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An OSRC Preconditioner for the EFIE
Ignacia Fierro-Piccardo and Timo Betcke

Abstract—The Electric Field Integral Equation (EFIE) is a
well-established tool to solve electromagnetic scattering problems.
However, the development of efficient and easy to implement
preconditioners remains an active research area. In recent years,
operator preconditioning approaches have become popular for
the EFIE, where the electric field boundary integral operator is
regularised by multiplication with another convenient operator.
A particularly intriguing choice is the exact Magnetic-to-Electric
(MtE) operator as regulariser. But, evaluating this operator is as
expensive as solving the original EFIE. In work by El Bouajaji,
Antoine and Geuzaine, approximate local Magnetic-to-Electric
surface operators for the time-harmonic Maxwell equation were
proposed. These can be efficiently evaluated through the solution
of sparse problems. This paper demonstrates the preconditioning
properties of these approximate MtE operators for the EFIE.
The implementation is described and a number of numerical
comparisons against other preconditioning techniques for the
EFIE are presented to demonstrate the effectiveness of this new
technique.

Index Terms—Preconditioner, OSRC approximation, Electric
Field Integral Equation.

I. INTRODUCTION

THE numerical simulation of time-harmonic waves scat-
tered by perfect electric conductors (PECs) is of fun-

damental importance across the spectrum of electromagnetic
applications.

Denote by einc an incident field. We are looking for the
solution etot = einc + escat of the exterior scattering problem,
that satisfies:

curl curl etot − κ2etot = 0 in Ω+, (1a)
etot × ννν = 0 on Γ, (1b)

lim
|x|→∞

|x|
(

curl escat × x

|x|
− iκescat

)
= 0. (1c)

Here, κ = ω
√
ϵ0µ0 denotes the wavenumber of the problem,

with ω denoting the frequency and ϵ0 and µ0 the electric
permittivity and magnetic permeability in vacuum. The PEC
object is denoted by Ω− ⊂ R3 and it is enclosed by a
smooth boundary Γ = δΩ−, also Ω+ = R3 \ Ω− denotes the
propagation medium. Frequently, the incident field is a plane
wave given by einc = peiκx·d, where p is a non-zero vector
representing the polarisation of the wave, d is a unit vector
perpendicular to p that gives the direction of the plane wave
and ννν denotes the unit normal vector which is orthogonal to
the local tangent plane to the surface of the scatterer.

An integral equation formulation of this problem leads to
an operational equation of the form
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Sκu = −
(
I

2
+Cκ

)
f , (2)

with Sκ the electric field integral operator, Cκ the magnetic
field integral operator, f the tangential trace of the incident
data and u the solution to the system (we will define all these
quantities in Section II-C). The above is a direct formulation,
but one could equally choose an indirect formulation. See [9]
for details.

For moderate mesh sizes, the discretisation of (2) can easily
be solved by LU decomposition. As the mesh width decreases,
iterative solvers become necessary though, but are hampered
by the ill-conditioning of Sκ after discretisation. A strategy to
deal with this issue is to introduce a regularisation operator R
such that the new operator system,

RSκu = −R

(
I

2
+Cκ

)
f , (3)

leads to well-conditioned discretisations.
The most common example of R is the Calderón Multiplica-

tive Preconditioner [2]. The drawback of this method, however,
is the need to evaluate discrete operator products. To illustrate
this, assume a function ϕ in some Hilbert space, and operators
A and B in compatible Hilbert spaces. In order to evaluate
the product ψ = ABϕ through Galerkin discretisations of the
operators A and B, we need to compute a finite dimensional
matrix product of the form ψh = AhM

−1
h Bhϕh, where

we have used the subscript h to denote finite dimensional
quantities after discretisation [5]. The matrix Mh is a mass
matrix, which contains the inner product of the test space of
Bh and the domain space of Ah. The difficulty is that this
mass matrix is numerically singular for the standard choice of
Rao-Wilton-Glisson (RWG) basis functions in electromagnetic
scattering [7]. In order to overcome this problem, one can use
the so-called Buffa-Christiansen (BC) bases as the range space
of the EFIE operator [2]. However, their use is expensive, since
the construction of BC functions requires barycentric mesh
refinements (see figure 1 for reference).

