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A B S T R A C T
Gastrointestinal stromal tumour (GIST) lesions are mesenchymal neoplasms commonly found in the
upper gastrointestinal tract, but non-invasive GIST detection during an endoscopy remains challenging
because their ultrasonic images resemble several benign lesions. Techniques for automatic GIST
detection and other lesions from endoscopic ultrasound (EUS) images offer great potential to advance
the precision and automation of traditional endoscopy and treatment procedures. However, GIST
recognition faces several intrinsic challenges, including the input restriction of a single image modality
and the mismatch between tasks and models. To address these challenges, we propose the Query2
(Query over Queries) framework to identify GISTs from ultrasound images. The proposed Query2
framework applies an anatomical location embedding layer to break the single image modality. A
cross-attention module is then applied to query the queries generated from the basic detection head.
Moreover, a single-object restricted detection head is applied to infer the lesion categories. Meanwhile,
to drive this network, we present GIST514-DB, a GIST dataset that will be made publicly available,
which includes the ultrasound images, bounding boxes, categories and anatomical locations from 514
cases. Extensive experiments on the GIST514-DB demonstrate that the proposed Query2 outperforms
most of the state-of-the-art methods.

1. Introduction
Gastrointestinal stromal tumours (GISTs) are the most

common mesenchymal neoplasms of the gastrointestinal
(GI) tract and are derived from the Canjal intestinal cells
[1]. Similar to other subepithelial lesions (SELs), such as
leiomyomas and schwannomas, GISTs are regularly encoun-
tered as incidental findings during an upper GI endoscopy
and show very few clinical symptoms and complications [2].
Many SELs are estimated to be benign, such as leiomyomas,
schwannomas or duplication cysts. However, up to 13% of
upper GI tract lesions are malignant, and an additional 8% at
least have malignant potential [2]. In addition, retrospective
studies show that GISTs dominate potentially malignant
SELs in the upper GI tract [2]. Approximately 20-30% of
GISTs are malignant, and the rest reveal an indeterminate
risk of aggressive behaviour that may have the capability
to become malignant and then metastasise [2]. Therefore, it
is important to recognise and manage potentially malignant
GISTs.

Diagnosis and follow-up treatment of GISTs rely on
numerous imaging modalities, which can be roughly divided
into three parts based on a 3-step algorithmic approach
(see Fig. 1), such as endoscopic assessment, endoscopic
ultrasound (EUS) criteria and classification, and tissue
acquisition [3]. As the first step, the gastric endoscope is
sent into the stomach through the mouth to capture standard
gastroendoscopic images. The gastroendoscopic image is
used to describe the appearance of a lesion and its location,
but it usually cannot distinguish between different types
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Figure 1: A 3-step algorithmic approach for the diagnosis
and treatment of GISTs that is composed of an endoscopic
assessment, endoscopic ultrasound, and tissue acquisition.

of SELs. Fortunately, EUS has become a helpful tool for
evaluating SELs. Description of an ultrasonic image, e.g.,
borders, layer of origin, size, contour, echogenicity, echo-
pattern and vascularity can effectively narrow down the
differential diagnosis list, but a definite diagnosis can hardly
be established on the basis of a EUS image because the
GIST is apparently similar to its benign counterpart, such
as leiomyomas. Different from most benign hyperechoic
lesions, the EUS image of a typical GIST is a hypoechoic,
solid mass originating from the proper muscle layers (4𝑡ℎ
EUS layer) of the GI wall [3]. However, gastric leiomyomas
share similar characteristics with GISTs (as shown in Fig.
2), which may explain why distinguishing benign from
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potentially malignant lesions is suboptimal [4]. In addition,
based on these measurements, the surgeon can choose the
optimal means of tissue acquisition, such as ultrasound-
guided biopsy and tumour excision, or accordingly plan the
best strategy to further conservative therapy if non-invasive
treatment is required [2, 3]. Our Query2 is designed to offer
helpful descriptions for EUS imaging, allowing more precise
surgery and more justified conservative therapy.

Deep learning (DL)-based methods [5–8] have achieved
great success in real-world image recognition while fur-
ther attracting the endoscopic ultrasound community to de-
velop computer-assisted diagnosis (CAD) applications [9–
12]. However, most applications [9–12] still have several
limitations of EUS, such as similar appearance of different
SELs, insufficient training data, and imbalanced categories
in the dataset. However, existing artificial neural networks
for real-world image recognition [5–7] or object recognition
[8] are not suitable for modelling EUS-based SEL recog-
nition because the EUS image dataset has different object
distributions than real-world datasets, such as ImageNet [13]
and Stanford Cars [14] for classification tasks and COCO
[15] for object detection tasks. For example, unlike most
objects in ImageNet and Stanford Cars, which are large and
centre-located, objects in a typical EUS image are small
and indeterminately positioned. Additionally, in contrast
to COCO, which has an indeterminate number of objects
per image, there is only one object per image in the EUS
dataset. In addition, information outside the image can also
be helpful for image recognition. For example, even fine-
grained visual classification algorithms [16] can incorrectly
distinguish between two species, such as the American crow
and common raven, with extremely similar appearance char-
acteristics but different habitats. In other words, in this case,
the tags of the habitats can help with image recognition.
Therefore, in this study, we mainly focus on solving the
problem of task and model mismatch and introduce labels
of anatomical locations to help image recognition.

In this paper, we propose Query2, a novel query-based
single-object detection network for GIST detection, by
embedding additional annotation of tumour anatomical re-
gion classification from gastroendoscopy (referred to as an
anatomical location for short) to strengthen the features
of EUS images with both end-to-end network training and
inference. We first extract sparse queries that represent
image features of bounding boxes through a query-based
detection pipeline. We then adaptively learn the anatomical
location feature from image features through a multi-head
cross-attention module and memorise the feature for each
anatomical location through an anatomical location embed-
ding layer. We make a simple but important assumption that
the number of SELs in EUS images is at most one for a
fair comparison between classification and detection models.
Thus, we can infer image classes in an end-to-end style
or based on the bounding box with maximum probability.
In contrast to previous works, our Query2 requires the
anatomical location of the tumour as additional tags to
improve image recognition. Thus, we build a EUS dataset

i.e., GIST514-DB and extensively evaluate our method in
three typical tasks, including classification, detection, and
instance segmentation, on GIST514-DB. Although the aver-
age horizontal diameter of SELs in GIST514-DB is smaller
than 11 mm, our Query2 still achieves a high accuracy of
95.1%. Our method outperforms existing state-of-the-art
methods and is of high clinical relevance, as it offers helpful
information, including tumour type and contour for potential
downstream applications. Our main contributions can be
summarised as follows:

(i) We build a novel EUS dataset, i.e., GIST514-DB (see
Tables 2 and 3), which will be made publicly avail-
able. The dataset includes detailed tumour locations
from EUS, tumour types from biopsies, and additional
anatomical locations from gastroendoscopy. The train-
ing and validation dataset contains 251 GIST cases and
263 leiomyoma cases to avoid data imbalance.

