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Standfirst 

The BMJ Statistical Editors need a quiet Christmas. They review hundreds of articles each year, 

working tirelessly to improve standards of statistical analysis and reporting. Many articles exhibit the 

same problems, and therefore the Statistical Editors have come together to tell you about them. 

Make their wish come true. All they want for Christmas is due. 

Introduction 

The weeks leading up to Christmas are a magical time for medical research. The impending holiday 

season creates a dramatic upsurge in productivity, with researchers suddenly finding time to finish 

off statistical analyses, draft manuscripts, and respond to reviewers. This leads to a plethora of 

submissions to journals such as the BMJ throughout December, so that researchers can finish the 

year with a sense of academic accomplishment and enjoy the festivities with their loved ones. 

Indeed, with optimism fuelled by mulled wine and mince pies, they may even anticipate their 

article’s acceptance by early January, at the end of the twelve days of Christmas. 

However, there is a collective who work against this season of publication goodwill and cheer. A 

small but influential group of individuals with a very shiny nose for detail; seeking ‘all is right’ rather 

than ‘all is bright’; and emphasising No, No, No rather than Ho, Ho, Ho. We call ourselves 

statisticians, and our core belief is that a research article is for life, not just for Christmas. Our key 

role is to deliver statistical reviews that promote high standards of methodological rigour and 

transparency, and we are especially busy over the Christmas period with the influx of new 

submissions. Indeed, before we can eat, drink and be merry, we are working flat out to detect 

submissions with erroneous analysis methods that should be roasting on an open fire; dubious 

statistical interpretations as pure as yellow snow; and half-baked reporting of study details that 

bring zero comfort and joy. Bah humbug! 

At the BMJ, the team of statisticians are called the Statistical Editors, and each year we review over 

500 articles. For about thirty years, the BMJ Statistical Editors were led by pioneers Professor Martin 

Gardner and Professor Doug Altman,1 2 who saw statisticians to be like the Christmas star – lighting a 

path of research integrity, promoting methodology over metrics,3 4 and encouraging statistical 

principles to “save science and the world”.5 With this vision in mind, here we present the results of 

an internal survey to identify some common issues encountered during statistical peer review at the 

BMJ. Twelve items are identified, one for each of the Twelve Days of Christmas, the period between 

25th December to 5th January when we conduct our reviews in the critical mindset of the Grinch,6  

but with the kind heart of Miracle On 34th Street.  
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Methods 

The BMJ Statistical Editors meet for the day every December, where we discuss common statistical 

issues, problematic submissions (including ones we refer to as ‘sin-bin articles’ that slipped through 

our net) and how to improve the review process, before unwinding at the BMJ Christmas party. At 

the meeting on 18th December 2019, the BMJ Statisticians agreed that an article showcasing 

common statistical issues would be helpful for authors of future BMJ submissions, and an initial set 

of items was discussed. The first author reminded the others about this article at subsequent 

Christmas meetings on 17th December 2020 and 16th December 2021, and explained that progress 

was being delayed, ironically due to the number of statistical reviews in the BMJ system that needed 

prioritizing.  

After further procrastination, on 28th June 2022, a potential list of items was shared amongst the 

Statistical Editors via email, and everyone was asked to suggest additional irksome issues they 

encounter during statistical review. These were collated by the first author, and email discussions 

used to agree a final list of the most important items for wider dissemination. Twelve items were 

selected to match the number of days of Christmas in the well-known song, to increase the chances 

of publication in the BMJ Christmas issue. Sensitivity analyses, including shallow and deep learning 

approaches, led to the same twelve items being selected. An automated artificial intelligence 

algorithm quickly identified that all Statistical Editors were guilty of having similar statistical issues in 

some of their own research articles.  

Results 

The twelve items identified by us, the BMJ Statistical Editors, are listed below including a brief 

explanation to help drive them home for Christmas. Consider them as twelve stocking fillers. For 

maximum impact, we write them directed at you (the BMJ reader and potential co-author of future 

submissions). We suggest you digest one item per day, between 25th December and 5th January, and 

make a New Year’s resolution to adhere to the guidance provided.  

