Q < 0.05, the null hypothesis of homogeneity would be rejected, 

indicating potential heterogeneity in the effect estimate (Greco et al., 2015). Cochran’s Q statistic has 

the greatest statistical power when the number of SNPs included in the analysis is large and the lowest 

when the number of SNPs is small (Greco et al., 2015). To overcome this problem, I used the I2 statistic 

proposed by Higgins and colleagues to estimate the magnitude of the heterogeneity (Greco et al., 

2015).  

The I2 statistic or index describes the percentage of the total variation in the Wald ratio estimates 

explained by heterogeneity rather than sampling errors, independent of the number of SNPs (Greco et 

al., 2015). To facilitate the interpretation of I2 statistics, Higgins et al. suggest a method for interpreting 

the degree of heterogeneity, according to which I2 values < 25% suggest slight heterogeneity, values > 
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50% indicate significant heterogeneity and values between 25% and 50% suggest moderate 

heterogeneity (Higgins et al., 2003). 

 

2.3.2.3.3.2. MR-Egger intercept 

 I also used the MR-Egger intercept term, which is a straightforward approach to detecting pleiotropy 

in MR analysis. Under the InSIDE assumptions, if the intercept term is different from zero and the p-

value of the intercept < 0.05, this indicates a horizontal pleiotropy (Bowden et al., 2015). Meanwhile, 

if the intercept is zero and the p-value of the intercept > 0.05, then the pleiotropy effect across the 

genetic variants is balanced (Bowden et al., 2015). Once the pleiotropy is balanced, heterogeneity 

among the causal Wald ratio estimates of a set of SNPs could arise due to other factors which assumed 

not to cause bias in the MR estimate. For example, in the case of binary data, in which the SNP-

outcome associations were measured on the odds ratio scale, the non-collapsibility of the odds ratio 

will introduce heterogeneity into the estimate (Hemani et al., 2018a). Heterogeneity may also arise due 

to the use of genetic variants that influence the exposure of interest via different biological mechanisms 

and hence are likely to influence the outcome for which the exposure is a cause at the different 

magnitude, leading to differences between the Wald estimates, and therefore heterogeneity (Burgess 

et al., 2019, Foley et al., 2021). Meanwhile, variants that influence the exposure in a similar biological 

mechanism are likely to have similar Wald estimates, thus no heterogeneity  (Foley et al., 2021).  

 

2.3.2.3.3.3. IVW MR-Radial 

 When there is evidence of horizontal pleiotropy in the estimate, I performed IVW MR-radial to 

identify the pleiotropic variants that have the largest contribution to heterogeneity (Bowden et al., 

2018b). To estimate the contribution of each SNP to the heterogeneity accurately, I used the so-called 

‘modified second-order weighting’ (Bowden et al., 2018b). This weight has been recommended, as it 

does not inflate the type I error rate of Cochran’s Q statistic and maintains the statistical power for 
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detecting heterogeneity (Bowden et al., 2018b). If an individual SNP’s Q contribution is extreme 

(Cochran’s Q p-value < 0.05), MR-radial flags this SNP as an outlier (Bowden et al., 2018b). These 

outlier SNPs will be removed and then the exposure-outcome causal association will be re-estimated. 

Although the outlier removal strategy can certainly reduce heterogeneity and bias in MR estimates, 

caution must be taken because this strategy would reduce the SE and may lead to over-fitting (Hemani 

et al., 2018a).  

 

2.3.2.4. Further Analysis 
 

2.3.2.4.1. Multivariable MR analysis 

 

Indeed, in some cases, finding variants solely associated with the exposure of interest may be difficult, 

and an MR analysis cannot be performed without considering pleiotropic variants (Burgess and 

Thompson, 2015). One method that can be used in this case is multivariable MR analysis (MVMR) 

(Burgess and Thompson, 2015).  MVMR is an extension of univariable MR proposed to analyse 

genetic variants associated with multiple exposures in one model to account for pleiotropy. Univariable 

MR and MVMR estimate different causal effects of the exposure of interest on the outcome. In general, 

MVMR estimates the independent direct effect—i.e. the direct effect comprising all the other pathways 

from the exposure of interest to the outcome that does not act through the other exposures included in 

the model (Burgess and Thompson, 2015, Sanderson, 2021). Meanwhile, univariable MR estimates 

the total effect—i.e. the total effect is the effect of the exposure of interest on the outcome that operates 

through the other risk factors (mediators) included in the model (Burgess and Thompson, 2015, 

Sanderson, 2021). 

Since the lipid traits and the anthropometric-related traits share common genetic variants, resulting in 

overlap of the genetic instruments, I used the MVMR through IVW (Burgess and Thompson, 2015) to 

account for the potential pleiotropic effect and to determine whether several of the exposures affect 

MS through the same pathway or whether these traits have independent effects.  
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For the purposes of clarification, I used BMI, FP, FM and MS risk as an example to show how the 

genetic instruments have been selected for MVMR analysis through the following steps (Figure 2.3):  

1. If there was no evidence of heterogeneity or pleiotropy in the estimates from univariable 

analyses, the same set of genetic instruments (266 SNPs) of the risk factor of interest (BMI) 

was used to extract instruments for other exposure (FP and FM) that I wish to include in the 

MVMR model.  

2. If there was evidence of residual heterogeneity or unbalanced pleiotropy in the estimates from 

univariable analyses, the MR-radial method was first used to identify and remove pleiotropic 

variants (13 SNPs) to ensure the validity of MR results. The remaining genetic instruments 

(253 SNPs) were then used to construct the final list of genetic variants that I wish to extract 

from the other exposures included in the model.  

3. As a requirement in MVMR analysis, each genetic instrument should be strongly (p-value < 

5× 10-8) associated with the risk factor of interest (BMI) but does not require each genetic 

instrument to be strongly associated with the other exposure included in the model (FP and 

FM)  (Burgess and Thompson, 2015). 

4. The mv_multiple() function, which is available in the Two-SampleMR R package, was then 

used to obtain the direct effect of the risk factor of interest on the outcome (Hemani et al., 

2018b). In general, this function regressed the genetic instruments for each exposure against 

the outcome (MS risk) together, weighting for the inverse variance of the outcome (Hemani 

et al., 2018b). 

 

In the interpretation of the MVMR-IVW results, the estimate with a p-value ≤ 0.05 indicates that the 

exposure of interest affects MS through a pathway independent of other exposures considered in the 

model (Sanderson, 2021).  
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The attenuation of the direct effect (MVMR-IVW p-value > 0.05) compared to the corresponding 

univariable MR results (IVW p-value < 0.05) indicates that the effect of the exposure of interest on 

MS is mediated through the other exposure considered in the model (Sanderson, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: A detailed flow chart showing the steps involved in genetic instrument selection and the 

interpretation of the results for MVMR analysis using BMI, FM, FP and MS risk as an example. 

Abbreviations: BMI, body mass index; FM, fat mass; FP, fat percentage; MS, multiple sclerosis; 

MVMR, multivariable Mendelian randomization. 

 

266 SNPs were used in the univariable MR analysis to obtain the total effect 

of BMI on MS risk. 

13 SNPs with a large Cochran’s Q statistic (Cochran’s Q p-value < 0.05) were 

removed from BMI SNPs list. 

The remaining 253 SNPs in the BMI SNPs list was used to extract the other 

SNPs from the whole-body FM and FP. 

The total number of SNPs for each exposure is   

 

BMI 

n=253 SNPs 

Whole-bod FM 

n=253 SNPs 

 

Whole-bod FP 

n=253 SNPs 

 

The mv_multiple () function was applied to obtain the direct effect of BMI on the MS 

risk while account for FM and FP. 

Results interpretation: 

Evidence (MVMR p-value ≤ 0.05) for the direct effect indicates that BMI 

affects MS risk through a pathway independent of FM and FP. 

Evidence of attenuation of the direct effect (MVMR p-value > 0.05) indicates 

that the effect of BMI on MS risk is mediated through FM and FP. 
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2.3.2.4.2. Bidirectional MR  

The causal association between two traits may be bidirectional, meaning that the exposure influences 

the outcome or that the outcome influences the exposure. For example, MR studies reported that 

smoking reduces BMI and higher BMI increases smoking (Carreras-Torres et al., 2018, Winsløw et 

al., 2015). Therefore, I carried out MR analyses in the opposite direction (i.e. switching around the 

exposure and outcome) to study whether the liability to MS produces a predisposition to any of the 

risk factors (lipids, anthropometric-related measures, stroke) that have been used in this thesis to assess 

their causal role on MS risk (so-called bidirectional MR). With MS risk as exposure and the risk factors 

of interest as the outcome, I followed the same steps for genetic variant selection and MR analysis 

pointed out above to obtain the causal estimates for this bidirectional MR analysis. 

 

2.3.2.5. Causal effect estimation using correlated variants 
 

The eQTL data are among the datasets used in this thesis. Since SNPs in eQTL data are highly 

correlated, using a stringent clumping threshold (r2 < 0.001/0.01) would result, in most cases, in only 

one SNP, where it is not possible to use IVW or MR-Egger methods that require at least three SNPs. 

Therefore, a liberal (e.g. r2 < 0.4) clumping threshold was used with gene expression data to allow for 

more SNPs to be included in the model, which would likely lead to a more reliable analysis (Burgess 

et al., 2016). Further, the inclusion of multiple SNPs in partial LD can explain a greater proportion of 

variance in the exposure, thus leading to a more powerful MR (Burgess et al., 2016). I then carried out 

MR analysis using IVW and MR-Egger, which were extended to account for the correlations between 

SNPs via incorporating the LD matrix (Burgess et al., 2016). Estimates of SNP correlations have been 

obtained from the European 1,000 Genomes Project via the dat_to_MRInput function. 
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2.3.2.6. Multiple test correction  
 

The adjustment for multiple testing has become standard in areas such as genomics, neuroimaging, 

proteomics, psychology, and economics (Korthauer et al., 2019) . Thus, the false discovery rate 

(FDR) (Benjamini and Hochberg, 1995) was used in this thesis to adjust the p values computed for 

the IVW method. This multiple test correction has been conducted separately for the analyses of each 

chapter, in which exposures with significant adjusted p values ≤ 0.05 were defined as exposures with 

potential evidence of a causal effect. 

The concept of the FDR was proposed by Benjamini and Hochberg to control for the proportion of 

false-positive conclusions when multiple hypotheses are simultaneously tested in order to restrict the 

total number of false discoveries (Groenwold et al., 2021, Korthauer et al., 2019, Benjamini and 

Hochberg, 1995). The FDR has emerged as a popular and powerful approach, as it is the least 

conservative method that provides a good balance between discovering statistically significant effects 

and the limitations of false positives (Korthauer et al., 2019, Menyhart et al., 2021). Other techniques, 

such as Bonferroni correction, are highly conservative, and, while they still control for the probability 

of any false positives, the power to detect true positives is greatly reduced (Korthauer et al., 2019). In 

practice, the Benjamini-Hochberg critical value is calculated by first ranking the p values in ascending 

order and then multiplying each p value by the total number of tests and dividing by the p value’s 

individual rank. 

2.3.2.7. Reporting the findings  
 

In the absence of evidence of horizontal pleiotropy (MR-Egger intercept p value > 0.05), I used the 

IVW estimates as the most reliable indicator to report the MR results of the underlying causal 

relationship. This is because IVW assumes that genetic variants are valid instruments (balanced 

horizontal pleiotropy). If there was evidence of horizontal pleiotropy, I used MR-Egger to report the 

MR results as designed to account for horizontal pleiotropic effects (Burgess and Thompson, 2017).  
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2.3.2.8. Specialist software for MR statistical analyses 
 

I used R software with the aid of R packages to conduct all the above MR methods (Team, 2017). R is 

a free software environment that allows users to conduct statistical and graphics projects. R packages 

that have been used to conduct MR analysis include the ‘TwoSampleMR’ (Hemani et al., 2018b) , 

‘RadialM’ (Bowden et al., 2018b), ‘Biomart’ (Durinck et al., 2005) and ‘corrplot’ (Wei et al., 2017). 
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Chapter 3    Exploring the Role of Lipids and Statins on 

Multiple Sclerosis Risk and Severity 

 

Statement of contribution 

 

 I developed the idea, wrote and executed the analysis scripts used in this chapter myself. Nicholas 

Wood suggested the idea of this chapter. Chris Finan, Catherine Storm, Amand Schmidt, Demis Kia, 

Sandesh Chopade, Rachel Coneys, Nicholas Wood abd  Aroon Hingorani, contributed to the 

interpretation of my results. 
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3.1. Introduction 
 

A significant amount of attention has been drawn to statins not only because they lower blood 

cholesterol levels and protect against cardiovascular morbidity but also due to their pleiotropic effects 

beyond their lipid-lowering properties. Indeed, recent evidence derived from clinical and experimental 

animal models of autoimmune diseases has shown that statins exert immunomodulatory and anti-

inflammatory effects that may be beneficial in autoimmune diseases such as MS (Greenwood et al., 

2006, Weber et al., 2007). Many of these pleiotropic effects are predominantly ascribed to their 

capacity to inhibit the isoprenylation (also known as prenylation or lipidation) of Rho small guanosine 

triphosphatases (GTPases; also known as small G-proteins) (Takemoto and Liao, 2001, Cai et al., 

2015, Wang et al., 2008, Neuhaus et al., 2004). 

Recent findings from the phase 2 MS-STAT trial (a randomised, placebo-controlled trial) showed that 

a high dose of simvastatin (80 mg per day) led to a significant drop in brain atrophy (by 43%) and 

disability progression among 140 patients with SPMS over two years (Chataway et al., 2014). 

Observational and molecular studies suggest a role for lipid metabolism in MS pathogenesis as a 

biomarker for predicting MS disease activity and progression (Pineda-Torra et al., 2021, Chandra and 

Xu, 2016). It has been shown that there is an association between dyslipidaemia, namely elevated 

levels of circulating LDL-C and TG and reduced levels of HDL-C, and greater MS disease activity 

(i.e. worsening disability and new magnetic resonance imaging lesions in MS) and this may also 

contribute to the pathogenesis of MS (Weinstock-Guttman et al., 2011, Tettey et al., 2014),(Zhornitsky 

et al., 2016). These findings raise important questions about the nature of the relationship between 

lipids and MS and whether statins can be used as part of a prevention strategy to reduce the risk and/or 

severity of MS. 
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A previous MR analysis used SNPs within the 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGCR) gene region to mimic the effects of statins on the risk of MS developing via HMGCR 

inhibition. This study revealed no causal link between these SNPs and MS risk, suggesting that statins 

have no effect on MS risk (Yang and Schooling, 2021). HMGCR is the target for statins; therefore, it 

is not surprising that MR studies focus on HMGCR to mimic the effects of statins. Nevertheless, by 

only targeting HMGCR, these studies examined the cholesterol-lowering effect only and may have 

missed observing the statins’ pleiotropic effects. Furthermore, the effect of statins on MS severity has 

not yet been established. To address this knowledge gap, I adopted an MR approach to genetically 

mimic both cholesterol-dependent and cholesterol-independent effects of statins to explore whether 

statins’ effects on MS , if any, are mediated by lowering cholesterol or are independent of cholesterol. 

In particular, a set of genes involved in cholesterol biosynthesis and Rho GTPases were included in 

the MR analyses for this purpose. To my knowledge, this is the first time that the MR approach has 

been applied to genetically mimic the effects of stains through multiple pathways. In addition, the 

causal role of lipids in both MS risk and severity is addressed in this chapter. 

3.1.1. Limitation of genetically mimicking the effects of statins via HMGCR 
 

MR has been widely employed to explore the repurposing opportunities and the side effects of statins 

on disease outcomes. Typically, SNPs in HMGCR gene are used that affect LDL-C levels to mimic 

the statins’ biological effects. Interestingly, MR findings generated using such SNPs have been broadly 

consistent in terms of the therapeutic performance of statins in clinical trials. For example, MR results 

showed that HMGCR SNPs had a causal effect on reducing the risk of CHD (Ference et al., 2015). 

This finding was in line with those of several RCTs that revealed the clinical benefits of statin therapy 

in reducing LDL-C levels and therefore reducing mortality and morbidity in adults with CHD (Wilt et 

al., 2004). However, the observed effect of statins in clinical trials on some conditions, such as 

neurocognitive and autoimmune-related conditions, were not replicated in MR studies when HMGCR 

variants were used (Liu et al., 2021a).  
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For example, MR studies found no evidence of a causal role for  HMGCR variants and  genetic 

predisposition to increased blood lipid levels (LDL-C, HDL-C, TG and total cholesterol) on the  risk 

of Alzheimer's disease (AD) (Proitsi et al., 2014, Østergaard et al., 2015, Benn et al., 2017, Williams 

et al., 2020). In contrast, numerous epidemiological and small clinical studies have suggested that 

statins are associated with a reduced risk of AD (Sparks et al., 2008, Wolozin et al., 2000, Poly et al., 

2020). This raises the question of what is causing the discordance in the evidence generated in MR 

studies, RCTs and epidemiological studies regarding the role of statins on AD. 

Indeed, as mentioned above, MR studies have focused on genetically mimicking the effects of statins 

via the use of HMGCR variants, because HMGCR is the main target for statins, and have ignored the 

other genes downstream of the HMGCR pathway that contribute to statins’ pleiotropic effects. 

Therefore, the lack of evidence in MR analyses possibly implies that the statins effect has most likely 

been missed by only focusing on genetically mimicked statins via HMGCR variants. 

Evidence generated in MR studies has shown that LDL-C is not causally related to AD (Proitsi et al., 

2014, Østergaard et al., 2015). This finding plausibly explains the absent of causal link between 

HMGCR variants and AD risk because it implies that if LDL-C is not a risk factor, then using a drug 

intended to reduce the cholesterol levels would not be an effective therapeutic strategy to reduce AD 

risk. This finding also suggests that statins may act on AD via other pathways independent of the 

lowering of cholesterol. This hypothesis has been confirmed in experimental studies using human 

immune cells and mouse microglial cells to understand the beneficial effect of statins in reducing the 

risk of AD (Cordle and Landreth, 2005, Cordle et al., 2005). The findings revealed that statins exert 

anti-inflammatory effects by preventing isoprenylation of members of the Rho GTPase family (RhoA 

and Rac1), resulting in inhibition of the beta amyloid-mediated inflammatory response (Cordle and 

Landreth, 2005, Cordle et al., 2005).  

 



77 
 

HMGCR variants seem ideal targets for MR analysis when LDL-C is an overt risk factor. Such in case 

of CHD in which a high circulating LDL-C level is an established risk factor for CHD; therefore, the 

ability of statins to reduce LDL-C is an effective mechanism for CHD prevention (Ference et al., 2015). 

Thus, MR analyses provided evidence of the causal association between HMGCR SNPs and reduction 

in CHD risk (Ference et al., 2015).  

This evidence motivated me to study the beneficial effects of statins on MS and identify the mechanism 

by which statins mediate their effect on MS. In the following section, I provide an overview of the 

cholesterol- dependent and cholesterol-independent pathways and the pleiotropic effects that statins 

provide via Rho GTPases. 

3.1.2. Statin activity via the cholesterol-dependent pathway 
 

Statins competitively inhibit HMGCR, the rate-limiting enzyme of the cholesterol biosynthesis 

pathway, which is also known as the mevalonate (MVA) pathway (Liao, 2002, Cai et al., 2015). 

Blockade of HMGCR via statins is accompanied by an increase in hepatic LDL receptor that promotes 

uptake and clearance of cholesterol from the bloodstream and ultimately reduces plasma LDL-C and 

TG levels (Liao, 2002, Cai et al., 2015). Also, using statins to block HMGCR inhibits the synthesis of 

isoprenoids, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), which 

is an essential lipid attachment for anchoring Rho GTPases to the membrane (Figure 3.1) (Liao, 2002). 

Therefore, members of the Rho GTPase family that undergo isoprenylation are important targets for 

mediating the biological effects of statins (Liao, 2002). 
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Figure 3.1: The cholesterol biosynthesis pathway. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGCR) inhibition by statins reduces the synthesis of cholesterol and isoprenoids. Adapted from 

(Cai et al., 2015). 

 

3.1.3. Statin activity via the cholesterol-independent pathway (pleiotropic effects 

via Rho GTPases)  
 

The Rho family of GTPases is a subgroup of the Ras superfamily of small GTP-binding proteins 

(Azzarelli et al., 2015). Although the most extensively studied members of the Rho family are Cdc42, 

Rac1 and RhoA, this family includes 20 members that are divided into two classes: classical and 

atypical. The classical Rho GTPases are further subdivided into four subgroups (Rho, Rac, Cdc42 and 

Rif), and the atypical Rho GTPases are subdivided into four subgroups (Rnd, RhoUV, RhoH and 

RhoBTB) (Azzarelli et al., 2015, Bayo et al., 2021) (Table 3.1). 

Cholesterol-independent  

Pleiotropic effects 

Cholesterol-lowering  

 



79 
 

The classical Rho GTPases act as molecular switches, cycling between the active guanosine 

triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound states to regulate 

physiological cell processes, such as cell division, migration, transcription, cell-cycle progression and 

apoptosis (Bayo et al., 2021). The activity of classical Rho proteins can be tightly regulated by lipid 

modification (e.g. with isoprenoids), guanine nucleotide exchange factors (GEFs), GTPase-activating 

proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs) (Bayo et al., 2021, Hodge and 

Ridley, 2016) (Figure 3.2). 

For classical Rho proteins to be functional and to localise to internal membranes within eukaryotic 

cells, these proteins must be isoprenylated. During isoprenylation, a post-translational modification 

process, isoprenoids (GGPP and FPP) produced from the cholesterol biosynthesis pathway are attached 

to the C-terminal cysteine residues of Rho proteins (Greenwood et al., 2006, Ridley, 2006). After 

isoprenylation, the Rho proteins localise to a target cell membrane and are activated by GEFs that 

facilitate the exchange of GDP for GTP. This enables them to pass on signals to corresponding 

downstream molecules and mediate numerous cellular functions in different cell types (Hodge and 

Ridley, 2016, Bayo et al., 2021). Finally, the Rho proteins interact with GAPs that hydrolyse GTP to 

GDP, thereby inactivating the Rho proteins (Hodge and Ridley, 2016, Bayo et al., 2021). When the 

Rho proteins are inactivated (GDP-bound form), GDIs extract them from the membrane and sequester 

the proteins in the GDP-bound form into the cytosol, preventing them from anchoring to membranes 

or being activated by GEFs (Hodge and Ridley, 2016, Bayo et al., 2021). It should be noted that GDIs 

can only bind to isoprenylated Rho proteins (Hodge and Ridley, 2016) (Figure 3.2).  
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Figure 3.2: The regulation of Rho proteins. Rho guanosine triphosphatases (GTPases) cycle between 

the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound 

forms, and this is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating 

proteins (GAPs) (Pradhan et al., 2021). Rho GTPases bind to effector molecules to generate a 

downstream response in their active form. Post-translational modifications, such as the attachment of 

isoprenoid groups (e.g. geranylgeranyl pyrophosphate; GGPP), allow the proteins to localise to the 

plasma membrane (Pradhan et al., 2021). Reproduced from (Pradhan et al., 2021). 

 

Atypical Rho subfamily proteins, including Rnd, RhoUV, RhoH and RhoBTB (Table 3.1), do not 

follow the classical scheme of Rho activation (GDP/GTP cycling) and therefore do not require GEFs 

and GAPs (Azzarelli et al., 2015, Hodge and Ridley, 2016). They are constitutively GTP-bound, they 

do not hydrolyse GTP to GDP and their activities can be regulated by transcriptional regulation or 

phosphorylation rather than via the classical cycling process (Azzarelli et al., 2015, Hodge and Ridley, 

2016). This is either because the GTPase domain of the atypical proteins harbours high intrinsic 

nucleotide exchange activity or because they have a different set of amino acids that prevents GTPase 

activity (Azzarelli et al., 2015, Hodge and Ridley, 2016). 
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Table 3.1: Members of the Rho GTPase family 

 

Rho type 
Rho 

subfamilies 

Rho 

members 
Identity 

 

Localization  

Post-translational 

modifications 

Classical 

Rho 

GTPases 

Rho 

RhoA   

PM and cytosol  GGPP and PH  

RhoB 84% PM and endosomes  GGPP, FPP and P  

RhoC 92% PM and cytosol  GGPP  

Rac 

Rac1   PM  GG PP 

Rac2 92% PM and cytosol  GGPP  

Rac3 93% 
PM and 

endomembranes  GGPP  

RhoG 72% PM and endosomes  GGPP 

Cdc42  

Cdc42   PM and Golgi  GGPP 

TC10 (RhoQ) 62% PM and perinuclear  FPP and P 

TCL (RhoJ) 55% PM and endosomes  FPP and P 

Rif 
Rif (RhoF)   PM  GGPP 

RhoD 50% PM and endosomes  GGPP 

Atypical 

Rho 

GTPases 

Rnd 

Rnd1   PM  FPP 

Rnd2 51% endosomes and cytosol  FPP 

Rnd3 (RhoE) 58% PM, Golgi and cytosol  FPP and PH  

RhoUV  

RhoU (Wrch, 

Chp2) 
  

PM and 

endomembranes  P  

RhoV (Chp, 

Wrch2) 
54% 

PM and 

endomembranes  P  

RhoH RhoH (TTF)   None known GGPP 

RhoBTB 
RhoBTB1   Vesiculard  None known 

RhoBTB2 66% Vesiculard  None known 

 

The first five columns were reproduced from (Azzarelli et al., 2015), and the last two columns were 

reproduced from (Ridley, 2006). The column identity refers to the percentage identity in the amino 

acid sequence of a specific Rho GTPase compared with the first member of the corresponding 

subfamily (Azzarelli et al., 2015). Abbreviations: GGPP, geranylgeranyl pyrophosphate; FPP, farnesyl 

pyrophosphate; P, palmitoylation; PH, phosphorylation; PM, plasma membrane. 
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3.1.4. Effects of statins mediated by Rho GTPases 
 

Statins exert effects via Rho GTPases by two distinct mechanisms: preventing Rho proteins from 

localising to the membrane localisation and loading Rho proteins with GTP. By inhibiting HMGCR, 

statins prevent the synthesis of isoprenoid intermediates and the subsequent isoprenylation of Rho 

GTPases (Rikitake and Liao, 2005). This leads to the inhibition of Rho protein translocation to the 

plasma membrane and thus prevents the activation of their downstream effectors (Rikitake and Liao, 

2005). For example, studies with a mouse model of ischaemic stroke and human endothelial cells 

showed that statins increase endothelial nitric oxide synthase (eNOS) expression, an important 

mediator of vascular homeostasis and blood flow, by inhibiting RhoA membrane translocation and 

activity and that the effect is independent of serum cholesterol levels (Endres et al., 1998, Laufs et al., 

2000, Laufs and Liao, 1998). 

The second mechanism by which statins exert effects via Rho GTPases is GTP loading, which is the 

conversion of Rho proteins to their active form (GTP-bound). Inhibition of isoprenoid biosynthesis by 

statins also results in disruption of GDI–Rho GTPase binding, which provides a potential mechanism 

for GTP loading of the cytosolic Rho proteins (Zhu et al., 2013, Cordle et al., 2005). As mentioned in 

section 3.13, GDIs only bind to isoprenylated Rho proteins; thus, in the absence of these isoprenoid 

intermediates, GDIs cannot bind to Rho proteins, allowing them to be constitutively active (GTP-

bound). In support of this notion, Zhu et al. demonstrated that applying simvastatin to pre-treatment 

HCT116 colorectal cancer cells increased GTP loading of cytosolic Rac1 and RhoA and decreased 

their membrane translocation (Zhu et al., 2013). The authors attempted to understand the non-canonical 

activation of GTP-bound Rac1 and RhoA in the wake of simvastatin treatment by examining the 

interaction of Rho proteins with a GDI (Zhu et al., 2013). They demonstrated that because simvastatin 

treatment blocked isoprenoid synthesis, the cytosolic GDI could not interact with Rac1 and RhoA, 

suggesting a mechanism for enhanced GTP loading of cytosolic Rho GTPases and proposing that it is 

functionally relevant to apoptosis (Zhu et al., 2013). 
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3.2. Aims and hypothesis 
 

Using the MR approach, the work in this chapter was designed to assess the following questions: 

1. The causal role of genetic predisposition to increased major plasma lipid fractions (HDL-C and 

TG) in MS risk and severity. 

2. Whether genetic predisposition to increased MS risk influences HDL-C, LDL-C or TG levels 

(i.e. reverse causation). 

3. The role of statins in the prevention of MS development and in delaying the progress of MS 

severity via genetically mimicking the biological effects of statins via the cholesterol-

dependent and cholesterol-independent pathways. 

I. The cholesterol-dependent pathway was studied by (a) examining the causal role of the 

change in the blood expression levels of 25 genes (including the HMGCR gene, which 

is the statins’ target) that encode proteins involved in cholesterol biosynthesis, and (b) 

examining the causal role of genetically predicted LDL-cholesterol, given that LDL-C 

is a relevant prognostic factor for assessing the degree of HMGCR inhibition (Carter et 

al., 2020). 

II. The cholesterol-independent pathway was studied by examining the causal role of the 

change in the blood expression levels of 20 genes that encode Rho GTPase family 

members. 
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I tested 2 hypotheses to examine whether statins influence MS through cholesterol-dependent or 

cholesterol-independent pathways: 

 

1. If statins causally affect MS via lowering blood cholesterol levels, then I expect to see: 

a. A statistically significant causal estimate for MR analyses involving LDL-associated 

SNPs. 

b. A statistically significant causal estimate for MR analyses involving SNPs of HMGCR 

and any other downstream genes involved in cholesterol biosynthesis. 

2. If statins causally affect MS and the effect is not dependent on cholesterol, I expect to see a 

statistically significant causal estimates for MR analyses involving SNPs of Rho GTPases. 
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3.3. Method and results 

 

Figure 3.3: A flow diagram summarising this chapter’s method and results. The cross symbol 

indicates that there is no causal association, while the tick symbol indicates that there is casual 

association. 
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3.3.1. Genetically predicted HDL-C associated with increased MS risk but not severity 

 

To investigate whether blood lipids are causally associated with MS risk and severity, genetic 

associations with lipid exposures (HDL-C, LDL-C and TG) were obtained from the GLGC 

(methodology chapter section 2.1.21). All the selected SNPs were associated with target lipid fractions 

at p-values < 5 × 10-8 and clumped at an LD threshold value of r2 < 0.01. With the lipid-associated 

SNPs recorded as exposures, I then obtained the corresponding effect estimates for MS risk from the 

IMSGC (methodology chapter section 2.2.3) and for MS severity from the corresponding author of the 

original publication (Professor Jacob McCauley; methodology chapter section 2.1.3) as outcomes. 