(ii) We propose a novel framework, i.e., Query2 (see Fig.
4), to accurately recognise GISTs and leiomyomas
from EUS images. Superior to previous modelling
and struggling with single image modality and mis-
match between task and model, our Query2 can lever-
age additional annotations from gastroendoscopy, i.e.,
anatomical locations, and the additional assumption,
i.e., single-object restriction, for improving recogni-
tion accuracy.

(iii) We compare Query2 with existing models in classi-
fication, object detection and instance segmentation
on GIST514-DB. Through 5-fold cross-validation, we
show that our method outperforms the most related
methods (see Table 5) in GIST recognition and the
state-of-the-art approach (see Tables 6, 7 and 9) from
the real-world dataset by a large margin. The code is
available at https://github.com/howardchina/query2.

2. Related works
In this section, we discuss the three most related works,

including EUS features differentiating GISTs from leiomy-
omas, CAD applications and datasets to recognise GISTs,
and relationships with real-world object recognition.
2.1. EUS features differentiating GISTs from

leiomyomas
EUS is a popular technique for diagnosing different

gastric SELs [2–4, 18]. Abnormal tumour size (larger than
30 or 40 mm) and irregular tumour margins are reported to
be the most useful EUS features to predict high-risk GISTs
and very high-risk GISTs, but low-risk GISTs cannot be dif-
ferentiated from benign SELs simply based on tumour size
and EUS appearance [2]. Fortunately, Kim et al. [18] demon-
strated that 4 EUS features (inhomogeneity, hyperechogenic
spots, marginal halo, and higher echogenicity compared with
the surrounding muscle layer appearing more frequently)
are of strong relevance to differentiating gastric GISTs from
gastric leiomyomas with a sensitivity and specificity of 89%
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Table 1
Comparison of EUS features and distribution between GISTs and leiomyomas

Subepithelial
lesion

EUS layer Size Echogenicity Border Distribution in the GI
tract

Malignant
potential

Leiomyoma 4𝑡ℎ or 2𝑛𝑑 Differing
sizes

Hypoechoic and nearly similar to
the muscle layer, homogeneous

Regular Mostly oesophagus and
stomach, but can occur
anywhere in the GI tract

None

Schwannoma 3𝑟𝑑 or 4𝑛𝑑 Differing
sizes

Hypoechoic, well-demarcated, ho-
mogeneous

Regular Stomach 70%, colon and
rectum 15%

Extremely
rare

GIST (very
low risk, low
risk)

4𝑡ℎ or 2𝑛𝑑 Small (≤2
cm)

Hypoechoic but relatively hyper-
echoic compared to muscle layer,
homogeneous

Regular Stomach 60%, small
bowel 35%, esophagus
5%, rectum 5%

10-30%
clinically
malignant

GIST (in-
termediate,
high and
very high
risk)

Large (>3-5
cm)

Hypoechoic, heterogeneous,
cystic spaces, hypervascularity,
marginal halo, hyperechoic
spots/echogenic foci

Irregular

EUS: endoscopic ultrasound; GIST: gastrointestinal stromal; GI: gastrointestinal. Correspondence between EUS and histological
layers: superficial mucosa (1𝑠𝑡), deep mucosa and muscularis mucosa (2𝑛𝑑), submucosa (3𝑟𝑑), muscularis propria (4𝑡ℎ),
Serosa/adventitia (5𝑡ℎ) [17]. Complete comparisons see [3, 18]

GIST 0.9984

Leiomyoma 0.9877

GIST 0.9987
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Figure 2: Examples of EUS images in GIST514-DB. The first
row shows a typical image of leiomyoma (8.3 mm x 5.3 mm)
originating from the 4𝑡ℎ layer in the gastric fundus. The second
row shows a typical image of a GIST (13.2 mm x 6.6 mm) with
malignant potential originating from the 4𝑡ℎ layer in the gastric
fundus. The third row shows a typical image of malignant GIST
(11.0 mm x 8.5 mm) originating from the 4𝑡ℎ layer in the gastric
fundus. We present the result of Query2 on segmentation and
classification in the third column.

and 86%, respectively. Karaca et al. [4] further supported that
EUS can contribute to the diagnosis of SELs in visualising
tumour size and extent, but found that it had a relatively low
accuracy at 45% for presumptive diagnosis. In 2015, Eckardt
et al. [3] proposed a EUS-guided approach to the evaluation

and management of SEL and offered a detailed analysis of
EUS features and anatomical sites of common SELs, such
as leiomyoma, schwannoma and GIST. We summarise and
compare the different EUS features and distributions that
distinguish GIST from leiomyoma and schwannoma in Table
1, which shows that there are substantial differences between
high-risk GISTs and non-GISTs in size, echogenicity and
border. Unfortunately, it also states that it is challenging to
distinguish very low- and low-risk GISTs from non-GISTs
simply on the basis of EUS layer, size, echogenicity, and
border since their distributions are highly overlapped on
these four dimensions.
2.2. CAD applications and datasets to recognize

GISTs
Related methods to recognise GISTs can be roughly

divided into two categories based on their tasks, e.g., classi-
fication [9, 10, 12] and detection [11] (see Table 5). Minoda
et al. [9] proposed a complete workflow including data col-
lection and construction of the EUS-AI leveraging Xception
and showed the model’s capability to differentiate GISTs
from non-GIST SELs larger than or equal to 20 mm with
93.3% accuracy. However, for SELs smaller than 20 mm, the
recognition performance is far from satisfactory. Similarly,
Kim et al. [10] proposed a convolutional neural network
(CNN)-based CAD system to classify GISTs and non-GISTs
on a small dataset using a 6-layer CNN. Hirai et al. [12]
also collected a larger dataset of 631 valid cases from 12
hospitals and experimentally demonstrated the efficiency of
EfficientNet for discriminating GISTs from non-GISTs, such
as leiomyomas, schwannomas, neuroendocrine tumours and
ectopic pancreases on EUS images. In contrast to previously
mentioned methods using object classification models, Oh et
al. [11] applied an object detection model, i.e., EfficientDet,
to discriminate GISTs from leiomyomas, which was trained
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on images of 114 patients and validated on 54 patients,
reaching promising sensitivity, specificity, and accuracy of
95.6%, 82.1%, and 91.2%, respectively. Different from us-
ing dense detectors, such as EfficientDet, which requires
complex label assignment and post-processing, we build our
model on the basis of a sparse detector, allowing us to focus
on the design of location features. Moreover, unlike [11],
which predicts the GIST class by the top-1 scoring bounding
box from detectors, we end-to-end aggregate features from
multiple bounding boxes to a single prediction through a
multi-head cross-attention module.