 

On the first day of Christmas, the BMJ statistician sent to me:  

“1. Clarify the research question” 

Christmas is a time to reflect on the meaning of life and to clarify your goals. Similarly, our reviews 

will encourage you to reflect on your research question and to clarify your objectives. For instance, 

your observational study may be unclear about the extent to which the focus is descriptive or causal 



5 
 

research; prognostic factor identification or prediction model development; exploratory or 

confirmatory research. For causal research, your underlying premise (causal pathway or model) may 

not be formally expressed (e.g., in terms of a directed acyclic graph, commonly referred to as a 

DAG). In systematic reviews of intervention studies, your research question might not be stated in 

terms of the Population, Intervention, Comparison and Outcome (PICO) system. 

A related request is to clarify your estimand, which refers to your study’s target measure for  

estimation.7 For example, in a randomised trial the estimand is a treatment effect, but we may ask 

you to better define this in terms of the population, treatments being compared, outcomes, 

summary measure (e.g. risk ratio or risk difference; conditional or marginal effect), and other 

aspects.7 8 Similarly, in a meta-analysis of randomised trials, your estimand must be defined in the 

context of potential heterogeneity of study characteristics. For example, in a meta-analysis of 

hypertension trials with different lengths of follow-up, if the estimand is a treatment effect on blood 

pressure, we need clarity about whether this relates to one particular time-point (e.g. 1 year), each 

of multiple time-points (e.g. 1 year and 5 years), or some average across a range of time-points (e.g. 

6 months to 2 years).   

 

On the second day of Christmas, the BMJ statistician sent to me:  

“2. Focus on estimates, confidence intervals and clinical relevance” 

Just like an under-cooked turkey, your article will be sent back if it focuses solely on p-values and 

‘statistical significance’ to determine whether a finding is important. It is more important for you to 

consider estimates (e.g., of mean differences, risk ratios, or hazard ratios corresponding to the 

specified estimands from the first day of Christmas), their corresponding 95% confidence intervals, 

and the potential clinical relevance of your findings. Statistical significance often does not equate to 

clinical significance; for example, if a large trial gives a risk ratio of 0.97 with 95% confidence interval 

of 0.95 to 0.99, then the treatment effect is potentially small, even though the p-value is much less 

than 0.05. Conversely, absence of evidence does not mean evidence of absence;9 for example, if a 

small trial estimates a risk ratio of 0.70, with 95% confidence interval from 0.40 to 1.10, then the 

magnitude of effect is still potentially large, even though the p-value is greater than 0.05. Hence, we 

will ask you to clarify phrases such as ‘significant finding’, be less definitive when confidence 

intervals are wide, and consider results in the context of clinical relevance or impact. A Bayesian 

approach may be helpful,10 in order to express probabilistic statements (e.g. there is a probability of 

0.85 that the risk ratio is less than 0.9).  
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On the third day of Christmas, the BMJ statistician sent to me:  

“3. Carefully account for missing data” 

Missing values occur in all types of medical research,11 for covariates and outcomes, and are likely to 

be present in your research study. Therefore, we need you to not only acknowledge the 

completeness of your data but also quantify the amount of missing data and explain how missing 

data are handled in your analyses. It is incredible how many submissions fail to do this! It is the ghost 

of Christmas articles past, present and future.  

If it transpires you simply excluded participants with missing data (i.e. you carried out a complete-

case analysis), we may ask you to revise your analyses by including participants with missing values, 

using an appropriate approach for imputing the missing values. A complete-case analysis is rarely 

recommended, especially in observational research, as discarding patients usually reduces statistical 

power and precision to estimate relationships, and may also lead to biased estimates.12 The best 

approach for imputation is context specific, and too nuanced for detailing here. For example, for 

randomised trials missing baseline values may be dealt with by replacing with the mean value (for 

continuous variables), creating a separate category of a categorical predictor to indicate the 

presence or a missing value (i.e. the missing indicator method) or multiple imputation performed 

separately by randomised group.13 14 For observational studies examining associations, mean 

imputation and missing indicator approaches can lead to biased results,15 and so a multiple 

imputation approach is often (though not always16) preferred, where missing values are imputed (on 

multiple occasions to reflect the uncertainty in the imputation) conditional on the observed values 

of other study variables.17 When using multiple imputation, tell us the methods you used to do this, 

including the set of variables used in the imputation process. An introduction to multiple imputation 

is given in the BMJ by Sterne et al.,12 and dedicated textbooks on missing data should be consulted.18 