Table 3.2 presents the number of SNPs, the explained variance (R2) and the mean F-statistics for each 

lipid trait. Since the F-statistics for the independent SNPs were all more than 10, bias due to weak 

instruments is negligible in this data. 

Table 3.2: Sample characteristics of the lipid traits 

 

Lipid trait 
Lipid-MS risk Lipid-MS severity 

No. of SNPs R2 (%) Mean F-statistics No. of SNPs R2 (%) Mean F-statistics 

HDL-C 118 9 124 83 6.9 139 

LDL-C 99 11.6 159 70 7.7 156 

TG 65 6.3 159 46 5.2 189 

 

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, 

triglyceride; No. of SNPs, the number of independent genome-wide significant single nucleotide 

polymorphisms; R2 (%), approximate variance explained by SNPs in the target trait that expressed in 

percentage. 
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MR analysis was performed for each of the lipid fractions in turn, and the results of these analyses are 

displayed in Table 3.3 and Figure 3.4. The associations between genetically predicted lipid fractions 

and MS risk are reported as odds ratios (ORs) with the 95% CI per one standard deviation (SD) increase 

of lipid fraction. For HDL-C, assessment through IVW showed evidence that raised HDL-C is 

associated with an increase in MS risk. The MR-Egger analysis results replicated this finding and the 

magnitude of the effect. The heterogeneity was significant (Cochran’s Q p-value < 0.05). However, 

since the MR-Egger intercept indicates a balanced horizontal pleiotropy (p-value > 0.05), this 

heterogeneity is not due to pleiotropic variants. Instead, it is possibly due to a different SNP–HDL-C 

influence on MS risk mediated via a different biological mechanism. The MVMR analysis results after 

adjustment for LDL-C and TG remained broadly consistent with the primary findings in the IVW 

estimator, which further supported the notion of a causality relationship between HDL-C and MS risk. 

For LDL-C and TG, there was no evidence for a causal relationship with MS risk found in the IVW, 

MR-Egger and MVMR estimator results (Table 3.3). There was evidence of heterogeneity; however, 

the MR-Egger intercept test did not provide any evidence of horizontal pleiotropy in these results. 

Since the HDL-C results were deemed significant (FDR ≤ 0.05) after multiple testing corrections, the 

results were assessed for replication using independent HDL-C data from UK Biobank (methodology 

chapter section 2.2.2.3). The replication result aligned with the initial results, further supporting the 

significant causal association between HDL-C and MS risk (Table 3.4). However, I must acknowledge 

that there was unbalanced pleiotropy in this analysis. Thus, in this case, the MR-Egger estimate, which 

is robust to pleiotropic instruments, is more reliable than the IVW estimate. To add more confidence 

to the replication results, I also used MR-radial to identify and remove the pleiotropic variants and then 

re-analysed using the remaining variants. Following the exclusion of the pleiotropic variants, there was 

a dramatic reduction in heterogeneity (I2 = 0%), but the pleiotropy remained significant, implying that 

the pleiotropic effect is the same across all variants (Bowden et al., 2017). Together, in the discovery 

and replication analyses, the MR-Egger and IVW results support the existence of a causal role for 

HDL-C in MS risk. 
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Table 3.3: MR analysis of the effect of lipid level on MS risk 

 

 

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 

cholesterol; TG, triglyceride; No. of SNPs, the number of independent genome-wide significant single 

nucleotide polymorphisms; IVW, inverse‐variance weighted; MVMR, multivariable MR; OR, odds 

ratio; CI, confidence interval; Q p-value, Cochran’s Q statistic; FDR, false discovery rate; I2 (%) 

expresses the level of heterogeneity as a percentage. 

 

 

 

Lipid trait Method 
No. of 

SNPs 
OR (95 % CI) p-value FDR 

pleiotropy assessment 

Q          

p-value 
I2 (%) 

MR-Egger 

intercept 

MR-

Egger 

intercept 

p-value 

HDL-C IVW 118 
1.144 

(1.04,1.26) 
7.94E-03 2.38E-02     

HDL-C 
MR 

Egger 
118 1.23 (1.02,1.48) 3.03E-02  6.38E-06          40.5 -0.004 3.66E-01 

HDL-C adjusted 

for LDL-C & TG 
MVMR 118 

1.255 

(1.06,1.49) 
9.13E-03  

     

LDL-C IVW 99 0.996 (0.9,1.1) 9.36E-01 9.36E-01     

LDL-C 
MR 

Egger 
99 

1.002 

(0.85,1.18) 
9.82E-01  1.30E-09 52.5 -5.00E-04 9.27E-01 

LDL-C adjusted for 

HDL-C & TG 
MVMR 99 

1.024 

(0.94,1.12) 
6.07E-01      

TG IVW 65 
0.921 

(0.81,1.04) 
2.00E-01 3.00E-01     

TG 
MR 

Egger 
65 0.859 (0.7,1.05) 1.36E-01  1.50E-04 43.6 0.0046 3.70E-01 

TG adjusted for 

HDL-C & LDL-C 
MVMR 65 

1.076 

(0.88,1.32) 
4.72E-01  
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Figure 3.4: Scatter plots for MR analyses showing the causal estimates of the lipid fractions on MS 

risk. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by black 

points. The slope of each line shows the estimated MR effect for each method. 
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Table 3.4: Replication analysis results for the effect of HDL-C on MS risk 

 

 Trait Method 

No. 

of 

SNP 

OR (95 % CI) p-value 
Q p-

value 

I2 

(%) 

MR-

Egger 

intercept 

MR-

Egger 

intercept 

p-value 

Including 

all the 

SNPs 

HDL-C 

IVW 482 1.079(0.99,1.17) 6.63E-02 6.43E-04 18.1   

MR Egger 482 1.193(1.05,1.36) 7.23E-03 9.17E-04 17.6 -0.0034 4.84E-02  

Removing 

the 

pleiotropic 

SNPs 

IVW 450 1.098(1.02,1.19) 1.91E-02 1.00E+00 0   

MR Egger 450 1.209(1.07,1.37) 2.48E-03  1.00E+00 0 -0.0032 4.50E-02  

 

For Abbreviations, see Table 3.3. 

 

The IVW, MR-Egger and MVMR methods were also implemented to assess the lipid influence on MS 

severity. The results revealed no evidence of HDL-C, LDL-C or TG having a causal role in MS 

severity. The associations between the genetically predicted lipid fractions and MS severity are given 

in Table 3.5, reported as betas with the 95% CI per 1‐SD increase of lipid fractions and graphically 

represented in Figure 3.5. No evidence of heterogeneity or pleiotropy was detected in this analysis. 
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Table 3.5: MR analysis of the effect of lipid level on MS severity 

 

Trait Method 

No. 

of 

SNP 

Beta (95 % CI) p-value FDR 

Pleiotropy assessment 

Q p-

value 

I2 

(%) 

MR-

Egger 

intercept 

MR-

Egger 

intercept 

p-value 

HDL-C IVW 83 -0.155 (-0.33,0.02) 
8.47E-02 

2.54E-01     

HDL-C MR Egger 83 -0.039 (-0.49,0.41) 
8.67E-01  1.00E+00 0 -0.0067 

5.46E-01 

HDL-C 

adjusted for 

LDL &TG 

MVMR 83 -0.059 (-0.4,0.28) 

7.35E-01 

    

 

LDL-C IVW 70 -0.091 (-0.3,0.12) 
4.02E-01 

6.03E-01    
 

LDL-C MR Egger 70 -0.019 (-0.43,0.4) 
9.29E-01  8.05E-01 0 -0.005 

6.84E-01 

LDL-C 

adjusted for 

HDL &TG 

MVMR 70 0.012 (-0.35,0.37) 

9.49E-01 

    

 

TG IVW 46 -0.001 (-0.19,0.19) 
9.91E-01 

9.91E-01    
 

TG MR Egger 46 0.08 (-0.39,0.54) 
7.38E-01  1.00E+00 0 -0.0055 

6.61E-01 

TG adjusted 

for HDL 

&LDL 

MVMR 46 0.035 (-0.22,0.29) 

7.88E-01 

     

 

For Abbreviations, see Table 3.3. 
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Figure 3.5: Scatter plots for MR analyses showing the causal estimates of the lipid fractions on MS 

severity. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by 

black points. The slope of each line shows the estimated MR effect for each method. 
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3.3.2. Genetically predicted MS risk not associated with lipid levels (reverse 

causation analysis) 

 

I sought to explore whether the liability to MS risk would exert a change in lipid levels. To do so, I 

initially selected 200 autosomal susceptibility SNPs outside the MHC region that reported by the 

IMSGC as genome-wide significant for MS (methodology chapter section 2.2.3). These SNPs account 

for almost 19% of the MS heritability. The selected SNPs clumped at an LD threshold value of r2 < 

0.01. With MS-associated SNPs as the exposure, I obtained corresponding effect estimates for HDL-

C, LDL-C and TG from GLGC (methodology chapter section 2.2.2.2) as the outcome. 

The remaining 118 and 119 SNPs out of the 200 were subjected to further MR analysis. The mean F-

statistics of these SNPs was around 75, suggesting that bias due to weak instruments is negligible in 

this data. The IVW and MR-Egger results revealed no causal link between the genetic determinants of 

MS risk and HDL-C, LDL-C or TG (Table 3.6 and Figure 3.6). The associations between genetically 

predicted MS risk and the lipid fractions are presented as 1-SD with 95% CI per 1‐unit‐higher log‐

odds of MS risk. There was evidence of significant heterogeneity; however, the MR-Egger intercept 

test suggested no evidence of pleiotropy. 
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Table 3.6: MR analysis of the effect of MS risk on lipid levels 

 

Outcome Method 
No. of 

SNP 
Beta (95 % CI) p-value FDR 

Pleiotropy assessment 

Q p-

value 

I2 

(%) 

MR-

Egger 

intercept 

MR-

Egger 

intercept 

p-value 

HDL-C IVW 118 -0.004 (-0.02,0.01) 
5.91E-01 8.86E-01 

    

HDL-C MR Egger 118 -0.016 (-0.06,0.03) 
4.98E-01 

 

4.05E-12 54 0.0012 
5.93E-01 

LDL-C IVW 118 -0.008 (-0.02,0.01) 
2.95E-01 8.85E-01 

   

 

LDL-C MR Egger 118 0 (-0.04,0.05) 
9.91E-01 

 

2.61E-07 44.5 -0.0008 
7.17E-01 

TG IVW 119 0 (-0.01,0.01) 
9.61E-01 9.61E-01 

   

 

TG MR Egger 119 0.017 (-0.02,0.06) 
4.05E-01 

 2.55E-06 41.6 -0.0017 
3.70E-01 

 

For Abbreviations, see Table 3.3. 
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Figure 3.6: Scatter plots for MR analyses showing the causal estimates of the MS risk on lipid 

fractions. The effect sizes of each genetic variant (with 95% confidence intervals) are represented by 

black points. The slope of each line shows the estimated MR effect for each method. 
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3.3.3.  MR estimates for mimicking the effects of statins using expression data 
 

To investigate the potential role of and mechanisms used by statins in MS risk and severity, I used 

eQTL data from the eQTLGen (methodology chapter section 2.2.2.2) to genetically mimic statin 

effects. I used whole-blood cis-eQTL in a ±5 kilobases flank around 25 genes (including HMGCR) 

that encode proteins involved in cholesterol biosynthesis to genetically mimic the effects statins elicit 

via the cholesterol-dependent pathway (Table 3.7). I also used whole-blood cis-eQTL in a ±5 kilobases 

flank around 20 Rho GTPase gene regions to genetically mimic the effects statins elicit via cholesterol-

independent pathways (Table 3.7). The primary focus was on Rho GTPases that undergo prenylation, 

a total of 16 family members (Table 3.7). Narrow flanking regions were used to reduce the possibility 

of the selected SNPs associating with MS via pathways other than those involving the target genes. 

All the selected SNPs were associated with the genes at p-values < 5 × 10-8 and clumped at the liberal 

LD-clumping threshold value of r2 < 0.4. This liberal LD-clumping threshold was selected because it 

was difficult to find many independent SNPs in a single gene region. Next, corresponding effect 

estimates for these SNPs on MS risk and severity were obtained, and IVW and MR-Egger methods 

were implemented, considering the correlation between the genetic instruments (methodology chapter 

section 2.3.2.5). Since the selected SNPs were in LD (correlated), the strength of the instruments could 

not be measured because the R2 and F-statistics tests required independent instruments. However, MR 

assumes that cis-acting SNPs are robust instruments and ideal for MR analysis because they strongly 

affect a gene’s expression level and are more likely to satisfy the key assumptions for MR (Porcu et 

al., 2019). 
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Table 3.7: The Rho GTPase family and mevalonate pathway (cholesterol biosynthesis pathway) 

gene list (part 1) 

HGNC 

symbol 
Ensemble Gene ID Description Participant of 

Genes -

MS risk 

analyses 

Genes -

MS 

severity 

analyses 

PPAPDC2 ENSG00000205808 
phosphatidic acid phosphatase type 2 domain 

containing 2  
Cholesterol biosynthesis Yes Yes 

HMGCS1 ENSG00000112972 
3-hydroxy-3-methylglutaryl-CoA synthase 1 

(soluble)  
Cholesterol biosynthesis Yes Yes 

TM7SF2 ENSG00000149809 transmembrane 7 superfamily member 2  Cholesterol biosynthesis Yes Yes 

ARV1 ENSG00000173409 ARV1 homolog (S. cerevisiae)  Cholesterol biosynthesis Yes Yes 

IDI1 ENSG00000067064 isopentenyl-diphosphate delta isomerase 1  Cholesterol biosynthesis Yes Yes 

HMGCR ENSG00000113161 3-hydroxy-3-methylglutaryl-CoA reductase  Cholesterol biosynthesis Yes Yes 

LBR ENSG00000143815 lamin B receptor  Cholesterol biosynthesis Yes Yes 

PMVK ENSG00000163344 phosphomevalonate kinase  Cholesterol biosynthesis Yes Yes 

FDFT1 ENSG00000079459 farnesyl-diphosphate farnesyltransferase 1  Cholesterol biosynthesis Yes Yes 

DHCR24 ENSG00000116133 24-dehydrocholesterol reductase  Cholesterol biosynthesis Yes Yes 

MVK ENSG00000110921 mevalonate kinase  Cholesterol biosynthesis Yes NO 

FDPS ENSG00000160752 farnesyl diphosphate synthase  Cholesterol biosynthesis Yes Yes 

ACAT2 ENSG00000120437 acetyl-CoA acetyltransferase 2  Cholesterol biosynthesis Yes Yes 

GGPS1 ENSG00000152904 geranylgeranyl diphosphate synthase 1  Cholesterol biosynthesis Yes Yes 

CYP51A1 ENSG00000001630 
cytochrome P450, family 51, subfamily A, 

polypeptide 1  
Cholesterol biosynthesis Yes Yes 

HSD17B7 ENSG00000132196 hydroxysteroid (17-beta) dehydrogenase 7  Cholesterol biosynthesis Yes Yes 

MVD ENSG00000167508 mevalonate (diphospho) decarboxylase  Cholesterol biosynthesis Yes Yes 

SQLE ENSG00000104549 squalene epoxidase  Cholesterol biosynthesis Yes Yes 

SC5DL ENSG00000109929 sterol-C5-desaturase Cholesterol biosynthesis Yes Yes 

LSS ENSG00000160285 
lanosterol synthase (2,3-oxidosqualene-

lanosterol cyclase)  
Cholesterol biosynthesis Yes Yes 

MSMO1 ENSG00000052802 methylsterol monooxygenase 1  Cholesterol biosynthesis NO NO 

EBP ENSG00000147155 emopamil binding protein (sterol isomerase) Cholesterol biosynthesis NO NO 

IDI2 ENSG00000148377 isopentenyl-diphosphate delta isomerase 2  Cholesterol biosynthesis NO NO 

NSDHL ENSG00000147383 
NAD(P) dependent steroid dehydrogenase-

like  
Cholesterol biosynthesis NO NO 

DHCR7 ENSG00000172893 7-dehydrocholesterol reductase  Cholesterol biosynthesis Yes NO 

RHOV ENSG00000104140 ras homolog family member V  member of Rho GTPase  NO NO 

RHOB ENSG00000143878 ras homolog family member B  member of Rho GTPase  Yes Yes 

CDC42 ENSG00000070831 cell division cycle 42  member of Rho GTPase  Yes Yes 

RHOG ENSG00000177105 ras homolog family member G  member of Rho GTPase  Yes Yes 

RHOD ENSG00000173156 ras homolog family member D  member of Rho GTPase  Yes NO 

RHOF ENSG00000139725 ras homolog family member F (in filopodia)  member of Rho GTPase  Yes Yes 

RHOQ ENSG00000119729 ras homolog family member Q  member of Rho GTPase  Yes Yes 

RAC2 ENSG00000128340 

ras-related C3 botulinum toxin substrate 2 

(rho family, small GTP binding protein 

Rac2)  

member of Rho GTPase  Yes Yes 

RAC1 ENSG00000136238 

ras-related C3 botulinum toxin substrate 1 

(rho family, small GTP binding protein 

Rac1)  

member of Rho GTPase  Yes Yes 

RHOH ENSG00000168421 ras homolog family member H  member of Rho GTPase  Yes Yes 

RHOBTB2 ENSG00000008853 Rho-related BTB domain containing 2  member of Rho GTPase  Yes Yes 
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Table 3.7: The Rho GTPase family and mevalonate pathway (cholesterol biosynthesis pathway) gene 

list (part 2) 

HGNC 

symbol 
Ensemble Gene ID Description Participant of 

Genes -

MS risk 

analyses 

Genes -

MS 

severity 

analyses 

RAC3 ENSG00000169750 

ras-related C3 botulinum toxin substrate 3 

(rho family, small GTP binding protein 

Rac3)  

member of Rho GTPase  NO NO 

RHOU ENSG00000116574 ras homolog family member U  member of Rho GTPase  Yes NO 

RHOBTB1 ENSG00000072422 Rho-related BTB domain containing 1  member of Rho GTPase  Yes Yes 

RND2 ENSG00000108830 Rho family GTPase 2  member of Rho GTPase  NO NO 

RHOC ENSG00000155366 ras homolog family member C  member of Rho GTPase  Yes Yes 

RND1 ENSG00000172602 Rho family GTPase 1  member of Rho GTPase  Yes Yes 

RND3 ENSG00000115963 Rho family GTPase 3  member of Rho GTPase  NO NO 

RHOA ENSG00000067560 ras homolog family member A  member of Rho GTPase  NO NO 

RHOJ ENSG00000126785 ras homolog family member J  member of Rho GTPase  NO NO 

 

The table includes 25 genes that were flagged as being involved in the cholesterol biosynthesis 

pathway in the Reactome database of human pathways and reactions (http://www.reactome.org). The 

20 genes of the Rho GTPase family were extracted from (Azzarelli et al., 2015). For each gene, the 

HGNC symbol (HUGO Gene Nomenclature Committee), Ensemble gene ID and description were 

derived from the Ensembles database (https://www.ensembl.org/index.html). In the last two columns, 

‘Yes’ indicates that a gene was included in the MR analysis, while ‘NO’ indicates that a gene was not 

included in the MR analysis due to either no SNPs being robustly associated with the target gene at a 

p-value < 5 × 10-8 or the eQTL data being absent. 

 

 

3.3.3.1. Genetically mimicked effect of statins on MS risk is independent of 

cholesterol 

Table 3.8 displays the associations between the genetically mimicked statin effects and MS risk (ORs 

with 95% CI per 1‐SD higher expression of the target gene in blood). A total of 35 genes (21/25 genes 

of the cholesterol biosynthesis pathway and 14/20 genes of the Rho GTPase family) were selected for 

analysis on the basis of having at least one genetic variant strongly associated with their expression. 

MR analyses involving SNPs in these gene regions found only a link between the expression levels of 

RAC2 and MS risk that was significant (FDR ≤ 0.05) after multiple testing corrections.  

http://www.reactome.org/
https://www.ensembl.org/index.html
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The heterogeneity, in general, in these analyses ranged from non-significant to moderate, and the MR-

Egger intercept test provided no evidence for horizontal pleiotropy except for RHOH. 

For RAC2, the IVW result revealed that one SD increase in genetically predicted RAC2 expression in 

the blood was associated with a 14% reduction in MS risk (Table 3.8 and Figure 3.7). The MR-Egger 

causal estimate was significant and largely consistent with the IVW results, reducing the probability 

that pleiotropy influenced these results. There was no evidence for heterogeneity, and the MR-Egger 

intercept test provided no evidence for directional pleiotropy. Since the results were deemed significant 

after multiple testing corrections, replication was assessed using the whole-blood cis-eQTL dataset 

from the GTEx project (methodology chapter section 2.2.2.2). It was found that the direction of the 

effect was identical across the discovery and replication results, providing further support for RAC2 

playing a protective role in MS risk (Table 3.8). 
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Table 3.8: MR estimates for the genetically mimicked effects of statins on MS risk (part 1) 

 

Trait Method 
No. of 

SNPs 
OR (95 % CI) p-value FDR 

pleiotropy assessment 

Q           

p-value 

I2 

(%) 

MR-Egger 

intercept 

MR-Egger 

intercept 

p-value 

ACAT2 IVW 5 1.035(0.92,1.17) 5.77E-01 8.74E-01         

ACAT2 MR Egger 5 1.043(0.89,1.22) 6.00E-01   6.27E-01 0 -0.0076 4.85E-01 

ARV1 IVW 10 0.939(0.86,1.03) 1.84E-01 7.38E-01         

ARV1 MR Egger 10 0.941(0.84,1.05) 2.96E-01   6.79E-01 0 -4.00E-04 9.52E-01 

CYP51A1 IVW 3 1.029(0.89,1.19) 6.99E-01 8.74E-01         

CYP51A1 MR Egger 3 1.046(0.38,2.85) 9.30E-01   7.93E-01 0 -0.0036 9.69E-01 

DHCR24 IVW 9 1.053(0.92,1.2) 4.37E-01 8.74E-01         

DHCR24 MR Egger 9 1.024(0.73,1.44) 8.90E-01   9.61E-01 0 0.0072 8.12E-01 

DHCR7 Wald ratio 1 0.431(0.18,1.02) 5.68E-02 6.05E-01         

FDFT1 IVW 25 0.984(0.95,1.02) 4.07E-01 8.74E-01         

FDFT1 MR Egger 25 0.979(0.94,1.02) 2.62E-01   3.33E-01 
0.05

3 
0.0058 6.12E-02 

FDPS Wald ratio 1 0.878(0.57,1.35) 5.53E-01 8.74E-01         

GGPS1 IVW 6 1.009(0.9,1.13) 8.74E-01 8.74E-01         

GGPS1 MR Egger 6 1.018(0.84,1.24) 8.61E-01   3.29E-01 0 -0.0027 9.16E-01 

HMGCR IVW 3 1.178(0.89,1.56) 2.50E-01 7.38E-01         

HMGCR MR Egger 3 1.074(0.09,12.56) 9.55E-01   3.33E-01 0 0.0101 9.41E-01 

HMGCS1 Wald ratio 1 1.877(0.92,3.82) 8.24E-02 6.05E-01         

HSD17B7 IVW 9 1.061(0.83,1.36) 6.40E-01 8.74E-01         

HSD17B7 MR Egger 9 1.132(0.76,1.69) 5.45E-01   8.56E-02 0.36 -0.0101 7.01E-01 

IDI1 IVW 4 0.941(0.59,1.51) 8.00E-01 8.74E-01         

IDI1 MR Egger 4 0.493(0.21,1.17) 1.10E-01   4.97E-02 0.5 0.0491 1.13E-01 

LBR IVW 3 0.77(0.48,1.22) 2.69E-01 7.38E-01         

LBR MR Egger 3 0.608(0,985.61) 8.95E-01   8.75E-01 0 0.0174 9.46E-01 

LSS IVW 15 0.993(0.94,1.05) 8.03E-01 8.74E-01         

LSS MR Egger 15 1.006(0.93,1.09) 8.82E-01   3.67E-02 0.4 -0.0028 6.84E-01 

MVD IVW 8 1.061(0.76,1.47) 7.26E-01 8.74E-01         

MVD MR Egger 8 1.047(0.73,1.5) 8.01E-01   7.61E-03 0.6 0.0019 9.16E-01 

MVK IVW 3 1.079(0.78,1.49) 6.39E-01 8.74E-01         

MVK MR Egger 3 1.237(0.14,10.68) 8.47E-01   7.63E-01 0 -0.0148 8.87E-01 
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Table 3.8: MR estimates for the genetically mimicked effects of statins on MS risk (part 2) 

 

Trait Method 
No. of 

SNPs 
OR (95 % CI) p-value FDR 

pleiotropy assessment 

Q          

 p-value 
I2 (%) 

MR-

Egger 

intercept 

MR-

Egger 

intercept 

p-value 

PMVK IVW 4 0.877(0.69,1.11) 2.81E-01 7.38E-01         

PMVK MR Egger 4 0.741(0.38,1.43) 3.73E-01   1.85E-01 0.11 0.0248 5.91E-01 

PPAPDC2 IVW 9 1.065(0.97,1.17) 2.02E-01 7.38E-01         

SC5DL IVW 4 0.989(0.89,1.1) 8.43E-01 8.74E-01         

SC5DL MR Egger 4 0.993(0.82,1.2) 9.40E-01   3.21E-01 0 -0.0013 9.62E-01 

SQLE IVW 5 1.024(0.82,1.28) 8.38E-01 8.74E-01         

SQLE MR Egger 5 1.054(0.73,1.52) 7.80E-01   6.65E-01 0 -0.0067 7.69E-01 

TM7SF2 IVW 3 0.877(0.75,1.02) 8.64E-02 6.05E-01         

TM7SF2 MR Egger 3 1.068(0.37,3.06) 9.03E-01   8.01E-01 0 -0.0489 6.56E-01 

PPAPDC2 MR Egger 9 0.961(0.83,1.11) 5.86E-01   3.01E-01 0.045 0.0321 7.91E-02 

RAC1 IVW 10 1.071(0.96,1.2) 2.41E-01 5.41E-01         

RAC1 MR Egger 10 1.218(0.9,1.66) 2.08E-01   7.11E-01 0 -0.0168 3.56E-01 

RAC2 IVW 15 0.861(0.78,0.95) 3.80E-03 5.00E-02         

RAC2 MR Egger 15 0.855(0.76,0.96) 8.14E-03   6.73E-01 0 0.0033 5.15E-01 

RHOB IVW 3 0.849(0.53,1.36) 4.94E-01 5.83E-01         

RHOB MR Egger 3 
1.053(0.07,15.89

) 
9.70E-01   6.53E-01 0 -0.0172 8.66E-01 

RHOBTB1 IVW 13 0.977(0.81,1.18) 8.09E-01 8.09E-01         

RHOBTB1 MR Egger 13 1.017(0.86,1.21) 8.48E-01   4.66E-02 0.4 -0.0154 2.42E-01 

RHOBTB2 IVW 3 0.713(0.51,1) 4.94E-02 2.21E-01         

RHOBTB2 MR Egger 3 0.868(0.36,2.11) 7.56E-01   5.70E-01 0 -0.0273 5.61E-01 

RHOC IVW 5 1.038(0.83,1.3) 7.44E-01 8.02E-01         

RHOC MR Egger 5 1.167(0.75,1.82) 4.94E-01   5.00E-02 0.49 -0.0268 5.62E-01 

RHOD IVW 2 0.544(0.29,1.03) 6.30E-02 2.21E-01         

RHOF IVW 6 1.134(0.93,1.39) 2.18E-01 5.41E-01         

RHOF MR Egger 6 0.873(0.43,1.79) 7.12E-01   6.80E-01 0 0.0523 4.43E-01 

RHOG IVW 4 1.126(0.85,1.49) 4.07E-01 5.69E-01         

RHOG MR Egger 4 1.228(0.84,1.8) 2.91E-01   2.38E-01 0 -0.0153 4.97E-01 

RHOH IVW 5 0.518(0.29,0.94) 3.01E-02 2.11E-01         

RHOH MR Egger 5 1.733(0.74,4.07) 2.06E-01   4.14E-01 0 -0.0905 2.41E-03 

RHOQ IVW 9 1.07(0.88,1.3) 4.99E-01 5.83E-01         

RHOQ MR Egger 9 0.909(0.66,1.25) 5.56E-01   5.79E-01 0 0.0261 1.70E-01 

RHOU IVW 3 1.161(0.89,1.51) 2.70E-01 5.41E-01         

RHOU MR Egger 3 1.327(0.49,3.61) 5.79E-01   6.08E-01 0 -0.0196 7.59E-01 

RND1 Wald ratio 1 0.805(0.5,1.3) 3.77E-01 5.69E-01         

CDC42 IVW 10 1.054(0.93,1.19) 3.98E-01 5.69E-01         

CDC42 MR Egger 10 1.069(0.86,1.32) 5.43E-01   3.83E-02 0.45 -0.0041 8.85E-01 

Replication 

 

RAC2  
IVW 2 0.70(0.51,0.96) 2.80E-02      
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Genes highlighted with orange encode proteins involved in cholesterol biosynthesis, while genes 

highlighted with green encode members of the Rho family. Pleiotropy assessment cannot be conducted 

for instruments consisting of ≤ 2 independent SNPs as it requires > 2 SNPs. For Abbreviations, see 

Table 3.3. 

 

 

 

 

 

 

 

 

Figure 3.7: Scatter plots for MR analyses showing the causal estimates of RAC2 on MS risk. The 

effect sizes of each genetic variant (with 95% confidence intervals) are represented by black points. 

The slope of each line shows the estimated MR effect for each method. 

