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Abstract. Gastric cancer is one of the most common cancers and a leading cause 

of cancer-related death worldwide. Among the risk factors of gastric cancer, the 

gastric intestinal metaplasia (IM) has been found to increase the risk of gastric 

cancer and is considered as one of the precancerous lesions. Therefore, early de-

tection of IM could allow risk stratification regarding the possibility of progres-

sion to cancer. To this end, accurate classification of gastric glands from the his-

tological images plays an important role in the diagnostic confirmation of IM. To 

date, although many gland segmentation approaches have been proposed, no gen-

eral model has been proposed for the identification of IM glands. Thus, in this 

paper, we propose a model for gastric glands’ classification. More specifically, 

we propose a multi-scale deformable transformer-based network for glands’ clas-

sification into normal and IM gastric glands. To evaluate the efficiency of the 

proposed methodology we created the IMGL dataset consisting of 1000 gland 

images, including both intestinal metaplasia and normal cases received from 20 

Whole Slide Images (WSI). The results showed that the proposed approach 

achieves an F1 score equal to 0.94, showing great potential for the gastric glands’ 

classification. 

Keywords: Medical image classification, vision transformers, gastric cancer, 

intestinal metaplasia 

1 Introduction 

Gastric cancer is one of the most frequent causes of cancer-related deaths worldwide. 

As reported by the WHO in 2020 [1], it is the sixth most frequent type of cancer and it 

is the fourth leading cause of cancer-related deaths mainly due to its often-late stage of 

diagnosis [2]. The risk factors of gastric cancer include Helicobacter pylori infection, 

salt intake, tobacco smoking, alcohol consumption, family history of gastric cancer, 

gastric atrophy and intestinal metaplasia (IM) [2], [3]. More specifically, the IM of the 

mucosa of the stomach is a major precursor lesion that is associated with an increased 

risk of dysplasia and cancer [4], [5]. For this reason, early and effective diagnosis of 

IM is a crucial step to prevent gastric cancer. In the IM, the native gastric glands are 
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replaced by metaplastic glands and gastric mucinous epithelial cells are replaced by 

goblet cells, enterocytes and colonocytes. Widely used diagnostic methods for IM in-

clude endoscopic and histological diagnosis. Endoscopic diagnosis of severe cases of 

IM is effortless, but there are difficulties in making the diagnosis of mild IM cases. 

Therefore, a biopsy of suspected cases of IM is suggested. Then, based on the Sydney 

protocol [6], IM is histologically diagnosed using hematoxylin and eosin (H&E) stain.  

However, the visual assessment of glands by histopathologists is a laborious and 

time-consuming task [7]. Thus, the automated precise segmentation and classification 

of glands from the histological images plays an important role in the morphological 

analysis of glands, which is a crucial criterion for effective IM detection and manage-

ment. Numerous methods have been proposed in literature for gland segmentation. 

However, to date, no generally applicable digital pathology approach has been pro-

posed and applied for gastric glands’ classification and more specifically for the iden-

tification and analysis of gastric intestinal metaplastic glands. Towards this end, in this 

paper, we propose a new methodology for gastric glands’ classification based on H&E 

-stained images. More specifically, this paper makes the following contributions: 

• We propose the IMGL-VTNet (Intestinal Metaplasia gastric GLands-Vision 

Transformer Net) that integrates a multi-scale deformable transformer model and 

a focal loss function for the gastric glands’ classification. 

• We publish the annotated IMGL dataset (Intestinal Metaplasia gastric GLands) that 

consists of normal and IM cases that we used for the training and testing of the 

proposed model. As a small number of research studies of gastric tissues use public 

data [8], we anticipate this dataset will provide the foundation for advanced studies 

of IM gastric glands and biopsies. 

The rest of this paper is organized as follows: First, details of the proposed method-

ology are presented, followed by experimental results using the IMGL dataset. Finally, 

some conclusions are drawn and future extensions are discussed. 

2 Related works 

The digital medical image classification field receives growing attention and has be-

come increasingly popular. Thus, various techniques and methods, based on either 

hand-crafted or deep learning features, have been developed for histopathological im-

age classification tasks. Hand-crafted developed classification approaches for digital 

pathology tasks are based on grayscale density, color, texture and shape information 

[9], [10], [11]. After the extraction of low-level or mid-level set of features, post-pro-

cessing methods such as dimensionality reduction and a classifier are usually used aim-

ing to assign a classification label to each image [12]. On the other hand, more sophis-

ticated classification methods such as deep-learning techniques [13] and higher-order 

dynamical systems [14], [15] have been developed aiming to address medical and his-

topathological image classification problems by extracting high-level features and 

knowledge directly from the data.  