 

On the fourth day of Christmas, the BMJ statistician sent to me:  

“4. Do not dichotomise continuous variables” 

Santa likes dichotomisation (you are either naughty or nice), but we will be appalled if you choose to 

dichotomise continuous variables, such as age or blood pressure, by splitting them into two groups 

defined by being above and below some arbitrary cut-point (e.g. age 60 years, systolic blood 

pressure of 130 mmHg). Dichotomisation should be avoided,19 20 as it wastes information and is 

rarely justifiable compared to analysing continuous variables on their continuous scale (see our 

stocking filler on the fifth day of Christmas). Why should an individual whose value is just below the 

cut-point (e.g. 129 mmHg) be considered completely different from an individual whose value is just 
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above it (e.g. 131 mmHg)? Conversely, two individuals within the same group may have very 

different values (e.g. 131 and 220 mmHg) and so why should they be considered the same? In this 

context, dichotomisation might be considered unethical. Study participants agree to contribute their 

data for research on the proviso it is used appropriately; discarding information by dichotomising 

their covariate values violates this agreement.  

Dichotomisation also reduces statistical power to detect associations between the continuous 

covariate and the outcome,19-21 and attenuates the predictive performance of prognostic models.22 

In one example, dichotomising at the median value led to a reduction in power akin to discarding a 

third of the data,23 whilst in another retaining the continuous scale explained 31% more outcome 

variability than dichotomising at the median.20  Cut-points also lead to data-dredging and the 

selection of ‘optimal’ cut-points to maximise statistical significance.21 This leads to bias, lack of 

replication in new data, and hinders meta-analysis because different studies adopt different cut-

points. Dichotomisation of continuous outcomes also reduces power and may lead to misleading 

conclusions.24 25 For example, in a randomised trial published in the BMJ, the required sample size 

was reduced from 800 to 88 patients after changing the outcome (Beck score) from being analysed 

as dichotomised to being analysed on its continuous scale.26 

 

On the fifth day of Christmas, the BMJ statistician sent to me:  

“5. Consider non-linear relationships” 

At the Christmas meal table, some family relationships are simple to handle, but others are more 

complex and require greater care. Similarly, some continuous covariates have a simple linear 

relationship with an outcome (perhaps after some transformation of the data, such as a natural log 

transformation) but others have a more complex non-linear relationship. A linear relationship 

(association) assumes that a one-unit increase in the covariate has the same effect on the outcome 

across the entire range of the covariate’s values. For example, it assumes the impact of a change in 

age from 30 to 31 years is the same as a change from 90 to 91. In contrast, a non-linear association 

allows the impact of a 1-unit increase in the continuous covariate to vary across the spectrum of 

predictor values. For example, a change in age from 30 to 31 years may have little impact on risk, 

whereas a change in age from 90 to 91 may be very important. The two most common approaches 

to non-linear modelling are cubic splines and fractional polynomials.27-32 

Aside from categorisation, most BMJ submissions only consider linear relationships. Our statistical 

reviews, therefore, may ask you to consider non-linear relationships, as otherwise important 

associations may not be fully captured or even missed.33 An example of examining non-linear 
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relationships is by Johannesen et al.,34 who use restricted cubic splines to show that the association 

between low density lipoprotein cholesterol levels and the risk of all-cause mortality is U-shaped, 

with low and high levels associated with an increased risk of all-cause mortality in the general 

population in Denmark. This is illustrated in Figure 1 for the overall population, and in subgroups 

defined by use of lipid lowering treatment, with the relationship strongest in those not receiving 

treatment. 

 

On the sixth day of Christmas, the BMJ statistician sent to me: 

“6. Quantify differences in subgroup results” 

Many submitted articles include results for subgroups, such as male and females, or those who do 

and do not eat Brussels sprouts. A common mistake is to conclude results for one subgroup are 

different from another subgroup, without actually quantifying the difference in their results. Altman 

and Bland consider this eloquently,35 showing treatment effect results for two subgroups, the first of 

which is statistically significant (risk ratio = 0.67; 95% CI: 0.46 to 0.98; p-value = 0.03) while the 

second is not (risk ratio = 0.88, 95% CI: 0.71 to 1.08; p-value = 0.2). A naïve interpretation is to 

conclude the treatment is beneficial for the first subgroup but not the second. However, actually 

comparing the results between males and females reveals a wide confidence interval (ratio of risk 

ratios = 0.76; 95% CI: 0.49 to 1.17, p-value = 0.2), which suggests further research is needed before 

concluding a subgroup effect. A related mistake is to conclude that there is no difference in 

subgroups based solely on whether their 95% confidence intervals overlap.36  Hence, if your study 

examines subgroups, we will check that you quantify differences in subgroup results and, if not, ask 

for this to be done. Even when there are genuine subgroup differences, the (treatment) effect may 

still be important for each subgroup and your conclusions should recognise this.  