The thrust of this paper is to use the Magnetic-to-Electric
(MtE) operator, while avoiding expensive barycentric mesh
refinements. With this choice, the left-hand side of (3) becomes
a second kind integral operator, which in theory, will make it
more amenable to iterative solvers. However, a direct evalua-
tion of the MtE operator has a similar complexity to solving
the original scattering problem and is, therefore, impractical.
The idea of the On-Surface-Radiation-Condition (OSRC) ap-
proach [15] is to obtain a high frequency approximation of
the MtE operator from a radiation condition applied on the
surface of the scatterer.

In recent work by Bouajaji, Antoine, and Geuzaine [11], the
authors approximated the high-frequency symbol of the MtE
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Fig. 1. Primal and barycentric (dashed lines) meshes.

operator by a Padé expansion [16] that can be discretised using
sparse surface operators and thereby, be efficiently evaluated.
Earlier work in the 2D electromagnetic and acoustic cases is
included in [4], [3], [10].

In this research we follow the aforementioned approach for
approximating the MtE operator and investigate its practical
suitability as a regulariser for the EFIE. We also demonstrate
details of the implementation and the resulting preconditioning
performance, with respect to assembly and solving times.

This paper is organised as follows: in section II an overview
of function spaces for Maxwell’s boundary integral opera-
tors is presented. Section III shows the MtE preconditioner,
its continuous implementation, approximations, its discrete
implementation and simplifications connsidered. Section IV
presents a validation of this preconditioner and performance
benchmarks, with concluding remarks in Section V.

II. PROBLEM SETTING, TANGENTIAL SOBOLEV SPACES
AND SURFACE OPERATORS

We will start by introducing some required surface differ-
ential operators for the later sections. We will then discuss the
function space setting and the discrete representation. Finally,
we will introduce the required boundary operators.

A. Surface differential operators

In this section we briefly introduce the required surface
differential operators. For a more complete technical definition
see e.g. [17]. For the sake of the definitions here we assume a
smooth bounded domain Ω with sufficiently smooth boundary
Γ.

Let u be a sufficiently smooth scalar vector field defined on
Γ and v a sufficiently smooth tangential vector field defined
on Γ, that is v·ννν = 0. Furthermore, denote by ũ and ṽ suitable
extensions into a neighbourhood Γϵ of Γ with ṽ also requiring
that it is tangential to surfaces in Γϵ parallel to Γ. We define
the following operators.

• The surface gradient

GradΓ := ∇ũ|Γ.

• The tangential curl

curlΓ := GradΓu× ννν.

• The surface divergence

DivΓ v := (div ṽ)|Γ.

• The surface curl

curlΓ v := ννν · (curl ṽ)|Γ.

We have the following identities (see [17, Theorem 2.5.19])∫
Γ

GradΓu · v dΓ = −
∫
Γ

uDivΓ v dΓ,∫
Γ

(curlΓ u · v) dΓ =

∫
Γ

u curlΓv dΓ,

DivΓ curlΓ u = 0,

curlΓGradΓu = 0,

DivΓ (v × ννν) = curlΓ v.

Moreover, we can define the scalar surface Laplace operator
as

∆Γu := DivΓ GradΓu = −curlΓ curlΓu,

and the vectorial surface Laplace operator as

∆Γv := GradΓ DivΓv − curlΓ curlΓv

(see [17, 2.5.191 & 2.5.192]).

B. Function Spaces

Consider sufficiently smooth vector fields u and v such that
the following implication of Green’s formula makes sense:

∫
Ω

(u · curl v − v · curl u) dΩ =

∫
Γ

γtu · v|Γ dΓ. (4)

The operator γtu is the tangential trace: the product u× ννν
taken on the boundary Γ.

Now define the tangential component trace πt as

πtv := v − (ννν · v)ννν = ννν × (γtv)

on Γ.
Equation (4) introduces a duality relationship between γt

and πt, since∫
Γ

γtu · v|Γ dΓ =

∫
Γ

γtu · πtv dΓ.

Moreover, the same formula motivates a self-duality for
tangential traces through∫

Γ

γtu · πtv dΓ =

∫
Γ

γtu · (ννν × γtv) dΓ =: ⟨γtu, γtv⟩×.

