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Abstract We present a general methodology for the nonlinear dynamical modeling of 

a three-axis stabilized spacecraft equipped with flexible solar arrays. The large-span 

multi-panel solar arrays are modeled as flexible thin plates that are connected to the 

rigid central body of the spacecraft by means of nonlinear flexible hinges. We construct 

a low-dimensional yet accurate dynamical model by using a Galerkin expansion in 

terms of global modes of the system that we compute first by using the Rayleigh-Ritz 

method. The hinged connections between the rigid and flexible parts of the system are 

imposed by means of Lagrange multipliers. We use the model to study the spacecraft 

response triggered by various maneuvering scenarios. We in particular focus on the 

coupling between vibrations of the flexible components and the rigid motion of the 

spacecraft induced by hinge nonlinearities during these orbital and attitude 

maneuvering operations. In all cases considered we find that four global modes are 

sufficient to accurately compute the system’s response. We also observe other 

complicated nonlinear dynamical phenomena such as hysteresis and superharmonic 

resonance that may be of concern in spacecraft design. Our modeling approach can 

straightforwardly be applied to other multibody systems. 

 

Keywords Large-scale flexible spacecraft; Nonlinear flexible hinges; Analytical global 
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1. Introduction 

With the development of space industry, spacecraft need to accomplish more and 

more tasks so that large-span solar arrays are necessary to provide sustainable energy 

to ensure the achievements of the stated goals. Solar arrays of large-scale flexible 

spacecraft composed of a number of hinges and flexible composite panels are tending 

to become larger, lighter and more flexible (see Fig. 1 for a typical design). Having an 

accurate coupled rigid-flexible dynamical model that can predict the complicated 

motion of the system is therefore of great importance in modern spacecraft design. 

There are several works in the literature concerned with the dynamical modeling of 

spacecraft. Ji and Li [1] proposed an accurate, freedom-reduced, universally applicable, 
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and full flexible nonlinear finite element method for modern spacecraft based on 

continuum mechanics. They overcame the difficulty of structural analysis for spacecraft 

due to the high number of degrees of freedom of the elements. Zhang et al. [2] 

developed a nonlinear dynamical model for the flexible spacecraft with external 

disturbances, inertia uncertainties and input saturation, and investigated the finite-time 

attitude maneuvering control and vibration suppression. Ni et al. [3] developed a time-

varying state-space model of a coupled rigid-flexible spacecraft in orbit through the 

recursive identification method, and an improved identification technique with high 

efficiency was proposed. Gaite [4] derived the differential equations of lumped-

parameter spacecraft models, and considered a satellite thermal model to study the 

nonlinear oscillations of the system. Liu et al. [5,6] established an analytical coupled 

rigid-flexible model for a flexible spacecraft. They analyzed the dynamical response 

under solar radiation, and conducted a comparison study between single and double 

solar panel arrangements. However, all these dynamical modeling methods ignore the 

effect of the hinges of the flexible appendages on the dynamical characteristics of the 

whole spacecraft. The various hinges can strongly affect the dynamical behavior of the 

system. In this paper we focus on the modeling of these hinges and the effect of their 

nonlinearities on spacecraft dynamics. 

To show the transmission characteristics of the hinges which can strongly affect 

the dynamical behavior of the whole structure, the parameters of the complex hinges 

must be confirmed first. The properties of hinges are usually difficult to measure 

directly. So, identification techniques are effective approaches for determining these 

important hinge parameters including stiffness, damping and friction. Ratcliffen and 

 

 

Fig. 1 Model of the three-axis attitude stabilized spacecraft 



Lieven [7] proposed a technique to obtain the properties of structural joints, and an 

experimental investigation was conducted to examine the promise of the proposed 

method. Kimm and Park [8] presented an identification method to get the nonlinear 

joint properties based on measured frequency-response functions at the nonlinear joint 

connection points of the structure. Their investigations overcame the limitations of a 

time-domain lumped-parameter model. Wu et al. [9] derived differential equations for 

nonlinear dynamical joint models. Joint parameters for the nonlinear stiffness, friction 

and damping characteristics of solar arrays in a real spacecraft were identified 

experimentally. Jalali and Ahmadian [10] used a single-frequency excitation close to 

the first natural frequency to obtain the force-state mapping from time-domain 

acceleration records so that the parameters of the nonlinear joint model could be 

identified. Ren et al. [11] proposed an identification technique for the dynamical 

properties of nonlinear joints using dynamical test data, which did not require a 

theoretical model and only depended on experimental data for the identification. We 

will use hinge properties (stiffness, damping and friction) as experimentally identified 

by force-state mapping [9]. 

In recent decades, there has been a great deal of research on the dynamics of multi-

body structures taking into account the effect of hinges. Taking the eigenfunctions of 

the free-free beam as basis functions, the Rayleigh-Ritz method is employed by Cao et 

al. [12] to obtain the natural frequencies and the corresponding global mode shapes of 

flexible jointed-panel structures. He et al. [13] proposed an effective way to enhance 

the computational speed and convergence rate by using characteristic orthogonal 

polynomials instead of trigonometric functions as basis functions. However, these 

researches mainly focus on the natural characteristics of hinged substructures of the 

spacecraft, and the effects of flexible hinges on rigid-flexible coupling phenomenon are 

ignored. Given this, He et al. [14] simplified a three-axis attitude stabilized spacecraft 

as a rigid central body jointed with four solar panels and analyzed the influence of hinge 

stiffness on its global natural properties, but they did not study the nonlinear 

characteristics of hinges and the resulting dynamical behavior. To study the 

nonlinearity of hinges, Wei et al. [15,16] proposed a nonlinear analytical model for a 

spacecraft with flexible jointed multi-beam structures and investigated nonlinear 

vibration phenomenon of the system caused by joint nonlinearities during spacecraft 

maneuvering. However, the past works done by Wei et al. used beam rather than plate 

modeling. 