3.3.3.2. Genetically mimicked effect of statins had no causal association with MS 

severity 
 

Table 3.9 displays the associations between the genetically mimicked statin effects and MS severity 

(log ORs with the 95% CI per 1‐SD higher expression of the target gene in blood). A total of 31 genes 

(19/25 genes involved in the cholesterol biosynthesis pathway and 12/20 genes of the Rho GTPase 

family) were selected for analysis on the basis of having at least one genetic variant strongly associated 

with their expression. The MR results showed no evidence of an association between the SNPs in these 

genes and MS severity. There was no evidence for heterogeneity or horizontal pleiotropy in these MR 

analyses. 
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Table 3.9: MR estimates for the genetically mimicked effects of statins on MS severity (part 1) 

 

Trait Method 
No. of 

SNPs 
Beta (95 % CI) p-value FDR 

pleiotropy assessment 

Q          

p-value 

I2 

(%) 

MR-

Egger 

intercept 

MR-Egger 

intercept p-

value 

ACAT2 IVW 3 -0.145(-0.55,0.26) 4.86E-01 9.36E-01     

ACAT2 MR Egger 3 -0.111(-0.58,0.36) 6.42E-01 
 

3.75E-01 0 -0.0129 4.60E-01 

ARV1 IVW 3 0.034(-0.24,0.31) 8.08E-01 9.51E-01 
 

  
 

ARV1 MR Egger 3 0.234(-0.46,0.93) 5.09E-01 
 

4.75E-01 0 -0.0656 4.98E-01 

CYP51A1 Wald ratio 1 -0.155(-0.63,0.32) 5.24E-01 9.36E-01     

DHCR24 IVW 2 0.149(-0.24,0.54) 4.56E-01 9.36E-01 
 

  
 

FDFT1 IVW 8 0.163(0,0.33) 5.41E-02 9.36E-01 
 

  
 

FDFT1 MR Egger 8 0.151(-0.04,0.34) 1.17E-01 
 

1.02E-01 0.34 0.0042 8.34E-01 

FDPS Wald ratio 1 0.152(-1.22,1.52) 8.28E-01 9.51E-01 
 

  
 

GGPS1 IVW 2 0.003(-0.32,0.33) 9.88E-01 9.88E-01 
 

  
 

HMGCR Wald ratio 1 0.274(-0.65,1.2) 5.62E-01 9.36E-01 
 

  
 

HMGCS1 Wald ratio 1 -1.142(-3.19,0.9) 2.73E-01 9.36E-01 
 

  
 

HSD17B7 Wald ratio 1 0.163(-1.21,1.54) 8.17E-01 9.51E-01 
 

  
 

IDI1 IVW 3 -0.11(-0.94,0.72) 7.95E-01 9.51E-01 
 

  
 

IDI1 MR Egger 3 6.549(0.91,12.19) 2.29E-02 
 

2.57E-01 0 -0.3974 1.92E-02 

LBR IVW 3 -0.399(-1.74,0.94) 5.58E-01 9.36E-01 
 

  
 

LBR MR Egger 3 -0.129(-5.54,5.28) 9.63E-01 
 

5.17E-01 0 -0.0196 9.15E-01 

LSS IVW 5 -0.133(-0.28,0.01) 7.15E-02 9.36E-01 
 

  
 

LSS MR Egger 5 -0.134(-0.29,0.02) 9.42E-02 
 

3.93E-01 0 0.0007 9.80E-01 

MVD Wald ratio 1 0.227(-0.94,1.39) 7.02E-01 9.47E-01 
 

  
 

PMVK Wald ratio 1 0.482(-0.6,1.56) 3.81E-01 9.36E-01 
 

  
 

PPAPDC2 IVW 3 0.105(-0.14,0.35) 4.04E-01 9.36E-01 
 

  
 

PPAPDC2 MR Egger 3 0.212(-12.8,13.23) 9.75E-01 
 

9.69E-01 0 -0.0279 9.85E-01 

SC5DL IVW 2 0.073(-0.26,0.4) 6.65E-01 9.47E-01 
 

  
 

SQLE Wald ratio 1 0.038(-1.41,1.48) 9.59E-01 9.88E-01 
 

  
 

TM7SF2 IVW 2 -0.135(-0.65,0.38) 6.04E-01 9.36E-01 
 

  
 

CDC42 IVW 2 0.012(-0.73,0.75) 9.75E-01 9.88E-01 
 

  
 

RAC1 IVW 3 -0.398(-0.92,0.12) 1.34E-01 9.36E-01 
 

  
 

RAC1 MR Egger 3 -0.765(-3.44,1.91) 5.75E-01 
 

5.45E-01 0 0.0631 7.76E-01 

RAC2 IVW 5 0.095(-0.25,0.44) 5.88E-01 9.36E-01 
 

  
 

RAC2 MR Egger 5 0.099(-0.59,0.79) 7.79E-01 
 

7.90E-01 0 -0.0012 9.85E-01 

RHOB Wald ratio 1 -0.646(-2.79,1.5) 5.55E-01 9.36E-01 
 

  
 

RHOBTB1 IVW 5 0.347(-0.15,0.84) 1.70E-01 9.36E-01 
 

  
 

RHOBTB1 MR Egger 5 0.325(-0.65,1.3) 5.12E-01 
 

2.78E-01 0 0.0042 9.56E-01 

RHOBTB2 IVW 2 -0.467(-1.78,0.85) 4.86E-01 9.36E-01 
 

  
 

RHOC IVW 2 0.211(-0.45,0.87) 5.31E-01 9.36E-01 
 

  
 

RHOF IVW 2 0.113(-0.44,0.67) 6.92E-01 9.47E-01 3.75E-01   4.60E-01 
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Table 3.9: MR estimates for the genetically mimicked effects of statins on MS severity (part 2) 

Trait Method 
No. of 

SNPs 
Beta (95 % CI) p-value FDR 

pleiotropy assessment 

Q          p-

value 

I2 

(%) 

MR-Egger 

intercept 

MR-Egger 
intercept p-

value 

RHOG IVW 4 -0.366 (-1.12,0.39) 3.39E-01 9.36E-01 
 

   

RHOG MR Egger 4 -0.231 (-2.1,1.63) 8.09E-01   8.03E-01 0 -0.023 7.79E-01 

RHOH IVW 2 -0.85 (-2.25,0.55) 2.35E-01 9.36E-01         

RHOQ IVW 4 -0.317 (-0.99,0.36) 3.58E-01 9.36E-01 
 

  
 

RHOQ MR Egger 4 -0.27 (-1.68,1.14) 7.08E-01   3.57E-01 0 -0.0054 9.40E-01 

RND1 Wald ratio 1 0.212 (-2.14,2.57) 8.60E-01 9.52E-01         

 

Genes highlighted with orange encode proteins involved in cholesterol biosynthesis, while genes 

highlighted with green encode members of the Rho family. Pleiotropy assessment cannot be conducted 

for instruments consisting of ≤ 2 independent SNPs as it requires > 2 SNPs.  

For Abbreviations, see Table 3.3. 
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3.4. Discussion 
 

The work presented in this chapter aimed to: (1) dissect the causal nature of the association between 

blood lipid levels and MS (risk and severity) and explore whether genetic predisposition to increased 

major plasma lipid fractions plays an aetiological role in MS; (2) explore the potential effects of statins 

on MS via MR analysis conducted using SNPs in different gene regions that genetically mimic statin 

biological effects; and (3) assess whether there is reverse causation between lipid fractions and MS 

risk. 

3.4.1. High plasma HDL-C is a risk factor for MS 
 

Recent epidemiological findings indicated that there is a correlation between dyslipidaemia (elevated 

plasma LDL-C and TGs and low plasma HDL-C) and MS disease activity and disability progression 

(Weinstock-Guttman et al., 2011, Tettey et al., 2014, Zhornitsky et al., 2016). However, it is unclear 

if and how plasma lipid levels and functions are altered in patients with MS and whether such changes 

influence disease development and severity or if they are only useful as biomarkers of disease activity. 

Several MR analyses have been conducted in the present study to address these questions. The results 

show that lifelong high HDL-C leads to a high MS risk. This finding is reproducible and robust in 

terms of heterogeneity, pleiotropy and reverse causation testing. In contrast, genetically raised 

circulating TGs are unlikely to be associated with the risk of developing MS. 

Associations between lipids and MS risk have received insufficient attention in epidemiological 

studies. Surprisingly, only one MR analysis on lipids and MS risk with GLGC and IMSGC data, the 

same datasets used in the current study, has been published (Yuan et al., 2021). The primary findings 

of that study demonstrated that there is no causal role for genetically raised LDL-C and TGs on MS 

risk, and there was only weak evidence of association between genetically raised HDL-C and MS risk 

(IVW OR = 1.14, p-value = 0.057) (Yuan et al., 2021).  
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The MR results of the current study agree with those of that study regarding LDL-C and TGs but not 

HDL-C—I found robust evidence of an HDL-C–MS risk causal association. The most notable 

difference is the number of SNPs included in the analysis model, which may explain why previous 

results differ from current results regarding HDL-C. In the aforementioned study, 68 SNPs were used 

to genetically proxy circulating levels of HDL-C, and they explained about 1.6% of the variance in 

HDL-C levels. In the current study, I used 118 SNPs to genetically proxy circulating levels of HDL-

C, and they explained about 9% of the variance in HDL-C levels, clearly more than the variances 

explained by the 68 SNPs in the previous MR study. Thus, the MR model used here had sufficient 

power to detect a causal association between HDL-C and MS risk. 

Elevated plasma HDL-C levels are reported in patients with MS at different stages of disease, including 

RR and clinical inactivity (Gafson et al., 2018, Rádiková et al., 2020, Jorissen et al., 2017). Although 

the mechanisms responsible for the increased risk of MS in patients with elevated HDL-C are unclear, 

the current and previously reported findings highlight the potential role of circulating HDL-C levels in 

MS development and its clinical course. 

It is well-known that raising HDL-C levels significantly decreases the risk of CHD. This beneficial 

effect is attributed to HDL-C’s key role in reverse cholesterol transport, which results in its anti-

atherogenic, anti-oxidant and anti-inflammatory properties (Kosmas et al., 2018). However, HDL-C 

may not always be protective and can become dysfunctional. Several lines of non-genetic evidence 

have shown that HDL-C in patients at increased risk of some conditions can lose its anti-inflammatory 

and anti-oxidant properties and become dysfunctional (Ansell et al., 2003). For example, in acute and 

chronic inflammation conditions (e.g. type 2 diabetes and atherosclerosis), replacing the anti-

inflammatory apolipoprotein A-I (apoA-I) with the inflammatory serum amyloid A protein (SAA) can 

convert HDL particles from anti-inflammatory to pro-inflammatory, which inherently limits HDL-C’s 

protective features (Rao and Kakkar, 2011, Ansell et al., 2005). 
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Furthermore, genetic studies of lipid levels have revealed genes that affect circulating HDL-C levels 

(Weissglas-Volkov and Pajukanta, 2010). These genes include variants ranging from common variants 

that have minor effects to rare mutations that cause complete loss of the gene’s activity, which may 

increase susceptibility to diseases (Weissglas-Volkov and Pajukanta, 2010). Finally, it is worth 

mentioning that statins can cause modest increases in HDL-C levels among statin users (McTaggart 

and Jones, 2008, Ansell et al., 2003), an effect independent of LDL-C reduction (Barter et al., 2010). 

This HDL-C increase achieved by statin appears to enhance the anti-inflammatory ability of HDL-C 

(Ansell et al., 2003). In the current study, statins were not expected to contribute to the causal 

association between HDL-C and MS risk since individuals who were known to be on lipid-lowering 

medication were excluded from the GLGC data (Willer et al., 2013). 

3.4.2. The lower cholesterol levels induced by statins have no effect on MS risk 
 

In the second part of this work, I conducted a separate MR analysis to address the causal link between 

genetically mimicked statin effects and MS. First, I used variants in HMGCR and other downstream 

genes to mimic the cholesterol-dependent effects of statins in relation to MS risk. The findings suggest 

that stains do not reduce MS risk through mechanisms that contribute to cholesterol level reduction. 

This result was expected, because LDL-C itself does not have a causal role in MS risk in the current 

results. Therefore, the current findings suggest that if statins effectively reduce MS risk, the effects 

would be mediated via a pathway that is independent of circulating cholesterol reduction. This finding, 

in line with a recent study, suggests that the beneficial effects of simvastatin in patients with MS are 

independent of serum cholesterol (Eshaghi et al., 2019). In that study, the authors reanalysed the phase 

2 MS-STAT trial data obtained from 140 patients with secondary progressive MS who were 

randomised to receive placebo or simvastatin; the data consisted of brain magnetic resonance imaging 

(MRI) reports, physical disability (EDSS) scores and serum total cholesterol levels that were recorded 

at baseline and after one and two years (Eshaghi et al., 2019). They applied structural equation models 

to examine whether the beneficial effects of simvastatin on reducing the rate of brain atrophy and 

slowing deterioration are dependent on or independent of blood cholesterol reduction (Eshaghi et al., 
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2019). Their results showed that the cholesterol-independent model significantly explained 

simvastatin’s effect on the clinical and MRI outcome measures (Eshaghi et al., 2019).  

3.4.3. The effects induced by statins via the cholesterol-independent pathway 

(RAC2) may reduce MS risk 

 

Since the lowering of cholesterol showed no effect on MS risk, my attention was directed to exploring 

the causal link between Rho GTPases and MS risk. Interestingly, the MR results showed that 

genetically predicted RAC2 expression was causally associated with reducing MS risk, and this finding 

emerged as robust with sensitivity analysis and was replicated in an independent eQTL dataset. 

RAC2 is a Rho GTPase family member (Table 3.1) expressed mainly in blood cell lineages, indicating 

that it has specific cellular functions in these cells (Tell et al., 2012). RAC2 regulates multiple key 

processes of inflammatory responses, including dendritic cell migration, nicotinamide adenine 

dinucleotide phosphatase (NADPH) oxidase activity and T-cell proliferation, migration and 

differentiation to the Th1 subtype (Saoudi et al., 2014, Sironi et al., 2011). In addition to immune 

activation, RAC2 is involved in the induction of peripheral immune tolerance. It is an essential 

component of restimulation-induced cell death (Ramaswamy et al., 2007), a necessary process in the 

self-limiting negative feedback mechanism used to control T-cell expansion during ongoing immune 

responses (Fattouh et al., 2013). Furthermore, RAC2 modulates atherosclerotic calcification by 

regulating IL-1β production by macrophages (Ceneri et al., 2017). 

The impact of RAC2 on MS pathology has not yet been confirmed; however, an association between 

RAC2 and MS has previously been reported. It has been shown that RAC2 haplotypes are associated 

with susceptibility to MS and earlier onset of disease symptoms (Sironi et al., 2011). Furthermore, 

RAC2 levels in whole blood samples from patients with MS were found to be low compared to those 

in healthy controls due to upregulation of RAC2 microRNAs  (Yang et al., 2017).  
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MicroRNAs are small non-coding RNAs that negatively regulate the expression of their target genes 

(Yang et al., 2017). 

Like other Rho GTPases, Rac2 protein undergoes isoprenylation and cycles between an inactive GDP-

bound state and an active GTP-bound state to regulate a variety of cellular processes (Bayo et al., 

2021). Recent findings suggest that the RAC2 represents a pleiotropic effect of statin therapy. It has 

been shown that statins, through inhibition of isoprenylation of Rac2, reduce oxidative stress during 

sepsis and downregulate pentraxin 3 in vascular cells during immune-inflammatory responses 

(Delbosc et al., 2002, Durant et al., 2004, Habib et al., 2007, Baetta et al., 2015). Furthermore, statins 

have been shown to induce the expression of several genes, including RAC2, that are involved in 

epidermal growth factor signalling (Sawaya et al., 2019); however, the mechanism by which statins 

can induce RAC2 expression remains to be identified. Therefore, it is reasonable to suggest that statins 

may reduce the risk of MS through a mechanism that involves RAC2. 

Taken together, the current results shed light on the role RAC2 plays as a potent genetic modifier of 

MS risk. In addition, it can be postulated that statins might mediate some beneficial effects on MS risk 

via RAC2-regulated pathways. Nonetheless, caution should be taken to avoid overinterpretation of 

these findings. Although MR is a powerful tool for investigating the causal relationship between an 

exposure and an outcome, this approach cannot identify the underlying mechanism of the relationship 

or confirm the hypothesis in the current study regarding statins, RAC2 and MS risk. In addition, the 

possibility that RAC2 reducing the risk of MS is independent of statins effect cannot be ruled out. Thus, 

further studies are required to identify the mechanism responsible for the observed causal relationship 

between RAC2 and MS risk and to test the hypothesis that statins reduce MS risk via a RAC2-related 

mechanism. 

 

 

 



110 
 

3.4.4. Plasma lipids have no causal link to MS severity 
 

This study also highlights that genetic susceptibility to high levels of circulating lipid fractions does 

not affect MS severity. Despite several epidemiological studies investigating the associations between 

circulating lipid fractions and accrual of disability in patients with MS, most of these studies used 

EDSS to measure the disability and a few used MS severity scores. The difference between these 

measures is that the MS severity score has better metric properties that correct the EDSS for disease 

duration (Weinstock-Guttman et al., 2011). The current MR findings support those of a previous 

retrospective cohort study that involved 3,166 participants with MS and found no statistically 

significant association between hyperlipidaemia and EDSS (Zhang et al., 2018). The current findings 

are also in line with those of another study conducted with 1,083 patients with RR in which 

comorbidities were identified through a database linked to electronic medical records. In that study, it 

was observed that hyperlipidaemia had no significant effect on walking speed and self-reported 

disability (Conway et al., 2017). These two studies accounted for different covariates, such as  sex, 

age, cohort entry year, use of disease-modifying drugs and socioeconomic status (Conway et al., 2017, 

Zhang et al., 2018). However, the current MR findings are contrary to those previously reported. For 

example, a retrospective study that included 492 patients with MS showed that worsening EDSS and 

MS severity was associated with higher baseline LDL-C and TG but not HDL-C (Weinstock-Guttman 

et al., 2011). This study did not account for potential confounders, apart from sex and age. In another 

cohort of 178 participants with MS, while no association was observed between HDL-C and EDSS 

and MS severity, higher LDL-C and TG levels were significantly associated with higher EDSS and 

MS severity (Tettey et al., 2014). The association between LDL-C and TG levels and EDSS diminished 

after accounting for age, sex, BMI and physical activity but remained significant for MS severity 

(Tettey et al., 2014). Indeed, confounding and reverse causality in observational studies cannot be 

entirely ruled out. In addition, these studies used small sample sizes to measure the change in disability 

within two-year periods, whereas longer follow-up and large sample sizes are preferred when 

measuring the change in disability.  
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In the current study, MR approach was used, which limited the potential bias associated with the 

presence of confounders. 

3.4.5. Genetically mimicked effects of statins have no causal links to MS severity 
 

Finally, as with MS risk, the MR approach was implemented to address the causal role of variants in 

the gene regions that mimic the cholesterol-dependent and cholesterol-independent pathways in MS 

severity. No evidence of association was found between these variants and MS severity, indicating that 

statins might not reduce MS severity via mechanisms associated with the genes targeted in the current 

study. 

To the best of my knowledge, the impact of statin treatment on disability progression measured by the 

MS severity score has not yet been studied. A handful of studies have explored the impact of statins 

on disability progression measured by the EDSS; however, the results were inconclusive. A recent 

phase 2 MS-STAT trial that included 140 patients with MS found that those using simvastatin (80 mg 

per day) had a small change in EDSS score after two years, but it was significant (Chataway et al., 

2014). In contrast, an open-label non-placebo-controlled trial study found that lovastatin treatment (40 

mg per day) over one year had no effect on the EDSS score of seven participants with MS (Sena et al., 

2003). A separate retrospective review of disability progression in patients with MS that included 45 

patients with MS treated with statins and 90 control patients with MS who did not receive statin therapy 

found no difference in EDSS score between the groups, at least at statin doses currently prescribed for 

hyperlipidaemia (Soldán et al., 2012). The possible explanation for this apparent contradiction is that 

the phase 2 MS-STAT trial had a larger sample size and the statin doses were larger than the doses in 

the latter two studies, indicating the possibility that higher doses of statins may effective to reduce the 

worsening of disability in patients with MS.  
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Although the genetic findings in the current study agree with the above studies that statins do not affect 

disability progression, it is important to note that eQTL data were measured in blood not brain tissue; 

therefore, it is possible that genetically mimicked statins effect may be missed out in this work .It has 

been hypothesised that various mechanisms contribute to the accumulation of disability in progressive 

MS, including chronic microglial activation, mitochondrial dysfunction, compartmentalisation of 

inflammation behind an intact BBB and formation of ectopic lymphoid tissue in the meninges. 

3.4.6. limitations 
 

The main advantage of the MR approach is that it overcomes the common biases (reverse causality 

and confounding) found in conventional observational studies owing to the random allocation of alleles 

at conception. A range of applicable methods were adopted here in both the causality estimation and 

sensitivity analyses to yield reliable results and assess the robustness of the MR estimates against 

potential violations, specifically, the direction of pleiotropy. 

However, one limitation of the current study is that the major lipid fractions (HDL-C, LDL-C and TG) 

are each heterogeneous groups of particles defined by differences in particle size, density, apoprotein 

content, migration characteristics and relationships to disease, and these subfractions differ in their risk 

profiles (Rádiková et al., 2020). For example, increases in cardiovascular risk, metabolic syndrome 

and type 2 diabetes have been found to be associated with small dense LDL-C particles, while no 

association has been observed between large LDL-C particles and cardiovascular risk. Moreover, large 

HDL-C particles may be more atheroprotective than small HDL-C particles (Rádiková et al., 2020). 

This study was designed to investigate total blood lipid levels and thus did not consider whether there 

are subtypes of these fractions (e.g. LDL sub-particles) (Zhornitsky et al., 2016, Rádiková et al., 2020) 

that might play different roles in MS risk or severity. 
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3.4.7. Conclusion 
 

Taken together, evidence from this study supports the existence of a causal effect of HDL-C on MS 

risk and shows that there is no reverse causation; however, no evidence for the causal role of LDL-C 

and TGs on MS risk was found. The MR findings suggest that RAC2 is a potent genetic modifier of 

MS risk. Since it has been reported to mediate some of the pleiotropic effect of statins, it is possible to 

postulate that statins may mediate some of their pleiotropic effect on MS risk via RAC2 . However, 

further studies are required to either support or reject this hypothesis. No evidence was found of a 

causal effect for lipid-related traits on MS severity. Finally, the current genetic evidence did not support 

the repurposing of statin treatment to reduce severity. 
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Chapter 4 Applying Mendelian randomization to identify 

potential druggable targets for multiple sclerosis 

Statement of contribution 

I executed the analysis scripts used in this chapter myself. Scripts used to generate the analysis 

provided by Catherine Strom. The druggable genome list provided by Aroon Hingorani and Chris 

Finan. Nicholas Wood and Catherine Strom contributed to the interpretation of my results. 
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4.1. Introduction  
 

Thus far, there has been no cure for MS, and the primary goal of licenced DMTs is to modify the 

course of the disease, reduce the frequency and duration of relapses, control symptoms and slow 

disability. However, some DMTs are hampered by potentially serious adverse reactions and require 

careful monitoring through a specialist MS clinic (Table 1.4, Chapter one) (De Angelis et al., 2018). 

Newer DMTs have shown better short-term outcomes than older DMTs, but the available data on their 

long-term effectiveness and harm are insufficient (De Angelis et al., 2018). The costs of these therapies 

are also a major issue, particularly in low- and middle-income countries. At present, many MS DMTs 

cost beyond US$90,000 a year, and their economic value has been widely debated (Hartung, 2021). 

These reports increase the need for more research to discover new and better interventions and 

preventive measures for MS. Although drug discovery is viewed as a vital endeavour to improve the 

treatment and management of disorders, discovering new drugs for human diseases is a lengthy, 

complex and costly process with high attrition rates (on Neuroscience and Disorders, 2014, Baird et 

al., 2021, Reay and Cairns, 2021). These challenges facing the pharmaceutical industry have prompted 

an increasing focus on drug repurposing, also known as drug repositioning (Reay and Cairns, 2021). 

Drug repurposing is an alternative strategy that involves identifying novel indications for existing 

approved drugs or drugs in clinical trials (Cha et al., 2018). This strategy has the potential to 

complement traditional drug discovery by mitigating the high monetary- and time-related costs and 

risks linked with the latter (Cha et al., 2018). Interestingly, recent estimates have shown that almost 

30% of drugs approved by the US Food and Drug Administration were repurposed (Rudrapal et al., 

2020). 

The rapidly growing body of GWASs, whole-genome studies and whole-exome sequencing studies 

have contributed remarkably to the rapid progress in identifying thousands of variants within genetic 

loci that influence human health and disease and provide evidence to detect molecular pathways 

involved in disease (Nelson et al., 2015, Gaziano et al., 2021, Baird et al., 2021). Indeed, genetic  
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insights increase the odds of success in drug discovery and repurposing; it has been shown that drug 

targets with human genetic evidence of disease association are more than twice as likely to lead to 

approved drugs compared to those without (Gaziano et al., 2021, Baird et al., 2021, Reay and Cairns, 

2021, King et al., 2019).  

One approach to facilitate drug repurposing through genetics is using MR to integrate GWAS 

associations with QTL to infer whether a causal relationship exists between protein targets for existing 

drugs and disease indications. One interesting example of MR-based drug repurposing is Parkinson’s 

disease. Storm et al. performed drug repurposing MR between expression and protein QTL (measured 

in the blood and brain) and  Parkinson’s disease and found 23 drug-targeting mechanisms for 

Parkinson’s disease, including four possible drug repurposing opportunities and two drugs that may 

increase Parkinson’s disease risk (Storm et al., 2021).  

A conventional MR analysis uses GWAS SNPs associated only with exposure as instrumental 

variables to estimate the causal effects of these instruments on an outcome through the exposure of 

interest. These GWAS SNPs may not be substantial enough to inform drug repurposing, as the vast 

majority are common SNPs that have a small effect size on the phenotype of interest (Reay and Cairns, 

2021). Therefore, QTLs are preferred in drug repurposing MR. QTL SNPs exert their impact on 

molecular phenotypes, such as gene expression; therefore, their effect size is large enough to be a 

relevant proxy for treatment (Reay and Cairns, 2021). In addition, cis-acting QTL SNPs on druggable 

protein levels or gene expressions that encode druggable proteins are viewed as powerful tools for 

informing therapeutic targeting because they mimic the on-target (beneficial or harmful) effects 

observed by pharmacological agents (Gaziano et al., 2021). The direction of the relationship between 

expression and the trait can also be exploited to inform drug repurposing; for example, if the increased 

genetically predicted expression of a particular gene is associated with a disease risk or progression, 

then an antagonist of that gene may be useful, and vice versa (Reay and Cairns, 2021). 
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4.2. Aims 
 

I sought to perform the druggable genome study using an MR approach to identify and prioritise new 

drug targets to treat MS’s disease. I employed MR on gene expression measured in blood and brain 

tissue to identify druggable genes whose (genetically predicted) expression is causally related to MS 

risk or MS severity. 
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4.3. Method 
 

A summary of the methods and workflow of MR in this study are reported in Figure 4.1. To examine 

the causal links between the expression levels of druggable genes and MS, a list of curated druggable 

genes was first obtained from the corresponding authors, Professor Aroon Hingorani and Dr Chris 

Finan (Finan et al., 2017). Finan and colleagues identified 4,863 druggable genes classified into four 

tiers:  

• Tier 1—genes encoding targets of approved and clinical-phase drugs (Storm et al., 2021). 

• Tier 2—genes not targeted by existing drugs but encode proteins targeted by small, drug-like 

molecules in vivo and genes encoding proteins with high sequence homology to approved drug 

targets (Storm et al., 2021). 

• Tiers 3 and 4—genes encoding proteins with more distant similarity to approved drug targets, 

secreted or extracellular proteins and members of key druggable gene families not already 

included in Tiers 1 and 2. Of these, genes in Tier 3 were located within 50 kb of a GWAS SNP 

and encoded an extracellular protein. The remainder were placed in Tier 4 (Storm et al., 2021). 

 

Then, I obtained the genetic instruments for each druggable gene from blood and brain-tissue-specific 

cis-eQTL from eQTLGen and PsychENCODE consortia (methodology section 2.2.2.2). SNP outcome 

associations were obtained from the discovery phase for MS risk (the MHC region was excluded) and 

MS severity (see Section 2.2.3). SNPs strongly associated with the genes of interest at p-value 5×10-8 

and located within 5 kilobases around each gene were kept.  

SNP exposure and outcomes were harmonised, and palindromic SNPs were removed. SNPs were then 

clumped at a clumping threshold value of r2 < 0.2 and then filtered out using the Steiger filtering 

method. Next, the selected SNPs were included in the MR model to obtain the overall effects of the 

estimates using IVW as the main estimator and MR-Egger as a sensitivity estimator. Due to the LD 

correlation among SNPs, the extended IVW and MR-Egger were used to account for SNPs’ 



119 
 

correlations by incorporating the LD matrix. If only one SNP was available for exposure, the Wald 

ratio was used to estimate the MR effect. As additional sensitivity analyses, Cochran’s Q and I2 tests 

were used to assess heterogeneity and the MR-Egger intercept to assess pleiotropy. If the Cochran’s Q 

and/or MR-Egger intercept p-value was < 0.05, a scatter plot was used as a visual tool to identify 

potential outliers. These outliers were removed, and the analysis was repeated with the remaining 

SNPs. 

P-values were adjusted for multiple tests using FDR ≤ 0.05, adjusting for the number of genes analysed 

per exposure–outcome combination. 

All genes that reached significance (FDR ≤ 0.05) using the Wald ratio or IVW method were replicated 

in an independent MS risk case-control cohort (14,498 subjects with MS and 24,091 healthy controls) 

(Beecham et al., 2013a). 
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4.4. Results 
 

 

Figure 4.1: Workflow and summarised results of the current study. 