From (4) it follows that the dual form ⟨·, ·⟩× makes sense
for tangential traces of functions whose curl is well defined.

In the early 2000s the underlying ideas were made precise in
the context of Sobolev spaces on bounded Lipschitz domains
(see [6], [8]). A beautiful summary is also given in the
overview paper [9].

Here, we just summarise the key result with respect to the
trace of γt and the dual form ⟨·, ·⟩×.

Let Ω be bounded (the case of an unbounded domain is
similar). Define

Hs(curl,Ω) := {u ∈ Hs(Ω)| curl u ∈ Hs(Ω)}
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Fig. 2. Definition of a RT basis function on an edge of the mesh

as the usual space for weak solutions of Maxwell’s equations.
Then, one can define the space H

− 1
2

× (DivΓ,Γ) of tangen-
tial traces on the boundary such that the mapping γt :

Hs(curl,Ω) → H
− 1

2
× (DivΓ,Γ) is continuous and surjective.

Moreover, this space is self-dual with respect to the dual
form ⟨·, ·⟩× [9]. Correspondingly, we introduce the space
H

− 1
2

× (curlΓ,Γ) as the continuous and surjective range of the

map πt : Hs(curl,Ω) → H
− 1

2
× (curlΓ,Γ). There is an isomor-

phism ΘΘΘ : H
− 1

2
× (DivΓ,Γ) → H

− 1
2

× (curlΓ,Γ) whose geometric
interpretation on smooth boundaries is that ννν×ϕ = ψ for some
ϕ ∈ H

− 1
2

× (DivΓ,Γ) and ψ ∈ H
− 1

2
× (curlΓ,Γ). The notations

DivΓ and curlΓ in the names of the spaces make clear that
they are weakly surface div and surface curl conforming,
respectively. For precise definitions see [8].

We will also require the usual scalar surface spaces H1/2(Γ)
and H−1/2(Γ). The former can be interpreted as space of
scalar Dirichlet data and the latter as space of scalar (weak)
normal derivatives. For all traces jumps and average operators
can be defined as

[γ]Γ = γ+ − γ−

{γ}Γ =
γ+ + γ−

2

In order to build the discrete problem, we need to define
discrete representations of H− 1

2
× (DivΓ,Γ) and H

− 1
2

× (curlΓ,Γ).
Consider a polyhedral approximation Γh of Γ with a tri-

angulation Th = ∪NT

l=1T
l, we denominate as Raviart-Thomas

(RT) the space of linear edge finite elements defined by the
basis functions

RTi(x) =


1

2A+
i

(x− p+) if x ∈ T+

− 1
2A−

i

(x− p−) if x ∈ T−

0, otherwise

, i ∈ {1, . . . , Ne} ,

where Ne is the number of edges in Th.
We define Nédélec (NC) basis functions as the set of rotated

RT basis functions:

NCi := ννν(x)×RTi(x)

The RT and NC basis functions form discrete bases of the
dual pair H− 1

2
× (DivΓ,Γ) and H

− 1
2

× (curlΓ,Γ).
We also define the Rao-Wilton-Glisson (RWG) basis func-

tions ([19]) as a scaling of RT basis functions:

RWGi := liRTi(x),

where li is the length of the edge i and the Scaled Nédélec
(SNC) basis functions as the rotation of RWG:

SNCi := ννν(x)×RWGi(x)

Just like the pair RT-NC, RWG and SNC form discrete bases
of the dual pair H− 1

2
× (DivΓ,Γ) and H

− 1
2

× (curlΓ,Γ).
Finally, we define piecewise linear basis functions (P1) on

a reference element:

fi(ξ, η) =


1− ξ − η for vertex 1
ξ for vertex 2
η for vertex 3

, i ∈ {1, . . . , Nv} ,

where Nv is the number of vertices in Th. These are also
called roof basis functions; we intend to use them to discretise
H

1
2 (Γ) and H− 1

2 (Γ) in the upcoming sections.
In table I we summarise the notation used for the different

sets of basis functions.