It is well known that the sudden variation of control force and torque during 

attitude and orbit maneuvering causes the flexible appendages to shake strongly. Under 

such conditions complicated nonlinear dynamical behavior of the system may be 

triggered through the nonlinear coupling of the hinges, affecting the position and 

attitude of the whole spacecraft. This paper studies these complicated oscillations 

induced in various spacecraft maneuvering operations. 

The paper is organized as follows. Section 2 presents the nonlinear modeling of 

the spacecraft system. The hinges are formulated as matching conditions between the 

rigid spacecraft hub and the flexible solar panels and are imposed by means of Lagrange 

multipliers. Past work on spacecraft equipped with solar panels is extended by modeling 



the panels as plates rather than beams, thereby allowing for additional modes of 

deformation. Following the work in [13], so-called global modes of the system are 

computed using the Rayleigh-Ritz approach. These modes are then used to construct a 

low-dimensional discrete model of the spacecraft by Galerkin truncation. We analyse 

in detail the spacecraft design shown in Fig. 1 but our approach could equally be applied 

to other similar spacecraft. The global modes for this particular design are given in 

Section 3. We identify the couplings between the different types of deformations in the 

various modes of vibration. In Section 4 we then investigate the dynamical response of 

the system triggered by orbit maneuvering forces and three-axis attitude driving torques. 

Concluding comments are made in Section 5. 

 

2. Dynamical modeling of a spacecraft with nonlinear hinges 

In this section, we first give a geometrical description of the spacecraft (Section 

2.1) and a discussion of the numerical modeling of the displacement fields of the solar 

panels (Section 2.2). We then derive the kinetic and potential energies of the system 

(Section 2.3) and formulate the matching conditions for the hinges (Section 2.4). We 

then compute the global modes of vibration (Section 2.5) and use these modes in a 

Galerkin expansion to finally obtain our low-dimensional nonlinear dynamical 

spacecraft model (Section 2.6). 

2.1 The spacecraft model and its geometrical description 

The spacecraft is a typical coupled rigid-flexible system. The central platform can 

be considered as a rigid hub, and the large-span solar arrays are simplified as two sets 

of multi-panel structures connected by nonlinear flexible hinges. Because the yokes 

need sufficient capacity to support the large-span solar arrays, the stiffness of the yoke 

is generally designed very large compared with the flexible solar panels, so yokes can 

be considered as rigid rods. 

Some system assumptions are made to ease the analysis: 

a. When the spacecraft is in orbit, the solar array is fully extended and the hinges 

are locked. 

b. Flexible hinges are simplified as revolute joints with an extra rotating spring 

that is ignored in terms of size and mass. 

c. The system's lateral vibration is solely taken into account, while in-plane 

vibration is ignored. 

The solar array is made up of a honeycomb panel base board and solar cells that 

are covered by glass fiber sheets. Only honeycomb panels are taken into account in this 

study because they are the primary structures of solar arrays, as shown in Fig. 2. 

 



 

Fig. 2 Structure diagram of honeycomb panel 

 

The honeycomb panel, of height 2h , is mainly composed of honeycomb core with 

height 2 ch   and face sheet (aluminum plate) with height fh   (see Fig. 3). The 

thickness of coating and adhesives is ignored. The honeycomb core and face sheet are 

both made of aluminum, so the elastic modulus fE  , mass density f  , and shear 

modulus fG  of the face sheet are the same as the elastic modulus 0E , mass density 

0 , and shear modulus 0G  of the aluminum. 

The cell of honeycomb core is a regular hexagon. cl  and c  are the length and 

thickness of the honeycomb wall. c   is the mass density of the honeycomb core. 

Based on equivalent theory proposed in [17], the composite honeycomb panel can be 

considered equivalent to an isotropic elastic rectangular thin plate, as shown in Fig. 3. 

The equivalent material properties of honeycomb panel, including Poisson’s ratio  , 

equivalent elastic modulus eqE , equivalent mass density eq , shear modulus eqG , and 

equivalent thickness eqt  can be expressed as 
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Fig. 3 Equivalent isotropic model for the honeycomb sandwich panel 

 

Coordinate systems are defined as shown in Fig. 1. 0 0 0 0O x y z−   is the inertial 

reference coordinate system fixed on the orbit around the earth. Point O  is the center 



of the rigid hub. O xyz−   is the floating coordinate system fixed on the rigid hub, 

which is obtained by three successive rotations, as illustrated in Fig. 4. First, we rotate 

the basis  1 2 3, ,    an angle z  about the axis aligned with the director 3 . Next, 

we rotate the basis  1 2 3
ˆ ˆ, ,    an angle x  about the axis aligned with the director 

1̂ . Finally, we rotate the basis  1 0 3
ˆ ˆ, ,y   an angle y  about the axis aligned with 

the new director 0y . The transformation matrix from O xyz−  to 0 0 0 0O x y z−  is thus 

expressed as 
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Point iO   is the midpoint of the panel edge. Parallel to O xyz−  , i i i iO x y z−   is the 

floating coordinate system fixed on the panel, where 1,2, ,i N=   represents the 

number of the panel. The transformation matrices from i i i iO x y z−   to O xyz−   are 

given by 

0

0 1 0

0 0 1

1 0
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=A                              (3) 

 

 
Fig. 4 Coordinate transformation process 

 

2.2 Displacement field expressions for the solar panels 

The transverse displacements of the solar panels are expressed as 
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where    represent the natural frequency of the whole system (the global mode). 

( , )
i iR RW x y  and ( , )

i iL LW x y  are the modal functions of the solar panels. 