 

 

 

 

MS risk discovery  

14,802 cases with MS and 26,703 control 

3,702 drug targets tested 

2,485 genes in the blood and 1,217 genes in 

brain 

46 drug targets discovered (FDR < 0.05) 

34 in blood, 9 in the brain, 3 in both blood and 

brain  

MS risk replication  

14,498 cases with MS and 24,091 control 

24 drug targets tested 

14 drug targets replicated 

13 druggable genes proposed (passed FDR < 0.05 at replication phase) 

 

11 in blood, 2 in brain and 1 in both blood and brain tissue 

 

 

MS severity  

9,772 cases with MS  

2,170 drug targets tested 

2,166 genes in blood and 5 genes in brain 

 

No drug targets reached significance  

(FDR < 0.05) 

 

Expression data (cis-eQTL): 

Blood 31,684 individuals (eQTLGen) 

Brain 1,387 individuals (PsychENCODE) 

 

4,863 druggable genes 

 



121 
 

4.4.1. MS’s disease risk – discovery and replication 
 

The genetically determined expression of 46 genes was significantly associated with MS risk in the 

discovery cohort at FDR ≤ 0.05. Of these 46 genes, 34 were in blood tissue, 9 were in brain tissue, and 

3 were in both blood and brain tissues (Table A.1). 

I took the 46 genes forward to replication in an independent MS disease case-control cohort. The 

genetically predicted expression of 14 genes was replicated: 11 in blood tissue, 2 in brain tissue and 1 

in both blood and brain (Figure 4.2 and Table A.1). Of these 14 genes, CCR4, CD6, IFNGR2, IL7, 

MAPK3, MAST3, SIK3, SLAMF7, STAT3, TNFSF14, TYMP, GALC and IL2RA reached FDR ≤ 0.05, 

while CDK14 only reached nominal significance (p-value ≤ 0.05). 
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Figure 4.2: The forest plot visualises the discovery phase results for the 14 replicated genes. The 

results from the Wald ratio (if the number of SNPs < 2) or inverse variance-weighted method (if the 

number of SNPs ≥ 2) are displayed. Each point represents MS’s disease odds ratio per one standard 

deviation increase in gene expression. Horizontal lines represent the 95% confidence interval. Colour 

codes: red = blood, blue = brain tissue.   

 

Overall, in the discovery phase, the magnitude and direction of MR estimates were largely consistent 

between IVW and MR-Egger for all MR analyses except for IFITM1, ITGB3 and SAE1 (Table A.1). 

For these three genes, the direction of the estimates from MR-Egger was opposite to the direction of 

IVW estimates, indicating the existence of invalid SNPs. The heterogeneity and pleiotropy tests for 

ITGB3 were significant (Cochran’s Q and MR-Egger intercept p-value < 0.05) but not for IFITM1 and 

SAE1. Perhaps Cochran’s Q and MR-Egger intercept p-values had low power due to the small quantity 

            Blood      Brain 
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of SNPs. The statistical power for Cochran’s Q increased when the number of SNPs increased, whereas 

the power of the MR-Egger intercept increased when there was variability in the instrument strengths 

across the set of SNPs (Bowden et al., 2017, Bowden et al., 2018a). Additionally, three more genes in 

the discovery phase did not pass the heterogeneity test, including CD6, TNFSF14 and TYMP (Table 

A.3). No evidence of pleiotropy was detected for the remaining genes (Table A.3).  

To identify potential outlier (invalid) SNPs, scatter plots were used to detect the outliers for the genes 

that did not pass the sensitivity tests (Cochran’s Q and MR-Egger intercept tests) to obtain more 

reliable results (Figure 4.2). These outliers were removed, and MR analyses were repeated. Visual 

inspection of the scatter plots revealed five outliers for CD6, two outliers for TNFSF14 and one outlier 

for each of ITGB3, TYMP, SAE1 and IFITM1. These outliers were removed one by one until the 

heterogeneity and/or pleiotropy were eliminated. After the outliers’ removal, the direction of estimates 

became consistent among the MR methods, and the Cochran’s Q and MR-Egger intercepts became 

non-significant. The IVW estimates obtained by excluding outliers remained statistically significant 

(Table 4.1).  

In the replication phase, MR estimates’ magnitude and direction were consistent across MR methods, 

the exception being STAT3 (Table A.1). All the replicated genes, except CD6, passed the pleiotropy 

and heterogeneity tests (Table A.3). Scatter plots showed one outlier for CD6 and STAT3 (Figure 4.3). 

For STAT3, after removing the outlier, the direction of the estimates turned out to be consistent between 

IVW and MR-Egger. For CD6, the MR-Egger intercept turned out to be non-significant after removing 

the outlier. The IVW estimates obtained by excluding outliers remained statistically significant for 

both CD6 and STAT3. 

The direction of MR estimates was the same in both the discovery and replication cohorts for the 13 

gene that passed the significance in the replication phase (Table A.1).  
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Figure 4.3: Scatter plots of causal estimates of druggable genes that did not pass the sensitivity tests 

for MS risk (part 1). Outliers are labelled.
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Figure 4.3: Scatter plots of causal estimates of druggable genes that did not pass the sensitivity tests 

for MS risk (part 2). Outliers are labelled.  
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Figure 4.3: Scatter plots of causal estimates of druggable genes that did not pass the sensitivity tests 

for MS risk (part 3). Outliers are labelled.
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Table 4.1:  MR results on effects of druggable genes on MS risk after excluding outliers 

 

Gene 
Druggability 

tier 
Outcome 

No. 

SNP 
Method Beta SE p-value Tissue  

Cochrans' 

Q p-value 
I2 

MR-

Egger 

intercept 

p-value 

ITGB3 1 MS risk (discovery) 2 IVW -0.239 0.08 4.73E-03 Blood    

IFITM1 3 MS risk (discovery) 2 IVW 1.15 0.25 4.56E-06 Blood    

CD6 1 MS risk (discovery) 8 IVW -0.591 0.09 6.34E-12 Blood    

CD6 1 MS risk (discovery) 8 
MR-

Egger 
-0.53 0.19 4.51E-03 Blood 8.82E-02 0.36 7.22E-01 

SAE1 2 MS risk (discovery) 3 IVW 0.584 0.1 1.19E-08 Blood    

SAE1 2 MS risk (discovery) 3 
MR-

Egger 
0.153 3.98 9.69E-01 Blood 9.42E-01 0 9.08E-01 

TNFSF14 1 MS risk (discovery) 5 IVW -0.547 0.09 4.05E-09 Blood    

TNFSF14 1 MS risk (discovery) 5 
MR-

Egger 
-0.598 0.12 1.42E-06 Blood 1.42E-01 0.27 5.51E-01 

TYMP 2 MS risk (discovery) 9 IVW -0.164 0.03 3.71E-09 Blood    

TYMP 2 MS risk (discovery) 9 
MR-

Egger 
-0.132 0.06 1.70E-02 Blood 2.15E-01 0.16 5.11E-01 

STAT3 1 MS risk (replication) 2 IVW -0.556 0.127 1.28E-05 Blood    

CD6 1 MS risk (replication) 11 IVW -0.39 0.076 2.89E-07 Blood    

CD6 1 MS risk (replication) 11 
MR-

Egger 
-0.076 0.203 7.07E-01 Blood 2.50E-01 0.12 1.03E-01 

 

4.4.2. MS severity 
 

Of the druggable genes, 2,170 had an eQTL available for MR using MS severity data, of which 2,166 genes 

were tested in blood, and only 8 genes were tested in brain tissue (Table A.2). Of the 2,166 genes, only 125 

(120 genes in blood and 4 genes in brain and one gene in both blood and brain tissue) reached nominal 

significance (p-value < 5 × 10-8) but did not pass significance after multiple testing corrections (FDR ≤ 0.05). 

None of the tested genes in the brain reached nominal significance (Table A.4). 
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4.4.3. Discussion 
 

This study sought to combine MS GWAS data with an eQTL dataset and a list of curated druggable genes to 

identify new druggable targets for MS risk and MS severity. Genetic evidence in favour of 13 prioritised drug 

targets for MS risk was provided. These were prioritised through using the MR approach, and they emerged 

as robust based on sensitivity analyses. They were further confirmed using an independent MS risk cohort. 

Six druggable genes out of 13 showed genetic evidence of a causal relationship between the genetically 

predicted expression of CCR4, IFNGR2, IL2RA, MAST3, SIK3 and SLAMF7 and increased MS risk. The 

remaining seven genes showed evidence of protection that genetically predicted the expressions of CD6, 

GALC, IL7, MAPK3, STAT3, TNFSF14 and TYMP, which were casually associated with reduced MS risk.  

 

Three replicated genes (CCR4, SLAMF7 and SIK3) that encode protein targets for existing drugs as priority 

candidates were identified for evaluation in randomised trials of early management for MS. These drugs are 

either approved medications or in a clinical trial phase, and their pharmacological effects are consistent with 

the direction of MR effect estimates for the above genes (Figure 4.2).  

 

CCR4 is a protein-coding gene belonging to the CC chemokine receptor family, a family of chemotactic 

cytokines known for their roles in leukocyte activation and chemotaxis (Ness et al., 2006). CCR4 is expressed 

on dendritic cells, macrophages, NK cells, platelets and basophils, but it has been shown to be predominantly 

expressed on T-cells, especially on Th2 and regulatory T-cells (Watson and Marx, 2019, Ness et al., 2006). 

Upon binding to its ligands, CCL17 and CCL22, CCR4 promotes the cell trafficking of lymphocytes to various 

organs, including the skin (Watson and Marx, 2019). CCR4 is a potential target for mogamulizumab, an 

approved medication for mycosis fungoides and Sezary syndrome. T-cells migrate to the skin during these 

conditions due to the combined effect of CCR4 overexpression on malignant T-cells and the overproduction 

of CCR4 ligands by various skin cells (Watson and Marx, 2019). Mogamulizumab selectively binds to CCR4 

to mark T-cells for destruction through an antibody-dependent cellular cytotoxicity process (Watson and 
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Marx, 2019). Drug safety evaluations have identified mogamulizumab as an effective and well-tolerated 

therapy for patients with fungoides and Sezary syndrome (Afifi et al., 2019).  

CCR4 has been reported as one of the risk genes for MS (Consortium*† et al., 2019, Beecham et al., 2013a), 

and several clinical studies of MS, together with experimental studies in animals, have demonstrated the 

functional roles of CCR4-CCL17/CCL22 in the pathogenesis of MS and EAE. For example, studies have 

identified the CCL22 protein in CNS-infiltrating leukocytes and the microglia of EAE-induced mice, and 

CCR4 is expressed by invading leukocyte subsets (Poppensieker et al., 2012). Shimizu et al. found that the 

numbers of CD4+CCR4+ cells in the peripheral blood of patients with MS were higher in the relapsing phase 

than in the remission phase or in healthy controls (Shimizu et al., 2011). Furthermore, evidence from EAE 

models of MS observed a delay and decreased disease incidence in CCR4-deficient mice with diminished 

pathogenic T-cell filtration to the CNS (Forde et al., 2011). These results support the pathogenic role of CCR4 

in MS and further suggest CCR4 antagonists as a possible strategy for the prevention of MS.  

Although there is no ongoing clinical trial for CCR4 and MS, a few studies have attempted to examine CCR4 

antagonist effects on CNS autoimmunity using EAE models; however, the results were inconsistent. One study 

found that compound 22, a CCR4 antagonist, significantly ameliorated EAE, suggesting that CCR4 

antagonism is a potential therapeutic strategy for MS (Scheu et al., 2017). However, another study found no 

evidence of the effects of the CCR4 antagonist AF399/420/18025 on the EAE clinical score (Scheu et al., 

2017). It has been argued that the absence of the effect in the latter study is due to the use of dimethyl sulfoxide 

as a drug vehicle solution for CCR4 antagonists, which may affect the BBB and thereby influence the 

infiltration of mononuclear cells into the CNS (Scheu et al., 2017).  

SLAMF7 encodes a protein member of the SLAM family of receptors, which have roles in cytotoxicity, 

humoral immunity, autoimmunity, cell survival, cell adhesion, and lymphocyte development (Ritchie and 

Colonna, 2018). It was found to be highly expressed on malignant plasma cells and normally expressed on 

leukocyte subsets, such as NK cells, CD8+ T-cells, activated monocytes and dendritic cells (Ritchie and 

Colonna, 2018).  
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Elotuzumab is a humanised immunoglobulin G monoclonal antibody targeting SLAMF7, which is in clinical 

use for the treatment of multiple myeloma (Ritchie and Colonna, 2018). Elotuzumab induces myeloma cell 

death via two mechanisms: (1) by binding to SLAMF7 on myeloma cells and promoting interactions with NK 

cells to mediate the killing of myeloma cells via an antibody-dependent cellular cytotoxicity mechanism and 

(2) by directly binding to SLAMF7 on natural killer cells and causing costimulatory signalling that further 

potentiates the killing of myeloma (Ritchie and Colonna, 2018).  

GWAS prioritises SLAMF7 as MS susceptibility loci on chromosome one (Beecham et al., 2013a). The role 

and function of SLAMF7 in MS pathogenesis have not been established. However, SLAMF7 contributes to 

highly activated macrophage-driven inflammation in autoimmune and infectious diseases; its activation 

signature has been shown to be up-regulated in inflammatory diseases, such as rheumatoid arthritis, 

inflammatory bowel disease and COVID-19 pneumonia (Simmons et al., 2022). The current results showed 

that the genetically predicted expression of SLAMF7 was associated with increased MS risk, suggesting that 

targeting SLAMF7 may be useful in preventing MS. 

SIK3 is a member of the SIKs, a subfamily belonging to the AMP-activated protein kinase family. SIKs are 

ubiquitously expressed in humans, and SIK3 is predominantly expressed in neural tissues (Sun et al., 2020). 

SIKs are involved in controlling gene expression in response to extracellular cues that increase intracellular 

cAMP levels (Jin et al., 2020). Recent evidence has indicated that SIKs play a role in modulating the 

production of pro- and anti-inflammatory cytokines in myeloid cells, such as macrophages and dendritic cells. 

For example, it has been shown that SIK inhibition via pharmacological inhibition compounds, such as  HG-

9-91-01, enhances the macrophage’s anti-inflammatory phenotype, which is characterised by the production 

of high levels of anti-inflammatory cytokines, such as IL-10, and low levels of pro-inflammatory cytokines, 

including tumour necrosis factor α and IL-6 (Darling et al., 2017, Jin et al., 2020). In addition, evidence 

suggests that SIK3 plays an important role in T-cells.  
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Proteomic studies on peripheral T-cells revealed that SIK3 is  expressed in T-cells and strongly up-regulated 

following TCR stimulation , suggesting an important role(s) for SIK3 in T-cells (Nefla et al., 2021).  

Tenalisib (RP6530) is a small molecule inhibitor of PI3K delta and gamma isoforms and SIK3, which is 

currently in phase 2 clinical development for locally advanced or metastatic breast cancer. The mechanism of 

action for tenalisib on SKI3 is unclear, but data show that this agent can inhibit the PI3K delta and gamma 

isoforms and prevent the stimulation of the PI3K/AKT-mediated signalling pathway. This may result in a 

reduction in cellular proliferation in PI3K delta/gamma-expressing tumour cells. Furthermore, tenalisib is 

suggested as a modulator for inflammatory responses via several mechanisms, for instance, by preventing the 

release of reactive oxygen species (ROS) from neutrophils and tumour necrosis factor (TNF)-alpha activity. 

Interestingly, ROS has been implicated as a mediator of demyelination and axonal damage in both MS and 

EAE, and TNF-alpha is a major cytokine that plays a pivotal role in the pathogenesis of MS (Gilgun-Sherki 

et al., 2004, Zahid et al., 2021). Together, these data, alongside the current results, underscore the potential of 

SIK3 as a druggable target for MS that is worth further investigation. 

This study found that two of the replicated genes are already being targeted by existing compounds for MS 

treatment: IL2RA and IL-7 (Table 4.2). IL2RA is a target for daclizumab, a previously approved medication 

for relapsing forms of MS with a pharmacological effect consistent with the direction of the MR effect estimate 

in the current study. However, in 2018, daclizumab was withdrawn from the market following reports of 

serious and potentially fatal immune reactions affecting the brain (including encephalitis and 

meningoencephalitis), liver, and other organs (https://www.gov.uk/ ). 

Whereas IL-7 is a target for GSK2618960, a molecule that was under investigation as a treatment for MS 

(identifier: NCT01808482), its trial was terminated at phase 1 due to the misrepresentation of preclinical data 

that supported the rationale for GSK2618960 in MS, as stated in the Clinical trials.go database. GSK2618960 

is a humanised IgG1 monoclonal antibody that functions as an antagonist, competitively inhibiting IL-7 

binding and blocking IL-7 signalling via IL-7Rα (Liao et al., 2021). Regardless of the termination of the study, 

the GSK2618960 mechanism of action is not consistent with the direction of MR effect estimates in the current 

study, that is, genetically predicted IL-7 expression associated with reduced MS risk (Figure 4.2). 

https://www.gov.uk/
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 IL-7 is a vital cytokine that promotes T-cell development, survival and proliferation by engaging with its 

receptor IL-7Rα, thus contributing to the homeostasis of the peripheral T-cell pool (Mazzucchelli et al., 2012, 

Lei et al., 2017). Therefore, it is not surprising that a growing body of evidence suggests the role of IL-7−IL-

7Rα signalling dysregulation in the pathogenesis of MS (Liao et al., 2021).  

Genetic evidence for the IL-7 pathway in the pathogenesis of MS identified a nonsynonymous missense SNP, 

rs6897932, located in the 6th exon of the IL-7Rα  gene (Vandenbroeck, 2012). This mutation leads to an 

increase in the levels of the soluble form of IL-7Rα (Vandenbroeck, 2012). The SNP rs6897932 was associated 

with MS susceptibility in the MS GWAS in 2011(Sawcer et al., 2011). In a recent MS GWAS in 2019 

(Consortium*† et al., 2019), the IL-7Rα gene was also nominated as a susceptibility locus for MS and showed 

a new SNP, rs11567694, which was in the complete LD with rs6897932 (D’ and r2 values of 1.0). Individuals 

with genotype-induced elevations of soluble IL7Rα have been demonstrated to show an increased risk of 

autoimmune disease, including MS, due to the potentiation of IL-7 bioactivity (Lundström et al., 2013). 

This is because soluble IL-7Rα competes with cell-associated IL-7 receptors for binding to IL-7 molecule 

(Lundström et al., 2013). Under normal circumstances, IL-7 is a limited resource whose level is regulated 

mainly via receptor-mediated clearance, engaging the soluble IL-7Rα with IL-7 molecules, resulting in less 

IL-7 clearance and ultimately increased IL-7 bioavailability and bioactivity (Lundström et al., 2013). The 

presence of soluble IL-7Rα contributes to IL-7 bioactivity by enhancing IL-7, which induces T-cell survival, 

augmenting the proliferative responses of T-cells to weak self-antigens and diminishing Fas-induced cell death 

(Lundström et al., 2013). Given this, IL-7/IL-7Rα pathway agonism may ameliorate MS, whereas antagonism 

may enable IL-7 to bind with soluble IL-7Rα and exacerbate MS, as has been pointed out above (Mazzucchelli 

et al., 2012, Gregory et al., 2007). This hypothesis is in line with the current study’s finding (Figure 4.2). 

Whether the IL-7/IL-7Rα pathway agonism/antagonism depends on the IL-7Rα genotype is worth further 

investigation. 
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Although my MR results suggest that IFNGR2, MAPK3, STAT3 and TYMP may be of therapeutic benefit for 

the treatment of MS, the pharmacological effects of the existing medications targeting these genes were not 

consistent with the direction of their MR effect estimates. Thus, these medications are unlikely suitable for 

repurposing. Drugs are designed to target genes or pathways in disease-related tissues. Given that gene 

activities vary across tissues and cell types, a drug’s mode of action for the treatment of a specific disease does 

not necessarily suit another disease, even if these two diseases share the same gene target. This may provide 

a basis for explaining the inconsistency between the direction of the MR effect estimates of the above genes 

and the pharmacological effects of the existing medications targeting those genes. 

 

This study found that no drugs have been reported for GALC and MAST3. This is because these genes were 

classified as Tier 3 in the druggable genes list (Finan et al., 2017). Of these three genes, GALC has been 

reported to be a risk locus for MS (Consortium*† et al., 2019, Beecham et al., 2013a). 

 

A druggable genome study that integrated Finan’s list of druggable genes, MS risk GWAS and QTL data to 

prioritise druggable targets for MS was recently published (Jacobs et al., 2020). Their approach yielded a list 

of four prioritised druggable target genes: CD40, MERTK, FCRL3 and PARP1. Their final findings did not 

overlap with the findings of this study. Several methodological differences may explain why these results 

differ from the current results. Briefly, in the above-mentioned study, the authors employed summary data-

based Mendelian randomisation, a technique that was developed to integrate GWAS data and molecular trait 

data, such as cis-eQTL and cis-mQTL studies, to determine associations between these traits and outcomes of 

interest, such as MS (Liu et al., 2021b). The authors prioritise druggable genes in MS if a genetic locus has a 

causal association between CpG methylation sites and gene expression, association between CpG methylation 

sites and MS and association between gene expression and MS (Jacobs et al., 2020). On the other hand, my 

analysis pipeline used the conventional MR approach, only selected SNPs located withing flanking region of 

5 kilobases around the encoding gene region and the final list included genes whose expression levels in the 

blood and/or brain were associated with MS risk. 
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Similar to MS risk, MR on gene expression measured in blood and brain tissue was employed to identify new 

drug targets for MS severity. Although several genes reached nominal significance, none passed the 

significance threshold (FDR ≤ 0.05). One explanation could be that the sample size was relatively small; thus, 

the study did not have the power to pass the significance threshold.   

4.4.4. Limitation 
 

One limitation of this work is that MR identifies genes with expression levels associated with the disease. 

Changes in gene expression may not reflect changes in protein levels and/or account for post-transcriptional 

and post-translational modifications along the pathway from a gene to a biologically functional protein (Gill 

et al., 2021). Therefore, genetic variants associated with protein levels (protein quantitative trait loci; pQTL) 

may model drug target effects more accurately than eQTL (Storm et al., 2021). Due to the lack of pQTL 

genetic variants for the replicated genes, it was not possible to conduct MR using the pQTL data. Most pQTL 

studies have been limited by small sample sizes and have mostly involved cell lines rather than primary human 

tissues (Sun et al., 2018, Yao et al., 2018).  

Furthermore, MR in this context might be able to broadly provide information regarding drug class effects, 

but not necessarily regarding the effects of a specific pharmacological agent (Gill et al., 2021). For example, 

dihydropyridine and non-dihydropyridine are subclasses of calcium-channel antagonist drugs (i.e., 

antihypertensive) that exert distinct pharmacological effects. Using human genetic variants within genes 

corresponding to the targets of antihypertensive drug classes to serve as a proxy for the effects of these 

treatments can estimate the effects of these drug classes in general but cannot differentiate the relative effects 

of dihydropyridine versus non-dihydropyridine subclasses(Gill et al., 2019). Here, MR has been used to 

investigate the effects of perturbing a drug target but is unlikely to be able to offer insight regarding the specific 

effects of drug subclasses. 
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MR in this study only captured the on-target effects of the drugs; drug effects that are not exerted through 

gene targets (off-target effects) cannot be captured in these MR models. 

Tissue and cell type‐specific traits are crucial to drug discovery and development. This work utilised MR on 

gene expression measured in blood and brain tissue to capture as many genes as possible and explore two 

potential tissue sites of action. The majority of identified genes was in blood, and only a few genes were 

identified in brain tissue, possibly due to the sample size; the blood eQTL data (n = 31,684) was greater than 

that for brain tissue eQTLs (n = 1,387). Indeed, studies with a larger sample size have greater power to identify 

many QTL SNPs per gene, which boosts the power of MR results (Huan et al., 2019, Storm et al., 2021).  

 

MS is a heterogeneous disease with many different immune cells contributing to disease pathogenesis 

(Høglund and Maghazachi, 2014). In this regard, the other important limitation of this work was that it could 

not distinguish between the effects of changes in the gene expression levels in different types of immune cells 

on MS due to the QTLs in the blood obtained from the whole blood samples. 

It is important to note that these MR findings were based on MS GWAS, which captured the incident risk of 

the disease (i.e., onset of disease) rather than the progression. Thus, these findings should be interpreted as 

useful in disease prevention and/or as modulating the effects of the risk of developing MS.  

MR estimates reflect the lifelong effects of an exposure, because all exposures instrumented by genetic 

variants are present from birth and last for a lifetime. Thus, MR does not predict when or at what age the 

putative risk factors affect the risk of disease nor does it predict the size of the intervention required to reduce 

the effect of an exposure to prevent disease risk or progression. 

4.4.5. Conclusion 
 

In conclusion, this study took advantage of the MR approach and publicly available datasets to provide genetic 

evidence for CCR4, SLAMF7 and SIK3 as possible drug targets for MS. 
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Table 4.2: Summary of the existing drugs that can target the prioritised genes for MS risk 

 

Gene Tissue Drug name 
Clinical 

phase 
Indication 

Direction of 

effect for drug 
Description Consistency 

Study 

identifier 

CCR4 Blood Mogamulizumab Approved Mycosis fungoides inhibitor Block T-cell migration and proliferation YES  

CD6 Blood Itolizumab Approved Psoriasis inhibitor 
Inhibiting the CD6-CD166 signalling pathway which led to 

inhibit T cell activation and proliferation 
NO  

IFNGR2 Blood 
Interferon gamma-

1b 
Approved 

Chronic 

granulomatous 

disease 

Binder 
Initiate a sequence of intracellular events that lead to the 

transcription of multiple immune-related genes. 
NO  

SLAMF7 Blood Elotuzumab Approved Multiple myeloma modulator 
Binding to SLAMF7 on multiple myeloma cells to mediate 

the killing of these cells 
YES  

MAPK3 Blood 
Ulixertinib(BVD-

523) 
Phase 2 Melanoma inhibitor 

Inhibits both ERK 1 and 2, thus preventing the activation 

of ERK-mediated signal transduction pathways 
NO NCT03417739 

STAT3 Blood OPB-111077 Phase 1 
Acute myeloid 

leukemia/cancer 
inhibitor Not Available NO NCT03197714 

TYMP Blood Tipiracil Approved 
Gastric or colorectal 

malignancies 
Inhibitor Inhibit TYMP activity NO  

IL7 

Blood 

and 

Brain 

GSK2618960 
Terminated 

at Phase 1 
Multiple sclerosis Modulator blocked IL‐7 receptor signalling NO  

IL2RA Brain daclizumab Approved 
relapsing forms of 

multiple sclerosis. 
Modulator blocks the interleukin-2 receptor YES NCT01808482 

TNFSF1

4 
Blood Baminercept phase 2 Rheumatoid arthritis inhibitor blockade of LTβ receptor signaling NO NCT01552681 

SIK3 Blood Tenalisib phase 2 

Locally Advanced or 

Metastatic Breast 

Cancer 

Inhibitor SIK3 inhibitor YES NCT05021900 

 

Drug information extracted from Drugbank (https://www.drugbank.ca), Therapeutic Target Database (http://db.idrblab.net/ttd/ ) and ClinicalTrail.gov 

(https://clinicaltrials.gov/ct2/home). Column labelled with consistency refers to whether the drug direction of effects is consistent with the MR effect 

estimate. The column labelled with the study identifier refers to the ClinicalTrials.gov identifier. No drug was found for GALC and MAST3, as these genes 

were classified as Tiers 3.

https://www.drugbank.ca/
http://db.idrblab.net/ttd/
https://clinicaltrials.gov/ct2/home


138 
 

 

Chapter 5 The role of body fat in multiple sclerosis susceptibility 

and severity 

This chapter is accepted [ March 2022] for publication in Multiple Sclerosis Journal  

 

Statement of contribution 

I designed this project, wrote and executed the analysis scripts used in this chapter myself. Nicholas 

W. Wood, Catherine S. Storm, Demis A. Kia, Rachel Coneys and Burleen K. Chhatwal, contributed 

to the interpretation of my results. 

 

 

 

 

 



139 
 

5.1. Introduction  
 

Obesity is an abnormal or excessive fat accumulation. Obesity is reported as one of the leading causes 

of death and a risk factor for many metabolic, inflammatory and autoimmune diseases in terms of their 

incidence, disease severity and outcomes.(Mohammad et al., 2021, Gremese et al., 2014)  Therefore, 

obesity is regarded as a major public health concern responsible for a significant reduction in the 

quality health (Mohammad et al., 2021). Evidence shows that excess body fat is accompanied by 

inflammation and alterations in the immune cell function, reflected in an increase in circulating pro-

inflammatory proteins, elevated leukocyte, neutrophil, monocyte and lymphocyte counts and impaired 

immune cell function, leading to an increased risk of severe infectious diseases.(de Heredia et al., 

2012, Mohammad et al., 2021) 

In obese individuals, research has demonstrated that white adipose tissue (WAT) is the major source 

of inflammation,(Park et al., 2014) and it can constitute up to 50% of the total body mass in extreme 

obesity (Kanneganti and Dixit, 2012). WAT stores excess calories in the form of triglycerides and 

tightly coordinates energy supply and demand at the whole organism level; therefore, WAT is regarded 

as an energy storage (Kanneganti and Dixit, 2012, Kusminski et al., 2016, Ouchi et al., 2011).  

WAT also functions as a key endocrine organ, secreting various adipocyte-derived factors collectively 

called adipokines, or adipocytokines (Kanneganti and Dixit, 2012, Kusminski et al., 2016, Ouchi et 

al., 2011). These adipokines can have pro-inflammatory effects, such as interleukin (IL)-1β, IL-6, 

TNFα and leptin, or anti-inflammatory activities, such as adiponectin (Forny-Germano et al., 2019, 

Kusminski et al., 2016). Dysregulated secretion of these adipokines, such as in the case of excess 

adiposity and adipocyte dysfunction, was associated with an increased risk of obese people developing 

a number of related diseases (Forny-Germano et al., 2019, Ouchi et al., 2011). 
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During the development of obesity, WAT undergoes expansion due to excessive fat accumulation 

(hypertrophy) and an increase in the number of adipocytes (hyperplasia) through recruitment of pre-

adipocytes from the resident pools of progenitor cells; the latter process embodies de novo adipocyte 

formation (adipogenesis) (Kusminski et al., 2016, Buechler et al., 2015). Due to WAT expansion, 

vasculature cannot supply oxygen to the expanding tissue, resulting in the activation of hypoxia and 

hypoxia-inducible factor-1 (HIF-1) (Buechler et al., 2015, Kusminski et al., 2016). Activated HIF-1 

inhibits pre-adipocyte differentiation and initiates adipose tissue fibrosis,(Buechler et al., 2015, 

Kusminski et al., 2016) resulting in limited adipose tissue growth and excess fat stored in ectopic 

tissues (Buechler et al., 2015). As result of dysfunctional WAT and hypoxia, a shift to an adverse 

adipokine secretory profile occurs, which typically implies an elevated array of pro-inflammatory 

factors with a simultaneous reduction in anti-inflammatory factors and recruited monocytes 

(Kusminski et al., 2016). This pattern of pro-inflammatory cytokine production and immune cell 

infiltration into adipose tissues establish and maintain a chronic inflammation state (low-grade 

inflammation). This chronic inflammation is regarded as an aetiology for obesity-related diseases, such 

as autoimmune diseases, allergy diseases, cancer, atherosclerosis, Alzheimer’s disease, insulin 

resistance and type 2 diabetes (Kuroda and Sakaue, 2017). 