More recently, vision transformers inspired by the deep learning model that devel-

oped for the Natural Language Processing (NLP) [16] have been utilized for medical 

image segmentation [17], classification [18] and various computer vision tasks. Vision 
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transformers apply attention mechanism to quantify pairwise long-range entity interac-

tions [19]. These can be used as the form of self-attention layers or encoder-decoder 

pairs. More specifically, an adaptation of the BoTNet [19] has been proposed for image 

classification replacing the spatial convolutional layers with multi-head self-attention 

(MHSA) layers in the last stage of ResNet. In contrast, i-ViT [20] uses the transformer 

encoder to extract and aggregate features of instance patches for the papillary renal cell 

carcinoma subtyping task. The deformable DETR [21] is a fast-converging and 

memory-saving vision transformer with six encoder-decoder pairs, which facilitates 

high resolution feature maps from multiple scales. Owing to the efficiency, DT-MIL 

[22] applies it to high-level bag representation for multi-instance learning on histo-

pathological images. Inspired by the deformable DETR, we propose a model that adopts 

a vision transformer in the glands’ classification task aiming to exploit the local and 

global visual dependencies utilizing multi-scale deformable self-attention and a novel 

scale-aware feature extraction module. 

3 Materials and methods 

The framework of the proposed methodology for the gastric glands’ classification into 

normal and IM cases is shown in Figure 1. Initially, the manually annotated IMGL 

dataset based on 20 WSI was created. Then, the segmented glands were fed to the pro-

posed IMGL-VTNet for the classification of gastric glands. 

 

 

Fig. 1. The proposed methodology. The IMGL-VTNet takes the advantage of the deformable 

transformer encoder to extract multi-scale features. 
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3.1 IMGL dataset description 

To evaluate the efficiency of the proposed methodology we created the IMGL dataset 

consisting of gastric glands (Figure 2). More specifically, the dataset includes 500 nor-

mal and 500 IM gastric glands. Gastric tissues were collected at University College 

London Hospital NHS trust, with ethical approval (research ethics committee (REC) 

reference: 15/YH/0311, & 19/LO/0089) with informed consent taken for prospective 

tissue collection. The tissues underwent routine H&E staining. For the evaluation of the 

IMGL-VTNet model we used five-fold cross validation selecting 800 gland images for 

the training and 200 images for the testing. It is worth mentioning that, as our aim is to 

develop a methodology for the early detection and diagnosis of IM to prevent gastric 

cancer, in this dataset we included mild and moderate IM cases. The dataset is available 

at the following link: 10.5281/zenodo.6908133. 

 

      

(a) (b) 

Fig. 2. Dataset images including (a) IM gastric glands and (b) normal gastric glands. 

3.2 The proposed IMGL-VTNet architecture 

The proposed model uses the ResNet-50 as the backbone, followed by the deformable 

transformer encoder-based feature extraction module. More specifically, in order to ex-

tract higher-level semantic information preserving the resolution, the stride and dilation 

of the last stage of the backbone are set as 1 and 2 respectively. Then, feature maps 𝐹1 

and 𝐹2 were upsampled by two, while 𝐹3 was encoded with a convolutional layer. Dif-

ferent kernel sizes were applied to each feature map as shown in Figure 1. Then, the 

multi-scale feature maps were concatenated, and group normalized and were fed into a 

deformable transformer encoder for the extraction of multi-scale features and the ex-

ploitation of local and global dependencies. Moreover, the extracted multi-level fea-

tures were used, and an average pooling was considered followed by a fully connected 

layer for the classification of gastric glands into normal and IM. 

To further enhance the model performance, a modulation term was applied to the 

binary Cross-Entropy loss function. The resulted focal loss [24] focuses on a set of hard 

examples improving the precision for these cases. More specifically, we defined the 

following loss function 𝐹𝐿𝑖 for the i-th image: 

 𝐹𝐿𝑖 = 𝑤𝑓𝑜𝑐𝑎𝑙 ⋅ 𝐿𝑜𝑠𝑠 (1) 

 𝑤𝑓𝑜𝑐𝑎𝑙 = {
(1 − 𝑠)𝛾 𝑝 = 1

𝑠𝛾 𝑝 = 0
 (2) 

 𝐿𝑜𝑠𝑠 = 𝑝log(𝑠) + (1 − 𝑝)log⁡(1 − 𝑠)  (3) 
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where 𝑝 is the ground truth (0 or 1) that represents the two categories (normal and IM), 

𝑠 is the predicted score and 𝛾 is the predesigned hyperparameter (we set 𝛾 = 2). It is 

worth mentioning that as the two categories of the IMGL dataset have the same number 

of training images, no additional balance was needed. 

The input images were first resized and padded to the fixed shape of (224, 224). In 

addition, an augmentation method was utilized to further increase the variability of the 

training dataset and to avoid overfitting of the network. In particular, we included trans-

lation, rotation and flipping transformations. The Adam optimizer and mean teacher 

method [23] were used to get better and more robust performance. The network was 

trained on a single NVIDIA GeForce RTX 3090 GPU with batch size 16 for 80 epochs. 