Some previous studies of flexible solar panel vibrations adopted eigenfunctions of 

beams as basic functions [12], but the relatively slow computational speed and 

convergence rate are significant limitations since the eigenfunctions of beams contain 

a large number of trigonometric functions. To enhance the speed of computations, we 

adopt the approach proposed by Bhat [18] and use the more efficient characteristic 

orthogonal polynomials as basis functions instead of trigonometric functions. So, the 

modal functions ( , ),  ( , )
i i i iR R L LW x y W x y  can be written as 
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where ( )
im Rx , ( )

in Ry , ( )
im Lx , ( )

in Ly are characteristic orthogonal polynomials 

in the x  and y  directions respectively (for details on these polynomials see [19]). 

tm  and tn  are truncation numbers to be specified for any given model, while 
( )i

mn

R
A  

and 
( )i

mn

L
A  are unknown coefficients. 

2.3 Kinetic and potential energies of the system 

With reference to Fig.1, the position vector of O  in inertial coordinate system 

can be written as  

 
T

=ro o o ox y z                           (6) 

where ox , oy  and oz  are coordinates of O  in 0 0 0 0O x y z− .  

   0i
P  is the initial position of an arbitrary point P on the panel. 

0i i
o Pr  represents the 

initial position vector in i i i iO x y z− . It can be expressed as 

 
0

T
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0 ii

P Pr  is the relative position vector of point iP  in i i i iO x y z−  given by 
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ioPr  and 
i io Pr  denote deformed position vectors of point iP  in the floating coordinate 

system O xyz−  and i i i iO x y z− , respectively: 
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where ( ), ,i iw x y t  denotes the transverse displacement of iP  on the panel, a  is the 

length of the panel and  
T

0 ( 1), 0, 0
ioo r a i= + −r . 0r  is shown in Fig. 3. 

 

   Then, using a series of vector operations, the position vector of an arbitrary point 



iP  in 0 0 0 0O x y z−  can be expressed as 

0i iP o oo oP= +r r A r                            (11)                         

Hence, the velocity of the panel can be obtained as 

0 0i i i iP P o oo oP oo oP= = + +v r r A r A r                      (12) 

where 
• 
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 denotes the time derivative. 

The matrix of principal moments of inertia of the central rigid hub is expressed as 
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where xJ , yJ  and zJ  are the rigid hub moments of inertia about axes x, y and z.                         

The kinetic energy of the whole system can then be expressed as 
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where   and Rm  represent the density of the panel and the mass of the central rigid 

hub, respectively. The angular velocity vector of the spacecraft is given by 
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In the vibrations we are here interested in the attitude angles x  , y  and z  will be 

small, so Taylor expansion can be used to get the following first-order approximations 

for trigonometric functions of attitude angles: 
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For simplicity of writing, ( , , )
i i iR R Rw x y t , ( , , )

i i iL L Lw x y t , ( , )
i i iR R RW x y and ( , )

i i iL L LW x y  

are abbreviated to
iRw ,

iLw ,
iRW and 

iLW , respectively. It should be pointed out that the 

third- and higher-order coupling terms involving products of w, θx, θy, θz, xo, yo and zo 

and/or the partial derivatives respect to time t, x and/or y are neglected in the expression 

of the kinetic energy. Then, substituting Eq. (12), (13) and (15) into Eq. (14), the 

expanded expression of the kinetic energy is obtained as 
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where 
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with ( , , )
i i iR R Rw w x y t=  the displacement of the i-th panel at the right hand defined 

in (4). The expression of T can be obtained from T  by replacing 0 ( 1)r a i+ −  and 

iR  with 0 ( 1)r a i− − −  and iL . 

The potential energy of the spacecraft with hinged panels consists of two parts: the 

strain energy of the panels and the potential energy stored in the rotational springs. The 

torsional joint is described as a single-degree-of-freedom massless system, and based 

on experimental parameter identification [9], the torque transmitted by the joint can be 

represented as a function of the instantaneous state of the joint. Thus we express the 

torque as 
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where the terms on the right-hand side represent linear damping, linear spring, 

nonlinear spring and Coulomb friction, respectively. , , ,nc k k   are the linear 

damping coefficient, linear spring stiffness coefficient, nonlinear spring stiffness 

coefficient and Coulomb friction torque, respectively. s   denotes the rotational 

angles of hinges 
iRA ,

iRB ,
iLA and 

iLB  shown in Fig. 3 

The potential energy of the system can be expressed as 
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where 
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−
  denotes the flexural rigidity of the panel. a   and b   are the 

length and width of the panels, respectively. 

 

2.4 Matching conditions 

All panels are formulated independently, so we need to impose matching 

conditions to ensure continuity of the structure. As shown in Fig. 3, the structures are 



connected by hinges 
iRA ,

iRB ,
iLA and 

iLB (i =1,2,…,N). The flexible hinge is simplified 

as a revolute joint with a rotational spring, where the size, mass, damping and Coulomb 

friction are neglected. The rotational angles can be written as sins t  , where the 

  are now independent of time. If we denote ( , )
i i iR R RW W x y=   and 

( , )
i i iL L LW W x y=  , the matching conditions for rotational displacements about each 

hinge can then be written as 
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Hinges are locked when the spacecraft operates in orbit, so there is no relative 

displacement at the point
iRA ,

iRB ,
iLA and 

iLB . Then matching conditions for translation 

displacements can be derived as 
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( ) ( )
1 11 1

0, 0, 0, 0,
L LA L a B L bW W y W W y = =  = =                  (25) 
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where 0=
2

a

b
y

−
, 0

2
b

b
y = , 2,3, ,i N= . 

 

2.5 Global natural frequencies and mode shapes 

We use the Rayleigh-Ritz method to derive global modes of the system. Lagrange 

multipliers ,  , ,  
R R L Li i i i

A B A B     ( 1,2, , )i N=  are introduced to impose the matching 

conditions (hinge constraints) derived in Section 2.4. The Lagrange function can then 

be constructed as 

max max

1 1 1 1

.
R R R R L L L Li i i i i i i i

N N N N

A A B B A A B B

i i i i

U T W W W W   
= = = =

 = − +  +  +  +         (27) 

Here, as usual, maxU and 
maxT are the maximum potential and kinetic energies over a 

period of the response. 