Acronym Type Dofs Discretises

RT Vectorial Edges H
− 1

2
× (DivΓ,Γ)

NC Vectorial Edges H
− 1

2
× (curlΓ,Γ)

RWG Vectorial Edges H
− 1

2
× (DivΓ,Γ)

SNC Vectorial Edges H
− 1

2
× (curlΓ,Γ)

P1 Scalar Vertices H
1
2 (Γ) and H− 1

2 (Γ)

TABLE I
SUMMARY OF BASIS FUNCTIONS.

C. Operators

To solve (1a)-(1c), the Stratton-Chu representation formula
[14, Theorem 3.27] must be considered for any x ∈ Ω+

e(x) := −T (γ+Ne)(x)−K(γ+t e)(x). (5)

Here γ+t e in physical terms represents the surface magnetic
current and consequently, γ+Ne is the surface electric current
[18, equation (2.336)], defined by γ+Nu := (iκ)−1γt

+curl u
(and similarly for the interior magnetic trace). T ,K :

H
− 1

2
× (DivΓ,Γ) → Hloc(curl2,Ω+) are defined as:

T (p)(x) := iκ

∫
Γ

p(y)G(x,y)

− 1

iκ
∇x

∫
Γ

G(x,y)DivΓp(y)dΓ(y),

K(p)(x) := curlx
∫
Γ

G(x,y)p(y)dΓ(y)

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3236762

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on February 15,2023 at 17:19:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. , NO. , MONTH YEAR 4

With G(x,y) := eiκ∥x−y∥

4∥x−y∥ , x ̸= y.

By applying magnetic and tangential traces to the
Electric and Magnetic field potential operators, the
electric and magnetic BIOs (Boundary Integral Operators)
Sκ,Cκ : H

− 1
2

× (DivΓ,Γ) → H
− 1

2
× (DivΓ,Γ) can be obtained:

{γt}ΓT = Sκ [γt]Γ T = 0

{γt}ΓK = Cκ [γt]Γ K = −I

{γN}ΓT = Cκ [γN ]Γ T = −I

{γN}ΓK = −Sκ [γN ]Γ K = 0

γ−t T = Sκ γ+t T = Sκ

γ−t K =
I

2
+Cκ γ+t K = − I

2
+Cκ

γ−NT =
I

2
+Cκ γ+NT = − I

2
+Cκ

γ−NK = −Sκ γ+NK = −Sκ

Then, applying electric and magnetic traces to the represen-
tation formula (5), the following can be derived:

C± =

[
I
2 ∓Cκ ∓Sκ

±Sκ
I
2 ∓Cκ

] [
γ±t u
γ±Nu

]
=

[
γ±t u
γ±Nu

]
. (6)

The operator C± is called Calderón Projector. It describes
the relationship of the electric and magnetic tangential traces
on the boundary Γ. An important property, directly following
from the Stratton-Chu representation formula is that (C±)

2
=

C±, which implies

S2
κ = C2

κ − I

4
. (7)

This is the basis for Calderón Preconditioning. It states that
S2
κ is a compact perturbation of the identity on sufficiently

smooth domains, with eigenvalues clustering around the point
1/4. Hence, under a suitable discretisation of this operator,
iterative solvers are expected to converge quickly. The diffi-
culties of building the discrete version arise when trying to
build Gram matrices G to implement the discrete product
Sκ,hG

−1Sκ,h. For standard RWG spaces, the matrix G is
singular [2]. To overcome this problem, in [2] a Calderón
multiplicative preconditioner (CMP) was proposed based on
the use of BC basis functions that are defined on barycentric
refinements of the original grid (see [7] for more details and
figure 1 for reference). While the improvement in iterative
solver convergence with this preconditioner is excellent, the
implementation requires the assembly of operators on grids
with six times as many elements as the original grid. Accel-
eration techniques such as the Fast Multipole Method (FMM)
[12] make this more manageable. Still, this is significantly
more costly than the assembly on the original grid.

A recent approach to implement a Calderón Preconditioner
is shown in [1], where the authors aim to build a Multiplica-
tive Calderón Preconditioner immune to the low frequency
breakdown induced by the use of RWG basis functions. Here,
the authors perform a quasi-Helmholtz decomposition of the
EFIE in the static limit by using loop-star basis functions [21]

obtained from linear combinations of RWG basis functions,
thus avoiding BC basis functions.