Most existing datasets for GIST recognition are not
publicly available. We summarise the main characteristics
of the datasets in Table 3 from the aforementioned works
[9–12]. The mean tumour size for these datasets ranged from
20.0 mm to 34.9 mm, but the mean tumour size of GIST514-
DB was considerably smaller at 10 mm, indicating that the
main difference between GIST514-DB and other datasets is
that there are more very-low risk and low-risk GISTs in it.
In addition to the commonly used annotations, such as cate-
gories of images [9, 10, 12], [11] also annotated bounding
boxes for object detection. In our study, we further annotate
contours/masks for instance segmentation and anatomical
locations for Query2. For the EUS dataset collection, we
follow the dataset setting of patient biographies and tumour
type in [9] and only collect GISTs and leiomyomas because
they look similar in the EUS. Compared with previous
datasets [9–12], the category distribution in our GIST514-
DB dataset is more uniform, which intuitively brings a
more balanced recognisability over different categories. We
provide a detailed description of our GIST514-DB in Sec. 3.
2.3. Relationship with Real World Object

Recognition
Real-world object recognition mainly consists of three

tasks: i.e., classification, object detection, and segmentation.
Classification models [5, 7, 19–22] are widely used to solve
most image recognition tasks and further extract features
for downstream tasks such as object detection. Object de-
tection models [23–29] usually generate proposals before
recognition when the location of an object is required or the
number of objects is uncertain. Among them, query-based
methods [28, 29] that have emerged in recent years have
a more elegant and efficient architecture than anchor-based
[23, 24, 26] and anchor-free [25, 27] methods because query-
based methods are free from notorious post-processing,
such as non-maximum suppression. Instance segmentation
[23, 26, 29] has been extensively combined with object de-
tection models as a complement to provide object contours.
For example, QueryInst [29] is demonstrated as capable of
improving the detectability for query-based models while
generating instance segmentation results. Thus, we adapt
QueryInst as our baseline. Unlike images captured by a
common camera, each EUS image in our study only contains
at most one object due to the narrow scope of the ultrasound
probe. Since at most one object occurs, we are able to
improve the model inference by the single-object restriction.

Table 2
Baseline Characteristics of our GIST514-DB

Leiomyomas GISTs P-
value

(n = 251) (n = 263)

Gender 0.281
Male 112 105
Female 139 158

Age (yr, mean±SD) 54.5 ±
10.3

59.9 ± 8.7 0.001

Tumour location 0.001𝑎

Esophagus 128 7
Cardia 18 0
Fundus 76 202
Fundus/body𝑏 10 0
Body 15 41
Angle 0 4
Antrum 4 9

Size (mm, mean ±
SD)
Horizontal diame-

ter
10.1 ± 6.0 10.9 ± 5.8 0.125

Longitudinal
diameter

6.2 ± 3.6 7.5 ± 4.5 0.001

The tumour risk
Very low-risk 218
Low-risk 30
Intermediate-risk 2
High-risk 2
Undetermined𝑐 11

SD: standard deviation; 𝑎: we map tumour locations to
integers (e.g., esophagus: 0, cardia: 1, ..., antrum: 6) when
calculating p-value; 𝑏: ambiguous location; tumour risk: AFIP
risk; 𝑐 : some cases did not provide data on tumour risks.

Table 3
Comparison of GIST Datasets in the EUS

Ref GIST N.G. Mean size Cls. Bbox. Seg. Ana.

[10] 157 91 34.9 mm ✓

[9] 184 89 20.0 mm ✓

[12] 435 196 25.6 mm ✓

[11] 125 43 25.0 mm ✓ ✓

Ours 263 251 10.5 mm ✓ ✓ ✓ ✓

Ours: GIST514-DB; N.G: non-GISTs; Cls.: label annotations
for classification; Bbox.: bounding box annotations for object
detection; Seg.: contour annotations for instance segmenta-
tion; Ana.: anatomical location annotations for Query2. For
[9], the median size is taken as the mean size since the mean
size is not given.

Consequently, we build our model on the basis of an object
detector with an instance segmentation module (see Sec.
4.2.4) and in addition, predict the class of the whole image
under the single-object restriction (see Sec. 4.2.3).
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3. GIST514-DB: Dataset
3.1. Data Collection and Annotation

The data collection was approved by the local institu-
tional review board. A total of 514 fully anonymised cases
in the endoscopy centre of the General Hospital of Tianjin
Medical University from June 2016 to October 2021 were
retrospectively collected for this study. These GIST cases
and leiomyoma cases were randomly selected without any
specific selection and exclusion criteria. Our data collection
is designed for the current workflows to make better use of
existing data. Before tissue acquisition, such as endoscopic
submucosal dissection or biopsy, the EUS assessment pro-
cedure was performed using a GI endoscopy system (CV-
260SL, Olympus, Tokyo, Japan) and ultrasonic microprobes
(UM-DP20-25R, frequency 20 MHz). The immunohisto-
chemistry analysis was conducted with CD117, CD34, S-
100, and DOG-1 [30] on the acquired sample and offered
ground truth of pathological classification and risk level.

Considering data scalability, additional information such
as gender, age, anatomical location classification obtained
from the gastroendoscopy, originating layer, lesion size,
pathological classification, risk level and the EUS images
were recorded for each case (see Table 2). The EUS images
saved by the operator were considered to be the optimal
image for that scan, given the limitation of patient position
and probe workspace. As the virtual callipers were applied
by the EUS operator in most cases to measure the SEL size,
images with virtual callipers were saved as a reference to fa-
cilitate further annotations on images without callipers. The
most relevant image without callipers was extracted from
each case to form our dataset, i.e., GIST514-DB. Each image
was classified as GIST or leiomyoma, which was acquired
from biopsy results. The Labelme annotation tool 1 was then
used to manually annotate the data for object detection and
segmentation. Two non-clinicians first observed the lesion
in paired images having callipers on it and then annotated
the lesion contour on the calliper-free image. Two expert
clinicians then verified the annotations. The same number of
GIST and leiomyoma images were collected, which avoids
the class imbalance problem.
3.2. Data splitting

The data on GIST514-DB are equally divided into𝐾 = 5
folds simply using the following strategy to further balance
the number of samples across different anatomical locations
and tumour sizes:

𝐷𝑘 = {
𝐶−1
⋃

𝑐=0

𝐻−1
⋃

ℎ=0
𝐷(𝑘)

𝑐,ℎ ∣ |

|

|

𝐷(𝑘)
𝑐,ℎ

|

|

|

= ⌊

|

|

𝐷𝑐,ℎ
|

|

𝐾
⌋,

hd(𝐷𝑐,ℎ) ∈ [ℎ𝐼, (ℎ + 1)𝐼)}

(1)

where dataset 𝐷 is naturally divided into 𝐶 = 2 subsets,
leiomyoma 𝐷0 and GISTs 𝐷1. Since the horizontal diameter
hd(⋅) of GIST in GIST514-DB ranges from 0 to 40 millime-
tres, each subset 𝐷𝑐 is further divided into 𝐻 = 4 smaller

1https://github.com/wkentaro/labelme
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Figure 3: Data spitting into 5 folds based on the tumour size
and anatomical location. (a) Distribution of the horizontal
diameter, and (b) the anatomical site location containing SEL.

subsets 𝐷𝑐,ℎ by an interval of 𝐼 = 10 millimetres; then, each
subset 𝐷𝑐,ℎ is approximately uniformly distributed to 𝐾 = 5
smaller subsets 𝐷(𝑘)

𝑐,ℎ that collectively form the five final
folds 𝐷(𝑘). Given two sets of data 𝐷train and 𝐷test , where
𝐷train

⋂

𝐷test = ∅ and 𝐷train
⋃

𝐷test = 𝐷, let 𝐷test = 𝐷(𝑘)

for the evaluation of the 𝑘𝑡ℎ split. In this way, the data in each
fold are unseen to the other folds, of which the distributions
are similar to each other, as illustrated in Fig. 3.

4. Proposed Method
This paper tackles several challenges towards developing

automatic approaches for supporting high-accuracy classi-
fication in GIST diagnosis. In particular, following clini-
cal practice [3], we present a novel single-object detection
architecture (shown in Fig. 4) that exploits the anatomical
location of lesions in the upper GI tract. Our main idea is to
aggregate multiple queries 𝑞box𝑡 on image features 𝑥FPN into
one query 𝑞img

𝑡 conditioned on the anatomical location 𝑥add
and use this to improve accuracy by iterative refinement.
4.1. Problem Formulation

Assume the category of the image represents the cate-
gory of SEL because there is only one lesion in each EUS
image. Given an EUS image 𝑥img and an additional input of
anatomical location 𝑥add, the task designs and trains a model
such that it outputs the category of image 𝑐, bounding box 𝑏̂,
and mask 𝑚̂. The data for each batch are organised as follows:

{𝑥, 𝑦} = {(𝑥img, 𝑥add), (𝑐gt , 𝑏gt , 𝑚gt)} (2)
where 𝑥 = (𝑥img, 𝑥add) denotes a pair consisting of an EUS
image 𝑥img ∈ ℝ𝐻×𝑊 ×3 and an anatomical location 𝑥add ∈
{0,… , (𝐿 − 1)}. There are 𝐿 = 7 anatomical landmarks
in our settings, namely, oesophagus, cardia, gastric fundus,
undetermined between gastric fundus and gastric body, gas-
tric body, angle and antrum in ascending order (mentioned
in Table 2 and Fig. 3). In equation (2), 𝑦 = (𝑐gt , 𝑏gt , 𝑚gt)
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T×

Figure 4: Overall of Query2. Query2 consists of T stages (𝑇 = 6 in our settings). The image feature is first extracted by the
backbone and FPN module and then fed to T stages. The submodules for processing anatomical location are highlighted by red
arrows.

denotes the ground truth. 𝑐gt ∈ {0, 1} denotes the ground
truth of the image category, where 0 indicates benign lesions
(leiomyoma) and 1 indicates malignant lesions (GIST), and
is used to calculate classification metrics, such as accuracy,
sensitivity and specificity. Additionally, 𝑏gt ∈ ℝ4 and 𝑚gt ∈
ℝ𝐻×𝑊 denote the bounding box and mask, respectively,
both of which are further used to evaluate the performance
of object detection and instance segmentation.
4.2. Query2 Architecture

We propose Query2, a high-performance single-object
detector that consists of a query-based backbone for extract-
ing image features, a novel bounding box head driven by
single-object restriction for GIST detection, and an addi-
tional mask head for GIST segmentation. Our strategy is also
suitable for query-based object detectors, such as Sparse-
RCNN [28] and QueryInst [29], where we choose QueryInst
as our baseline. The overall architecture and experimental
settings of Query2 are introduced below.
4.2.1. Initial State with Anatomical Location

Embedding
Query2 consists of 𝑇 = 6 cascade stages, which means

that the output of the current stage is fed to the input of the
next stage, e.g., the input of stage 𝑡 ∈ {1,… , (𝑇 − 1)}, such
as the bounding box proposals 𝑏𝑡−1, bounding box query
𝑞box𝑡−1 and whole image query 𝑞img

𝑡−1 , are generated from stage
𝑡 − 1. However, the input of the first stage is initialised by
learnable parameters or embedding layers separately, which
are formulated as follows:

𝑏0 ← 𝜃box

𝑞box0 ← 𝜃feat

𝑞img
0 ← 𝜃img (𝑥add)

(3)

𝑏0 ∈ ℝ𝑁×4 is initialised by the encoded position of 𝑁
bounding boxes 𝜃box ∈ ℝ𝑁×4. Similarly, the bounding box
query for the first stage 𝑞box0 ∈ ℝ𝑁×𝑑 is initialised by 𝑁
learnable parameters 𝜃feat ∈ ℝ𝑁×𝑑 of length 𝑑 representing
bounding box features. 𝑞img

0 ∈ ℝ1×𝑑 is initialised by the
anatomical location embedding layer  , where anatomical

location 𝑥add serves as the index of learnable parameters
𝜃img ∈ ℝ𝐿×𝑑 . In our experiments, 𝜃box, 𝜃feat and 𝜃img are
implemented in PyTorch by the same function nn.Embeding.
4.2.2. Backbone and Neck

After we initialised the queries for the first stage above,
we used the backbone and neck to extract image features
from EUS images. The image feature extractor of the object
detector can be formulated as follows:

𝑥feat ← Backbone(𝑥img)

𝑥FPN ← FPN(𝑥feat)

𝑥box𝑡 ← box(𝑥FPN, 𝑏𝑡−1)

𝑥mask
𝑡 ← mask(𝑥FPN, 𝑏𝑡)

(4)