The motion of the spacecraft can be expressed in two parts: large-scale rigid 

motion without deformation of the solar arrays and small-scale rigid motion 

synchronously coupled with vibration of the solar arrays. So, the motion of the 

spacecraft is written as follows 
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

=
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               (28) 

where the first term and the second term of each equation denote the rigid motion and 

vibration, respectively. During the process of solving these modes, the external force is 

set to zero, so the large-scale rigid motions orx , ory , orz , xr , yr  and zr  are constants 

and only depend on the initial states, which are time independent. 

Following [14], global modes of the system are expressed as rigid motions with 

superimposed elastic vibrations with only one uniform time dependence. So we write 

the displacements and attitude angles of the spacecraft’s central rigid hub as follows: 
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where oX , oY , oZ , 
( )

0

x , 
( )

0

y  and 
( )

0

z  are unknown coefficients. 

Then the transverse displacement of the solar panel and the rigid displacement of 

the spacecraft are substituted into the kinetic energy and potential energy. It should be 

pointed that the nonlinear terms of the torsional joints are neglected here to establish 

the linear model when we derive the natural characteristics of the system. 

The Lagrange function is minimized with respect to the unknown coefficients oX , 
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From these equations the characteristic equation of the spacecraft can be obtained as 

( )2− + =K M Λ X 0                    (34) 

where X  is the column vector of unknown coefficients expressed as 
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(35) 

For the detailed form of the matrices K , M  and Λ  we refer to our previous work 

[19]. Natural frequencies and mode shapes X can then finally be obtained by solving 

Eq. (34). 

 

2.6 Nonlinear dynamical model of the spacecraft system 



The global modes derived in the previous section are employed here to obtain a 

discrete system of ordinary differential equations (ODEs) for our spacecraft by Galerkin 

truncation.  

For the (k+6)th order frequency, the corresponding analytical global modes of the 

system obtained in Section 2.5 can be written as 
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T
( ) ( ) ( )

, , , 0, 0, 0, , , , ,, , , , , , , , , , , , 1,
N N

x y z

k o k o k o k k k k R k R k L k L kX Y Z W W W W k n   = = Φ  (36) 

Based on the Eq. (4) and (28), the displacement of the flexible spacecraft can be 

expressed by the global modes and a set of generalized coordinates as follows 
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              (37) 

where Φ  is the global modal matrix and p(t) is the vector of generalized coordinates. 

Then the first n rigid-flexible coupled modes are expressed as 

 
 

( ) ( ) ( )

1 2

T

1 2

, , ,          

, ,...,

n

np t p t p t

 =


=    

Φ Φ Φ Φ

p
                      (38) 

Eq. (37) is substituted into the Eq. (16) and (18) and by employing Hamilton’s 

principle the following discrete dynamical equations are obtained: 

( ) ( )μn+ + + + =Mq Cq Kq K q q Q                       (39) 

where M  , C  , K  , nK   and μ   are the mass, viscous damping, linear stiffness, 

nonlinear stiffness and Coulomb friction matrices with dimensions (6+n)× (6+n), 

respectively. Q  is the maneuvering force vector with dimensions (6+n)×1, and q is 

the vector with dimensions (6+n)×1 expressed as 
T

T, ,, , , ,xror or o yrr zrx y z    =  q p                    (40) 

which represents the generalized coordinates. 

The mass matrix M is as follows 
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The stiffness and damping matrices K and C are as follows 
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The expression for can be obtained from   by replacing all instances of iR  with 

iL . 

The damping matrix C77 is as follows 

77 M K p jc = + +C M K C                     (43) 

where the coefficients M  and K  are proportionality constants and 
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The expression for p  can be obtained from p  by replacing iR with iL . 
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The nonlinear stiffness ( )K qn
 is as follows 
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The expression for 
n
 can be obtained from n  by replacing iR with iL . 

The Coulomb friction matrix is as follows 
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3. Global modes of the spacecraft 
In this section the geometrical and material parameters of our specific spacecraft, 

shown in Fig. 1, are given and the first twelve global modes calculated and discussed. 



The values of the various parameters of our spacecraft model are listed in Table 1. 

The truncation numbers tm  and tn  are chosen based on the accuracy of the solutions 

obtained. Larger numbers give more accurate solutions. From the convergence study in 

[19] we conclude that sufficiently accurate results are obtained by taking 6t tm n= = . 

Table 1 Geometrical and material parameters of the spacecraft 

Parameters Values 

Length of the panel, a (m) 2.0 

Width of the panel, 2b (m) 2.0 

Distance between the hinges A and B, b0 (m) 1.6 

Thickness of the honeycomb core, 2hc (m) 0.0197 

Thickness of the honeycomb face sheet, hf (m) 0.15×10-3 

length of honeycomb wall, cl (m) 6.35×10-3 

Thickness of honeycomb wall, c (m) 0.0254×10-3 

Elastic modulus of the panel, E0 (Pa) 6.89×1010 

Mass density of the panel, 0 (kg m-3) 2.8×103 

Poisson’s ratio, v  0.33 

Distance, r0 (m) 2.0 

Moments of inertia of the hub, Jx, y, z (kg m2) 100,100,100 

Mass of the hub, )g(kRm  150 

Stiffness of the rotational spring, m/(N )radk   500 

Nonlinear stiffness of the rotational spring, 
3m/r( )dN ank   108 

Damping coefficient of the hinges, m s/(N ad)rc   10 

Coulomb coefficient of the hinges, m(N )   0.05 

Proportionality constants M , K  0.002, 0.001 

 

Frequencies and corresponding mode shapes (eigenvectors) can be derived from 

the characteristic equation. The elements in the eigenvectors represent the unknown 

coefficients ( )i

mn

R
A  , ( )i

mn

L
A   and Λ  . ( )i

mn

R
A   and ( )i

mn

L
A   are used to determine the 

amplitudes of the flexible panels; Λ  is used to confirm constraint conditions at hinges. 