The main drawback of this technique, however, is the need
to solve a dense matrix system as part of the application of
the preconditioner. The authors have pointed out that this can
be achieved by preconditioning this dense matrix with specific
methods, making it competitive with the original CMP. How-
ever, the implementation effort of this approach is substantial.
In this paper we demonstrate that OSRC based preconditioners
achieve similar performance, without requiring barycentric
refinements and with an implementation that only requires the
solution of sparse linear systems that are straightforward to
assemble.

III. CONSTRUCTION OF AN OSRC PRECONDITIONER

We start by reviewing the preconditioning properties the
EtM (Electric-to-Magnetic) operator V and its inverse: the
MtE operator V−1. Then, we review the Padé approximation
approach for these operators, obtained from [11], and finally
describe in detail how to use these operators as discrete
preconditioners. We assume that both Sκ and 1

2I + Cκ are
invertible (the operators have no resonance at the wavenumber
κ).

A. OSRC operator as a preconditioner for the EFIE

The EtM operator can be derived from the first row of (6)

−S−1
κ

(
I

2
+Cκ

)
γ+t u = γ+Nu.

Hence, the EtM and its inverse, the MtE operator, are given
by:

V(1) = −S−1
κ

(
I

2
+Cκ

)
,

(8)

V−1
(1) = −

(
I

2
+Cκ

)−1

Sκ.

(9)

Alternatively, from the second row of (6)

(
I

2
+Cκ

)−1

Sκγ
+
t u = γ+Nu.

A second version of the EtM exact operator and its inverse
(MtE) can be obtained:

V(2) =

(
I

2
+Cκ

)−1

Sκ,

(10)

V−1
(2) = S−1

κ

(
I

2
+Cκ

)
.

(11)

It is necessary to remark that the discrete versions of the
pairs (8), (11) and (9), (10) are not necessarily the same, since
they might be defined on different discrete spaces. See [20]
for details.
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To discriminate versions of the V−1 operator, we have used
the subscripts (1) and (2).

Theorem 1. Assume that V(1) and V(2) and their inverses
exist as defined above. It holds that

SκV
−1
(2) ≡

(
I

2
+Cκ

)
and

V−1
(1)Sκ ≡

(
I

2
−Cκ

)
.

Proof. The first relationship follows from

SκV
−1
(2) = SκS

−1
κ

(
I

2
+Cκ

)
=

(
I

2
+Cκ

)
For the second identity we obtain

V−1
(1)Sκ = −

(
I

2
+Cκ

)−1

SκSκ.

To obtain the desired result we use (7) and replace S2
κ =

−
(
I
2 +Cκ

) (
I
2 −Cκ

)
.

It follows that on sufficiently smooth domains applying V−1
(1)

or V−1
(2) from the left/right to Sκ, respectively, results in a

compact perturbation of the identity.
From now on, we drop the subscripts, and we refer to V−1

(1)

just as V−1.
We have seen that V−1 is a good candidate for a precon-

ditioner. However, the construction of V−1 is as expensive as
solving the EFIE, so finding a good approximation is essential.

B. Approximation of the MtE operator

In [11], it is shown that an approximation for the EtM on
smooth surfaces is given by [11]

γ+Nu ≈ −ΛΛΛ−1
1,εΛΛΛ2,ε(ννν × γ+t u) = −ΛΛΛ−1

1,εΛΛΛ2,εΘΘΘγ
+
t u on Γ,

(12)
where

ΛΛΛ2,ε := I− curlΓ
1

κ2ε
curlΓ,

and

ΛΛΛ1,ε := (I+ J )1/2,

with

J := GradΓ
1

κ2ε
DivΓ − curlΓ

1

κ2ε
curlΓ. (13)

Notice here that we have used the term κε = κ + iε
instead of κ. The term ε > 0 is a damping parameter used
by the authors in [11] to avoid singularities in the square root
operator, whose optimal value is given by ε = 0.39κ

1
3R− 2

3

(R being the curvature radius of the surface).
Finally, we write the approximation of the EtM operator as

Vε := −ΛΛΛ−1
1,εΛΛΛ2,εΘΘΘ and by taking the inverse, the approximate

MtE can also be found: V−1
ε := −ΘΘΘ−1ΛΛΛ−1

2,εΛΛΛ1,ε.