Backbone denotes the main feature extractor, such as ResNet-
50 or ResNet-101 [5], converting static images 𝑥img into
image features 𝑥feat for the downstream tasks. FPN denotes
the feature pyramid networks [31] allowing the pooling
operators box and mask i.e., Region of Interest Align
(RoIAlign) [23] to crop current bounding box features 𝑥box𝑡
and mask features 𝑥mask

𝑡 from FPN features 𝑥FPN. The
pooling positions of this step are controlled by the bounding
box prediction 𝑏𝑡−1 from the previous stage and 𝑏𝑡 from the
current stage.
4.2.3. Bounding Box Head with Single-Object

Restriction
We first build a vanilla bounding box prediction pipeline,

which can be expressed as follows:
𝑞box∗𝑡−1 ← MSA𝑡(𝑞box𝑡−1)

𝑞box𝑡 ← DynConvbox𝑡 (𝑥box𝑡 , 𝑞box∗𝑡−1 )

𝑐box𝑡 ← CLSbox𝑡 (𝑞box𝑡 )

𝑏𝑡 ← REG𝑡(𝑞box𝑡 )

(5)

where a multi-head self-attention (MSA) module MSA𝑡 [32]
(see Fig. 5(a)) is applied to the bounding box query 𝑞𝑡−1from the last stage to obtain the enhanced query 𝑞box∗𝑡−1 .
DynConvbox𝑡 [28] (see Fig. 5(c)) denotes the box dynamic
convolution module taking the bounding box features 𝑥box𝑡
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and the enhanced query 𝑞box∗𝑡−1 of the last stage as input
while generating a bounding box query 𝑞box𝑡 for the next
stage. The bounding box query 𝑞box𝑡 is then fed into the
bounding box branch, consisting of a vanilla fully connected
head of bounding box classification CLSbox𝑡 and a vanilla
fully connected head of bounding box regression REG𝑡 to
generate the category prediction of bounding box 𝑐box𝑡 ∈
ℝ𝑁×2 and the position prediction of bounding box 𝑏𝑡 ∈
ℝ𝑁×4. The vanilla fully connected head usually consists of
several linear layers followed by layer normalisation and
activation functions.

However, the vanilla bounding box prediction pipeline
of query-based detectors, such as QueryInst [29] and Sparse
R-CNN [28], and other nonquery-based detectors, such as
EfficientDet [8, 11] and Cascade Mask R-CNN [26], cannot
predict image category end-to-end because its prediction is
generated by manual post-processing, leaving only the top
scoring bounding box [11] and can be expressed as follows:

𝑐 ← argmax
𝑗

𝑐box𝑇−1(𝑖,𝑗)

𝑏̂ ← 𝑏𝑇−1
(6)

The image category prediction is based on the top scoring
bounding box from the category prediction of bounding box
𝑐box𝑇−1 in the last stage. The position predictions of bounding
box 𝑏𝑇−1 in the last stage are taken as the final output. In
contrast, we propose a simple but end-to-end multi-head
cross-attention (MCA) module to replace this manual post-
processing and implement single-object restriction (SOR),
which can be expressed as follows:

𝑞img
𝑡 ← MCA𝑡(𝑞

img
𝑡−1 , 𝑞

box
𝑡 )

𝑐img
𝑡 ← CLSimg

𝑡 (𝑞img
𝑡 )

𝑐 ← 𝑐img
𝑇−1

𝑏̂ ← 𝑏𝑇−1

(7)

where a multi-head cross-attention module MCA𝑡 [32] (see
Fig. 5(b)) transforms the whole image query 𝑞img

𝑡−1 by reading
𝑞box𝑡 . The whole image query 𝑞img

𝑡 of the current stage is
then fed into a vanilla fully connected layer head CLSimg

𝑡for image classification and converted to the image category
prediction 𝑐img

𝑡 of the current stage.
4.2.4. Mask Head

Following the settings of the mask head in QueryIns
[29], the mask head is formulated as follows:

𝑥mask∗
𝑡 ← DynConvmask

𝑡 (𝑥mask
𝑡 , 𝑞box∗𝑡−1 )

𝑚𝑡 ← FCN𝑡(𝑥mask∗
𝑡 )

𝑚̂ ← 𝑚(𝑖)
𝑇−1

(8)

where DynConvmask
𝑡 [29] (see Fig. 5(d)) helps the bounding

box head be partially driven by the mask head since it takes
𝑥mask
𝑡 and 𝑞box∗𝑡−1 as input while generating enhanced mask

FFN
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(a) MSA
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Norm

ReLU

ReLU

Figure 5: Illustrations of MSA, MCA, DynConvbox𝑡 and
DynConvmask

𝑡 at stage 𝑡. (a) 𝑞box𝑡−1 is transformed by itself. (b) 𝑞img
𝑡−1

is transformed by reading 𝑞box𝑡 . (c) 𝑥box
𝑡 is enhanced by 𝑞box∗𝑡−1 ,

while the output 𝑞box𝑡 serves as both new bounding box features
for the current stage and new queries for the next stage. (d)
𝑥mask
𝑡 is enhanced by 𝑞box∗𝑡−1 . BMM: batch matrix multiplication.

features 𝑥mask∗
𝑡 to the following mask head FCN𝑡. FCN𝑡consists of four sequentially connected convolution layers,

an upsampling layer and a convolution layer, generating
mask predictions 𝑚𝑡 for instance segmentation tasks.

5. Experimental Results
5.1. Implementation Details

Our implementation is in PyTorch and developed using
MMDetection [33]. To additionally evaluate general classi-
fication models, we implemented the classification methods
using MMClassification [34]. The training and inference of
our models are supported by four Titan Xp GPUs, each
having 12 GB memory.
5.1.1. Dataset Setup

Our models are evaluated on GIST514-DB by 5-fold
cross validation based on the proposed data splitting setting
described in Sec. 3.2. Input images are resized following the
random scale settings in [29] during training and inference.
To avoid overfitting, we introduce data augmentation adding
random flipping and rotations at 90, 180 or 270 degrees since
SELs can appear at any orientation. Note that brightness
and texture, such as marginal halo and inhomogeneity of
the tumour, show strong relevance with GIST classification
[18]. Therefore, to retain these intensity features, we did not
apply brightness augmentation and only applied geometric
transformation.
5.1.2. Training Setup

Query2 is first initialised with the weight of QueryInst
[29] pretrained on the COCO dataset and then fine-tuned on
GIST514-DB because the number of images in GIST514-
DB is too small to support training from scratch. Without
special mention, all detectors in our study are pretrained on
COCO, and all classifiers are pretrained on ImageNet. Fol-
lowing query-based methods [28, 29], the training schedule
is 36 epochs. The learning rate is warmed up from 2.5×10−8
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to 2.5 × 10−5 in the first 1000 iterations and then divided by
10 at the 27-th epoch and 33-th epoch. The weight decay of
the AdamW optimiser is set to 1 × 10−4. The 6 stages in our
models are parallel driven by:

𝑙𝑜𝑠𝑠𝑡 ←𝑤0 ⋅ L1(𝑏𝑡, 𝑏gt) +𝑤1 ⋅ GIoU(𝑏𝑡, 𝑏gt)

+𝑤2 ⋅ FL(𝑐box𝑡 , 𝑐gt) +𝑤3 ⋅ CE(𝑐
img
𝑡 , 𝑐gt)

+𝑤4 ⋅ DSC(𝑚𝑡, 𝑚gt)

(9)

where 𝑤(𝑖) denote the weights for the five loss functions.
Following the setting of QueryInst[29], 𝑤(𝑖) are set to 5, 2, 2,
1 and 8. Concretely, the encoded position of bounding box 𝑏𝑡is guided by the least absolute deviations (L1) loss function
and generalised intersection over union (GIoU) loss function
[35]. The category of bounding box 𝑐𝑡 is supervised by the
focal loss function [36]. The cross-entropy loss function CE
is additionally applied to drive the classification head with
single-object restriction. The dice coefficient (DSC) loss
function is used to maximise the overlap between 𝑚𝑡 and
the ground truth. The number of proposals (𝑁) referenced
in Sec. 4.2.1 is set to 300.
5.1.3. Evaluation Metrics

Following the tasks of real world object detection and
instance segmentation, mean average precision (mAP) is
used to evaluate the performance of detectors. mAP indicates
the average precision for IoU from 0.5 to 0.95 with a step
size of 0.05, and AP50 denotes average precision acquired at
IoU threshold 0.5. Importantly, we compared the sensitivity
(Sen. ), specificity (Spc.) and accuracy (Acc.) over previous
methods by treating GIST recognition as a classification
task. In this task, Sen. refers to GIST accuracy, Spc. refers to
leiomyoma accuracy, and Acc. refers to the overall accuracy.
In practice, we accumulate the confusion matrix from each
split to calculate the sensitivity, specificity and accuracy for
the entire dataset. Since the accumulation of mAP is com-
plicated, we just average the mAP of each split to evaluate
the entire dataset. We first repeated the ablation study 5
times with random seeds and reported the mean and standard
deviation in Table 4. We then reported the accuracy with the
best seed in subsequent sections.
5.2. Main Results

To validate the performance of the proposed Query2
method, we performed an ablation study of anatomical loca-
tion embedding layers and performed an extensive compari-
son with the existing CAD applications [9–12], classification
models [5, 7, 19–22], object detectors [23–29], and instance
segmentation [23, 26, 29].
5.2.1. Ablation study of the anatomical location

embedding layer, MCA and SOR
MCA is essential because it is the only connection be-

tween anatomical location input and the rest of the model.
We demonstrate that additional anatomical location input
is crucial to classification performance. To evaluate the
case of an embedding layer without the anatomical location

Table 4
Impacts of using the anatomical location embedding layer,
MCA and SOR

 MCASOR 𝜇Sen 𝜎Sen 𝜇Spc 𝜎Spc 𝜇Acc 𝜎Acc

92.4% 1.5% 93.0% 1.5% 92.7% 0.7%

(0) ✓ 91.7% 1.1% 94.4% 1.0% 93.0% 0.5%
(0) ✓ ✓ 92.0% 0.9% 94.3% 1.5% 93.2% 1.0%

✓ ✓ 90.7% 0.6% 95.4% 0.8% 93.0% 0.5%
✓ ✓ ✓ 92.2% 0.5% 96.5% 1.1% 94.3% 0.5%

 : anatomical location of the embedding layer; MCA: multi-
head cross-attention module; SOR: single-object restriction;𝜇:
average for 5 repeated experiments; 𝜎: standard deviation for 5
repeated experiments. The first model is baseline. The second
and third models utilise  , MCA and SOR without anatomical
location input during training, but only the third model uses
SOR during inference. The fourth and fifth model utilise  ,
MCA and SOR with anatomical location input during training,
but only the fifth model uses SOR during inference.

Table 5
Performances of CAD applications to recognize GISTs via EUS

Algorithm type Dataset Sen. Spc. Acc.↑

6-layer CNN[10] [10] 83.0% 75.5% 79.2%
Xception[9] [9]𝑎 77.3% 100% 83.3%
EfficientNetV2-L[12] [12] 98.8% 67.6% 89.3%
EfficientDet[11] [11] 95.6% 82.1% 91.2%
Xception[9] [9]𝑏 91.7% 100% 93.3%
EfficientDet[11] [11]𝑐 100% 85.1% 96.3%

6-layer CNN[10]⋆

GIST514-
DB

61.2% 61.8% 61.5%
EfficientDet[11]⋆ 81.4% 49.4% 65.8%
Xception[9]⋆ 70.7% 76.9% 73.7%
EfficientNetV2-L[12]⋆ 80.2% 81.3% 80.7%

Query2 (Ours) GIST514-
DB

94.3% 96.0% 95.1%

CAD: computer assisted diagnosis; GIST: gastrointestinal
stromal; EUS: endoscopic ultrasound; Sen.: sensitivity; Spc.:
specificity; Acc.: accuracy; ⋆: reproduced methods; 𝑎: SELs
< 20 mm; 𝑏: SELs ≥ 20 mm; 𝑐 : evaluated on more than one
image(s) for each case.

input, we fix the index of the anatomical location embedding
layer, i.e., 𝑞img

0 ← 𝜃img (0), so that the MCA receives the
same retrieval result from the embedding layer. As shown
in Table 4, the removal of anatomical location input leads
to a drop in classification accuracy, where the accuracy of
the fifth model drops from 94.3% to 93.2%. Additionally, it
is equally important to use SOR during inference. Models
without SOR during inference are evaluated by computing
the accuracy of the top scoring bounding box. As shown in
Table 4, due to the existence of SOR during inference, the
accuracy of the fifth model is 1.3% higher than that of the
fourth model.
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Table 6
Classification results on GIST514-DB.

Method Resolution (H×W) Epochs #Params #FLOPS Sen. Spc. Acc.↑

SE-ResNet-101 [19] 224×224 100 47.03M 7.86G 82.5% 78.1% 80.4%
EfficientNet-b1 [7] 240×240 100 6.51M 0.03G 82.5% 78.5% 80.5%
Res2Net-101-26w-4s
[20]

224×224 100 42.94M 8.13G 82.9% 79.7% 81.3%

ResNet-101 [5] 224×224 100 42.28M 7.85G 84.8% 80.5% 82.7%
ResNet-152 [5] 224×224 100 57.92M 11.58G 85.2% 80.6% 82.9%
Swin-B [21] 224×224 300 84.1M 15.14G 94.7% 71.4% 83.3%
EfficientNet-b3 [7] 300×300 100 10.7M 0.06G 92.0% 83.8% 87.9%
VGG-19-BN [22] 224×224 100 139.55M 19.69G 88.2% 88.0% 88.1%

Query2(ours) 800×1280 36 200.36M 241.66G 94.3% 96.0% 95.1%

FLOPs are calculated under the input resolution illustrated on this table.