Then the first twelve global modes of the system can be obtained and mode shapes are 

plotted as shown in Fig. 5. 

 

 
 

 



 

 

 

 
Fig. 5 First twelve global mode shapes of the spacecraft 

 

Some interesting phenomena can be observed in Fig. 5. The first six global modes 

of the spacecraft represent rigid bending modes of the whole system, which mainly 

reveal the inherent properties of the rotational springs. If the mode shapes for the two 

sets of panels are completely symmetric bending, the vibrations of flexible panels will 

be coupled with the rigid translation oz , such as in the 1st, 3rd, 7th and 11th mode. If 

the mode shapes of the pair of panels are antisymmetric bending, the vibrations of 

flexible panels will be coupled with the rigid attitude motion y , such as in the 2nd, 

4th, 8th and 12th mode. If the mode shapes of the two-side panels are symmetric torsion, 

the vibrations of flexible panels will be coupled with the rigid attitude motion x , such 

as in the 6th and 10th mode. However, if the vibrations for the two sets of panels 

represent antisymmetric torsion, the flexible vibrations of the panels have no coupling 

with rigid motions of the central body, such as in the 5th and 9th mode. 

 

4. Nonlinear dynamical response of the spacecraft 
Here we present and analyse solutions of the low-dimensional nonlinear spacecraft 

model derived in Section 2.6 under forcing as a result of various maneuvering scenarios, 

including pulsed excitation, harmonic excitation and periodic pulse excitation. To 

determine the accuracy of the computational model we compare results obtained by 

taking into account different numbers, n, of modes in the Galerkin approximation. We 

also perform a parametric analysis to assess the effect of the nonlinear flexible hinges 

on spacecraft dynamics. 
 

4.1 Nonlinear response under an orbital maneuvering force 

The orbital maneuvering force F acting on the rigid central module in the z 

direction is defined as follows 
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where F0 is the amplitude of F(t). The time history of F(t) with T1= 10s, T2= 20s and 

F0=20 N is shown in Fig. 6.  

 

Fig. 6 The orbital maneuvering force F 

 

In this case,  
T

0,0, ,0,0,0, 0ZF F=Q . The nonlinear response is calculated by 

solving Eq. (39) and the results are plotted as follows: 

 



 
Fig. 7 Motions of the spacecraft excited by F: (a) Translation in the z direction; (b) Attitude motion 

around the x direction; (c) Attitude motion around the y direction; (d) Attitude motion around the z 

direction. 

 

In Fig. 7 the motions of the spacecraft are shown when taking two (n=2) and four 

(n=4) rigid-flexible modes into account. The curves for n=2 and n=4 agree perfectly, 

which means that the two-degrees-of-freedom model is already accurate enough to 

calculate the spacecraft’s motions in this case.  

From Fig. 7 (a) we can observe that the orbital maneuvering process causes large 

displacements in the z direction, and rigid-flexible coupling occurs. According to the 

mode shapes of the system, the first-order mode is coupled with the translation of the 

spacecraft in the z direction, and this mode is excited by the orbital maneuvering force. 

The large amplitudes of the motion at 10s and 30s illustrates how a sudden change of 

the force causes relatively large oscillations of the spacecraft. It can be seen that the 

orbital maneuvering process has almost no effect on the attitude motions x  and z

in Fig .7 (b)(d), but that it causes the oscillations of y in Fig. 7 (d). According to the 

global modes of the linear system, the translations and rotations are independent, but 

we see from Fig. 7 (c) that the hinge nonlinearity couples the motion in the z direction 

with the rotational vibration in the y direction. 

 

 



 
Fig. 8 Deflections of the solar array tip for different hinge linear stiffness: (a) k=50Nm/rad; (b) 

k=100Nm/rad; (c) k=500Nm/rad; (d) k=1000Nm/rad. 
 

The oscillation response of the solar array’s tip is presented in Fig. 8. For the 

flexible vibrations of the solar array, it is sufficient to use only two modes to discretize 

the model. The effect of the hinge linear stiffness k is analyzed in the figure. Because 

increase of the hinge stiffness reduces the flexibility of the whole system, the vibration 

amplitude of the solar array decreases. However, the increase of hinge stiffness also 

makes the vibration of the solar array more important, especially during 10s-30s. In 

addition, the larger hinge stiffness may lead to longer residual vibrations and stronger 

rigid-flexible coupling effects. On account of this, it is necessary to design a vibration 

controller for the spacecraft when its hinge stiffness is large. 

4.2 Nonlinear response under an attitude driving pulse torque 

In this case, the attitude driving pulse torque is acted on the y axis of the 

spacecraft’s central module, and Q is defined as 
T

( )

00,0,0,0, ,0, θ y

y y  =  Q . 
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The time history of y  is shown in Fig. 9. 

 



Fig. 9 The attitude driving pulse torque y  

 

 

 
Fig. 10 Motions of the spacecraft under the pulse torque y : (a) Attitude motions around the y axis; 

(b) Rigid-flexible coupling vibrations; (c) Residual vibrations; (d) Rigid-flexible coupling 

translations in x, y, z directions (n=4). 
 

    The nonlinear response under this excitation is shown in Fig. 10. The figure shows 

that using the first two global modes to discretize the system is not sufficient to 

accurately calculate the nonlinear response to this type of excitation. More modes 

should be taken, and the figure shows that the response curves overlap when n=4 and 

n=6. So, the nonlinear model can be truncated as a four-degrees-of-freedom model in 

this case.  