C. Approximation of Vε by surface differential operators

The operator ΛΛΛ2,ε can be discretised into a sparse matrix
that can be readily inverted using sparse LU decomposition.
However, ΛΛΛ1,ε is a pseudo-differential operator whose calcu-
lation is more involved. In [11] a rotating branch cut Padé
approximation of the form

(1 + z)
1
2 ≈ R0 −

Np∑
j=1

Aj

Bj(1 +Bjz)
(14)

is proposed. Let α = π
2 ; the coefficients Aj and Bj are given

by

Aj =
e−iα/2aj

[1 + bj(e−iα − 1)]2
,

Bj =
bje

−iα

1 + bj(e−iα − 1)
,

with aj = 2
2Np+1 sin

2
(

jπ
2Np+1

)
, bj = cos2

(
jπ

2Np+1

)
.

For R0 we have

R0 = C0 +

Np∑
j=1

Aj

Bj
,

with

C0 = eiα/2

1 +

Np∑
j=1

aj(e
−iα − 1)

1 + bj(e−iα − 1)

 .

For more details on the derivation of these parameters we
refer to [16].

Applying (14) to approximate ΛΛΛ1,ε = (I+J )1/2, we obtain
the operator

Λ̃ΛΛ1,ε =

IR0 −
Np∑
j=1

Aj

Bj
(I+BjJ )−1

 .

As a simplification, we introduce ΠΠΠj := I + BjJ , and by
substituting ΛΛΛ1,ε with Λ̃ΛΛ1,ε in the MtE operator V−1

ε , we
obtain the Padé approximate MtE operator:

Ṽ−1
ε,Np

:= −ΘΘΘ−1ΛΛΛ−1
2

IR0 −
Np∑
j=1

Aj

Bj
ΠΠΠ−1

j

 . (15)

To implement Ṽ−1
ε,Np

as a preconditioner, we want to eval-

uate r := Ṽ−1
ε,Np

Sκr1 for some function r1 ∈ H
− 1

2
× (DivΓ,Γ).

Let r1,h be the discrete approximation of r1 using RWG
basis functions. The main difficulty is the discrete evaluation
of ϕϕϕj := ΠΠΠ−1

j Sκr1, of which the main part is the solution of

Sκr1 =

I+Bj

(
GradΓ

1

κ2ε
DivΓ − curlΓ

1

κ2ε
curlΓ

)
︸ ︷︷ ︸

J

ϕϕϕj .
(16)

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3236762

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on February 15,2023 at 17:19:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. , NO. , MONTH YEAR 6

We follow [11] to solve this system discretely in the
following way: let zh and ρjh be represented by P1 basis
functions, and wh,ϕϕϕ

j
h by SNC basis functions.

Then (16) is equivalent (in the discrete weak sense) to
solving
∫
Γh
ϕϕϕjh ·wj

hdΓh +Bj

(∫
Γh

GradΓh
ρjh ·wj

hdΓh

−
∫
Γh

1
κ2
ε

curlΓh
ϕϕϕjh · curlΓh

wj
hdΓh

)
=

∫
Γh

Sκr1,h ·wj
hdΓh,∫

Γh
κ2ερ

j
hz

j
hdΓh +

∫
Γh
ϕϕϕjh · GradΓh

zjhdΓh = 0

(17)

for the discrete representation ϕϕϕjh of ϕϕϕj .
With ϕϕϕjh computed, we can evaluate with vh given in a basis

of SNC functions:

∫
Γh

r2,h · vh dΓh = R0

[∫
Γh

Sκr1,h · vh dΓh

− 1

R0

∫
Γh

 Np∑
j=1

Aj

Bj
ϕϕϕjh

 · vh dΓh

 . (18)

We find r3,h solving discretely ΛΛΛ2,εr3,h = r2,h by∫
Γh

r3,h · vhdΓh −
∫

1

κ2ε
curlΓh

r3,h · curlΓh
vh dΓh

=

∫
Γh

r2,h · vh dΓh. (19)

Finally, we obtain rh = −ΘΘΘ−1
h r3,h, where ΘΘΘh is the discrete

version of the operator ΘΘΘ. In the next section we demonstrate
that with a suitable choice of basis functions, the matrix
representation of ΘΘΘh is just the identity matrix.