Table 7
Object detection results on GIST514-DB.

Method Backbone Epochs #Params #FLOPS mAPbox↑ APbox
50 FPS

Non-query based
Mask R-CNN[23] R-101-FPN 36 62.74M 334.24G 41.4 69.8 11.1
ATSS [24] R-101-FPN 36 50.88M 277.53G 43.2 69.2 13.7
FCOS [25] X-101-FPN 36 89.61M 434.75G 44.2 71.0 6.7
Cascade Mask R-CNN [26] R-101-FPN 36 95.79M 465.04G 44.4 70.0 7.7
RepPoints [27] X-101-FPN-DCN 36 57.81M 271.58G 46.9 75.3 6.7

Query based
Sparse R-CNN [28] R-101-FPN 36 124.99M 241.53G 53.9 86.5 9.1
QueryInst [29] R-101-FPN 36 191.27M 241.53G 54.8 88.6 8.8

Query2(ours) R-101-FPN 36 200.36M 241.66G 55.8 88.8 8.4

FLOPs are calculated under the input resolution of 800×1280. R: ResNet; X: ResNext; DCN: deformable convolution.

5.2.2. Comparisons with the most relevant CAD
applications

Table 5 shows the classification results of the most
relevant CAD applications [9–12], where neither the code
nor the datasets used for evaluation in these methods are pub-
licly available. Therefore, we summarised the performance
of the existing CAD methods on their private datasets as
reported in their respective papers. For a fair comparison,
we reproduce all of these methods in PyTorch and evaluate
all of these methods on the GIST514-DB dataset. Following
the resolution settings in these models, the images input to
6-layer CNN and Xception are cropped by the ground truth
bounding boxes, while pixels outside the segmentation mask
of images input to 6-layer CNN are removed.
5.2.3. Comparisons on GIST514-DB Classification

We compare Query2 with the state-of-the-art classi-
fication methods of real world datasets (see Table 6) on
GIST514-DB. The resolution, optimisers and learning schemes
of each model are aligned with the default settings of their
pretrained models. For fine-tuning, we froze the first stage of
each model, divided the learning rate by 10, and applied label
smoothing [6]. The accuracies of the SOTA classification

models range from 80.4% to 88.1%. The experimental result
suggests that VGG-19-BN outperforms other classification
models with 88.1% accuracy, but Query2 still considerably
exceeds the accuracy of VGG-19-BN by 7%. We also
provide the number of parameters and FLOPs to facilitate the
selection of the optimal strategy for using the GIST514-DB
dataset and the method on performance-constrained plat-
forms. Classification models may perform worse than detec-
tors because detectors are supervised by additional bounding
box annotations. To validate this, we conducted extensive
experiments on object detection models (Sec. 5.2.4).
5.2.4. Comparisons with GIST514-DB Object

Detection
We first evaluate detection models by metrics commonly

applied to the classification model, such as sensitive, speci-
ficity and accuracy, to fairly compare their performance with
the aforementioned state-of-the-art classification models
(see Table 8). Following [11], we also use the category
of the top scoring bounding box to represent the classifi-
cation results of these detectors, as shown in Eq. (6). The
experimental results show that nonquery-based detectors,
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Table 8
Performances of adapting object detectors to classification on
GIST514-DB.

Method Sen. Spc. Acc.↑

Non-query based
FCOS [25] 81.4% 62.5% 72.2%
ATSS [24] 80.6% 67.7% 74.3%
Mask R-CNN[23] 81.7% 67.7% 74.9%
Cascade Mask R-CNN [26] 80.2% 69.7% 75.1%
RepPoints [27] 82.5% 72.9% 77.8%

Query based
Sparse R-CNN [28] 91.2% 93.6% 92.4%
QueryInst [29] 92.0% 93.6% 92.8%

Query2(ours) 94.3% 96.0% 95.1%

Table 9
Instance segmentation results on GIST514-DB.

Method mAPmask↑ APmask
50

Non-query based
Mask R-CNN[23] 44.4 70.5
Cascade Mask R-CNN [26] 46.8 70.9

Query based
QueryInst [29] 56.4 89.3

Query2(ours) 57.4 89.0

such as FCOS, ATSS, Mask R-CNN, Cascade Mask R-
CNN and Repoints, achieve accuracies between 72.2% and
77.8%, which are even lower than the worst state-of-the-art
classification model illustrated in Table 6 (e.g., SE-ResNet-
101 with 80.4% accuracy). In contrast, query-based detectors
are experimentally shown to be at least 4.3% more accurate
than the best state-of-the-art classification model, such as
VGG-19-BN.

Table 7 shows the object detection results on GIST514-
DB, evaluating bounding boxes and categories. The exper-
imental results show that the query-based detectors show
better localisation capabilities than the nonquery-based ar-
chitectures. Sparse R-CNN, QueryInst and Query2 surpass
RepPoints by 7, 7.9 and 8.9 APbox, respectively. Query2
achieves 8.4 FPS on a single Titan Xp GPU during infer-
ence, which still surpasses several strong baselines. Overall,
Query2 achieves the best performance (55.8 APbox), suggest-
ing that it better models the task than the existing state-of-
the-art methods.
5.2.5. Comparisons with GIST514-DB Instance

Segmentation
Additionally, Table 9 shows the instance segmentation

results on GIST514-DB, which shows that Query2 improves
instance segmentation performance by 1% mAPmask com-
pared with the state-of-the-art QueryInst method. Moreover,
Query2 outperformed nonquery-based detectors (Mask R-
CNN and Cascade Mask R-CNN).

(a) (b) (c)

t=
0

t=
1

t=
5

Figure 6: Visualising the distribution of bounding boxes in
different stages. (a) Distribution of 𝑏𝑡, where the yellow box
represents the assigned target box, (b) heatmap of 𝑏𝑡 with the
box with the highest MCA attention weight highlighted in red,
where 𝑐box𝑡 is marked in green on the upper left corner of these
boxes and (c) the histogram of the MCA attention weights.