Furthermore, ectopic fat deposition in other tissues, such as lymphoid organs (bone marrow and 

thymus), may occur because WAT becomes severely dysfunctional and unable to expand properly to 

store surplus energy (Kusminski et al., 2016, Mohammad et al., 2021). Increased fat deposition in these 

tissues leads to changes in the distribution of leukocyte populations, lymphocyte activity and overall 

immune defences, which may weaken the immune system and make obese patients vulnerable to 

infectious diseases (Andersen et al., 2016, Mohammad et al., 2021). 
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These data, indeed, raise a critical question of whether losing weight can reduce inflammation and 

therefore the risk of obesity-related diseases? Interestingly, evidence revealed that weight-loss 

interventions are a determining factor for reducing the number of adipose tissue macrophages, the level 

of pro-inflammatory profiles in obese individuals and incident diseases risk (Ouchi et al., 2011, 

Forsythe et al., 2008).  For example, a systematic review showed that a 1-kg loss of body weight was 

associated with a −0·13 mg/l change in C-reactive protein, achieved through diet and lifestyle 

modifications, which increased to a -0·16 mg/l change per 1 kg weight loss caused by gastric surgery 

(Forsythe et al., 2008, Selvin et al., 2007). Furthermore, studies related to the effects of weight loss on 

disease risk and activity have shown promising results. For example Klingberg et al. showed that 

weight loss treatment with a very low energy diet significantly reduced the disease activity in joints, 

entheses and skin in patients with psoriatic arthritis and obesity (Klingberg et al., 2019). Additionally, 

Haase et al. found in their study that 13% loss of body weight in obese patients is associated with lower 

risk of type 2 diabetes, chronic kidney disease, hypertension and dyslipidaemia (Haase et al., 2021). 

 

5.2. The role of body fat in multiple sclerosis 
 

In MS, a link has been demonstrated between obesity, the risk of developing MS and a worsening 

disability level in MS patients. Recent observational and MR studies have shown that obesity in 

childhood or early adulthood, as measured by elevated BMI, is associated with the risk of developing 

MS (Munger et al., 2009, Hedström et al., 2012, Mokry et al., 2016, Harroud et al., 2021). Although 

BMI is commonly used to identify obese persons due to its ease of calculation and cost-effectiveness 

(Pilutti and Motl, 2019), its use has been criticised (Frankenfield et al., 2001). BMI does not distinguish 

between the contributions of fat and non-fat tissue (e.g., lean tissue mass) to body weight (Speed et al., 

2019) which might contribute to the misclassification of certain groups of individuals. For instance, 

athletes might be classified as obese due to their higher BMI, but the BMI increase comes from higher 

lean muscle mass, not from accumulated fat (Jonnalagadda et al., 2004).  
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In addition, BMI does not capture the location of body fat and non-fat, which have been shown to play 

an essential role in predicting the risk of several diseases. For example, increased abdominal fat is 

associated with cancer, stroke and cardiometabolic disease, whereas decreased lean mass of the arms 

and legs is associated with increased falls and frailty (Wingo et al., 2018).  

 

Although MR studies have been employed to investigate the relation between obesity (BMI) and MS 

risk, the MR approach has not yet been used to investigate the relation between obesity and the 

progression of disability in MS. Observational studies of obesity and the progression of disability in 

MS patients have reported inconsistent findings. Whereas some studies report evidence supporting the 

association between higher BMI,FM, FP and disability progression in MS (Pilutti and Motl, 2019, 

Richter et al., 2017), other studies have identified no evidence of an association between disability 

progression in MS and BMI, FM or FP (Lambert et al., 2002, Tadić et al., 2020).  

5.3. Aims 
 

I aimed to conduct an MR analysis to investigate the relationship between MS and anthropometric 

measures. Specifically, I assessed two questions: 

1. The causal effects of lifelong genetically elevated adult BMI, height, weight, FM, FP and NFM 

— henceforth, “anthropometric measures” — on MS risk and severity to better understand the 

effect of obesity on MS. 

2. Whether the lifelong genetic predisposition to increased MS risk affects anthropometric 

measures. 

 

 

 

 

 

 

 

 

https://www.nature.com/articles/ijo200811.pdf
https://www.nature.com/articles/ijo200811.pdf
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5.4. Method 
 

To test whether each anthropometric measure is a causal risk factor for MS risk and severity, I obtained 

the summary statistics of 21 anthropometric measures from the Neale Lab consortium.  These 21 

anthropometric measures were divided into two categories (Table 5.1). The adiposity-related measures 

included BMI, weight, FP and FM for the whole body, the upper limbs (the right and the left arms), 

the lower limbs (the right and the left legs) and the trunk. The second category included the height and 

the NFM for the whole body, upper limbs, lower limbs and trunk. With anthropometric measure-

associated SNPs regarded as exposure (method section 2.2.2.3), I then obtained the corresponding 

effect estimates for MS risk and MS severity as the outcome from IMSGC (method section 2.2.3). 

To explore whether MS influences anthropometric measures (bidirectional MR analysis), I selected 

200 susceptibility variants as GWAS for MS risk obtained from the discovery phase of the most recent 

cohort of the IMSGC (method section 2.2.3) and then obtained the corresponding effect estimates for 

anthropometric measures as the outcome from the Neale Lab consortium. 

All the selected SNPs were clumped at LD = r2 < 0.001, followed by Steiger filtering. Then, the mean 

F-statistic and R2 were computed. For the statistical analysis, I used IVW as the main estimator and 

MR-Egger, weighted median, Cochran’s Q and I2 tests and the MR-Egger intercept as sensitivity tools. 

I also used IVW MR-radial to identify the outlier SNPs. Finally, MVMR was used to account for 

pleiotropy and estimate the direct effect. For more details about the selection and validity assessment 

of the genetic variants and the statistical method, refer to the method chapter. 
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5.4. Results 

Table 5.1 shows the exact numbers of genetic variants, sample size, R2, the mean F-statistic and the 

means SD for the anthropometric measures. Weak instrument bias is likely negligible in this data since 

the mean F-statistic is greater than 10. Figure 5.1 shows the genetic correlations among the 21 

anthropometric measures. 
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Table 5.1. Sample characteristics for the traits of interest 

 

Exposure (UK biobank code)  

Mean 

(standard 

deviation) 

sample 

size 

Anthropometrics-MS risk Anthropometrics-MS severity 

Independent 

genome-

wide 

significant 

SNPs 

Approximate 

variance 

explained 

(%) 

mean 
F-

statistic 

Independent 

genome-

wide 

significant 

SNPs 

Approximate 

variance 

explained 

(%) 

mean 

F-

statistic 

MS risk (as exposure) 115,803 97 19a 77 
   

Height (50) 168.5 cm (9.3) 360,388 530 8.6 118 401 6.9 126 

BMI (21,001) 
27.3 kg/m2 
(4.8) 

359,983 266 4.2 58 168 2.9 64 

Weight (21,002) 77.9 kg (15.9) 360,116 304 4.2 64 168 2.9 64 

Trunk fat-mass (23,128) 13.7 kg (5.1) 354,597 261 4.1 56 176 3.1 62 

Arm fat mass left (23,124) 1.3 kg (0.7) 354,673 249 3.8 57 165 2.7 62 

Arm fat mass right (23,120) 1.2 kg (0.6) 354,736 253 3.9 57 162 2.7 63 

Arm fat percentage left (23,123) 30.2 % (10.2) 354,707 225 2 55 151 1.4 60 

Arm fat percentage right (23,119) 29.4 % (10.1) 354,760 236 2.1 55 147 1.4 60 

Arm non-fat mass left (23,125) 2.9 kg (0.8) 354,668 330 2.6 69 228 1.9 75 

Arm non-fat mass right (23,121) 2.9 kg (0.8) 354,732 323 2.5 71 218 1.8 77 

Whole body fat mass (23,100) 24.8 kg (9.5) 354,244 258 3.8 56 168 2.8 63 

Whole body fat percentage 
(23,099) 

31.4 % (8.5) 354,628 240 2.1 54 156 1.4 58 

Whole body non-fat mass 

(23,101) 
53.1 kg (11.5) 354,808 374 3.1 76 242 2.2 84 

Leg fat mass left (23,116) 4.2 kg (1.9) 354,788 249 2.5 56 155 1.7 63 

Leg fat mass right (23,112) 4.3 kg (1.9) 354,807 249 2.5 57 152 1.7 64 

Leg fat percentage left (23,115) 32.0 % (10.6) 354,791 228 1.2 52 144 0.8 54 

Leg fat percentage right (23,111) 32.0 % (10.7) 354,811 230 1.3 52 149 0.9 54 

Leg non-fat mass left (23,117) 8.8 kg (2.0) 354,771 333 2.8 72 217 1.9 78 

Leg non-fat mass right (23,113) 8.9 kg (2.0) 354,798 350 2.9 71 228 2 77 

Trunk fat percentage (23,127) 31.1 % (8.0) 354,619 225 2.8 54 148 2 59 

Trunk non-fat mass (23,129) 29.6 kg (6.0) 354,530 353 3 79 243 2.3 86 

 

a Because MS risk is a binary trait, variance explained was extracted from the original MS risk genome-wide 

association study. 
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Figure 5.1: Genetic correlations between the 21 anthropometric measures. The heat scale represents 

the strength of genetic correlation, with blue colour indicating positive genetic correlation and red 

colour indicating negative genetic correlation. Light colours correspond to lower correlations, while 

darker colours correspond to stronger correlations. 
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5.4.1.  Influence of genetically raised anthropometric measures on the risk of MS 
 

Table 5.2 displays the odds ratio for MS risk per one SD increase in each of the anthropometric 

measures. The IVW results showed that genetically raised BMI, weight, FM and FP in the whole body, 

trunk, arms (left and right) and legs (left and right) were causally associated with an increased MS risk. 

For the sensitivity analyses, the results from the weighted median method further replicated the 

direction and significance of the IVW results, thereby providing additional confidence in the IVW 

results. The results from MR-Egger were also similar to the IVW results in the direction of the causal 

associations with a moderate increase in the effect estimates; however, CI were wider, resulting in a 

number of estimations crossing the null. The I2 statistic indicated a slight degree of heterogeneity; 

however, Cochran’s Q p values were not significant, except for the weight. The MR-Egger intercept 

indicated no evidence for horizontal pleiotropy except for the FM in the right and left legs where the 

intercept p values were significant (p-value < 0.05), suggests horizontal pleiotropy effect. The 

pleiotropy-corrected causal estimates from the MR-Egger and weighted median for these measures 

were moderately increased relative to the IVW estimates, but still significant and in the same direction, 

further supporting the causal role of FM in the legs on MS risk. For height and NFM in the whole 

body, trunk, arms and legs, the MR results found no evidence for a relationship between these measures 

and MS risk. 

For the MVMR analyses, we fitted a model with adiposity-related measures that retained an effect on 

MS risk in the univariable MR models. The MVMR-IVW revealed that compared with univariable 

estimates, the direct estimates were slightly lower for the BMI, weight, FM and FP at different body 

parts and slightly larger for the FP in the right arm and the FM in the trunk but still significant. 

Meanwhile, the direct estimates for the FM in the left leg were attenuated, resulting in a wider 95% CI 

that overlapped null. Thus, the observed effects for left leg FM in the univariable MR analyses are 

more likely operating through the pathways of other adiposity-related measures 
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Table 5.2: MR estimates for the effect of anthropometric measures on MS risk (significance level is set at IVW FDR ≤ 0.05) 

 

IVW = inverse variance-weighted (multiplicative-random effect); No. of SNPs = number of single nucleotide polymorphisms that included in the analysis; OR = odds ratio; 

95% CI = confidence interval; pval = nominal p-value; FDR = False discovery rate; Q = cochran’s Q test; Q pval = Cochran’s Q test p-value; I2 (%) = expresses the level of 

heterogeneity as a percentage; MR-Egger Intercept pval = MR-Egger Intercept p value; MVMR= multivariable mendelian randomization.

Exposure 

No. 

of 

SNPs 

IVW MR-Egger Weighted median pleiotropy assessment MVMR-IVW 

OR (95%CI) pval FDR OR (95%CI) pval OR (95%CI) pval Q Q pval I2(%) 
MR-

Egger 

intercept 

MR-

Egger 

intercept 
pval 

No. 
of 

SNPs 

OR (95%CI) pval 

Whole body fat 

percentage  
240 1.49 (1.25,1.78) 6.36E-06 1.34E-04 1.88 (1.01,3.5) 4.86E-02 1.6 (1.24,2.07) 3.27E-04 271.109 6.91E-02 12.2 -0.0035 0.453 224 1.48 (1.26,1.75) 2.60E-06 

Leg fat percentage 

(left) 
228 1.52 (1.21,1.9) 2.74E-04 1.17E-03 2.65 (1.15,6.14) 2.35E-02 1.64 (1.16,2.33) 5.25E-03 257.13 7.59E-02 12.1 -0.0068 0.176 217 1.41 (1.13,1.77) 2.30E-03 

Leg fat percentage 

(right) 
230 1.48 (1.19,1.84) 4.58E-04 1.38E-03 2.57 (1.15,5.74) 2.21E-02 1.6 (1.17,2.19) 3.64E-03 258.177 8.29E-02 11.7 -0.0068 0.163 215 1.33 (1.08,1.64) 7.90E-03 

Arm fat percentage 

(right) 
236 1.39 (1.18,1.64) 1.02E-04 1.07E-03 1.67 (0.98,2.84) 6.01E-02 1.58 (1.22,2.06) 5.83E-04 245.817 2.85E-01 4.8 -0.0029 0.477 223 1.49 (1.27,1.76) 1.60E-06 

Arm fat percentage 

(left) 
225 1.3 (1.1,1.55) 2.57E-03 5.39E-03 1.96 (1.14,3.37) 1.50E-02 1.51 (1.15,1.98) 2.75E-03 239.56 2.13E-01 6.9 -0.0064 0.119 212 1.23 (1.04,1.45) 1.46E-02 

Trunk fat percentage  225 1.29 (1.11,1.49) 7.24E-04 1.90E-03 1.46 (0.87,2.45) 1.53E-01 1.42 (1.14,1.76) 1.67E-03 243.956 1.60E-01 8.6 -0.0023 0.622 211 1.26 (1.1,1.45) 1.22E-03 

Whole body fat mass  258 1.23 (1.09,1.4) 1.15E-03 2.68E-03 1.35 (0.91,2) 1.32E-01 1.28 (1.06,1.55) 1.00E-02 289.278 7.49E-02 11.5 -0.0019 0.627 244 1.21 (1.07,1.37) 1.97E-03 

Arm fat mass (left) 249 1.26 (1.11,1.42) 2.78E-04 1.17E-03 1.3 (0.9,1.86) 1.61E-01 1.3 (1.06,1.59) 1.29E-02 258.662 2.92E-01 4.5 -0.0006 0.857 237 1.24 (1.1,1.4) 6.24E-04 

Arm fat mass (right) 253 1.24 (1.1,1.4) 4.40E-04 1.38E-03 1.4 (0.98,1.99) 6.80E-02 1.29 (1.06,1.56) 1.12E-02 260.027 3.34E-01 3.5 -0.0024 0.497 243 1.2 (1.07,1.36) 2.83E-03 

Leg fat mass (right) 249 1.22 (1.05,1.42) 9.64E-03 1.69E-02 2.14 (1.35,3.39) 1.36E-03 1.33 (1.04,1.7) 2.51E-02 255.956 3.34E-01 3.5 -0.0094 0.0121 237 1.19 (1.03,1.38) 2.18E-02 

Leg fat mass (left) 249 1.2 (1.03,1.39) 2.08E-02 3.11E-02 2.01 (1.28,3.17) 2.88E-03 1.28 (1.01,1.64) 4.22E-02 250.115 4.33E-01 1.2 -0.0086 0.0184 238 1.15 (0.99,1.34) 6.37E-02 

Trunk fat mass  261 1.16 (1.03,1.31) 1.52E-02 2.46E-02 1.28 (0.86,1.89) 2.20E-01 1.26 (1.05,1.52) 1.42E-02 285.926 1.20E-01 9.4 -0.002 0.621 247 1.18 (1.05,1.33) 5.48E-03 

BMI  266 1.25 (1.11,1.4) 1.89E-04 1.17E-03 1.6 (1.15,2.21) 5.25E-03 1.23 (1.01,1.5) 4.45E-02 275.14 3.06E-01 4 -0.0053 0.114 253 1.21 (1.08,1.36) 8.85E-04 

Weight  304 1.2 (1.05,1.36) 5.92E-03 1.13E-02 1.3 (0.91,1.84) 1.47E-01 1.21 (1,1.46) 4.80E-02 365.459 7.20E-03 17.4 -0.0016 0.634 281 1.13 (1.01,1.28 3.50E-02 

Height  530 1.02 (0.92,1.12) 7.40E-01 7.40E-01 1.11 (0.9,1.38) 3.41E-01 1.02 (0.88,1.17) 8.25E-01 715.734 8.63E-08 26.2 -0.002 0.369 
   

Whole body non-fat 

mass  
374 1.11 (0.95,1.31) 1.82E-01 2.12E-01 1.27 (0.83,1.93) 2.66E-01 1.09 (0.87,1.36) 4.57E-01 510.215 2.42E-06 27.1 -0.002 0.513    

Leg non-fat mass (left) 333 1.15 (0.98,1.37) 9.44E-02 1.32E-01 1.06 (0.68,1.67) 7.87E-01 1.16 (0.91,1.48) 2.28E-01 467.398 1.10E-06 29.2 0.0013 0.703 
   

Leg non-fat mass 

(right) 
350 1.15 (0.97,1.35) 1.04E-01 1.37E-01 1.1 (0.71,1.71) 6.70E-01 1.1 (0.87,1.4) 4.36E-01 475.552 6.22E-06 26.8 0.0006 0.841    

Arm non-fat mass 

(right) 
323 1.09 (0.91,1.31) 3.50E-01 3.87E-01 1.18 (0.71,1.97) 5.18E-01 1.1 (0.85,1.42) 4.62E-01 454.561 1.28E-06 29.4 -0.0012 0.737 

   
Arm non-fat mass 

(left) 
330 1.08 (0.91,1.29) 3.79E-01 3.98E-01 1.18 (0.72,1.93) 5.18E-01 1.1 (0.85,1.42) 4.63E-01 460.522 1.82E-06 28.8 -0.0013 0.722    

Trunk non-fat mass  353 1.13 (0.96,1.32) 1.46E-01 1.81E-01 0.99 (0.65,1.51) 9.57E-01 1.09 (0.86,1.39) 4.89E-01 476.228 9.22E-06 26.3 0.0021 0.515 
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5.4.2. Influence of genetically raised MS risk on anthropometric measures  
 

We further conducted a bidirectional MR to assess the causal relationship between MS risk and 

anthropometric measures, as shown in Table 5.3, which displays the β-coefficients for each 

anthropometric measure per log odds increase in MS risk. After removing six genetic instruments not 

found in the anthropometric data, 37 genetic instruments with incompatible alleles and one genetic 

instrument for being palindromic, a total of 97 instruments were used for this analysis. The IVW and 

MR-Egger results revealed that a genetic predisposition to MS has no significant effect on any of the 

anthropometric measures investigated here, except for the weighted median, where the p-values for 

some of the anthropometric measures were significant. Since there was no evidence of pleiotropy from 

the MR-Egger intercept, IVW is more robust for detecting the true causal effect than the weighted 

median. There was significant evidence of heterogeneity as reflected by the I2 statistic and Cochran’s 

Q p-values. Since the pleiotropy is balanced, the heterogeneity is more likely due to the non-

collapsibility of the odds ratio (Hemani et al., 2018a). Further, the heterogeneity in these analyses was 

accounted for by using the IVW multiplicative random-effects model (Burgess et al., 2019) 
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Table 5.3: MR estimates for the effect of MS risk on anthropometric measures (bidirectional analysis) 
 

For Abbreviations, see Table 5.2.

Outcome 

No. 

of 

SNPs 

IVW MR-Egger Weighted median pleiotropy assessment 

β (95%CI) pval FDR β (95%CI) pval β (95%CI) pval Q Q pval I2 (%) 
MR-Egger  MR-Egger  

intercept Intercept pval 

Whole body fat percentage  97 -0.0027(-0.0106,-0.0106) 4.99E-01 5.82E-01 0.0013(-0.0219,-0.0219) 9.15E-01 -0.0045(-0.0116,-0.0116) 2.13E-01 362.819 6.23E-33 73.8 -0.0004 0.721 

Arm fat percentage (left) 97 -0.0052(-0.013,-0.013) 1.91E-01 3.67E-01 7e-04(-0.0221,-0.0221) 9.52E-01 -0.0126(-0.0197,-0.0197) 4.84E-04 350.816 5.33E-31 72.9 -0.0006 0.593 

Arm fat percentage (right) 97 -0.0043(-0.0121,-0.0121) 2.80E-01 4.20E-01 0.0037(-0.0192,-0.0192) 7.52E-01 -0.0107(-0.0178,-0.0178) 2.98E-03 351.458 4.21E-31 73 -0.0009 0.468 

Leg fat percentage (left) 97 -0.0021(-0.0087,-0.0087) 5.26E-01 5.82E-01 -0.0026(-0.0221,-0.0221) 7.93E-01 -0.0053(-0.0111,-0.0111) 7.05E-02 386.698 7.72E-37 75.4 0.0001 0.96 

Leg fat percentage (right) 97 -0.0016(-0.0083,-0.0083) 6.38E-01 6.69E-01 -0.0025(-0.0221,-0.0221) 8.03E-01 -0.0041(-0.0097,-0.0097) 1.54E-01 382.452 3.87E-36 75.2 0.0001 0.924 

Trunk fat percentage  97 -0.003(-0.0122,-0.0122) 5.26E-01 5.82E-01 0.0055(-0.0216,-0.0216) 6.91E-01 -0.0077(-0.0163,-0.0163) 8.15E-02 342.521 1.12E-29 72.3 -0.0009 0.515 

Whole body fat mass  97 -0.0061(-0.0156,-0.0156) 2.10E-01 3.67E-01 0.0049(-0.023,-0.023) 7.31E-01 -0.0075(-0.0161,-0.0161) 8.52E-02 315.268 2.02E-25 69.9 -0.0012 0.414 

Arm fat mass (left) 97 -0.0078(-0.0171,-0.0171) 9.99E-02 3.67E-01 0.0042(-0.023,-0.023) 7.63E-01 -0.0111(-0.0203,-0.0203) 1.77E-02 293.994 3.37E-22 67.7 -0.0013 0.361 

Arm fat mass (right) 97 -0.0071(-0.0163,-0.0163) 1.34E-01 3.67E-01 0.0063(-0.0208,-0.0208) 6.47E-01 -0.0068(-0.0156,-0.0156) 1.30E-01 291.345 8.35E-22 67.4 -0.0014 0.304 

Leg fat mass (left) 97 -0.0041(-0.012,-0.012) 3.05E-01 4.26E-01 0.0012(-0.022,-0.022) 9.22E-01 -0.0074(-0.0146,-0.0146) 4.35E-02 330.645 8.32E-28 71.3 -0.0006 0.635 

Leg fat mass (right) 97 -0.0036(-0.0115,-0.0115) 3.67E-01 4.82E-01 0.0012(-0.022,-0.022) 9.20E-01 -0.0075(-0.0146,-0.0146) 3.94E-02 322.935 1.32E-26 70.6 -0.0005 0.666 

Trunk fat mass  97 -0.0059(-0.0157,-0.0157) 2.40E-01 3.87E-01 0.0063(-0.0225,-0.0225) 6.67E-01 -0.0032(-0.0121,-0.0121) 4.77E-01 317.838 8.13E-26 70.1 -0.0013 0.378 

BMI  97 -0.0072(-0.0171,-0.0171) 1.57E-01 3.67E-01 0.0045(-0.0246,-0.0246) 7.63E-01 -0.0086(-0.0177,-0.0177) 6.33E-02 333.353 3.13E-28 71.5 -0.0013 0.406 

Weight  97 -0.0074(-0.0168,-0.0168) 1.27E-01 3.67E-01 0.0083(-0.0193,-0.0193) 5.56E-01 -0.0032(-0.0112,-0.0112) 4.24E-01 381.51 5.54E-36 75.1 -0.0017 0.239 

Height  97 -0.0021(-0.0155,-0.0155) 7.59E-01 7.59E-01 0.0089(-0.0307,-0.0307) 6.62E-01 -2e-04(-0.0068,-0.0068) 9.58E-01 1225.761 7.96E-196 92.2 -0.0012 0.565 

Whole body non-fat mass  97 -0.0066(-0.0152,-0.0152) 1.34E-01 3.67E-01 0.0045(-0.0208,-0.0208) 7.28E-01 -0.0069(-0.0127,-0.0127) 1.91E-02 630.768 5.25E-80 84.9 -0.0012 0.363 

Arm non-fat mass (left) 97 -0.0055(-0.0138,-0.0138) 1.97E-01 3.67E-01 0.0038(-0.0206,-0.0206) 7.60E-01 -0.004(-0.0099,-0.0099) 1.90E-01 571.337 4.31E-69 83.4 -0.001 0.429 

Arm non-fat mass (right) 97 -0.0064(-0.0146,-0.0146) 1.27E-01 3.67E-01 0.0014(-0.0226,-0.0226) 9.08E-01 -0.0083(-0.0139,-0.0139) 3.43E-03 577.485 3.27E-70 83.5 -0.0008 0.501 

Leg non-fat mass (left) 97 -0.0061(-0.0138,-0.0138) 1.20E-01 3.67E-01 0.0078(-0.0148,-0.0148) 4.98E-01 -0.0026(-0.0083,-0.0083) 3.69E-01 473.153 1.46E-51 79.9 -0.0015 0.2 

Leg non-fat mass (right) 97 -0.0069(-0.0147,-0.0147) 8.56E-02 3.67E-01 0.0067(-0.0162,-0.0162) 5.69E-01 -0.005(-0.0109,-0.0109) 9.47E-02 491.258 9.72E-55 80.7 -0.0015 0.22 

Trunk non-fat mass  97 -0.0067(-0.0159,-0.0159) 1.55E-01 3.67E-01 0.0035(-0.0234,-0.0234) 7.97E-01 -0.0067(-0.0124,-0.0124) 2.25E-02 712.497 2.66E-95 86.7 -0.0011 0.431 
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5.4.3. Influence of genetically raised anthropometric measures on MS severity 
 

Table 5.4 displays the β-coefficients for MS severity per one SD increase in each anthropometric 

measure. The IVW results showed that genetically raised BMI, weight and FM in the whole body, 

trunk, arms and legs were causally associated with an increase in MS severity. For sensitivity analyses, 

the estimates were slightly increased in the MR-Egger estimator, while they were nearly identical to 

the IVW in the weighted median estimator. The MR-Egger and weighted median replicated the IVW 

direction of the estimates but did not reach statistical significance due to wide CIs. The Cochran’s Q, 

I2 statistic and MR-Egger intercept indicated no evidence for heterogeneity or horizontal pleiotropy. 

Thus, causal estimates were more convincing in the IVW results. 

For the FP, the MR findings revealed evidence that genetically raised trunk FP is causally associated 

with an increase in MS severity; however, it did not pass the FDR. By contrast, we did not detect any 

significant association between FP in the whole body or the other limbs (arms and legs) and MS 

severity. The power to detect a significant association here would seem to be low due to the small 

proportion of variance explained by the genetic variants associated with FP in the whole body and 

limbs (R2 = 0.8–1.4%) compared with the corresponding values for other anthropometric measures that 

retained an effect on MS severity (Table 5.1). For height and NFM in the whole body, trunk, arms and 

legs, we found no evidence of the causal role of these measures on MS severity. 