D. Matricial representation

To illuminate the steps behind the discrete implementation,
we write down the preconditioner in matrix form. Using the
notation from [11], we define the following matrices:

{
G =

∫
Γh

t · r dΓh, Nε =
∫
Γh

1
κ2
ε,h

curlΓh
t · curlΓh

r dΓh

Kε =
∫
Γh
κ2ε,hℓ λ dΓh, L =

∫
Γh

GradΓh
ℓ · t dΓh,

(20)
where t and r are SNC basis functions and ℓ, λ are P1 basis

functions. Notice that we have used κε,h to indicate that this
parameter depends on the local curvature radius.

Now, we associate the coefficient vectors r⃗∗,h with the
functions r∗,h (with similar notation for coefficient vectors
of other functions of finite-dimensional bases). By Sκ,h we
denote the discrete matrix associated with the EFIE operator
Sκ. The system (17) corresponds to the matrix system[

(G−BjNε) BjL
LT Kε

] [
ϕ⃗ϕϕ
j

h

ρ⃗jh

]
=

[
Sκ,hr⃗1,h

0

]
. (21)

Taking the Schur complement we see that ϕ⃗ϕϕ
j

h =
ΠΠΠ−1

j,ε,hSκ,hr⃗1,h, with

ΠΠΠj,ε,h =
[
G−Bj(Nε + LK−1

ε (L)T )
]
. (22)

The sum in (18) is now represented as

Gr⃗2,h = R0

Sκ,hr⃗1,h − 1

R0
G

Np∑
j=1

Aj

Bj
ϕ⃗ϕϕh,j

 ,

and the system (19) is correspondingly solved by

r⃗3,h = (G− Nε)
−1R0

Sκ,hr⃗1,h − 1

R0
G

Np∑
j=1

Aj

Bj
ϕ⃗ϕϕh,j

 .

We still have to evaluate the inverse of the isomorphism ΘΘΘ.
However, this is trivial in a basis of RWG functions since we
have that ΘΘΘ(RWGi) = SNCi. Hence, the isomorphism acts
on the basis functions but not on the discrete coefficients of
them. We therefore have that r⃗h = −r⃗3,h. A full precondi-
tioned evaluation of the EFIE operator is therefore given as

r⃗h = −(G− Nε)
−1R0

I− 1

R0
G

Np∑
j=1

Aj

Bj
ΠΠΠ−1

j,ε,h

Sκ,hr⃗1,h,

:= V−1
ε,h,Np

Sκ,hr⃗1,h, (23)

where I is the simple discrete identity matrix. While this
preconditioner looks complicated at first, all involved oper-
ators are simple sparse matrices that are readily available in
Maxwell boundary element codes or can be straight forward
implemented. Moreover, the solves in the sum can be easily
executed in parallel.

To better understand how the number of Padé terms in-
fluences the approximation property, in Figure 3 we plot the
spectrum of V−1

ε,h (lower right plot) against that of Ṽ−1
ε,h,Np

for
different values of the number of terms Np. As Np increases
we can see very nicely how the spectrum becomes very similar
to the desired spectrum even though we do not approximate
the MtE operator directly, but an approximation involving the
pseudo-differential operator (I+ J )1/2.

E. Implementational simplification

In this section we propose a simplification of the above
preconditioner that we believe is novel and reduces its compu-
tational effort. In [11] the direct sparse solution of the various
systems of the form (21) was proposed. However, depending
on the magnitude of the associated Padé coefficients this can
be simplified. Consider again the sum

I− 1

R0
G

Np∑
j=1

Aj

Bj
ΠΠΠ−1

j,ε,h (24)

contained in (23) with

ΠΠΠj,ε,h =
[
G−Bj(Nε + LK−1

ε (L)T )
]
.

Let βj := Aj/Bj . In figure 4 the values of βj and Bj are
shown for varying j. We can see heuristically that if βj is large,
then Bj becomes small and when βj is small, Bj remains
bounded. Let us consider those two cases.

If βj is small then we can just discard the corresponding
term in (24). However, if βj is large then Bj becomes
negligible, and we can apply the simplification:

ΠΠΠj,ε,h =
[
G−Bj(Nε + LK−1

ε (L)T )
]
≈ G.
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κ = π.