From Fig. 10 (a), the spacecraft can achieve attitude adjustment through a pulse 

torque, and the attitude angle is changed from 0 rad to 0.082 rad. The attitude motion 

y is the sum of the rigid motion yr  and the vibration yv . Fig. 10 (b) illustrates the 

details of vibrations of the rigid body caused by the attitude driving pulse torque. At the 

same time, Fig. 11 (b) shows oscillations of the solar array’s tip, which are synchronous 

with yv . So, a clear rigid-flexible coupling phenomenon is revealed by comparing 

these two figures. It is demonstrated that the attitude maneuvering process excites 

vibrations of the solar arrays, and conversely the vibrations of the solar arrays also have 

an effect on the attitude of the spacecraft. The second and fourth modes in Fig.5 show 

that the solar array vibrations have an effect on the hub’s attitude motion y  : the 

vibrations and the rigid attitude motion are coupled. Comparison of Fig.10(b) and 11(b) 

gives further evidence of vibrations being synchronous with y . 



   Fig. 10 (c) shows the residual vibrations y residual −  when the attitude torque stops. 

It can be observed that the rigid-flexible coupling vibrations do not stop instantly when 

the attitude maneuvering process is over. The residual vibrations will last almost 4s and 

then decay gradually. It may affect the precision of the attitude adjustment for the 

spacecraft. So, the cooperative controllers of attitude motions and flexible vibrations 

are essential for the design of spacecraft. As is shown in Fig. 10 (d), the oscillation in 

the z direction is triggered by the attitude driving pulse torque, and the attitude motions 

are coupled with the translation, similar to what we saw in Fig. 7 (c). 

Fig. 11 shows the deflections of the solar array tip for different hinge linear 

stiffness. With the increase of the hinge stiffness, the vibration responses of the solar 

array fluctuate more remarkable, and the oscillation amplitudes become smaller. The 

stiffnesses of hinges have a great effect on the dynamical characteristics of the 

spacecraft. The attitude driving pulse torque acted on the rigid central hub may lead to 

complicated nonlinear oscillations of the solar arrays, especially when the pulse is 

suddenly applied or stopped. The impact on the system is more likely to arouse the 

rigid-flexible coupling effect. 

 

 

 
Fig. 11 Deflections of the solar array tip for different hinge linear stiffness: (a) k=50Nm/rad; (b) 

k=100Nm/rad; (c) k=500Nm/rad; (d) k=1000Nm/rad. 
 

4.3 Nonlinear response under a periodic attitude torque 

Besides the pulse excitations mentioned before, a periodic torque is also one of the 

common ways of attitude maneuvering of the spacecraft. Here a periodic attitude torque 

is taken in the form 
T

( )

00,0,0,0, ,0, θ y

y y  =  Q , shown in Fig. 12. The attitude of the 

spacecraft is adjusted to the desired goal by applying two cycles of sinusoidal torques 

in this case. 
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Fig. 12 The periodic attitude torque y  

 

The nonlinear response is plotted in Fig. 13, where the attitude motion, the vibrations 

of solar arrays, the residual vibrations of the central platform and the translations of the 

spacecraft are displayed. 

 

 

 
Fig. 13 Motions of the spacecraft under the periodic torque y : (a) Attitude motions around the y 

axis; (b) Rigid-flexible coupling vibrations; (c) Residual vibrations; (d) Rigid-flexible coupling 



translations in x, y, z directions (n=4). 

 

From Fig. 13, we see that only using two modes in this case is not sufficient to 

guarantee an accurate model. Consequently, the first four rigid-flexible coupling modes 

of the system are employed to truncate the system of equations. The rigid-flexible 

coupling response curves of yv , similar to the sine form, are shown in Fig. 13 (b), but 

there are some small fluctuations at the amplitudes caused by the nonlinearities of the 

hinges. The residual oscillations of the central body last 2s after the attitude 

maneuvering process in Fig. 13 (c), and the damping and friction of the system play 

important roles for vibration attenuations. As is shown in Fig. 13 (d), due to the 

nonlinear characteristics of hinges, the oscillation in the z direction is triggered by the 

attitude maneuvering process, and the attitude motions are closely coupled with the z 

translation. 

Fig.14 analyzes the deflections of the solar array tip for different hinge linear 

stiffnesses. The flexibilities of hinges have a great effect on nonlinear responses of the 

system. With the increase of the hinge linear stiffness, the fluctuations at the amplitudes 

of curves become smaller, which means that increase of linear stiffness can attenuate 

the nonlinear features of the system. In addition, the curves for n=2, n=4 and n=6 in 

Fig .14 (a) and (b) are very close, but the curves for n=2 are gradually moving away 

from the curves for n=4 and n=6, as seen in Fig. 14 (c) and (d). It shows that the mode 

numbers for modal truncation should be increased when the hinge stiffness grows. 

 

 

 
Fig. 14 Deflections of the solar array tip for different hinge linear stiffness: (a) k=50Nm/rad; (b) 

k=100Nm/rad; (c) k=500Nm/rad; (d) k=1000Nm/rad. 

 

4.4 Nonlinear response under a periodic pulse attitude torque 

It is well known that the attitude adjusting process is sometimes not continuous, 



and it is usually conducted by an intermittent maneuvering with a certain regularity. In 

this case, the periodic pulse attitude torque is approximated by dividing the sinusoidal 

curve in Fig. 12 into discrete pulses, and its form is shown in Fig. 15. The forcing is 

defined as 
T

( )

00,0,0,0, ,0, θ y

y y  =  Q , where y  is expressed as 
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Here [] means rounding, and 0 24t  . 

 

 
Fig. 15 The periodic pulse attitude torque y  

 

 



 
Fig. 16 Motions of the spacecraft under the periodic pulse torque y : (a) Attitude motions around 

the y axis; (b) Rigid-flexible coupling vibrations; (c) Residual vibrations; (d) Rigid-flexible 

coupling translations in x, y, z directions (n=4). 
 