 

3.3 Multi-scale deformable transformer encoder 

The deformable transformer encoder inputs three multi-scale feature maps with height 

𝐻𝑙  and width 𝑊𝑙 (𝑙 = 1, 2, 3). The input feature maps are first embedded with fixed 

positional encodings and level information to produce the query 𝑧𝑞. The query, input 

feature maps and reference points are fed into the Multi-Scale Deformable Attention 

Module (MSDAM) to extract the multi-scale deformable attention feature map. Then 

the deformable attention feature map is added to the input feature maps, followed by a 

Feed-Forward Network (FFN). 

 

Fig. 3. Deformable transformer encoder consisting of a Multi-scale Deformable Attention Mod-

ule (MSDAM) and a Feed-Forward Network (FFN). 

In the MSDAM, value, weight and location tensors are first computed and applied 

to the multi-scale deformable attention function to produce the multi-scale deformable 

attention feature map 𝑧𝑜 via weighted average. As shown in Figure 3, the value tensor 

𝑣 is produced by embedding the input features via a linear layer. The weight 𝑊 and 

sampling offsets Δ𝑝 are produced by embedding the query via two linear layers respec-

tively. The weight is further normalized by a softmax operator along the scale and sam-

pling point dimensions. The sampling location is the element-wise addition of sampling 

offset Δ𝑝 and the reference points 𝑝. More specifically, the 𝑞-th element of the separate 

deformable attention feature 𝑧′ ∈ ℝ𝑁𝑞×𝑐𝑣 ⁡(𝑁𝑞 = ∑ 𝐻𝑙𝑊𝑙
3
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 𝑧′𝑞 = ∑ ∑ 𝑊𝑝𝑙ℎ𝑞𝑣𝑝𝑞𝑙+Δ𝑝𝑞ℎ𝑙𝑝 ⁡
3
𝑙=1

𝑁𝑝
𝑝  (4) 

where 𝑞, ℎ⁡  and 𝑝  denote the elements of the deformable attention feature 𝑧𝑜 , the 

attention head, and the sampling offsets respectively. 𝑊𝑝𝑙ℎ𝑞  is an entity of 𝑊 ∈

ℝ𝑁𝑞×𝑁ℎ×3×𝑁𝑝. Furthermore, 𝑝𝑞𝑙  and Δ𝑝𝑞ℎ𝑙𝑝 denote the position of a reference point and 

one of the 𝑁𝑝corresponding sampling offset of 𝑝 ∈ ℝ𝑁𝑞×3×2 and Δ𝑝 ∈ ℝ𝑁𝑞×𝑁ℎ×3×𝑁𝑝×2 

respectively. The number of sampling offsets and attention head are set as 𝑁𝑝 = 4 and  

𝑁ℎ = 8. The separate deformable attention features from 8 attention heads are projected 

to the 𝑞-th element of the overall output deformable attention feature 𝑧𝑜 by a linear layer:  

 𝑧𝑜𝑞 = ∑ 𝑊ℎ
′𝑧𝑞ℎ⁡

′𝑁ℎ
ℎ=1  (5) 

where 𝑊ℎ
′ ∈ ℝ𝑐×𝑐𝑣   and vector 𝒛𝑞ℎ⁡

′ ∈ ℝ𝑐𝑣  denote the learnable weight and the 𝑞-th sep-

arate deformable attention feature 𝒛′𝑞 obtained at h-th attention head. 

4 Experimental results 

In this section, we present an evaluation analysis of the proposed gastric gland classifi-

cation model as well as the efficiency of multi-scale feature maps for glands’ classifi-

cation. The goal of this experimental evaluation is threefold. Initially, we compared the 

efficiency of gastric glands’ classification, using the IMGL dataset and widely used and 

state-of-the-art approaches. Secondly, we explored the efficiency of multi-scale 

deformable attention feature maps extracted from the deformable transformer encoder. 

Finally, to demonstrate the generality of our model, we applied the proposed method to 

the pedestrian detection task. 

To evaluate the performance of the proposed model, we randomly partitioned the 

dataset into fivefold training and testing sets and we used precision, recall and F1-score.  

 

4.1 A comparison of state-of-the-art methods: IMGL dataset  

In this section, using the IMGL dataset we aim to present a comparison of the proposed 

methodology against a number of classification approaches. More specifically, in Table 

1, we present the evaluation results of the IMGL-VTNet model in comparison to seven 

classification models. For the comparison, we consider the most widely used models 

including the state-of-the-art BoTNet-50 [19] architecture that achieves a strong perfor-

mance on the ImageNet benchmark and has been applied on various tasks.  