Examining subgroup differences is a complex issue, and a broader topic is the modelling of 

interactions between (treatment) effects and covariates.37 Issues include the scale used to measure 

the effect (e.g. risk ratio or odds ratio);38 ensuring subgroups are not arbitrarily defined by 

dichotomising a continuous covariate,39 and allowing for potentially non-linear relationships (see our 

stocking fillers on the fourth and fifth days of Christmas).40 
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Figure 1 Example of a non-linear association derived by restricted cubic splines, as originally presented by Johannesen et al. 
in the BMJ34 The figure shows multivariable adjusted hazard ratios for all-cause mortality according to levels of low density 
lipoprotein cholesterol (LDL-C) on a continuous scale. Solid blue lines are multivariable adjusted hazard ratios, with dashed 
blue lines showing 95% confidence intervals derived from restricted cubic spline regressions with three knots. Reference 
lines for no association are indicated by the solid bold lines at a hazard ratio of 1.0. Dashed yellow curves show the fraction 
of the population with different levels of LDL-C. Arrows indicate the concentration of LDL-C with the lowest risk of all-cause 
mortality. Analyses were adjusted for age, sex, current smoking, cumulative number of pack years, systolic blood pressure, 
lipid lowering treatment, diabetes, cardiovascular disease, cancer, and chronic obstructive pulmonary disease at baseline. 
Based on individuals from the Copenhagen General Population Study followed for a mean 9.4 years 
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On the seventh day of Christmas, the BMJ statistician sent to me: 

“7. Consider accounting for clustering” 

At the BMJ Christmas party, the BMJ Statistical Editors tend to cluster together in a corner, avoiding 

interaction and eye-contact with non-statisticians where possible in fear of being asked to conduct a 

post-mortem examination of their failed study. Similarly, your research study may contain data from 

multiple clusters, including observational studies that use e-health records from multiple hospitals or 

practices; cluster or multicentre randomised trials;41-46 and meta-analyses of individual participant 

data (IPD) from multiple studies.47 Sometimes the analysis does not account for this clustering, 

which may lead to biased results or misleading confidence intervals.48-51 Ignoring clustering makes a 

strong assumption that outcomes for individuals within different clusters are similar to each other 

(e.g. in terms of the outcome risk), which may be difficult to justify when clusters such as hospitals 

or studies have different clinicians, procedures, and patient case-mix.  

Thus, if your submitted article ignores obvious clustering in your data which needs to be captured or 

considered, we will ask you to either justify this, or else to re-analyse accounting for clustering using 

an approach suitable for your study’s estimand of interest (see our stocking filler on the first day of 

Christmas).52-54 For example, a multi-level or mixed-effects model may be recommended, as this 

allows cluster-specific baseline risks to be accounted for, and enables between-cluster heterogeneity 

in the effect of interest to be examined.  

 

On the eighth day of Christmas, the BMJ statistician sent to me: 

“8. Interpret I-squared and meta-regression appropriately” 

Systematic reviews and meta-analyses are popular submissions to the BMJ. Most of them include 

𝐼2,55 but interpret it incorrectly, which gives us a recurring Nightmare Before (and after) Christmas. 