We took the measures that retained an effect on MS severity in the univariable MR model forward and 

further fitted an MVMR model. The MVMR-IVW revealed that BMI, weight, and FM in the whole 

body, trunk, legs and left arm have a significant direct effect on MS severity, but the estimates are 

slightly lower than the total estimates in the univariable MR analyses. The direct effect for FM in the 

right arm attenuated to the null after adjusting for the other adiposity-related measures suggests that 

the effects of FM in the right arm on MS severity were more likely operating through the pathways of 

other adiposity-related measures. 
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Table 5.4: MR estimates for the effect of anthropometric measures on MS severity (significance level is set at IVW FDR ≤ 0.05) 

 

For abbreviation see Table 5.4 

 

Exposure 

No. 

of 

SNPs 

IVW MR-Egger Weighted median pleiotropy assessment MVMR-IVW 

β (95%CI) pval FDR β (95%CI) pval β (95%CI) pval Q Q pval I2(%) 

MR-

Egger 

intercept 

MR-

Egger 
intercept 

pval 

No. 

of 

SNPs 

OR (95%CI) pval 

Whole body fat mass  168 0.35 (0.13,0.57) 1.74E-03 6.09E-03 0.8 (-0.34,1.94) 1.72E-01 0.4 (-0.22,1.02) 2.03E-01 51.305 1 0 -0.0095 0.414 141 0.25 (0.01,0.5) 0.04 

Leg fat mass (right) 152 0.48 (0.18,0.77) 1.55E-03 6.09E-03 0.99 (-0.44,2.43) 1.76E-01 0.43 (-0.38,1.24) 2.95E-01 51.714 1 0 -0.0092 0.451 124 0.28 (-0.004,0.57) 0.05 

Leg fat mass (left) 155 0.47 (0.17,0.76) 2.10E-03 6.31E-03 0.89 (-0.55,2.33) 2.28E-01 0.47 (-0.35,1.3) 2.60E-01 53.21 1 0 -0.0074 0.539 147 0.32 (0.02,0.62) 0.04 

Arm fat mass (left) 165 0.37 (0.15,0.59) 7.86E-04 6.09E-03 0.74 (-0.36,1.83) 1.89E-01 0.38 (-0.26,1.02) 2.43E-01 48.231 1 0 -0.0079 0.483 165 0.26 (0.04,0.48) 0.02 

Arm fat mass (right) 162 0.3 (0.08,0.52) 7.18E-03 1.89E-02 0.8 (-0.31,1.92) 1.58E-01 0.35 (-0.28,0.99) 2.73E-01 47.483 1 0 -0.0109 0.342 162 0.2 (-0.03,0.42) 0.08 

Trunk fat mass 176 0.35 (0.14,0.56) 1.24E-03 6.09E-03 0.73 (-0.37,1.84) 1.95E-01 0.42 (-0.16,1) 1.55E-01 55.081 1 0 -0.0084 0.469 93 0.31 (0.06,0.56) 0.01 

BMI  168 0.36 (0.14,0.57) 1.04E-03 6.09E-03 0.92 (-0.11,1.96) 8.23E-02 0.34 (-0.3,0.97) 2.95E-01 50.741 1 0 -0.0127 0.25 168 0.28 (0.06,0.51) 0.01 

Weight  168 0.36 (0.14,0.57) 1.04E-03 6.09E-03 0.92 (-0.11,1.96) 8.23E-02 0.34 (-0.3,0.98) 3.01E-01 50.741 1 0 -0.0127 0.25 127 0.26 (0.02,0.49) 0.03 

Whole body fat percentage  156 0.18 (-0.11,0.48) 2.24E-01 4.71E-01 0.49 (-1.41,2.38) 6.16E-01 0.42 (-0.35,1.19) 2.88E-01 45.049 1 0 -0.0047 0.743    

Arm fat percentage (left) 151 0.15 (-0.15,0.46) 3.33E-01 5.83E-01 1.04 (-0.68,2.76) 2.39E-01 0.26 (-0.59,1.12) 5.47E-01 45.712 1 0 -0.0141 0.288    
Arm fat percentage (right) 147 0.08 (-0.22,0.38) 6.20E-01 7.73E-01 0.92 (-0.84,2.69) 3.08E-01 0.13 (-0.72,0.98) 7.65E-01 41.891 1 0 -0.0135 0.325    

Leg fat percentage (right) 149 0.1 (-0.26,0.46) 5.79E-01 7.73E-01 0.58 (-1.98,3.14) 6.56E-01 0.25 (-0.77,1.28) 6.29E-01 37.58 1 0 -0.006 0.702    

Leg fat percentage (left) 144 0.02 (-0.34,0.39) 8.98E-01 9.03E-01 0.28 (-2.29,2.85) 8.29E-01 0.21 (-0.85,1.27) 7.02E-01 35.909 1 0 -0.0032 0.836    
Trunk fat percentage 148 0.27 (0.01,0.52) 4.36E-02 1.02E-01 0.22 (-1.37,1.82) 7.83E-01 0.52 (-0.14,1.17) 1.21E-01 45.232 1 0 0.0008 0.958    
Whole body non-fat mass  242 -0.11 (-0.39,0.17) 4.44E-01 6.66E-01 0.09 (-1.07,1.25) 8.78E-01 -0.37 (-1,0.27) 2.55E-01 94.515 1 0 -0.0033 0.717    
Arm non-fat mass (right) 218 -0.07 (-0.37,0.22) 6.26E-01 7.73E-01 0.3 (-1.06,1.65) 6.68E-01 -0.26 (-0.95,0.43) 4.62E-01 79.801 1 0 -0.0057 0.565    
Arm non-fat mass (left) 228 -0.02 (-0.31,0.28) 9.03E-01 9.03E-01 0.25 (-1.06,1.56) 7.10E-01 -0.1 (-0.81,0.62) 7.91E-01 87.229 1 0 -0.0042 0.668    

Leg non-fat mass (left) 217 0.06 (-0.24,0.36) 6.90E-01 8.05E-01 0.59 (-0.66,1.85) 3.54E-01 -0.05 (-0.74,0.63) 8.77E-01 85.704 1 0 -0.0087 0.369    

Leg non-fat mass (right) 227 0.02 (-0.27,0.31) 8.87E-01 9.03E-01 0.28 (-0.96,1.52) 6.59E-01 -0.12 (-0.82,0.57) 7.28E-01 90.03 1 0 -0.0042 0.661    
Trunk non-fat mass  243 -0.13 (-0.41,0.15) 3.61E-01 5.83E-01 -0.13 (-1.29,1.03) 8.26E-01 -0.36 (-1.01,0.29) 2.80E-01 100.419 1 0 0 0.999    

Height  401 -0.08 (-0.26,0.09) 3.54E-01 5.83E-01 -0.39 (-0.98,0.21) 2.04E-01 -0.11 (-0.5,0.27) 5.63E-01 196.563 1 0 0.0069 0.272    
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5.5. Discussion 
 

The purpose of the present study was to explore the causal role of anthropometric measures on MS to 

obtain a better understanding of the impact of excessive fat (obesity) and non-fat mass on MS risk and 

severity. Our study provides evidence from human genetics that obesity-related measures are an 

important contributor to MS development and greater disability progression, but height and NFM are 

not. 

 

Our MR findings first confirmed that a higher BMI leads to a greater risk of developing MS but found 

no evidence that MS risk influences BMI or the other anthropometric measures. This finding supports 

previous observational and MR studies that found an association between elevated BMI and an 

increase in the risk of developing MS (Mokry et al., 2016, Hedström et al., 2012, Munger et al., 2009, 

Harroud et al., 2021).  

 

BMI does not differentiate between fat and non-fat tissues and between fat stored in different parts of 

the body. Thus, BMI can partially be used to study obesity. Therefore, we used a range of 

anthropometric measures that enable capture of the fat stored in different compartments of the body 

and to discriminate between fat and non-fat tissues. Our MR findings suggest that people with greater 

fat stored in the whole body, arms, legs and trunk are at a high risk of developing MS. On the other 

hand, our findings indicated that height or having an increase in NFM are unlikely to put an individual 

at high risk of getting MS. This lack of evidence of associations between height, NFM and MS risk is 

unlikely due to low power since the number of GWAS-associated genetic instruments for height and 

NFM and the variance they explained are greater than the corresponding values—for example, for FP 

or FM in the legs, which retained a significant causal association with MS risk.  
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Of course, recommending a healthy weight (or BMI) to all people is important for lowering their risk 

of a host of diseases, and we can now add MS to this list. However, in terms of advising and managing 

patients who already have a diagnosis of MS, understanding whether fat and/or non-fat mass may play 

a role is perhaps even more important. Therefore, we were particularly interested in identifying any 

causal effect of anthropometric measures on MS severity. Our MR findings suggest that obesity is a 

significant contributor to disability progression, and therefore severity, in MS, as evident by MR results 

for BMI, weight and FM. These findings support previous observational studies that found that higher 

BMI and fat accumulation in the whole body, arm, leg and trunk are significantly associated with 

greater disability in MS patients (Pilutti and Motl, 2019, Richter et al., 2017). Our findings are also in 

line with observational studies that identified no link between NFM and disability progression in MS 

(Pilutti and Motl, 2019). By contrast, our findings are in disagreement with the results of other 

observational studies that identified no evidence of an association between disability progression in 

MS and adiposity-related measures, with respect to BMI, FM or FP (Lambert et al., 2002, Tadić et al., 

2020). The lack of association in these studies is more likely due to the small sample size, which ranged 

from 27 to 150 participants, which reduces the power to detect the true effect. 

5.5.1.  limitations 
 

 

This study also had some key limitations. Firstly, body composition differs between men and women, 

with men having more muscle mass and women having proportionally more fat mass (Schorr et al., 

2018). Body composition is also affected by the ageing process, which is generally characterized by 

an increase in total body FM and a concomitant reduction in lean mass and bone density, which are 

independent of general and physiological changes in body weight and BMI (Ponti et al., 2020). These 

changes in body composition could induce differences in the causal relation between anthropometric-

related measures and MS risk/severity in men and women of different ages. Due to the lack of GWAS 

results based on sex/age for MS, we were unable to predict such differences or determine which 

anthropometric-related measure could strongly and precisely predict the risk of MS developing or MS 
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disability worsening among obese men and women.  Secondly, we could not conduct a bidirectional 

MR analysis between anthropometric measures and MS severity due to the absence of variants with 

strong evidence of association with MS severity. Therefore, we have not ruled out a possible 

bidirectional causal relationship between anthropometric measures and MS severity. Thirdly, the other 

important issue that might affect the anthropometric-MS severity association is collider bias. A collider 

is a variable that is influenced by two or more variables (Griffith et al., 2020). In MR of progression, 

collider bias is a critical issue and can occur when the studied sample is only restricted to cases, 

resulting in independent risk factors becoming spuriously associated in the cases (Paternoster et al., 

2017) (Figure 5.2) . For example, MS risk becomes a collider variable because it is influenced by the 

obesity-related measures and other risk factors (e.g. HDL). Conditioning on MS risk (i.e., selecting 

case only individuals) will induce spurious associations between those obesity-related measures and 

the other risk factors. 

Thus, in MR, when MS severity is considered as an outcome (i.e., including only MS cases), for any 

risk factor that causes MS risk, the genetic variants for that risk factor (e.g., BMI) may be spuriously 

associated with other risk factors for MS risk (Paternoster et al., 2017) and  so, the association between 

those genetic variants and MS severity may be subject to confounding by these factors. As a 

consequences, the MR assumption that “the genetic instrument is independent of factors that confound 

the association of the exposure and the outcome” will be violated (Paternoster et al., 2017). Thereby 

caution is needed in interpreting the association between obesity-related measures and MS severity, as 

these relationships might be susceptible to collider bias. Fourthly, MR estimates reflect the lifelong 

effects of a risk factor in contrast to the short-term effects captured in observational studies.  
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Figure 5.2: Direct acyclic graph Adapted collider bias in case-only studies. (A) MS risk becomes a 

collider variable because two arrows from risk factors collide at it. Consequently, spurious associations 

may exist between risk factors, both genetic and nongenetic, that are independently associated with 

MS risk. This opens up a noncausal pathway from exposure to MS severity when the risk factor is also 

associated with the MS severity. (B) In Mendelian randomization analysis, the genetic instruments 

cause the disease, and thus they become spuriously associated with independent risk factors, which are 

confounders of the exposure-MS severity. Conditioning on disease risk opened noncausal pathways 

between all variables that cause MS risk. This graph adapted from (Mitchell et al., 2018). 
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5.5.2. Conclusion  
 

In conclusion, our findings provide evidence that obesity is an important contributor to MS 

development and MS severity, but height and non-fat mass are not. These findings expand our 

understanding of the role of anthropometric measures in MS aetiology. Importantly, these findings 

also identify a potentially modifiable factor that may reduce the accumulation of further disability and 

ameliorate MS severity. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

Chapter 6 Stroke as a risk factor for MS 
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6.1. Introduction  
 

Stroke and MS are common neurological diseases that are also common causes of disability worldwide 

(Hong et al., 2019). A stroke happens when there is a lack of oxygen and nutrients to brain tissue 

caused by an interruption to the blood flow, resulting in neuronal cell death and inflammation (Vijayan 

et al., 2017, Shi et al., 2019). There are two main types of stroke. Ischaemic stroke (IS) accounts for 

about 87% of all cases and occurs when a thrombus forms inside blood vessels or a blood clot migrates 

from the periphery, blocking the blood flow in a cerebral artery (Aloizou et al., 2021). IS can be further 

classified into large artery atherosclerotic stroke (LAS), cardioembolic stroke (CES) and stroke caused 

by small vessel stroke (SVS) (Vijayan et al., 2017, Malik et al., 2018). The second type of stroke is 

haemorrhagic stroke, which accounts for about 15% of cases and can be classified into two subtypes, 

intracerebral haemorrhage and subarachnoid haemorrhage (Vijayan et al., 2017). 

Although the causes (ischaemia/thromboinflammation vs. autoimmunity) and clinical presentations of 

stroke and MS set them apart, they share common downstream mechanisms that can lead to both 

damage and recovery (Pinheiro et al., 2016, Aloizou et al., 2021). Demyelination and axonal injury 

are common features of MS, but are also found in stroke (Pinheiro et al., 2016), while vascular 

impairment and neurodegeneration are characteristics of stroke that are also observed in MS (Pinheiro 

et al., 2016). Interestingly, the most conspicuous common feature is the neuroinflammatory response, 

which is marked by glia cell activation and immune cell migration into the CNS (Pinheiro et al., 2016, 

Aloizou et al., 2021). Not surprisingly, the two diseases also share genes, gene expression levels and 

pathways (Tian et al., 2020a, Li et al., 2019). 

Cumulative evidence suggests that patients with MS might have substantially higher risks of stroke 

than healthy people, but this relationship remains controversial. For example, a recent systematic meta-

analysis that included more than 380,000 participants reported a greater risk of developing any type of 

stroke—and IS in particular—in people with MS than in non-MS populations during the first year after 

clinical onset (Hong et al., 2019). This finding is not surprising, given that inflammation is central to 
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the pathogenesis of MS, and it is possible to explain the increased incidence of stroke among patients 

with MS using the concept of inflammatory-driven atherosclerosis (Caprio et al., 2016). During 

inflammation, inflammatory cytokines increase inflammatory cell infiltration and oxidative stress, 

impair endothelial function, accelerate the formation and disruption of atherosclerotic plaques and thus 

increase the risks of cerebrovascular diseases, including stroke (Yuksel et al., 2019, Hong et al., 2019). 

However, a recent MR analysis identified no causal role for MS in stroke risk (Peng et al., 2022). 

 

Nevertheless, because of the methodological limitations of conventional observational studies, the 

observed positive associations between MS and stroke might be due to confounding factors or reversed 

causality. For instance, there are several risk factors for IS, including blood pressure (Georgakis et al., 

2020), HDL-C(Hindy et al., 2018), LDL-C (Hindy et al., 2018) and obesity (Mitchell et al., 2015), that 

are also established risk factors for MS. Such risk factors may therefore be potential confounds that 

produce spurious associations between stroke and MS, and none of the above studies has evaluated 

and eliminated the effects of these factors. These data indicate the need for more studies to determine 

the nature of the associations between MS and stroke using novel methods that can overcome the 

limitations of conventional observational studies such as MR. 
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6.2. Aims 
 

Adjusting for confounds (blood pressure, HDL-C, LDL-C and obesity), this study aimed to examine 

the causal link between different kinds of stroke—including any stroke (AS), any IS and any IS subtype 

(LAS, CES and SVS)—and MS risk and severity by performing several MR analyses in order to 

evaluate the following relationships: 

1. Causal effects of lifelong, genetically predicted MS on the risk of stroke. 

2. Causal effects of lifelong, genetically predicted stroke on the risk of developing MS and 

on the severity of MS. 
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6.3. Method 
 

Summary statistics for SNPs associated with MS risk, MS severity and the different types of stroke 

were derived from IMSGC and MEGASTROKE data (method section 2.2.3 and 2.2.2.4, respectively). 

Other GWAS datasets, including BMI, whole body FP and FM, blood pressure (systolic blood pressure 

(SBP) and diastolic blood pressure (DBP)), HDL-C, LDL-C and serum 25-hydroxyvitamin D levels, 

were obtained from MR-Base, which is an online database and analytical platform for MR analysis 

(www.mrbase.org) that allows users to download publicly available GWAS data (Table 6.1). 

The SNPs significantly (p-value < 5 × 10−8 or p-value < 5 × 10−7) associated with exposure were 

clumped at an LD-clumping threshold of r2 = 0.01. The Steiger filtering method was then applied, and 

mean F-statistics were calculated. For the MR analyses, IVW was used as the main estimator, while 

MR−Egger, weighted median and MVMR were used as sensitivity estimators. Heterogeneity across 

estimates was assessed using I2 and Cochran’s Q. The MR−Egger intercept was used to detect 

unbalanced horizontal pleiotropies. To correct for multiple tests, FDR was used to adjust the p-values 

computed for the IVW method to mitigate false-positive rates. Exposures with significant adjusted p-

values of 0.05 or less were considered to be potential evidence of a causal effect. 

 

 

 

 

 

 

 

 

 

 

http://www.mrbase.org/
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Table 6.1: GWAS datasets included in the MVMR analysis 

 

Accession ID Trait Population 
Sample 

size 
Author 

ukb-a-359 
 

Blood 

pressure 

Diastolic blood pressure automated 

reading 

European 
 

317,756 

 

Neale Lab 
 

ukb-a-360 
Systolic blood pressure automated 

reading 
317,754 

ukb-a-248 

Obesity 

Body mass index (BMI) 336,107 

ukb-a-265 Whole body fat mass (FM) 330,762 

ukb-a-264 Body fat percentage (FP) 331,117 

ebi-a-

GCST90000615 
 Serum 25-Hydroxyvitamin D levels European 417,580 

(Revez et al., 

2020) 

ieu-a-300 
 

cholesterol 

LDL-C 

Mixed a 
 

173,082 (Willer et 

al., 2013) 
 

ieu-a-299 HDL-C 187,167 

 

a principal-components or mixed-model approaches were used to adjust for population structure in 

studies with mixed populations (i.e., European and non-European). Abbreviations: MVMR, 

multivariable mendelian randomization. 

 

 

 

 

 

 

 

6.4. Results 
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6.4.1. No causal link between genetically predicted MS susceptibility and the risk 

of stroke 
 

After evaluating LD and removing palindromic SNPs, 166−159 SNPs associated with MS risk were 

included in the MR analysis. The mean F-statistic for these SNPs was greater than 10, which suggests 

that weak instrument bias is likely negligible among these data. The main results are shown in Table 

6.2, Figure 6.1 and Figure 6.2. The results for the IVW, MR–Egger and weighted median methods 

indicated no causal effect of MS on the risk of the different types of stroke (AS, IS, LAS, CES and 

SVS). The directions of the estimates of the associations of MS with different types of stroke using 

different MR methods were consistent, except for the association of MS with IS, in which MR–Egger 

showed the opposite direction to IVW and the weighted median, suggesting the presence of outliers. 

The heterogeneity test identified evidence of heterogeneity in the analysis of MS and IS, but not in the 

analysis of MS and other types of stroke. The MR–Egger intercept provided no evidence of pleiotropy. 

Inspection of the scatter plots highlighted one outlying SNP (rs1335532) responsible for the 

heterogeneity and the inverted estimate from MR–Egger in the analysis of MS and IS. After removing 

this outlier, the directions of the effect estimates were consistent among the MR methods, and the 

heterogeneity was reduced but still significant. The MR causal effect estimates remained non-

significant, further confirming the absence of a causal effect of MS on IS. 
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Table 6.2: The estimated effects of MS on the risk of strokes based on MR 

 

 

Abbreviations: No. of SNPs, number of single-nucleotide polymorphisms; F test, mean F-statistic; IVW, inverse‐variance weighted; OR, odds ratio; CI, 

confidence interval; I2 (%), the level of heterogeneity expressed as a percentage; Q, Cochran’s Q test; AS, any stroke; IS, ischaemic stroke; LAS, large 

artery atherosclerotic stroke; SVS; small vessel stroke; CES, cardioembolic stroke. 

 

 

Traits  
No. 

of 

SNP 

F test 

MR estimates  

OR (95%) 
Pleiotropic assessment 

IVW P value FDR MR Egger P value 
Weighted 

median 
P value Q Q P value I2 (%) 

MR-Egger 

intercept 

MR-Egger 

intercept 

P value 

AS 
 All 

SNPs 
164 71 1.02(1,1.03) 9.49E-02 

  

2.36E-01 

 

1.03(0.96,1.1) 4.65E-01 1.01(0.99,1.04) 3.34E-01 190 6.70E-02 14.6 -0.0009 7.81E-01 

IS  

All 

SNPs  
166 72 1.02(1,1.04) 1.18E-01  2.36E-01 0.99(0.92,1.06) 8.21E-01 1.01(0.98,1.04) 5.39E-01 208 1.11E-02 21.1 0.0024 4.74E-01 

No 

outlie

rs 

165   1.02(1,1.04) 5.12E-02   1.02(0.95,1.1) 5.47E-01 1.01(0.98,1.04) 4.78E-01 202 2.08E-02 19.2 -0.0002 9.48E-01 

LAS 
All 

SNPs 
159 70 0.97(0.93,1.02) 2.80E-01  2.80E-01 0.89(0.75,1.06) 1.94E-01 0.97(0.9,1.03) 3.23E-01 160 4.11E-01 2.1 0.0087 2.94E-01 

SVS 
All 

SNPs 
164 70 1.03(0.99,1.07) 1.89E-01  2.36E-01 1.03(0.87,1.21) 7.57E-01 1.02(0.96,1.09) 4.71E-01 163 4.58E-01 0.8 0.0003 9.64E-01 

CES 
All 

SNPs 
164 70 1.03(0.99,1.07) 1.69E-01  2.36E-01 1.12(0.97,1.28) 1.21E-01 1.06(1,1.12) 4.10E-02 175 2.35E-01 7.3 -0.008 2.20E-01 
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Figure 6.1: (A) a scatter plot relating the effect sizes (beta-coefficients, black points) of the SNP–MS 

risk associations and the SNP–IS risk associations with 95% confidence intervals (grey lines). The 

slopes of the lines represent the causal estimates using each of the three different methods. Outlier 

SNPs are labelled. (B) the scatter plot after excluding the outlier SNPs. Abbreviations: IS, ischaemic 

stroke; MS, multiple sclerosis. 

 

A) 

B) 



 
 

168 
 

 

Figure 6.2: A scatter plot relating the effect sizes (beta-coefficients, black points) of the SNP–IS associations and the SNP–MS risk associations with 

95% confidence intervals (grey lines). The slopes of the lines represent the causal estimates using each of the three different methods. Outlier SNPs are 

labelled. Abbreviations: AS, any stroke; LAS, large artery atherosclerotic stroke; SVS, small vessel stroke; CES, cardioembolic stroke; MS, multiple 

sclerosis. 
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6.4.2. Causal link between genetically predicted IS and MS risk 
 

To examine the causal effect of different types of stroke on the risk of MS developing, 61 SNPs 

strongly and independently associated with stroke (23 SNPs associated with AS, 15 with IS, nine with 

CES, eight with LAS and six with SVS) were included in the MR analyses. The mean F-statistic for 

these SNPs was greater than 10, suggesting that weak instrument bias was likely negligible among 

these data. The main results are shown in Table 6.3, Figure 6.3 and Figure 6.4. The MR results from 

IVW demonstrated that genetically predicted IS was causally associated with an increased risk of 

developing MS. The results from the weighted median were comparable in both direction and effect 

size and were statistically significant, further supporting the IVW results, although MR–Egger 

produced a non-significant estimate due to a wider CI. There were no causal effects of AS, LAS, CES 

or SVS on MS risk. 

The direction of the estimates for the associations of IS, LAS and SVS with MS risk was consistent 

between IVW and the weighted median, but MR–Egger had an opposing direction of association, 

although the direction was consistent for the association of AS and CES with MS risk. The 

heterogeneity test was significant for the analyses of stroke and MS risk, as shown by Cochran’s Q 

test, except in the analysis of LAS and MS risk. However, the MR–Egger intercept estimate provided 

no evidence for pleiotropy in any of the analyses. 

Inspection of the scatter plots highlighted three outlier SNPs (rs11242678, rs4942561 and rs60102266) 

for IS, three (rs35818742, rs7766042 and rs76576182) for SVS, one (rs114279112) for CES and three 

(rs10774624, rs11242678 and rs7219031) for AS. These outliers were found to be responsible for the 

excessive heterogeneity and for the inverted MR–Egger estimate. To determine the impact of the 

outliers on the causal estimates, they were removed and the MR analysis repeated. The heterogeneity 

then became non-significant, and the direction of the estimates from all MR methods became 

consistent. The estimated effects remained significant for the association of IS with MS risk and non-

significant for the associations of AS, LAS and CES with MS risk. Interestingly, after removing the 
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outlier SNPs, the results provided evidence supporting the causal effect of SVS on MS risk such that 

a one-unit increase in the genetically predicted log-transformed odds of SVS could increase the risk of 

MS.  

To further validate the causal effects of IS on MS risk, MVMR analysis was performed to avoid 

pleiotropy. The analysis indicated that, after adjusting for cholesterol, obesity, blood pressure and 

serum 25-hydroxyvitamin D levels, the causal effects remained statistically significant (OR = 1.53, 

95% CI: 1.36– 1.72, p = 7.82E-13), suggesting the causal effect of IS on MS risk cannot be explained 

by these confounding factors and that IS acts as an independent risk factor for MS. 
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Table 6.3: The estimated effects of strokes on the risk of MS based on MR 

 

Abbreviations: No. of SNPs, number of single-nucleotide polymorphisms; F test, mean F-statistic; IVW, inverse‐variance weighted; OR, odds ratio; CI, 

confidence interval; I2 (%), level of heterogeneity expressed as a percentage; Q, Cochran’s Q test; AS, any stroke; IS, ischaemic stroke; LAS, large artery 

atherosclerotic stroke; SVS; small vessel stroke; CES, cardioembolic stroke. 

 

Traits  
No. 

of 

SNP 

F 

test 

MR estimates 

OR (95%) 
Pleiotropic assessment 

IVW P value FDR MR Egger P value Weighted median P value Q Q P value I2 (%) 
MR-Egger 

intercept 

MR-Egger 

intercept  

p value 

AS All SNPs 23 32 1.1(0.89,1.37) 3.57E-01 6.25E-01 1.76(0.43,7.25) 4.40E-01 1.12(0.91,1.38) 2.75E-01 58 2.73E-05 63.7 -0.0288 5.19E-01 

No outliers 20 
 

1.15(0.97,1.35) 1.01E-01 
 

1.64(0.59,4.51) 3.54E-01 1.13(0.92,1.38) 2.44E-01 25 1.33E-01 27.2 -0.0218 4.94E-01 

IS All SNPs 15 35 1.37 (1.08,1.73) 9.12E-03 2.13E-02 0.7 (0.21,2.32) 5.72E-01 1.25 (0.99,1.56) 5.65E-02 36 6.68E-04 63.6 0.0467 2.87E-01 

No outliers 12 
 

1.6 (1.32,1.93) 1.18E-06 8.26E-06 1.11(0.4,3.06) 8.46E-01 1.42 (1.11,1.82) 4.97E-03 15 1.21E-01 34.6 0.0251 4.90E-01 

LAS All SNPs 8 32 1.01(0.92,1.1) 9.08E-01 9.42E-01 0.87(0.67,1.13) 3.36E-01 1.02(0.9,1.15) 7.61E-01 2 9.14E-01 0 0.0338 2.87E-01 

No outliers 5 
 

1.05(0.94,1.18) 3.91E-01 
 

1.06(0.6,1.88) 8.52E-01 1.08(0.95,1.23) 2.58E-01 1 7.32E-01 0 -0.002 9.75E-01 

SVS All SNPs 6 27 1.1(0.82,1.47) 5.18E-01 7.25E-01 0.54(0.14,2.1) 4.21E-01 1.07(0.87,1.32) 5.37E-01 23 1.07E-04 82.9 0.1244 3.51E-01 

No outliers 3 
 

1.41(1.14,1.76) 1.89E-03 6.62E-03 1.99(0.36,10.86) 5.73E-01 1.41(1.12,1.79) 3.93E-03 3 6.38E-02 70.9 -0.0541 7.57E-01 

CES All SNPs 9 76 1(0.89,1.12) 9.42E-01 9.42E-01 1.1(0.83,1.46) 5.28E-01 1.07(0.96,1.19) 2.04E-01 15 4.03E-02 52.3 -0.0165 4.66E-01 

No outliers 8 
 

1.01(0.9,1.14) 8.21E-01 
 

1.21(0.92,1.59) 2.28E-01 1.08(0.96,1.21) 1.86E-01 10 1.16E-01 41.2 -0.0279 2.22E-01 
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Figure 6.3: (A) a scatter plot displaying the effect sizes (beta-coefficients, black points) of the SNP–

IS association and the SNP–MS risk associations with 95% confidence intervals (grey lines). The 

slopes of the lines represent the causal estimates using each of the three different methods. Outlier 

SNPs are labelled. (B) the scatter plot after excluding the outlier SNPs. Abbreviations: IS, ischaemic 

stroke; MS, multiple sclerosis. 

A) 

B) 

SNP effect on IS 

SNP effect on IS 
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Figure 6.4: (A) scatter plots displaying the effect sizes (beta-coefficients, black points) of the SNP–

AS and SNP–IS-subtype associations and the SNP–MS risk association with 95% confidence intervals 

(grey lines). The slopes of the lines represent the causal estimates using each of the three different 

methods. Outlier SNPs are labelled. (B) the scatter plots after excluding the outlier SNPs. 

A) B) 

SNP effect on SVS SNP effect on SVS 

SNP effect on CES SNP effect on CES 

SNP effect on AS 
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Abbreviations: LAS, large artery atherosclerotic stroke; SVS, small vessel stroke; CS, cardioembolic 

stroke; AS, any stroke; MS, multiple sclerosis. 

6.4.3.  No causal link between genetically predicted stroke and MS severity 

 

To examine the causal effect of stroke on MS severity, one SNP for SVS, five for AS and two each 

for IS, LAS and CES were included in the MR analyses. The mean F-statistic for these SNPs was 

greater than 10, suggesting that weak instrument bias was likely negligible among these data. The main 

results are shown in Table 6.4. The MR analysis indicated no causal effect on MS severity for any type 

of stroke. No evidence for heterogeneity was identified in the analyses. The MR–Egger intercept test 

was performed only for the AS analysis because the number of SNPs was greater than three. The results 

indicated no pleiotropy in the association between AS and MS severity. 