5.2.6. Visualising the distribution of bounding boxes
The distribution of bounding boxes in each stage is illus-

trated in Fig. 6(a). To simplify the visualisation, the number
of bounding boxes on each pixel is taken as the intensity
of the heatmap, as shown in Fig. 6(b). The histogram of
averaged MCA attention weights over different attention
heads is shown in Fig. 6(c).

6. Discussion
SEL recognition using ultrasonic micro probes plays

an indispensable role in gastroendoscopy, especially for the
diagnosis of lesions with malignant potential, such as GISTs.
Although several sonographic features have been shown to
be relevant for high-risk GISTs, the existing sonographic
features of low-risk GISTs remain limited [2–4, 18]; thus,
the diagnosis of GISTs is a challenging problem. We conduct
extensive experiments and prove that Query2 outperforms
existing methods with a large margin in classification, object
detection and instance segmentation on the GIST514-DB
dataset. Its superior performance is derived from two parts:

(i) spatial and semantic information are captured and ag-
gregated by the end-to-end pipeline;

(ii) made full use of existing annotations to locate lesions
and mimic the distribution of lesions using anatomical
location.

Spatial information refers to the location of the lesion,
which is coded with a bounding box in this study. In the
pipeline of nonquery-based detectors, the positions of an-
chors that generate proposals are evenly distributed across
different image regions. In fact, in the GIST514-DB dataset,
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the target lesions are located more in a central region of the
ultrasonic image than in a border region, which means that
different regions have different importance. To define a box-
wise importance score, Query2 explicitly fits the distribution
of the bounding box from training data by the bounding box
proposals 𝑏𝑡 and scores the importance of each generated
bounding box query 𝑞box𝑡 through MCA aggregation. Con-
cretely, the density of 𝑏𝑡 is the approximation of the distribu-
tion of the bounding box, while the learned attention of MCA
represents the box-wise importance score. As shown in Fig.
6(b), the distribution of 𝑏𝑡 is concentrated in the lesion area,
and the proposal with the top importance score is located in
the most sampled areas. Notably, the bounding box proposal
with the highest MCA attention weight is not necessarily
the bounding box proposal with the highest prediction score
𝑐box𝑡 . The attention weights are also not concentrated in the
boxes with the top MCA attention weight, as shown in Fig.
6(c), which implies that the contribution of each query 𝑞box𝑡
to 𝑐img

𝑡 is relatively uniform. Therefore, the aggregation over
all bounding boxes with MCA and SOR provides better
performance than the top scoring bounding box, which ex-
plains why the fifth model in Table 4 performs better than
the fourth model in Table 4. Moreover, utilising anatomical
location input in a visual detection task is a key finding
in this work, where we perform an ablation study on the
effect of anatomical location input on GIST recognition.
As shown in Table 4, the model with anatomical location
input is compared fairly with the model without anatomical
location input, showing that anatomical location input leads
to better performance.

Equally important, as summarised in Table 3, the tu-
mour size in GIST514-DB is considerably smaller than
that in previously reported datasets, implying fewer high-
risk GISTs in GIST514-DB. To evaluate the difficulty of
GIST recognition on the GIST514-DB dataset, we reproduce
the most relevant CAD applications. As shown in Table
5, although the comparison is made at the same resolution
level, most methods achieve a relatively lower accuracy on
GIST514-DB than on their own datasets, which implies that
GIST514-DB is a more challenging dataset.

In Table 5 we can also observe that the classification
model 6-layer CNN [10] has the lowest accuracy on the
GIST514-DB dataset, and EfficientDet [11] has the second
lowest accuracy on GIST514-DB. Due to differences in the
number of parameters, FLOPs or image cropping, there is
not enough evidence to suggest which classification model
or detection model can perform better. However, it is worth
noting that in Table 5, EfficientNetV2-L without image crop-
ping outperforms the other classification models with image
cropping, such as 6-layer CNN and Xception, which implies
that image cropping is not a beneficial process for GIST
recognition on the GIST514-DB dataset, and our experi-
mental results also support this conclusion. We evaluate a
wide range of classification models without image cropping,
where most classification models without image cropping
outperform the models with image cropping. As shown in
Table 6, the classification accuracy of models without image

cropping ranges from 80.4% to 88.1%, surpassing the 6-
layer CNN with image cropping and Xception with image
cropping. After excluding the effect of image cropping,
the accuracy of classification models is almost positively
correlated with the number of parameters or FLOPs, where
EfficientNet is an exception due to its unique operator de-
sign.

Furthermore, more annotations, such as bounding boxes
and segmentation masks, are expected to lead to better per-
formance. In other words, detection models are expected to
achieve better performance than most classification models.
However, counter-intuitively, not all detection models out-
perform the classification models. As shown in Table 8, the
accuracy of nonquery-based detectors is substantially lower
than the above classification models in Table 6, while query-
based detectors outperform most of the classification mod-
els. What classification models in Table 6 and query-based
detectors in Table 8 have in common is that they consider
pixels outside ground-truth bounding boxes for classifica-
tion. As illustrated in Fig. 4, the query-based detector uses a
self-attention module, such as the MCA, to interact between
each bounding box query, which also includes bounding
box queries outside the lesion region to generate weighted
bounding box queries. In such a case, it is not surprising that
further aggregation of bounding box queries, i.e., MCA and
SOR, can improve the performance of query-based detectors
step forward. As shown in Tables 7, 8 and 9, our Query2 has
state-of-the-art performance in detection, classification and
instance segmentation on GIST514-DB.

The main limitation of the proposed method is related
to interpretability. Since GISTs and Leiomyomas look very
similar, it is difficult to make a qualitative comparison of
our method. The main uncertainty comes from the noise
signal from EUS probe, motion blur, and the low resolution
of the EUS probe. From an imaging perspective, denoising
methods and super-resolution methods can reduce the un-
certainty. On the other hand, since deep learning is a data-
driven approach, including more data can directly reduce
uncertainty. Furthermore, how to extend the concept of
anatomical location to similar applications, such as skin dis-
ease identification, is also an interesting question to explore
for future work.

7. Conclusion
In this paper, we propose a novel GIST detection network

named Query2, which utilises the prior anatomical location
and the prior single object to improve GIST identifica-
tion. The proposed network is able to detect and segment
even fine-grained lesions from the challenging GIST514-DB
dataset that we collected. The GIST514-DB dataset is the
first multimodal dataset of its kind, which contains detailed
tumour locations from EUS, tumour types from biopsies
and anatomical locations from endoscopy collected from
the endoscopy centre of the General Hospital of Tianjin
Medical University. Through an ablation study and extensive
comparison with the existing classification, object detection,
segmentation, and CAD methods, we show the robustness
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and superiority of the proposed Query2 method. In future
work, we aim to construct a multicentre dataset and extend
our architecture to more disease categories.
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