𝐼2 describes the percentage of variability in (treatment) effect estimates that is due to between-

study heterogeneity rather than chance. The impact of between-study heterogeneity on the 

summary treatment effect estimate is small if 𝐼2 is close to 0%, and large if 𝐼2 is close to 100%.  A 

common mistake is for authors to interpret 𝐼2 as a measure of the (absolute) amount of 

heterogeneity (i.e. to consider 𝐼2 as an estimate of the between-study variance in true effects), and 

to erroneously use it to decide whether to use a random-effects meta-analysis model. This is unwise, 

as 𝐼2 is a relative measure and depends on the size of the within-study variances of effect estimates, 

not just the size of the between-study variance of true effects (also known as tau-squared). For 

example, if all studies are small and thus within-study variances of effect estimates are large, 𝐼2 can 



11 
 

be close to 0% even when the between-study variance is large and important.56 Conversely, 𝐼2 may 

be large even when the between-study variance is small and unimportant. Our reviews will ask you 

to correct any misuse of 𝐼2, and to also present the estimate of between-study variance directly. 

Meta-regression is often used to examine to what extent study-level covariates (e.g. mean age, dose 

of treatment, risk of bias rating) explain between-study heterogeneity, but generally we will ask you 

to interpret meta-regression results cautiously.57 Firstly, there are often a small number of trials, and 

then meta-regression suffers from low power to detect study-level characteristics that are genuinely 

associated with changes in the overall treatment effect in a trial. Secondly, confounding across trials 

is likely, and so making causal statements about the impact of trial-level covariates is best avoided. 

For example, those trials with a higher risk of bias may also have the highest dose or be conducted in 

particular countries, thus making it hard to disentangle the effect of risk of bias from the effect of 

dose and country. Thirdly, the trial-level association of aggregated participant-level covariates (e.g. 

mean age, proportion male) with the overall treatment effect should not be used to make inferences 

about how values of participant-level covariates (e.g. age, sex, biomarker values) interact with 

treatment effect. Aggregation bias may lead to dramatic differences in observed relationships at the 

trial level from those at the participant level.58 59 This is demonstrated in Figure 2. 
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Figure 2 Example of aggregation bias when using a meta-regression of study-level results rather than an 
individual participant data (IPD) meta-analysis of treatment-covariate interactions. The research question is 
whether blood pressure lowering treatment is more effective amongst women than men. Evidence is shown 
from a meta-analysis of 10 trials of anti-hypertensive treatment, comparing the across-trial association of 
treatment effect and proportion male (solid line) – which is steep and statistically significant – with the 
participant-level interactions of sex and treatment effect in each trial (dashed lines) - which are flat and 
neither clinically nor statistically important. Case study based on that previously reported by Riley et al.47 58 60  

 

Each block represents one trial, and the block size is proportional to the size of the trial. Across-trial association is denoted 
by gradient of solid line (−), derived from a meta-regression of the trial treatment effects against proportion male, which 
suggests a large effect of a 15 mmHg (95% CI: 8.8 to 21) greater reduction in SBP in trials with only females compared to 
only males. However, the treatment-sex interaction based on participant-level data is denoted by gradient of dashed lines 
(- - - ) within each trial, and on average these suggest only a 0.8 mmHg (95% CI: -0.5 to 2.1) greater treatment effect for 
females than males, which is neither clinically nor statistically significant. 
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On the ninth day of Christmas, the BMJ statistician sent to me: 

“9. Assess calibration of model predictions” 

Clinical prediction models estimate outcome values (for continuous outcomes) or outcome risks (for 

binary or time-to-event outcomes) to inform diagnosis and prognosis in individuals. Articles 

developing or validating prediction models often fail to fully evaluate model performance, which is 

dangerous, as inaccurate predictions can lead to incorrect decisions and wrong communication to 

patients (e.g., giving false reassurance or hope). For models that estimate outcome risk, predictive 

performance should be evaluated in terms of discrimination, calibration and clinical utility, as 

described in previous BMJ articles.61-63  

However, the overwhelming majority of submissions focus only on model discrimination (e.g. as 

quantified by the c-statistic or area under the curve28) – if you do this, it provides an incomplete 

picture, just like that unfinished 10000-piece jigsaw from last Christmas. For example, Figure 3  

shows a calibration plot published in the BMJ for a prediction model with a promising c-statistic of 

0.81, but there is clear (albeit perhaps small) miscalibration of predicted risks in the range of 

predicted risks between 0.05 to 0.2.64 This miscalibration may impact upon the clinical utility of the 

model, especially if decisions (e.g. about treatment or monitoring strategies) are dictated by risk 

thresholds in the range of 0.05 to 0.2, which can be investigated in a decision curve analysis.65 

Conversely, miscalibration does not necessarily indicate the model has no clinical utility, as it 

depends on the magnitude of miscalibration and where it occurs in relation to decision thresholds. 