 

Table 6.4: The estimated effects of stroke on MS severity based on MR 

 

Trait Method 

NO. 

of 

SNPs 

  

F 

test 

  

  

MR estimates 

OR (95% CI) 
Pleiotropic assessment 

Beta (95% CI) P value FDR Q Q P value 
I2 (%) 
  

MR-Egger 
Intercept 

MR-Egger 

Intercept 

P value 

IS IVW 2 31 0.65 (-0.35, 1.65) 2.01E-01 6.39E-01 0.3 
5.60E-01 

0     

LAS IVW 2 36 -0.25 (-1.01,0.501) 5.11E-01 6.39E-01 3.3 
6.00E-02 

0     

SVS Wald ratio 1 24 0.308 (-0.49, 1.11) 4.50E-01 6.39E-01           

CES IVW 2 108 -0.032 (-1.96, 1.96) 8.27E-01 8.27E-01 1.02 
3.00E-01 

 
0     

AS 

IVW 5 36 0.29 (-0.35,0.93) 3.74E-01 6.39E-01           

MR Egger 5 
  
  

0.24 (-3.17,3.64) 
9.01E-01 

  0.236 
9.70E-01 0 

  
0.0042 

9.76E-01 

Weighted 
median 

5   0.34 (-0.41,1.1) 3.74E-01             

 

Abbreviations: No. of SNPs, number of single-nucleotide polymorphisms; F test, mean F-statistic; 

IVW, inverse‐variance weighted; OR, odds ratio; CI, confidence interval; I2 (%), the level of 

heterogeneity expressed as a percentage; Q, Cochran’s Q test; AS, any stroke; IS, ischaemic stroke; 

LAS, large artery atherosclerotic stroke; SVS; small vessel stroke; CES, cardioembolic stroke. 
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6.5. Discussion 

 

In this study, MR analyses were performed to investigate a potential causal link between stroke and its 

subtypes and MS (risk and severity). The results showed that 1) genetically predicted IS was associated 

with increased risk of MS and that this relationship was independent of IS–MS confounds; 2) MR 

analysis of IS subtypes provides genetic support for a causal effect of SVS on MS risk; 3) evidence 

for the causal role of stroke in MS severity remains uncertain; and 4) genetically predicted MS has no 

causal role in the risk of stroke. 

Cumulative evidence shows that, before the clinical onset of MS, patients with MS had a decreased 

risk of IS, but a year after clinical onset, they had an increased risk (Thormann et al., 2016, Zöller et 

al., 2012, Tseng et al., 2015), indicating that the longer an individual is exposed to MS, the higher the 

excess risk for IS (Thormann et al., 2016), perhaps due to longer periods of inflammation. Since the 

SNPs−MS were associated with loci participating in biological mechanisms leading to the risk  of MS, 

not the disease progression this may explain the absence of the causal role of MS on stroke in this 

current study. 

In line with the current findings, a recent MR analysis that used 44 SNPs extracted from the discovery 

phase of 2013 MS risk GWAS (IMSGC) identified no causal association between MS and the risk of 

AS (Peng et al., 2022). However, in that study, no MR analyses were performed to examine the causal 

role of MS on other types of stroke or the causal role of stroke in MS risk (Peng et al., 2022). Several 

other MR analyses were therefore conducted in the current study to explore the causal role of different 

types of stroke in MS. 

Interestingly, the MR analyses indicated a causal effect of IS on MS risk, and this causal relationship 

appears independent of IS–MS confounds, such as cholesterol, blood pressure, obesity and serum 25-

hydroxyvitamin D levels. Further subgroup analysis indicated a causal effect of SVS on MS risk after 

excluding outlier SNPs. No causal effects of other strokes on MS risk were identified. The lack of 
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evidence for a causal relationship between AS, LAS, CES and MS risk is unexpected due to a power 

issue because SNP–AS, SNP–LAS and SNP–CES explained 0.9%, 1.8% and 1.4%, respectively, of 

the variance in these phonotypes—relatively more than the variance explained by the SNPs in IS 

(0.9%) and SVS (0.8%). 

Although MS tends to affect young adults between the ages of 20 and 40 years and strokes tend to 

affect people 65 or older (Yousufuddin and Young, 2019, Naseri et al., 2021), both diseases can arise 

at any age. The incidence of late-onset MS has been examined in several studies that have reported 

patients experiencing their first symptoms at the age of 60 or older (Martinelli et al., 2004), including 

a case report of MS onset in an 82-year-old (Martinelli et al., 2004). Likewise, data on incidence and 

prevalence indicate that IS is no longer a disease affecting just elderly people, with 10% to 20% of IS 

events occurring in people aged 18 to 50 years (Boot et al., 2020). In the current analysis, the ages of 

cases of IS and SVS GWASs range from 15 to 65 years old, and the age for MS cases range from 18 

to 69 years old, which provides an overall idea of how IS and SVS may happen first. 

It is unclear which biological mechanisms could explain the causal effect of IS on MS risk, but recent 

evidence suggests the possible role of autoimmunity after strokes. IS causes damage to neurons, glia 

and the vasculature, resulting in BBB damage, haemorrhage, oedema and necrotic cell death (Javidi 

and Magnus, 2019). Dying and dead cells prompt the release of danger signals that activate the immune 

system (Javidi and Magnus, 2019). The sterile inflammatory reaction then involves the innate immune 

system, with the activation of the resident immune cells of the CNS, such as microglia, and a rapid 

infiltration of peripheral immune cells, including neutrophils, dendritic cells, macrophages and 

lymphocytes, into the brain through the compromised BBB (Javidi and Magnus, 2019). After the 

lymphocytes infiltrate the ischaemic brain and brain antigens are released into the CNS and peripheral 

circulation, IS may induce a secondary autoimmune response due to direct contact between brain 

antigens and lymphocytes in the CNS and peripheral circulation (Javidi and Magnus, 2019).  
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Indeed, 24 hours following a stroke, a higher peak concentration of autoantigens (i.e., self-antigens) 

such as MBP, neuron-specific enolase (NSE) and S100beta, has been observed in the serum of patients 

with stroke (Jauch et al., 2006). These antigens can be internalised by macrophages and other antigen-

presenting cells and present on MHC class (Wang et al., 1992). The antigens bound to MHC class II 

molecules can be recognised by T-cells, which may then be activated, proliferate and/or secrete 

cytokines, such as interferon-gamma (Wang et al., 1992). High numbers of T-cells secreting interferon-

gamma in response to MBP and myelin proteolipid protein (PLP) have been observed in patients with 

IS (Wang et al., 1992). Indeed, a damaged BBB, activated microglia, T-cells infiltrating into the brain 

and the damaging effect of adaptive immunity are well established in MS patients and MS animal 

models (EAE and autoimmune demyelination) (Javidi and Magnus, 2019, Iadecola and Anrather, 

2011, Schaeffer et al., 2015b), and at a biological level, this mechanism may therefore offer the most 

intriguing hypothesis to explain the causal role of IS in MS risk. 

Although there is an accumulation of evidence that describes IS risk in people with MS (Hong et al., 

2019), MS incidence in IS cases remains unknown—exacerbation of MS after stroke has been 

described, but it seems rare. So far, the studies undertaken have presented preliminary results in an 

abstract form, but final results have not been published. For example, a rare case was reported of a 

female patient with SPMS who developed high disease activity (relapse) one month after IS of the 

right middle cerebral artery (Poellmann et al., 2015). The authors suggested that breaking the BBB 

after stroke with an influx of activated immune cells into the CNS could explain MS exacerbation after 

stroke (Poellmann et al., 2015), which may support the hypothesis proposed above. 

Recent evidence indicates that IS and MS are genetically linked, with several shared genes, gene 

expression levels and pathways (Li et al., 2019, Tian et al., 2020b). Several loci associated with IS in 

the current MR analysis, have also been reported in MS. These loci participate in immunity and 

inflammation processes, suggesting distinct pathogenesis mechanisms for the development from IS to 

MS.  
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For example, SH2B3 is an adaptor protein that functions as a negative regulator of cytokine signalling 

pathways (Flister et al., 2015). The rs3184504 [T] allele of SH2B3 causes a missense mutation 

associated with leucocytosis, enhanced innate immunity and increased susceptibility to cardiovascular 

and autoimmune disorders (Flister et al., 2015), including MS (Alcina et al., 2010). 

 

In addition, the rs1975161 variant falls in the downstream region of ILF3, which forms a heterodimer 

with ILF2 that is required for the T-cell expression of IL-2, a proinflammatory cytokine that regulates 

various aspects of inflammation (Malik et al., 2018, Beecham et al., 2013b). IL-2 and other cytokines, 

including IFN-γ and TNF-α, are widely believed to initiate MS and contribute to oligodendrocyte 

damage progression (Nasl-khameneh et al., 2018). Furthermore, rs42039 is located in the 3’-

untranslated regions of CDK6, which is recognised as a novel kinase phosphorylating nuclear factor 

kappa B (NF-kB), an important contributor to inflammation in MS (Zhou et al., 2020). 

As with MS risk, the causal relationship between strokes and MS severity was also explored in this 

study, but the MR analyses found no evidence for such a relationship. This lack of evidence may reflect 

insufficient statistical power due to the small number of SNPs included in the MR analyses of MS 

severity. 

 

6.5.1. Limitation  
 

There are several advantages of the current study. First, this appears to be the first comprehensive MR 

analysis that has examined the causal link between different types of stroke and MS risk and severity. 

Second, the MR analyses were conducted with all SNPs and without outliers to ensure the validity of 

the results and to mitigate outlier effects. Third, MVMR was employed to guard against confounders 

caused by pleiotropy and to produce robust MR results. Finally, the summary statistics for the SNPs 

were extracted from a large-scale GWAS of MS and stroke. 
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Nevertheless, the analysis also has limitations. The current evidence in Chapter 6 might not be enough 

to prove that ischemic stroke (IS) is a risk factor for MS. This is because I was unable to find any 

reports on the MS incidence in IS cases, and, so far, the studies undertaken have presented only 

preliminary results in an abstract form, with final results having not yet been published. Although this 

finding may be considered novel—especially nowadays, as there are several reports suggesting that 

MS and stroke, specifically IS, share common pathways and genes—care must be taken when 

interpreting significant results in this analysis. This is because, in some MR analyses, MR–Egger had 

an opposing direction of association, indicating the presence of outliers. After outlier removal, the 

directions of the MR estimates were consistent among all the methods (IVW, MR–Egger, and weighted 

median) and the results remained the same except for SVS. In the SVS analysis, the MR finding with 

outliers was statistically non-significant, but, after removing the outliers (3 SNPs out of 6), it became 

statistically significant. Although outlier removal methods can effectively reduce bias in MR estimates, 

caution must be taken to avoid overinterpretation, because this strategy will reduce the standard error 

of the causal effect estimate and might lead to over-fitting (Hemani et al., 2018a). In such a case, 

replicating the finding would be an effective strategy to ensure the reliability of the findings. Due to 

the lack of appropriate independent stroke data, I could not conduct a replication analysis. Furthermore, 

although METASTROKE is the most large-scale GWAS meta-analysis study, this study reported a 

small number of SNPs that reached genome-wide significance levels: 18 loci (12 novel) for AS, 20 

(12 novel) for IS, 6 (3 novel) for LAS, 4 (2 novel) for CES, and 2 novels for SVS. In this regard, it has 

been noted that other genetic variants associated with stroke in other studies might not be captured to 

some extent. Therefore, this MR should be explored in-depth following the availability of larger 

genetic data in the future Another limitation is that the MR analyses were performed using European 

ancestry, weakening the generalisability to other ancestries.  
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Although several confounding factors in the relationship between ischemic stroke and MS risk were 

controlled for in the MVMR model, the effect of relevant but unobserved potential confounders could 

not be excluded, which is an established limitation of the MR approach (Marini et al., 2020, Lee et al., 

2020b). 

Although MS tends to affect young adults between the ages of 20 and 40 years and strokes tend to 

affect people > 65, the findings indicate that IS is a risk factor for MS. This finding suggests the 

possibility that an individual who had IS at an early age may have an increased chance of having MS. 

To test this hypothesis, I sought to apply MR using genetic variants associated with early-onset stroke 

to assess of the effect of age on MS risk development. However, I failed to conduct such an analysis 

due to a lack of appropriate data. 

 

6.5.2. Conclusion 
 

In summary, MR analysis provided genetic evidence that IS and SVS, but not AS, LAS or CES, have 

a causal role in the increased risk of developing MS. No genetic evidence for causality between stroke 

and MS severity was found, and MR analysis also found no causal effect of MS on strokes. These 

findings shed light on IS as a risk factor for MS and, most importantly, suggest closer attention be paid 

to MS prevention for IS patients. 
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Chapter 7  Discussion  

7.1. Highlighting the key limitations of genetic and non-genetic studies on 

informed causal inference and drug repurposing 

 

The term “determinants of health” was first introduced in the 1970s, and it refers to several factors, 

including genetic, biological and lifestyle, that have a significant influence, whether positive or 

negative, on health (Marans, 2003). Epidemiologic studies played a unique role in identifying such 

health determinants and provided insight into the guiding diagnosis, therapy or disease control. For 

example, through GWAS, researchers have identified tens of thousands of common genetic variants 

associated with biomarkers, lifestyle factors and disease outcomes, including MS risk. However, 

understanding how these variants mechanistically influence disease phenotypes and/or translating 

GWAS findings into drug targets have proved challenging for several reasons (Jacobs et al., 2020). 

The majority of GWAS-identified SNPs are assumed not to be causal but to highlight a region of LD 

containing one or more functional SNPs (MacArthur et al., 2017). Linking the effect of SNPs to gene 

function is not straightforward without additional data, particularly as many of these disease-associated 

SNPs fall within non-coding regions of the genome with no direct impact on protein structure or 

function (MacArthur et al., 2017, Porcu et al., 2019). Observational studies have also contributed to 

identifying non-genetic health determinants such as biomarkers (e.g., lipids) or lifestyle factors (e.g., 

smoking). However, it has been unclear whether the factors identified by these studies were causal and 

contributed to disease pathogenesis or were simply due to confounding and/or reverse causation. 

Randomised clinical intervention trials are able to infer causality, but these studies are expensive and 

often have a limited duration of intervention trials, and information on potential long-term side effects 

may not be obtained (Benn and Nordestgaard, 2018).  
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7.2. Mendelian randomisation 

The challenges facing epidemiological studies in distinguishing between causation and association 

have drawn much interest to the MR approach. MR can be viewed as a platform to integrate novel 

genetic information generated in GWAS or molecular studies (QTL) to inform about causal 

associations between an exposure and a disease outcome; the demonstrated causal association is less 

likely to be affected by confounding or reverse causation.  

Given that MS is a multifactorial disease influenced by both genetic and environmental factors, 

demonstrating causation would aid the understanding of the role of these factors in MS pathogenesis, 

identify opportunities for prevention, and inform regarding potential drug targets. Therefore, this thesis 

set out to use genetics and the MR approach to address two critical questions: 

• Whether the associations between a genetically predicted risk factor  

and MS risk and severity, respectively, are causal.  

• Whether the associations between the genetically predicted expression of genes that encode 

protein targets for approved drugs or drugs in clinical development and MS risk and severity, 

respectively, are causal. 

As each results chapter included a discussion, I here briefly describe how I tackled the MR limitations. 

Following this, I summarise the main findings of this thesis.  

 

7.3. Pipeline for Mendelian randomisation analysis 

Several potential limitations apply to the MR design, the most notable being weak instruments, 

pleiotropy of instruments, and LD between genetic variants used as instruments (Benn and 

Nordestgaard, 2018). I sought to avoid such limitations by restricting the selection of instruments to 

SNPs associated with the exposure of interest at genome-wide significance (p-value 5×10-8) and then 

estimated the mean F-statistics to avoid weak instruments.  
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The selected instruments were clumped to avoid LD between instruments. Steiger filtering was used 

to exclude SNPs that explained more variation in the outcome than variation in the exposure to avoid 

pleiotropic SNPs. I used different methods that were able to identify and correct for pleiotropy, 

including the MR-Egger intercept test, Cochran’s Q test, I2 test, MR-Egger, weighted median and 

MVMR. In addition, I attempted to identify invalid and/or outlier SNPs via the radia-MR test or scatter 

plot. These SNPs were removed, and the MR analyses were repeated to ensure the validity of the 

results. Furthermore, in the case of the correlated instrument (r2 > 0.2/0.4), MR methods that take into 

account the correlation were used. 

 

7.4. Mendelian randomisation for drug target repurposing 

In Chapters Three and Four, my thesis discussed identifying potential drug repurposing opportunities 

for MS. I investigated the role of statins as therapeutic targets for MS risk and severity, respectively. I 

used a set of genes to mimic the effect of statins’ cholesterol-dependent and cholesterol-independent 

pathways. This novel approach predicted a causal association between SNPs in the RAC2 gene region 

and MS risk, suggesting that statins may reduce MS risk through an independent cholesterol pathway 

involving RAC2, a member of the family of Rho GTPases that represents a pleiotropic effect of statin 

therapy. However, no evidence of a causal relationship between statins and MS severity was observed. 

In Chapter Four, I sought to increase the opportunities for identifying therapeutic targets relevant to 

MS risk and severity by performing MR of the druggable genome. This comprehensive work revealed 

strong genetic evidence for the causal association between CCR4, SIK3 and SLAMF7 and MS risk, 

suggesting that the drugs target these genes may represent a repurposing opportunity for MS 

prevention. There is no evidence for the causal role of any of these druggable genes in MS severity.  
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7.5.  Mendelian randomisation for causal analysis of risk factors 
 

In Chapters Three, Five and Six, I described the use of SNPs to investigate the role of several risk 

factors in MS risk and severity, respectively. Using MR, I found that SNPs that act as proxies for 21 

anthropometric-related measures yielded evidence to indicate that fat (obesity) is a causal risk factor 

for MS, but height and non-fat tissue are not. The remarkable aspect of Chapter Five was that I 

provided genetic evidence that fat-related measures were also a risk factor for worsening MS severity 

but height and non-fat tissue were not. From a clinical perspective, these findings highlight fat as a 

critical aetiology for both MS risk and severity and indicate the need for strategies to control body 

composition, which may have important implications for managing MS incidence and disability 

accumulation. In Chapter Six, I conducted several MR analyses to explore the causal link between 

different kinds of strokes and MS risk and severity, respectively. The results revealed a significant link 

between ischemic stroke and its subtype, small vessel stroke, and MS risk but not MS severity. The 

findings also indicate the absence of association between other types of stroke, including AS, LAS and 

CES, and MS outcomes. Interestingly, these results shed light on the possible critical role of IS in 

increasing the risk of developing MS. Further, I evaluated the causal associations between lipid 

fractions, including HDL-C, LDL-C and TG, and MS risk and severity. These lipid fractions were 

assessed in Chapter Three, with LDL-C assessed under the effect of the cholesterol-dependent pathway 

for statins. The results provide strong evidence that HDL-C is associated with an increased risk of MS, 

whereas LDL-C and TG may not be related to MS risk. No evidence was identified for the causal role 

of lipid fractions in MS severity. Given that only fat-related measures were linked to MS severity 

among the risk factors examined here, this finding indicates that a risk factor predisposing to MS’s 

development is not necessarily related to MS severity. However, such findings may also imply a lack 

of statistical power as observed in Chapter six regarding strokes and MS severity. 

In all the previous chapters, I have also examined the causal role of increased genetic liability to MS 

on anthropometric-related measures, strokes and lipid fractions. The results did not support a causal 

association between MS genetic liability and these exposures.  
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7.6. Future aims for MS severity and clinical courses 

 

In the past few years, the study of genetics has been revolutionised by the rapid progress in GWASs 

that has led to uncovering a large proportion of the genetic variants that are concerned with the 

incidence of disease. In MS, IMSGC has identified to date more than 200 genetic loci, and these 

discoveries provide important biological insights into the genes and pathways associated with the 

development of MS. In addition, these GWASs helped to conduct different well-powered analytic 

studies, such as MR.  

However, there is a general lack of genetic variants concerning disease progression and severity. 

Paternoster et al. reported that only a small proportion of GWAS studies [approximately 8% of 

associations curated in the GWAS Catalog (p-value < 1 x 10-5)] have attempted to identify variants 

associated with disease progression or severity, and most of those have a small sample size (90% have 

sample size < 5000) (Walker et al., 2017). Similarly, MS severity and different clinical MS courses 

(RR, SP and PP) have received less attention in genetic studies. As I mentioned in Chapter One, there 

are only a few GWASs for MS severity to date, and no single result has achieved genome-wide 

significance in these studies. This highlights the need for larger cohorts to identify genetic variants 

relating to disease severity and progression to be able to conduct well-powered studies to predict new 

drugs or unintended drug effects related to the treatment of MS. Such studies would transform clinical 

care, providing insights into the strategies needed to develop better diagnosis, prognosis and prevention 

and to guide effective treatments.   

7.7. Future directions of Mendelian randomisation 
 

Since MR was initially developed, it has been applied to a wide range of research areas, including drug 

target validation and prioritisation and the interpretation of multi-dimensional omics data (Zheng et 

al., 2019). There are still areas of ongoing methodological research in MR, but work is required to 

focus on areas related to MR limitations and methods. 
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MR studies have mainly focused on European-ancestry populations due to the availability of large-

scale GWASs in European populations; however, the MR findings cannot be generalised to other 

ancestries. Therefore, increasing the availability of new exposure variables, the detail of genetic 

measurements in different ancestries, and the amount of publicly available data resources would make 

it feasible to conduct comprehensive MR studies with different ancestries. 

GWASs of omics data, such as gene expression, protein expression, metabolites, and DNA 

methylation, provide the opportunity to infer the cause–effect relationships between thousands of 

molecular phenotypes and outcomes of interest in a MR framework. In such data, there are hundreds 

of SNPs, a majority of which are highly correlated in a single gene region and any of which could be 

used to assess the causal relationship; however, using too many of these SNPs in the analysis can lead 

to spurious estimates and inflated Type 1 error rates (Burgess et al., 2017c). On the other hand, using 

only a few SNPs can lead to ignoring the majority of the data, with estimates highly sensitive to the 

particular choice of SNPs (Burgess et al., 2017c). Thus far, it is not clear how to choose which SNPs 

to include in the analysis or what represents the best LD clumping threshold to obtain the most efficient 

estimate possible without the analysis suffering from numerical instabilities when there are large 

numbers of highly correlated candidate variants (Burgess et al., 2017c). In this regard, to the best of 

my knowledge, the only MR methods available to account for the correlation between SNPs are IVW, 

MR–Egger, and maximum likelihood-based MR, while there is a rapid progress in MR development 

method for uncorrelated SNP. This limits the use of other sensitivity tests such as MR Radial. 

 

Therefore, close collaborations between methodologists, empirical researchers, and clinicians are 

required and will have the potential to improve the methodological issues and to ensure the strengths 

of MR findings.  
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Table A.1: MR results on effects of druggable genes on MS risk (nominally significant at p-value ≤ 0.05) 

(part 1) 

Gene 
Druggability 

tier 
Outcome 

No. 

SNP 
Method Beta SE p-value FDR Tissue 

ACP2 3 MS risk (discovery) 3 IVW -0.15 0.035 1.47E-05 3.72E-03 Blood 

ACP2 3 MS risk (discovery) 3 MR-Egger -0.224 0.136 1.00E-01 
 

Blood 

ALDH3A2 1 MS risk (discovery) 2 IVW 0.242 0.071 5.90E-04 4.14E-02 Blood 

CCR4 1 MS risk (discovery) 1 Wald ratio 0.912 0.248 2.36E-04 2.39E-02 Blood 

CCR4 1 MS risk (replication) 1 Wald ratio 0.966 0.251 1.15E-04 2.73E-04 Blood 

CD6 1 MS risk (discovery) 13 IVW -0.451 0.121 1.87E-04 1.98E-02 Blood 

CD6 1 MS risk (discovery) 13 MR-Egger -0.475 0.119 6.57E-05 
 

Blood 

CD6 1 MS risk (replication) 12 IVW -0.353 0.075 2.73E-06 1.04E-05 Blood 

CD6 1 MS risk (replication) 12 MR-Egger -0.243 0.081 2.79E-03 
 

Blood 

CDK14 2 MS risk (discovery) 5 IVW -0.757 0.188 5.88E-05 8.76E-03 Blood 

CDK14 2 MS risk (discovery) 5 MR-Egger -0.835 0.573 1.45E-01 
 

Blood 

CDK14 2 MS risk (replication) 2 IVW 0.425 0.215 4.79E-02 7.58E-02 Blood 

CHEK2 1 MS risk (discovery) 1 Wald ratio -1.274 0.284 7.11E-06 2.00E-03 Blood 

CXCR4 1 MS risk (discovery) 1 Wald ratio -1.815 0.439 3.55E-05 6.42E-03 Blood 

DNMT3A 1 MS risk (discovery) 7 IVW -0.759 0.158 1.48E-06 5.35E-04 Blood 

DNMT3A 1 MS risk (discovery) 7 MR-Egger -0.607 0.36 9.12E-02 
 

Blood 

GALK1 2 MS risk (discovery) 3 IVW -0.247 0.071 5.43E-04 4.14E-02 Blood 

GALK1 2 MS risk (discovery) 3 MR-Egger -0.258 0.724 7.22E-01 
 

Blood 

HDAC3 1 MS risk (discovery) 1 Wald ratio 0.474 0.138 6.03E-04 4.14E-02 Blood 

HSD3B7 4 MS risk (discovery) 2 IVW 0.535 0.141 1.41E-04 1.73E-02 Blood 

IFITM1 3 MS risk (discovery) 3 IVW 0.295 0.078 1.56E-04 1.79E-02 Blood 

IFITM1 3 MS risk (discovery) 3 MR-Egger -0.318 17.744 9.86E-01 
 

Blood 

IFNGR2 1 MS risk (discovery) 11 IVW 0.111 0.031 3.31E-04 2.99E-02 Blood 

IFNGR2 1 MS risk (discovery) 11 MR-Egger 0.061 0.05 2.27E-01 
 

Blood 

IFNGR2 1 MS risk (replication) 1 Wald ratio 0.147 0.037 7.43E-05 2.02E-04 Blood 

IL7 3 MS risk (discovery) 1 Wald ratio -1.508 0.268 1.94E-08 2.45E-05 Blood 

IL7 3 MS risk (replication) 1 Wald ratio -1.655 0.275 1.66E-09 1.05E-08 Blood 

ITGA3 4 MS risk (discovery) 2 IVW 0.665 0.163 4.73E-05 7.99E-03 Blood 

ITGB3 1 MS risk (discovery) 3 IVW -0.362 0.093 9.47E-05 1.26E-02 Blood 

ITGB3 1 MS risk (discovery) 3 MR-Egger 0.182 0.3 5.46E-01 
 

Blood 

JAK1 1 MS risk (discovery) 1 Wald ratio -0.955 0.272 4.53E-04 3.83E-02 Blood 

KLHL25 4 MS risk (discovery) 1 Wald ratio 1.125 0.301 1.87E-04 1.98E-02 Blood 

KLHL3 4 MS risk (discovery) 11 IVW -0.236 0.062 1.43E-04 1.73E-02 Blood 

KLHL3 4 MS risk (discovery) 11 MR-Egger -0.258 0.128 4.38E-02 
 

Blood 

MAP3K11 1 MS risk (discovery) 7 IVW 0.134 0.037 2.95E-04 2.77E-02 Blood 

MAP3K11 1 MS risk (discovery) 7 MR-Egger 0.038 0.192 8.44E-01 
 

Blood 

MAP3K14 2 MS risk (discovery) 1 Wald ratio 1.223 0.232 1.31E-07 1.11E-04 Blood 

MAPK11 1 MS risk (discovery) 1 Wald ratio 1.45 0.415 4.70E-04 3.84E-02 Blood 

MAPK3 1 MS risk (discovery) 5 IVW -0.178 0.035 2.79E-07 1.40E-04 Blood 

MAPK3 1 MS risk (discovery) 5 MR-Egger -0.154 0.14 2.71E-01 
 

Blood 

MAPK3 1 MS risk (replication) 2 IVW -0.2 0.034 2.92E-09 1.39E-08 Blood 

MAST3 3 MS risk (discovery) 3 IVW 0.431 0.084 3.32E-07 1.40E-04 Blood 

MAST3 3 MS risk (discovery) 3 MR-Egger 0.986 0.356 5.58E-03 
 

Blood 

MAST3 3 MS risk (replication) 2 IVW 0.535 0.072 1.52E-13 1.45E-12  Blood 
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Table A.1: MR results on effects of druggable genes on MS risk (nominally significant at p-value ≤ 0.05) 

(part 2) 

Gene 
Druggability 

tier 
Outcome 

No. 