Compared to the response under the continuous sine excitation with the same 

period and amplitude in Section 4.3, the vibration phenomena are different and more 

complicated under the periodic pulse excitation. Due to the discontinuity of the attitude 

driving torque in this case, the attitude motion y  in Fig .16 (a) can only achieve about 

twice the value of y  in Fig .13 (a). The fluctuations of curves in Fig .16 (b) become 

more remarkable, which means the nonlinear rigid-coupling effect is stronger under the 

periodic pulse excitation. Besides, the residual vibrations in Fig. 16 (c) last longer than 

under the continuous sine excitation. In addition, the coupling phenomenon caused by 

the hinge nonlinearity in Fig .16 (d) becomes more complicated. 

 

 

 



Fig. 17 Deflections of the solar array tip for different hinge linear stiffness: (a) k=50Nm/rad; (b) 

k=100Nm/rad; (c) k=500Nm/rad; (d) k=1000Nm/rad. 
 

From Fig. 17 we see that the vibration response of the solar arrays is characterized 

by both periodic excitation and pulse excitation, and the stiffness of hinges has a great 

effect on the dynamical characteristics of the spacecraft. Comparing Fig. 17(a) and (d), 

we observe that with the increase of the hinge stiffness, the fluctuations of the solar 

array vibrations become smaller, and the amplitudes decrease. Compared to the 

relatively smooth curve in Fig. 14, the fluctuations of the curves are significantly 

increased, and the attitude periodic pulse torque leads to more complicated nonlinear 

oscillations of the solar arrays. Especially when the pulse is suddenly applied or stopped, 

the intermittent impact is more likely to arouse the stronger nonlinear characteristics of 

hinges. 

4.5 Nonlinear response under disturbing forces and torques 

In general, the complex and longtime maneuvering process of the spacecraft may 

lead to disturbing forces and torques caused by liquid sloshing or other reasons. In this 

case, the system may present more complicated nonlinear dynamic behavior due to the 

nonlinearities of a large number of hinges. The disturbing forces and moments applied 

to the central rigid body of the spacecraft are expressed as follows 

( ) cos

( ) cos

z d

y d

F t F t

M t M t

= 


= 
                    (50) 

So, the forcing can be defined as ( )

0 00,0, ,0, ,0, y

z y z yF F M = + 
T

Z θQ , where   is 

the frequency of the periodic disturbance, dF  is the amplitude of the disturbance force, 

and dM   is the amplitude of the disturbance torque. We take 8 NdF =  and 

8 NmdM = . 

Based on the analysis of the above sections, it can be concluded that employing 

the first four global modes to discretize the model has been accurate enough to calculate 

the nonlinear response when a periodic force and torque are applied to the system at the 

same time. Thus, the response in this case will be calculated from the four-degrees-of-

freedom nonlinear model. 

The steady-state time history responses, the phase portraits and the spectra for 

rigid-flexible coupling translations ovz (z0), rigid-flexible coupling rotations yv (
1y ), 

rotational displacements of the hinge 
1RB  and vibrations of the solar array tips 

3Rw

are displayed in Fig. 18. 

 

 
 



 
 

 

 
 

Fig. 18 Response of the system with 10 310 Nm/ radnk =  , c=1Nms/rad, μ=0.01 and 

6.3rad/ s = : (a)-(c) Rigid-flexible coupling translations of the spacecraft in the z direction; (d)-(f) 

Rigid-flexible coupling rotations of the spacecraft around the y axis; (g)-(h) Rotational 

displacements of the hinge 
1RB ; (j)-(k) Vibrations of the solar array tip; (a), (d), (g) and (j) are 

steady-state responses; (b), (e), (h) and (k) show the phase portrait; (c), (f), (i) and (l) give the 

spectrum of the steady-state response. 

 

As seen in Fig. 18, the response of the spacecraft under the disturbing force and 

torque have strong nonlinear characteristics, beyond the periodic motion of the forcing. 

The oscillations of the rigid central platform, hinges and solar arrays are in similar 

patterns, which means all components of the spacecraft are coupled with each other and 

the hinges have important effects on the dynamical behavior of the spacecraft. In 

addition, the response amplitudes appear at one third, three and other multiples of the 

external excitation frequency, and it can be concluded that superharmonic and 

subharmonic resonances have occurred due to the hinge nonlinearities. These are 

evident in Figs. 18 (c), (f), (i) and (l). 

 



 

 

 

 



 

 

 

 
Fig. 19 Frequency-response curves of the system with various values of 3(Nm/ rad )nk  : (a)-(d) 



Rigid-flexible coupling translations of the spacecraft in the z direction with (a) 0nk = , (b) 710nk = , 

(c) 810nk = , (d) 910nk = ; (e)-(h) Rigid-flexible coupling rotations of the spacecraft around the y 

axis with (e) 0nk = , (f) 710nk = , (g) 810nk = , (h) 910nk = ; (i)-(l) Rotational displacements of the 

hinge 
1RB with (i) 0nk = , (j) 710nk = , (k) 810nk = , (l) 910nk = ; (m)-(p) Vibrations of the solar 

array tip with (m) 0nk = , (n) 710nk = , (o) 810nk = , (p) 910nk = . 

 

The role of hinge nonlinearities in spacecraft dynamics is explored further in Fig. 

19, which shows frequency-response curves for different values of the nonlinear hinge 

stiffness. Because the nonlinear hinge stiffness is positive, the curves show hardening 

characteristic, with curves tilting to the right. As a result, there is multistability for a 

range of forcing frequencies with jumps at both ends of this range. Hysteresis cycles 

occur when the frequency is first increased and then decreased (or the other way around) 

across the main resonance. Under increasing nonlinear stiffness the vibration 

amplitudes go down, but the hardening characteristic becomes more and more 

prominent, and the dynamical behavior of the system becomes more and more 

complicated with superharmonic resonances occurring.  