We may also suggest model development studies undertake a re-analysis using penalization or 

shrinkage methods (e.g. ridge regression, lasso, elastic net), which reduce the potential for 

overfitting and help improve calibration of predictions in new data.66 67 Penalisation methods, such 

as Firth’s correction,68 can also be important in trials or observational studies with sparse data, as 

standard methods (such as logistic regression) may give biased effect estimates in this situation.69  
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Figure 3 Example of a calibration plot to examine the agreement between the observed risks and 
estimated (predicted) risks from a prediction model. This figure is taken from Jaja et al.64 who 
developed prediction models to estimate the risk of mortality in individuals who have suffered 
subarachnoid haemorrhage from ruptured intracranial aneurysm. The blue circles are the estimated 
and observed risks grouped by tenths of estimated risks, and the red line is a loess smoother to 
capture agreement across the range of estimated risks. 

 

 

 

 

On the tenth day of Christmas, the BMJ statistician sent to me: 

“10. Carefully consider the variable selection approach” 

The use of variable selection methods (e.g. particularly forward selection of covariates based on the 

statistical significance of their effects) is a common area of criticism in our reviews.70 If you use 

them, we will ask you to justify your approach. Depending on the study, we might even suggest you 

avoid them entirely, just like that last remaining turkey sandwich on New Year’s Day. 
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For example, variable selection methods are best avoided in prognostic factor studies, as the typical 

aim is to provide an unbiased estimate of how a particular factor adds prognostic value over and 

above other (established) prognostic factors.71 Therefore, a regression model forcing in all the 

existing factors is needed to examine the prognostic effect of the new factor after accounting for the 

effect of existing prognostic factors. Similarly, in causal research based on observational data, the 

choice of confounding factors to include as adjustment factors should be selected based on the 

causal pathway, for example as expressed using DAGs (with consideration of potential mediators 

between covariates and outcome 72), not their statistical significance based on automated selection 

methods. 

In the development of clinical prediction models, variable selection (via shrinkage) may be 

incorporated using methods such as lasso or elastic net, which start with a full model including all 

candidate predictors for potential inclusion. A common, but inappropriate approach is to use 

univariable screening, where decisions for predictor inclusion are based on p-values for observed 

unadjusted effect estimates. This is not a sensible strategy,73 as what matters is the effect of a 

predictor after adjustment for other predictors, since in practice the relevant predictors are used (by 

healthcare professionals and patients) in combination. For example, when developing a prognostic 

model for risk of recurrent venous thromboembolism, Ensor et al. found that the unadjusted 

prognostic effect of age was not statistically significant from univariable analysis, but that the 

adjusted effect was significant and in the opposite direction from multivariable analysis.74  

 

On the eleventh day of Christmas, the BMJ statistician sent to me: 

“11. Assess the impact of any assumptions” 

Everyone agrees that It’s A Wonderful Life is a Christmas movie, but there is much debate about 

whether Die Hard is. Similarly, we may debate your die-hard analysis assumptions, and even ask you 

to examine whether results change if the assumptions change (a sensitivity analysis). For example, in 

submitted trials with time-to-event data (e.g. time to recurrence or death), it is common to report 

the hazard ratio, assuming it is a constant over the whole follow-up period. If your submission does 

not justify this assumption, we may ask you to address this, for example by graphically presenting 

how the hazard ratio changes over time (perhaps based on a survival model that includes an 

interaction between the covariate of interest and (log) time).75 Another example is in submissions 

with Bayesian analyses, where prior distributions are labelled as ‘vague’ or ‘non-informative’, but we 

think they may still be influential. In this situation, we may ask you to demonstrate how results 

change when other plausible prior distributions are chosen. 
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On the twelfth day of Christmas, the BMJ statistician sent to me: 

“12. Use reporting guidelines and avoid overinterpretation” 

Doug Altman said, “Readers should not have to infer what was probably done, they should be told 

explicitly. Proper methodology should be used and be seen to have been used“.76 Incompletely 

reporting your research is indefensible and creates confusion, just like those unlabelled presents 

under the Christmas tree. We need to know your rationale and objectives, the study design, the 

methods used, the participant characteristics, the results, the certainty of evidence, the research 

implications, and so forth. If any of these aspects are missing, we will ask you to clarify them. 