SNP 
Method Beta SE p-value FDR Tissue 

MCL1 2 MS risk (discovery) 3 IVW -0.342 0.094 2.92E-04 2.77E-02 Blood 

MCL1 2 MS risk (discovery) 3 MR-Egger -0.229 0.628 7.16E-01 
 

Blood 

MERTK 1 MS risk (discovery) 13 IVW 0.142 0.027 1.81E-07 1.15E-04 Blood 

MERTK 1 MS risk (discovery) 13 MR-Egger 0.083 0.047 7.94E-02 
 

Blood 

NR1D1 2 MS risk (discovery) 3 IVW 0.338 0.079 2.10E-05 4.69E-03 Blood 

NR1D1 2 MS risk (discovery) 3 MR-Egger 0.416 0.134 1.97E-03 
 

Blood 

PARP2 1 MS risk (discovery) 5 IVW -0.19 0.055 6.06E-04 4.14E-02 Blood 

PARP2 1 MS risk (discovery) 5 MR-Egger -0.178 0.105 9.04E-02 
 

Blood 

PGLYRP1 4 MS risk (discovery) 6 IVW -0.206 0.049 2.22E-05 4.69E-03 Blood 

PGLYRP1 4 MS risk (discovery) 6 MR-Egger -0.141 0.104 1.74E-01 
 

Blood 

SAE1 2 MS risk (discovery) 4 IVW 0.462 0.132 4.54E-04 3.83E-02 Blood 

SAE1 2 MS risk (discovery) 4 MR-Egger -0.044 0.293 8.81E-01 
 

Blood 

SIK3 1 MS risk (discovery) 2 IVW 1.678 0.418 5.83E-05 8.76E-03 Blood 

SIK3 1 MS risk (replication) 1 Wald ratio 0.568 0.155 2.46E-04 4.25E-04 Blood 

SLAMF7 1 MS risk (discovery) 3 IVW 0.456 0.096 1.88E-06 5.95E-04 Blood 

SLAMF7 1 MS risk (discovery) 3 MR-Egger 0.365 0.512 4.76E-01 
 

Blood 

SLAMF7 1 MS risk (replication) 3 IVW 0.423 0.094 6.05E-06 1.92E-05 Blood 

SLAMF7 1 MS risk (replication) 3 MR-Egger 0.39 0.58 5.01E-01 
 

Blood 

STAT3 1 MS risk (discovery) 4 IVW -0.864 0.131 4.28E-11 1.08E-07 Blood 

STAT3 1 MS risk (discovery) 4 MR-Egger -1.133 0.985 2.50E-01 
 

Blood 

STAT3 1 MS risk (replication) 3 IVW -0.492 0.131 1.66E-04 3.16E-04 Blood 

STAT3 1 MS risk (replication) 3 MR-Egger 0.607 2.672 8.20E-01 
 

Blood 

TNFSF14 1 MS risk (discovery) 7 IVW -0.51 0.121 2.71E-05 5.27E-03 Blood 

TNFSF14 1 MS risk (discovery) 7 MR-Egger -0.575 0.112 2.74E-07 
 

Blood 

TNFSF14 1 MS risk (replication) 2 IVW -0.589 0.057 8.30E-25 1.58E-23 Blood 

TYMP 2 MS risk (discovery) 10 IVW -0.151 0.038 8.43E-05 1.18E-02 Blood 

TYMP 2 MS risk (discovery) 10 MR-Egger -0.11 0.065 8.95E-02 
 

Blood 

TYMP 2 MS risk (replication) 1 Wald ratio -0.11 0.029 1.51E-04 3.16E-04 Blood 

XPO1 2 MS risk (discovery) 1 Wald ratio 1.516 0.439 5.61E-04 4.14E-02 Blood 

YARS 2 MS risk (discovery) 2 IVW 0.591 0.172 6.01E-04 4.14E-02 Blood 

ABCA1 1 MS risk (discovery) 1 Wald ratio -0.72 0.191 1.67E-04 2.29E-02 Brain 

ALDH1L1 4 MS risk (discovery) 2 IVW 0.773 0.173 7.55E-06 1.41E-03 Brain 

CDK3 2 MS risk (discovery) 1 Wald ratio -0.539 0.147 2.36E-04 2.48E-02 Brain 

DKKL1 3 MS risk (discovery) 1 Wald ratio -0.764 0.12 2.25E-10 2.78E-07 Brain 

GALC 3 MS risk (discovery) 1 Wald ratio -0.391 0.107 2.41E-04 2.48E-02 Brain 

GALC 3 MS risk (replication) 1 Wald ratio -0.214 0.108 4.64E-02 4.64E-02 Brain 

IFITM1 3 MS risk (discovery) 1 Wald ratio 1.195 0.264 5.91E-06 1.41E-03 Brain 

IL2RA 1 MS risk (discovery) 1 Wald ratio 0.383 0.086 7.98E-06 1.41E-03 Brain 

IL2RA 1 MS risk (replication) 1 Wald ratio 0.43 0.1 1.86E-05 2.79E-05 Brain 

IL7 3 MS risk (discovery) 1 Wald ratio -0.822 0.145 1.56E-08 6.41E-06 Brain 

IL7 3 MS risk (replication) 1 Wald ratio -0.896 0.171 1.62E-07 4.86E-07 Brain 

KLHL18 4 MS risk (discovery) 2 IVW 0.37 0.1 2.25E-04 2.48E-02 Brain 

MAPK3 1 MS risk (discovery) 1 Wald ratio -0.819 0.174 2.44E-06 7.52E-04 Brain 

PVR 3 MS risk (discovery) 1 Wald ratio 0.245 0.06 3.95E-05 6.09E-03 Brain 

RPS6KB1 1 MS risk (discovery) 1 Wald ratio -0.511 0.147 5.23E-04 4.97E-02 Brain 
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Table A.3: Heterogeneity and pleiotropy assessments for the effects of druggable genes on MS risk 

Gene Outcome No.SNPs 
MR-Egger 

intercept 

MR-Egger 
intercept p-

value 

Cochrans' Q 
Cochrans' Q 

p-value 
I2 Tissue 

ACP2 MS risk (discovery) 3 0.035 5.46E-01 0.32 5.70E-01 0 Blood 

CD6 MS risk (discovery) 13 0.003 7.68E-01 46.37 2.78E-06 0.74 Blood 

CD6 MS risk (replication) 12 -0.029 3.08E-02 12.28 2.67E-01 0.1 Blood 

CDK14 MS risk (discovery) 5 0.005 8.84E-01 3.88 2.75E-01 0 Blood 

DNMT3A MS risk (discovery) 7 -0.015 5.76E-01 2.21 8.19E-01 0 Blood 

DNMT3A MS risk (discovery) 7 -0.015 5.76E-01 2.21 8.19E-01 0 Blood 

GALK1 MS risk (discovery) 3 0.003 9.86E-01 0.03 8.53E-01 0 Blood 

IFITM1 MS risk (discovery) 3 0.166 9.70E-01 0.0001 9.92E-01 0 Blood 

IFNGR2 MS risk (discovery) 12 0.027 1.85E-01 11.68 3.07E-01 0.06 Blood 

ITGB3 MS risk (discovery) 3 -0.095 4.42E-02 4.1 4.28E-02 0.51 Blood 

KLHL3 MS risk (discovery) 11 0.005 8.11E-01 4.33 8.89E-01 0 Blood 

MAP3K11 MS risk (discovery) 7 0.03 6.07E-01 3.99 5.51E-01 0 Blood 

MAPK3 MS risk (discovery) 5 -0.012 8.60E-01 1.68 6.42E-01 0 Blood 

MAST3 MS risk (discovery) 3 -0.118 1.04E-01 2.1 1.47E-01 0.05 Blood 

MCL1 MS risk (discovery) 3 -0.024 8.20E-01 0.06 8.04E-01 0 Blood 

MERTK MS risk (discovery) 13 0.026 8.97E-02 8.27 6.89E-01 0 Blood 

NR1D1 MS risk (discovery) 3 -0.024 3.84E-01 0.63 4.27E-01 0 Blood 

PARP2 MS risk (discovery) 5 -0.004 8.92E-01 2.79 4.24E-01 0 Blood 

PGLYRP1 MS risk (discovery) 6 -0.024 3.98E-01 1.99 7.38E-01 0 Blood 

SAE1 MS risk (discovery) 4 0.088 6.20E-02 1.16 5.60E-01 0 Blood 

SLAMF7 MS risk (discovery) 3 0.015 8.38E-01 0.14 7.06E-01 0 Blood 

SLAMF7 MS risk (replication) 3 0.005 9.48E-01 0.106 7.45E-01 0 Blood 

STAT3 MS risk (discovery) 4 0.036 7.83E-01 3.3 1.92E-01 0.09 Blood 

STAT3 MS risk (replication) 3 -0.153 6.78E-01 0.144 7.04E-01 0 Blood 

TNFSF14 MS risk (discovery) 7 0.017 2.48E-01 13.37 2.01E-02 0.55 Blood 

TYMP MS risk (discovery) 10 -0.022 4.76E-01 21.18 6.69E-03 0.57 Blood 
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Table A.2 : MR results on effects of druggable genes on MS severity (nominally significant at p-value ≤ 0.05) 

Gene 
Druggability 

tier 
Outcome No. SNPs Method Beta SE p-value FDR Tissue 

FFAR2 2 MS severity 1 Wald ratio -2.361 0.637 2.09E-04 2.60E-01 Blood 

MAPK3 1 MS severity 2 IVW -0.26 0.071 2.42E-04 2.60E-01 Blood 

MGAT2 2 MS severity 2 IVW -1 0.283 4.11E-04 2.95E-01 Blood 

RPS26 2 MS severity 2 IVW 1.469 0.431 6.48E-04 3.48E-01 Blood 

PPID 1 MS severity 2 IVW 1.795 0.543 9.58E-04 4.12E-01 Blood 

IFNGR1 1 MS severity 2 IVW 0.975 0.308 1.53E-03 5.49E-01 Blood 

LTBR 1 MS severity 3 IVW -0.54 0.176 2.13E-03 6.00E-01 Blood 

RPS29 2 MS severity 1 Wald ratio 1.3 0.425 2.23E-03 6.00E-01 Blood 

KLF5 2 MS severity 1 Wald ratio -2.102 0.7 2.68E-03 6.41E-01 Blood 

FAM3C 3 MS severity 1 Wald ratio 0.774 0.264 3.42E-03 6.90E-01 Blood 

MYLK4 1 MS severity 9 IVW 0.273 0.094 3.76E-03 6.90E-01 Blood 

MAPK13 1 MS severity 1 Wald ratio 1.667 0.577 3.85E-03 6.90E-01 Blood 

SIGLEC9 2 MS severity 2 IVW 0.623 0.218 4.21E-03 6.97E-01 Blood 

PLAT 1 MS severity 1 Wald ratio -2.481 0.882 4.90E-03 7.53E-01 Blood 

MAP3K8 2 MS severity 2 IVW -0.861 0.31 5.40E-03 7.69E-01 Blood 

PSMC3 1 MS severity 1 Wald ratio -1.136 0.411 5.72E-03 7.69E-01 Blood 

PAK2 1 MS severity 2 IVW 0.891 0.332 7.26E-03 7.81E-01 Blood 

PDE6H 4 MS severity 2 IVW 1.136 0.425 7.55E-03 7.81E-01 Blood 

TUBD1 4 MS severity 1 Wald ratio -1.445 0.545 8.00E-03 7.81E-01 Blood 

CTSS 1 MS severity 2 IVW -0.348 0.133 8.81E-03 7.81E-01 Blood 

NR3C2 1 MS severity 2 IVW 1.819 0.695 8.85E-03 7.81E-01 Blood 

SIGLEC11 4 MS severity 2 IVW -0.247 0.095 9.25E-03 7.81E-01 Blood 

IL21R 3 MS severity 5 MR-Egger -0.647 0.251 9.85E-03  Blood 

CHSY1 3 MS severity 4 IVW -0.236 0.092 1.01E-02 7.81E-01 Blood 

LMTK3 4 MS severity 2 IVW 1.448 0.565 1.04E-02 7.81E-01 Blood 

TNFRSF8 1 MS severity 1 Wald ratio 2.251 0.884 1.09E-02 7.81E-01 Blood 

MAPK7 2 MS severity 2 IVW 1.156 0.454 1.09E-02 7.81E-01 Blood 

LYPD5 4 MS severity 2 IVW -0.836 0.332 1.18E-02 7.81E-01 Blood 

CAC1D #N/A MS severity 1 Wald ratio -1.539 0.612 1.20E-02 7.81E-01 Blood 

FPR2 2 MS severity 5 IVW -0.173 0.069 1.20E-02 7.81E-01 Blood 

SPACA3 4 MS severity 3 IVW 0.796 0.317 1.21E-02 7.81E-01 Blood 

VASH1 4 MS severity 3 IVW -0.292 0.117 1.24E-02 7.81E-01 Blood 

GMNN 1 MS severity 1 Wald ratio -1.251 0.502 1.26E-02 7.81E-01 Blood 

SPINK2 4 MS severity 3 IVW -0.667 0.268 1.28E-02 7.81E-01 Blood 

CTLA4 1 MS severity 1 Wald ratio 2.453 0.989 1.31E-02 7.81E-01 Blood 

HIST1H3E 3 MS severity 2 IVW 0.287 0.116 1.33E-02 7.81E-01 Blood 

FPR1 2 MS severity 11 IVW -0.199 0.081 1.36E-02 7.81E-01 Blood 

RPS2 2 MS severity 1 Wald ratio 1.467 0.598 1.42E-02 7.81E-01 Blood 

ST6GAL1 3 MS severity 11 IVW -0.426 0.174 1.44E-02 7.81E-01 Blood 

ARSA 1 MS severity 2 IVW -0.248 0.102 1.49E-02 7.81E-01 Blood 

FCGR2A 3 MS severity 2 IVW -1.457 0.602 1.54E-02 7.81E-01 Blood 

MAP3K7 1 MS severity 3 MR-Egger 0.996 0.412 1.56E-02  Blood 

CD34 3 MS severity 1 Wald ratio 1.264 0.524 1.58E-02 7.81E-01 Blood 

CAMK1 2 MS severity 2 IVW 0.898 0.375 1.66E-02 7.81E-01 Blood 
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Table A.2 : MR results on effects of druggable genes on MS severity (nominally significant at p-value ≤ 0.05) 

(continue) 
 

Gene 
Druggability 

tier 
Outcome No. SNPs Method Beta SE p-value FDR Tissue 

PEAK1 4 MS severity 3 IVW -0.701 0.293 1.66E-02 7.81E-01 Blood 

AEBP1 3 MS severity 1 Wald ratio 0.587 0.246 1.69E-02 7.81E-01 Blood 

ABI3BP 4 MS severity 1 Wald ratio 1.311 0.551 1.74E-02 7.81E-01 Blood 

PSMD4 1 MS severity 2 IVW 0.611 0.258 1.78E-02 7.81E-01 Blood 

PPIF 2 MS severity 2 IVW 0.587 0.249 1.86E-02 7.81E-01 Blood 

PRSS22 4 MS severity 2 IVW 0.455 0.193 1.86E-02 7.81E-01 Blood 

APOL1 3 MS severity 2 IVW -0.714 0.304 1.89E-02 7.81E-01 Blood 

PVR 3 MS severity 1 Wald ratio 2.532 1.085 1.96E-02 7.81E-01 Blood 

POLE2 1 MS severity 1 Wald ratio -1.489 0.638 1.97E-02 7.81E-01 Blood 

BCL2L1 1 MS severity 1 Wald ratio 1.952 0.838 1.98E-02 7.81E-01 Blood 

CDK18 2 MS severity 1 Wald ratio -2.137 0.921 2.03E-02 7.81E-01 Blood 

BMP2K 1 MS severity 1 Wald ratio -1.741 0.752 2.07E-02 1.03E-01 Brain 

KLHL18 4 MS severity 1 Wald ratio -1.237 0.537 2.12E-02 7.81E-01 Blood 

VRK1 3 MS severity 3 IVW 0.452 0.196 2.14E-02 7.81E-01 Blood 

KBTBD2 4 MS severity 1 Wald ratio 0.279 0.122 2.15E-02 7.81E-01 Blood 

TIMP2 3 MS severity 4 IVW -0.345 0.15 2.15E-02 7.81E-01 Blood 

PRKCZ 1 MS severity 3 IVW 0.645 0.281 2.17E-02 7.81E-01 Blood 

ICAM3 1 MS severity 2 IVW 0.298 0.13 2.18E-02 7.81E-01 Blood 

EFEMP2 3 MS severity 2 IVW -0.351 0.155 2.39E-02 8.32E-01 Blood 

C1QB 4 MS severity 2 IVW 0.309 0.137 2.44E-02 8.32E-01 Blood 

TXNRD1 1 MS severity 6 IVW -0.498 0.223 2.51E-02 8.32E-01 Blood 

RPS15A 2 MS severity 2 IVW 0.172 0.077 2.51E-02 8.32E-01 Blood 

PLSCR3 #N/A MS severity 2 IVW 0.288 0.129 2.54E-02 8.32E-01 Blood 

PF4V1 4 MS severity 1 Wald ratio -0.152 0.068 2.59E-02 8.32E-01 Blood 

CYB5D2 4 MS severity 2 IVW 0.319 0.143 2.61E-02 8.32E-01 Blood 

ME1 2 MS severity 1 Wald ratio 1.601 0.721 2.65E-02 8.32E-01 Blood 

IKBKB 1 MS severity 1 Wald ratio 0.893 0.403 2.67E-02 8.32E-01 Blood 

CPXM1 3 MS severity 1 Wald ratio 1.671 0.756 2.72E-02 8.35E-01 Blood 

CDK14 2 MS severity 3 IVW -1.333 0.607 2.79E-02 8.39E-01 Blood 

PARP1 1 MS severity 2 IVW 0.257 0.117 2.83E-02 8.39E-01 Blood 

SLAMF1 3 MS severity 4 IVW -0.636 0.29 2.85E-02 8.39E-01 Blood 

KDM3A 2 MS severity 2 IVW 1.052 0.485 3.02E-02 8.48E-01 Blood 

IL21R 3 MS severity 5 IVW -0.401 0.186 3.13E-02 8.48E-01 Blood 

GDF9 4 MS severity 2 IVW -0.893 0.416 3.18E-02 8.48E-01 Blood 

BMP2K 1 MS severity 1 Wald ratio -0.909 0.424 3.21E-02 8.48E-01 Blood 

MAPKAPK5 2 MS severity 1 Wald ratio -0.922 0.431 3.24E-02 8.48E-01 Blood 

L3MBTL1 1 MS severity 1 Wald ratio -2.051 0.962 3.31E-02 8.48E-01 Blood 

FZD2 2 MS severity 2 IVW -0.687 0.323 3.32E-02 8.48E-01 Blood 

HLA-B 3 MS severity 2 IVW 0.25 0.118 3.39E-02 8.48E-01 Blood 

RAF1 1 MS severity 3 IVW 0.674 0.32 3.49E-02 8.48E-01 Blood 

PDE8A 1 MS severity 3 IVW 0.815 0.387 3.54E-02 8.48E-01 Blood 

GHRL 1 MS severity 2 IVW -0.489 0.232 3.54E-02 8.48E-01 Blood 

PDE6B 4 MS severity 1 Wald ratio 0.576 0.274 3.57E-02 8.48E-01 Blood 

TMEM9B 4 MS severity 2 IVW -0.549 0.261 3.57E-02 8.48E-01 Blood 



193 
 

Table A.2 : MR results on effects of druggable genes on MS severity (nominally significant at p-value ≤ 0.05) 

(continue)  

Gene 
Druggability 
tier 

Outcome No. SNPs Method Beta SE p-value FDR Tissue 

ALDH2 1 MS severity 1 Wald ratio -1.745 0.831 3.58E-02 8.48E-01 Blood 

RPS6KB1 1 MS severity 2 IVW -0.781 0.373 3.61E-02 8.48E-01 Blood 

TPP1 4 MS severity 2 IVW 0.536 0.256 3.63E-02 8.48E-01 Blood 

NR3C1 1 MS severity 2 IVW -1.327 0.635 3.65E-02 8.48E-01 Blood 

FCRL5 3 MS severity 6 IVW -0.161 0.077 3.68E-02 8.48E-01 Blood 

IL15RA 3 MS severity 9 IVW -0.284 0.136 3.70E-02 8.48E-01 Blood 

HPSE 2 MS severity 3 IVW -0.318 0.153 3.70E-02 8.48E-01 Blood 

C1QC 4 MS severity 1 Wald ratio 1.005 0.482 3.70E-02 8.48E-01 Blood 

ACVRL1 1 MS severity 3 IVW -0.324 0.156 3.81E-02 8.63E-01 Blood 

HSPB1 1 MS severity 1 Wald ratio 1.077 0.525 4.01E-02 8.63E-01 Blood 

TNFSF10 2 MS severity 3 IVW -0.487 0.238 4.05E-02 8.63E-01 Blood 

FPGS 2 MS severity 1 Wald ratio -1.743 0.851 4.07E-02 8.63E-01 Blood 

CDK9 1 MS severity 1 Wald ratio -1.779 0.869 4.07E-02 8.63E-01 Blood 

TAOK3 1 MS severity 1 Wald ratio -1.216 0.598 4.18E-02 8.63E-01 Blood 

TNKS 2 MS severity 2 IVW -1.165 0.572 4.18E-02 8.63E-01 Blood 

HCAR3 2 MS severity 2 IVW -0.174 0.086 4.25E-02 8.63E-01 Blood 

BPNT1 4 MS severity 1 Wald ratio 1.375 0.678 4.27E-02 8.63E-01 Blood 

IL17RB 4 MS severity 2 IVW 0.476 0.236 4.33E-02 8.63E-01 Blood 

CD274 1 MS severity 2 IVW 0.441 0.219 4.35E-02 8.63E-01 Blood 

ESR1 1 MS severity 3 IVW -0.759 0.377 4.39E-02 8.63E-01 Blood 

SLC5A11 2 MS severity 8 IVW -0.236 0.118 4.43E-02 8.63E-01 Blood 

SORD 2 MS severity 1 Wald ratio 1.334 0.664 4.47E-02 8.63E-01 Blood 

ENTPD1 4 MS severity 6 IVW 0.198 0.099 4.53E-02 8.63E-01 Blood 

TUBB6 1 MS severity 2 IVW -0.157 0.078 4.53E-02 8.63E-01 Blood 

ANGPT1 1 MS severity 10 IVW 0.426 0.214 4.61E-02 8.63E-01 Blood 

CYP46A1 1 MS severity 1 Wald ratio -0.823 0.413 4.62E-02 8.63E-01 Blood 

FCRL6 3 MS severity 1 Wald ratio -0.215 0.108 4.68E-02 8.63E-01 Blood 

FCRL6 3 MS severity 1 Wald ratio -0.215 0.108 4.68E-02 8.63E-01 Blood 

TNFSF13 3 MS severity 2 IVW 0.258 0.13 4.68E-02 8.63E-01 Blood 

COL4A3 3 MS severity 2 IVW 0.917 0.462 4.69E-02 8.63E-01 Blood 

MAP3K7 1 MS severity 3 IVW 0.614 0.311 4.82E-02 8.63E-01 Blood 

DHRS9 1 MS severity 3 IVW -0.217 0.11 4.83E-02 8.63E-01 Blood 

CASP6 2 MS severity 3 IVW 0.976 0.494 4.84E-02 8.63E-01 Blood 

ALDH7A1 1 MS severity 5 IVW 0.308 0.156 4.86E-02 8.63E-01 Blood 

CDK8 1 MS severity 2 IVW -0.611 0.31 4.88E-02 8.63E-01 Blood 

PDE5A 1 MS severity 3 IVW -0.651 0.33 4.89E-02 8.63E-01 Blood 

EPHB3 1 MS severity 1 Wald ratio 1.168 0.594 4.94E-02 8.63E-01 Blood 

ANGPT1 1 MS severity 10 MR-Egger 0.579 0.317 6.81E-02  Blood 

MYLK4 1 MS severity 9 MR-Egger 0.346 0.211 1.00E-01  Blood 

ENTPD1 4 MS severity 6 MR-Egger 0.263 0.162 1.04E-01  Blood 

TXNRD1 1 MS severity 6 MR-Egger -0.493 0.304 1.05E-01  Blood 

DHRS9 1 MS severity 3 MR-Egger -0.512 0.32 1.10E-01  Blood 

CHSY1 3 MS severity 4 MR-Egger -0.225 0.151 1.36E-01  Blood 
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Table A.2 : MR results on effects of druggable genes on MS severity (nominally significant at p-value ≤ 0.05) 

(continue) 
 

Gene 
Druggability 

tier 
Outcome No. SNPs Method Beta SE p-value FDR Tissue 

ACVRL1 1 MS severity 3 MR-Egger -0.329 0.227 1.46E-01  Blood 

GABRG2 1 MS severity 2 IVW -0.719 0.512 1.60E-01 4.01E-01 Brain 

FPR1 2 MS severity 11 MR-Egger -0.169 0.131 1.97E-01  Blood 

SLC5A11 2 MS severity 8 MR-Egger -0.233 0.186 2.12E-01  Blood 

HPSE 2 MS severity 3 MR-Egger -0.358 0.366 3.28E-01  Blood 

PRKCZ 1 MS severity 3 MR-Egger 2.124 2.221 3.39E-01  Blood 

IL15RA 3 MS severity 9 MR-Egger -0.424 0.483 3.80E-01  Blood 

FAS 3 MS severity 1 Wald ratio 0.196 0.225 3.82E-01 6.37E-01 Brain 

RAF1 1 MS severity 3 MR-Egger 1.082 1.254 3.88E-01  Blood 

PDE5A 1 MS severity 3 MR-Egger -0.67 0.897 4.55E-01  Blood 

VRK1 3 MS severity 3 MR-Egger 0.691 0.988 4.84E-01  Blood 

ST6GAL1 3 MS severity 11 MR-Egger -0.355 0.652 5.86E-01  Blood 

LTBR 1 MS severity 3 MR-Egger -0.269 0.502 5.93E-01  Blood 

ACKR2 4 MS severity 1 Wald ratio 0.16 0.305 6.00E-01 7.50E-01 Brain 

TIMP2 3 MS severity 4 MR-Egger -0.149 0.315 6.36E-01  Blood 

FPR2 2 MS severity 5 MR-Egger -0.158 0.335 6.38E-01  Blood 

SLAMF1 3 MS severity 4 MR-Egger -2.787 6.161 6.51E-01  Blood 

SPINK2 4 MS severity 3 MR-Egger -0.266 0.631 6.74E-01  Blood 

CASP6 2 MS severity 3 MR-Egger 3.694 9.625 7.01E-01  Blood 

ALDH7A1 1 MS severity 5 MR-Egger 0.144 0.411 7.26E-01  Blood 

PDE8A 1 MS severity 3 MR-Egger 0.485 1.508 7.48E-01  Blood 

PEAK1 4 MS severity 3 MR-Egger -0.225 0.796 7.77E-01  Blood 

TNFSF10 2 MS severity 3 MR-Egger 0.133 0.565 8.14E-01  Blood 

CD109 4 MS severity 1 Wald ratio -0.102 0.553 8.53E-01 8.53E-01 Brain 

VASH1 4 MS severity 3 MR-Egger -0.668 4.091 8.70E-01  Blood 

FCRL5 3 MS severity 6 MR-Egger -0.09 0.987 9.27E-01  Blood 

ESR1 1 MS severity 3 MR-Egger -0.958 13.777 9.45E-01  Blood 

CDK14 2 MS severity 3 MR-Egger -0.157 14.103 9.91E-01  Blood 

SPACA3 4 MS severity 3 MR-Egger 0.384 481.093 9.99E-01  Blood 
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Table A.4: Heterogeneity and pleiotropy assessments for the effects of druggable genes on MS severity 

Gene Outcome No.SNPs 
MR-Egger 

intercept 

MR-Egger 

intercept p-
value 

Cochrans' 

Q 

Cochrans' 

Q p-value 
i2 Tissue 

ACVRL1 MS severity(discovery) 3 0.002 9.70E-01 1.94 1.64E-01 0 Blood 

FPR1 MS severity(discovery) 11 -0.012 7.63E-01 8.68 4.68E-01 0 Blood 

FPR2 MS severity(discovery) 5 -0.009 9.54E-01 0.39 9.41E-01 0 Blood 

ALDH7A1 MS severity(discovery) 5 0.051 4.86E-01 0.64 8.87E-01 0 Blood 

ANGPT1 MS severity(discovery) 10 -0.019 5.09E-01 8.55 3.82E-01 0 Blood 

HPSE MS severity(discovery) 3 0.011 9.00E-01 2.23 1.35E-01 0.1 Blood 

IL15RA MS severity(discovery) 9 0.031 7.42E-01 2.56 9.23E-01 0 Blood 

IL21R MS severity(discovery) 5 0.073 1.87E-01 3.4 3.34E-01 0 Blood 

LTBR MS severity(discovery) 3 -0.071 5.38E-01 0.52 4.69E-01 0 Blood 

MAP3K7 MS severity(discovery) 3 -0.057 1.01E-01 1.43 2.32E-01 0 Blood 

MYLK4 MS severity(discovery) 9 -0.03 6.13E-01 2.66 9.15E-01 0 Blood 

PDE5A MS severity(discovery) 3 0.003 9.81E-01 1.18 2.77E-01 0 Blood 

PDE8A MS severity(discovery) 3 0.043 8.10E-01 0.38 5.37E-01 0 Blood 

PEAK1 MS severity(discovery) 3 -0.074 4.97E-01 0.59 4.42E-01 0 Blood 

PRKCZ MS severity(discovery) 3 -0.238 5.01E-01 0.77 3.81E-01 0 Blood 

RAF1 MS severity(discovery) 3 -0.057 7.35E-01 1.46 2.27E-01 0 Blood 

SLAMF1 MS severity(discovery) 4 0.27 7.22E-01 0.13 9.39E-01 0 Blood 

SLC5A11 MS severity(discovery) 8 -0.005 8.41E-01 2.41 8.78E-01 0 Blood 

SPACA3 MS severity(discovery) 3 0.045 9.99E-01 0 9.99E-01 0 Blood 

SPINK2 MS severity(discovery) 3 -0.053 4.73E-01 1.43 2.32E-01 0 Blood 

ST6GAL1 MS severity(discovery) 11 -0.012 8.99E-01 2.63 9.77E-01 0 Blood 

TIMP2 MS severity(discovery) 4 -0.062 3.31E-01 0.64 7.24E-01 0 Blood 

TNFSF10 MS severity(discovery) 3 -0.115 2.15E-01 1.5 2.20E-01 0 Blood 

TXNRD1 MS severity(discovery) 6 -0.001 9.77E-01 3.83 4.29E-01 0 Blood 

VASH1 MS severity(discovery) 3 0.112 9.26E-01 0.04 8.39E-01 0 Blood 

VRK1 MS severity(discovery) 3 -0.059 7.88E-01 0.21 6.49E-01 0 Blood 

CASP6 MS severity(discovery) 3 -0.198 7.73E-01 0.07 7.92E-01 0 Blood 

CDK14 MS severity(discovery) 3 -0.077 9.32E-01 0.05 8.27E-01 0 Blood 

CHSY1 MS severity(discovery) 4 -0.008 8.37E-01 0.84 6.57E-01 0 Blood 

DHRS9 MS severity(discovery) 3 0.115 3.10E-01 2.21 1.37E-01 0.09 Blood 

ENTPD1 MS severity(discovery) 6 -0.033 6.20E-01 6.56 1.61E-01 0.2 Blood 

ESR1 MS severity(discovery) 3 0.02 9.87E-01 0 9.56E-01 0 Blood 

FCRL5 MS severity(discovery) 6 -0.029 9.40E-01 0.23 9.94E-01 0 Blood 
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