The results show that the proposed glands’ classification approach achieves preci-

sion equal to 0.95 and recall equal to 0.94. Moreover, the proposed model achieves F1 

score equal to 0.94. The proposed model achieves an F1 score improvement of 0.05 

compared to the widely used ResNet-50. Furthermore, the integration of a Multi Head 

Self-Attention block in ResNet-50 improves the F1 score 0.02. Thus, the proposed 

model improves the F1 score by 0.03 compared to BotNet-50. 

Further experimental results in 39 unannotated WSI (Figure 4) show that the IMGL-

VTNet is robust under various cases. It is worth mentioning that normal cases (Figure 

4a) include only normal glands, while IM WSI (Figure 4b) include both normal and IM 



7 

glands. Thus, as it is shown in Figure 4a, only a very small number of glands are mis-

classified as IM glands. Further analyses of the unannotated normal cases show that 

less than 3% of the glands have been misclassified. 

Table 1. A comparison of glands’ classification using different models. 

Method Precision Recall F1 score 

ResNet-18 0.92±0.04 0.84±0.03 0.88±0.03 

ResNet-50 0.91±0.03 0.86±0.03 0.89±0.03 

ResNet-101 0.91±0.03 0.82±0.03 0.86±0.03 

VGG-19 0.89±0.03 0.89±0.02 0.88±0.02 

Inception-V3 0.91±0.04 0.81±0.03 0.86±0.04 

Xception 0.82±0.05 0.78±0.04 0.79±0.04 

BotNet-50  0.92±0.03 0.90±0.02 0.91±0.02 

IMGL-VTNet (proposed) 0.95±0.03 0.94±0.02 0.94±0.03 

 

 
(a) 

 
(b) 

Fig. 4. Glands’ classification results of IMGL-VTNet model on two sample WSI: a) normal case, 

b) IM case. Blue color denotes the glands that have been detected as normal and red color denotes 

the glands that have been detected as IM glands.  

4.2 Feature map scales analysis 

Finally, we internally investigated the efficiency of multi-scale deformable attention 

feature maps for glands’ classification. Thus, we compared the individual use of a sin-

gle deformable attention feature map instead of the multiple deformable attention fea-

ture maps.  

Table 2. A comparison of glands’ classification efficiency using multi-scale deformable atten-

tion feature maps.  

Feature map scale Precision Recall F1 score 

𝑊/16 × 𝐻/16 0.91±0.03 0.96±0.02 0.93±0.02 

𝑊/8 × 𝐻/8 0.96±0.02 0.92±0.02 0.93±0.01 

𝑊/4 × 𝐻/4 0.95±0.03 0.93±0.02 0.93±0.02 

 Multi-scale (IMGL-VTNet) 0.95±0.03 0.94±0.02 0.94±0.03 
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More specifically, the use of multi-scale feature maps slightly improves the F1-score 

by 0.01 (Table 2). The results show that higher-level features achieve better precision 

while lower-level features achieve better recall score. 

 

4.3 Application of the proposed model to pedestrian detection 

Finally, to demonstrate the generality of our model, we applied the VTNet to the pe-

destrian detection task. The average pooling and fully connected layers were replaced 

by two parallel branches predicting the confidence score and the corresponding bound-

ing boxes respectively. For the evaluation, the Caltech pedestrian dataset was used [25], 

which contains approximately 2.5 hours of video. The performance was assessed in 

terms of log-average miss rate over false positives per image denoted as MR-2. Based 

on the same training and testing protocol, the proposed VTNet outperforms other state-

of-the-art pedestrian detectors by reducing the miss rate to 4.1% (Table 3).  

Table 3. A comparison of the proposed architecture with five state-of-the-art detectors on the 

Caltech pedestrian dataset. 

Method MR-2 (%) 

Faster R-CNN [26] 8.7 

ALFNet [27] 8.1 

RepLoss [28] 5.0 

CSP [29] 4.5 

Proposed  4.1 

5 Conclusion 

Multiple risk factors and a multistep process have been associated with gastric carcin-

ogenesis. Among these factors, gastric IM of the mucosa has been recognized as a high-

risk precancerous lesion for dysplasia and gastric cancer. However, as the manual as-

sessment of biopsies by histopathologists based on the Sydney System is a laborious 

and time-consuming task, the accurate detection of IM gastric glands necessitates the 

adoption of artificial intelligence methods. Thus, in this paper we presented a method-

ology for the automated classification of gastric glands into normal and IM glands. The 

proposed IMGL-VTNet model for gastric glands’ classification achieves an F1 score 

equal to 0.94. The results suggest that the proposed methodology obtains promising 

classification performance on the IMGL dataset. However, limitations of this study in-

clude the lack of an end-to-end gland segmentation and classification model that could 

be adopted on a widespread basis in routine histopathological practice.  
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