Make use of reporting guidelines. They provide a checklist of items to be reported (Santa suggests 

checking this list twice), which represent the minimum detail required to enable readers (including 

Statistical Editors) to understand the research and critically appraise its findings. Reporting 

guidelines are listed on The EQUATOR Network website, which maintains a comprehensive 

collection of guidelines and other materials related to health research reporting.77 Examples are 

given in Table 1, including the CONSORT statement for randomised trials,78 and the TRIPOD guideline 

for prediction model studies.79 80  The BMJ requires you to complete the checklist found within the 

relevant guideline (and include it with your submission), indicating on which page of your submitted 

manuscript you have reported each item.  

Another common aspect of our reviews, related to reporting, is to query overinterpretation of 

findings, and even spin,81 for example, about unjustified claims of causality, generalisability of 

results, or immediate implications for clinical practice. Incorrect terminology is another bugbear, in 

particular the misuse of multivariate (rather than multivariable) to refer to a regression model with 

multiple covariates (variables), and the misuse of quantiles to refer to groups rather than the cut-

points used to create the groups (e.g. deciles are the nine cut-points used to create 10 equal size 

groups called tenths).82 
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Table 1 Examples of reporting guidelines and their extensions for different study designs 

Study design Reporting guideline Extensions available for some other common 
designs 

Randomised trials CONSORT Cluster trials (CONSORT-Cluster); multi-arm trials; 
non-inferiority/equivalence trials (CONSORT non-
inferiority); harms (CONSORT-HARMS); pilot and 
feasibility trials; adaptative designs (ACE 
Statement); artificial intelligence (CONSORT-AI); 
interventions (TIDieR) 

Observational studies STROBE Genetic associations (STREGA); molecular 
epidemiology (STROBE-ME); infectious diseases 
(STROBE-ID); nutritional epidemiology (STROBE-
Nut); mendelian randomization (STROBE-MR) 

Systematic reviews PRISMA Abstracts (PRISMA-Abstracts); individual participant 
data (PRISMA-IPD; diagnostic test accuracy 
(PRISMA-DTA); harms (PRISMA-harms); network 
meta-analysis (PRISMA-NMA); literature searches 
(PRISMA-S) 

Diagnostic test accuracy STARD Abstracts (STARD-Abstracts); artificial intelligence 
(STARD-AI) * 

Prediction model studies TRIPOD Abstracts (TRIPOD-Abstracts); Individual participant 
data meta-analysis/clustered data (TRIPOD-
Cluster)*; systematic reviews (TRIPOD-SRMA)*; 
machine learning (TRIPOD-AI) * 

* forthcoming 

 

Epiphany 

We have provided a list of twelve issues routinely encountered during statistical peer review of 

articles submitted to the BMJ. Last Christmas we tweeted this list, but the very next day we got poor 

submissions anyway. This year, to save us from tears, we’ve tailored it for someone special – you, 

the BMJ reader.  

Our hope is that you will check these twelve issues before rushing to submit articles to the BMJ next 

Christmas; this would bring joy to the world by reducing the length of our reviews and allowing us to 

spend more time with our significant (yes, pun-intended) others over the festive period. Indeed, if 

you adhere to our guidance, our song will change to the very positive “Twelve Days of Christmas 

Review” shown in Box 1. 

Ultimately, we want the BMJ to publish the gold not the mould; the frankincense not the makes-no-

sense; and the myrrh not the urrgghh. Many other topics could have been mentioned, and for 

further guidance we point readers to the BMJ Statistics Notes series (written mainly by Doug Altman 

and Martin Bland), the Research Methods and Reporting section of the BMJ,83 and other overviews 

of common statistical mistakes.84 85  
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Box 1 The Twelve Days of Christmas Review, to be sung by the BMJ Statisticians when researchers 
improve their article submissions  

On the twelfth day of Christmas, the BMJ statistician sent to me: 

12. Complete reporting  

 11. Assumptions assessed  

  10. Variables verified  

     9. Measured meta-analysis  

      8. Predictions calibrated  

       7. Clusters captured  

        6. Subgroups attested  

         5. Curves fitted  

          4. Wise not dichotomised  

           3. Missing mattered   

            2. Honest interpreting  

             and  

               A coherent research question 
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