For a flexible spacecraft with linear hinges, the translation and attitude motion of 

its rigid central body will not be coupled with each other for the mode shapes of the 

system, as shown in Fig. 5. At the same time, it can also be observed from Fig. 19 (a) 

and Fig. 19 (e) that the highest amplitude of the translation and attitude motion of the 

spacecraft occurs at the first and second order natural frequencies respectively, and ovz

(z0), yv (
1y ) are not coupled.  

However, it can be deduced from Figs. 19 (b)-(d) that the translations of the rigid 

central body jump around the first natural frequency of the system. Coincidentally, the 

attitude motions of the rigid central body jump around the first natural frequency 

synchronously, as shown in Figs. 19 (f)-(h). Comparing Figs. 19 (b)-(d) with (f)-(h), it 

can be confirmed that the translations and attitude motions of the spacecraft are coupled 

with each other due to the influence of the nonlinear hinge stiffness. Under increasing 

nonlinear stiffness, the coupling effect becomes more and more pronounced. This 

conclusion explains the phenomena in Fig. 7 (c), Fig. 10 (d), Fig. 13 (d) and Fig. 16 (d). 

 

 



 
Fig. 20 Response of the system for various values of m s/(N ad)rc  : (a) Rigid-flexible coupling 

translations of the spacecraft in the z direction; (b) Rigid-flexible coupling rotations of the spacecraft 

around the y axis; (c) Rotational displacements of the hinge 
1RB ; (d) Vibrations of the solar array 

tip. 

 

 
Fig. 21 Response of the system for various values of m(N )   : (a) Rigid-flexible coupling 

translations of the spacecraft in the z direction; (b) Rigid-flexible coupling rotations of the 

spacecraft around the y axis; (c) Rotational displacements of the hinge 
1RB ; (d) Vibrations of the 

solar array tip. 

 

In order to study the effects of damping and friction of the hinges on the dynamical 

characteristics of the whole spacecraft system, the frequency-response curves of the 



system with 
910nk =   for various values of c and μ are shown in Figs. 20 and 21, 

respectively. It is observed that under increasing hinge damping and friction, the 

oscillation amplitudes of the system decrease gradually, and the stability of the system 

increases. The superharmonic resonance, however, still appears in Fig. 20 for hinge 

damping as large as c=50Nm·s/rad. In addition, the response curves in Fig. 21 show 

very complicated, possibly chaotic, behavior when μ=0Nm. On the other hand, under 

increasing hinge friction, the superharmonic resonances gradually diminish until they 

disappear. We therefore conclude, from comparisons of responses for various values of 

c and μ, that the characteristics of the hinges have a great effect on the whole system 

dynamics. 

We end with a comment on an unusual feature of the frequency-response curves 

in Figs 19, 20 and 21. Where these curves consist of two separate solution branches one 

expects there to be a branch of unstable solutions connecting these branches. (These 

unstable branches are not detected by our numerical method, which only finds stable 

solutions.) These unstable branches connect folds of the solution curves, i.e., points 

with vertical tangent. However, it is noticeable from Figs. 19, 20 and 21 that the top 

(and left) branches in these cases do not quite reach the fold (the bottom branches seem 

to terminate closer to their fold). This is despite careful stepsize refinement to get closer 

to the fold. It seems therefore that another bifurcation, causing instability, is 

encountered under increasing forcing frequency before the fold would induce a jump. 

We leave further exploration of this phenomenon to future work. 

 

5. Conclusions 

In this paper a low-dimensional nonlinear dynamical model of a large-scale 

flexible spacecraft has been obtained by exploiting global modes of the system. 

Particular attention has been paid to the modeling of nonlinear hinges connecting the 

rigid central body of the spacecraft to the flexible solar panels. The connections are 

formulated as matching conditions that are enforced by means of Lagrange multipliers. 

The model is used to study the complicated nonlinear coupled rigid-flexible vibration 

phenomena of the spacecraft triggered by various orbit maneuvering forces and three-

axis attitude driving torques. A parametric study is also carried out to investigate the 

dynamical effects of hinge stiffness, damping and friction. The main conclusions of our 

numerical results can be summarized as follows. 

(1) For such a complex spacecraft system, the nonlinear model established by using the 

global modes has the advantage of low dimension and high precision. The model 

discretized by only the first four modes is sufficient to accurately describe the 

complicated nonlinear characteristics of the system. Moreover, it is a general 

modeling method that can straightforwardly be applied to other spacecraft designs 

and indeed to other multibody systems. 

(2) The orbital and attitude maneuvering of the spacecraft causes complicated nonlinear 

behavior including multistability, jump phenomena, hysteresis and sub- and 

superharmonic resonances. Attitude driving torques acted on the rigid central hub 

may lead to complicated nonlinear oscillations of the solar arrays, especially when 

the pulse is suddenly applied or stopped, which is likely to induce nonlinear rigid-

flexible coupling. Therefore, the attitude driving torque should be smooth and 

continuous to avoid more complicated nonlinear vibration phenomena. The residual 

vibrations may last a period of time before they decay gradually, which may affect 

the precision of the attitude adjustment of the spacecraft. So, cooperative controllers 

of attitude motions and flexible vibrations are essential for spacecraft design. 



(3) Hinge design has a great influence on the dynamical characteristics of the system. 

For a linear spacecraft system, the translational and attitude motions of its rigid 

central body will not be coupled with each other. However, nonlinear hinge stiffness 

couples translations and rotations and the coupling becomes more obvious as the 

nonlinear stiffness is increased. On the other hand, under increasing hinge damping 

and friction the system’s response becomes simpler and of lower amplitude. 
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