We hence obtain that

I− 1

R0
G

Np∑
j=1

Aj

Bj
ΠΠΠ−1

j,ε,h ≈

1− 1

R0

∑
j∈I

Aj

Bj

 I, (25)

where I is the set of Padé coefficients assumed to be dominant
and retained. For all those we perform the approximation
ΠΠΠj,ε,h ≈ G. Having this simplification, then (23) turns into

r⃗h = −Kε,Np(G− Nε)
−1Sκ,hr⃗1,h,

where Kε,Np is a constant. Since we apply the precondi-
tioner on both sides of the equation (as in (3)), we can dismiss
the constants and just keep (G − Nε)

−1 as a preconditioner.
This is not a direct approximation of the MtE map anymore,
but as we will see it still performs well as preconditioner.
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1
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1
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lu

e |Bj|
| j|

Fig. 4. Padé Coefficients βj and Bj for Np = 50.

IV. NUMERICAL EXPERIMENTS

This section demonstrates the performance of the proposed
OSRC preconditioner and some comparisons with other reg-
ularisers. All the tests were performed using Bempp software
[20] on a spherical grid of radius r = 1. In this section we
denote by Ṽ−1

ε,h,A,Np
the preconditioner obtained by solving

the full block systems (21) with a Padé degree Np and by
Ṽ−1

ε,h,B the simplified preconditioner (G−Nε)
−1 as described

in Section III-E.

A. Validation

The OSRC operator was validated using the same method
as in [11], where bistatic RCS are calculated using:

1) Analytic solutions on the unit sphere calculated using
spherical harmonics.

2) A direct formulation of the EFIE (V−1
h ).

3) An approximation of V−1
ε,h, that we calculated by com-

puting the square roots of the eigenvalues of the matrix
that generates ΛΛΛ1,ε.

4) By applying Ṽ−1
ε,h,A,2.

The first test (figure 5) replicates the results obtained in
[11] and shows the bistatic RCS obtained from the scattering
problem of an incident electromagnetic plane wave by a PEC
unit sphere, for κ = π and κ = 8π. The analytic solution and
the curve due to Ṽ−1

h agree up to plotting accuracy. Moreover,
the graphs of Ṽ−1

ε,h,A,2 and V−1
ε,h overlap each other, and both

approximate the qualitative behaviour of the bistatic RCS well,
though not perfectly.

B. Performance Comparison

In order to compare the performance of the OSRC precon-
ditioner to others, the following attributes were benchmarked:

a) GMRES number of iterations.
b) Assembly and solving times for:

• Pure direct formulation of the EFIE, denoted by
Sκ,h (always calculated in the primal grid).

• EFIE regularised using the Calderón Multiplicative
Preconditioner (CMP), denoted by S2

κ,h.
• EFIE regularised using the Refinement Free

Calderón Multiplicative Preconditioner (RF-CMP),
denoted by RF-S2

κ,h. We must mention that this pre-
conditioner requires the inversion of a dense matrix.
The authors in [1] claim that this can be solved by
using a multigrid preconditioner that we have not
implemented in this work. Having this in mind, the
assembly time recorded in this document should be
larger than it could be under an optimisation of the
method.
It is necessary to mention that in this case, the
Preconditioner is designed to be applied in a dis-
cretisation of the EFIE built using RT and NC basis
functions as the standard div and curl conforming
basis functions. Also, we have solved this system
using the conjugate gradient algorithm as suggested
by the authors in [1].

• EFIE regularised with Ṽ−1
ε,h,A,Np

, with Np = 1, 2.
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Fig. 5. Bistatic RCS for the PEC unit sphere illuminated by an incident
electromagnetic plane wave at κ = π (up) and κ = 8π (down).

• EFIE regularised with Ṽ−1
ε,h,B .

These tests were performed using H-matrix compression
[13] with an accuracy of around 10−3 of the compressed
matrices.

As expected, in figure 6, Ṽ−1
ε,h,A,Np

Sκ,h shows (slightly)
better results than Ṽ−1

ε,h,BSκ,h, because the first is a better
approximation than the latter. However, in terms of solving
time (tableIII), it could be more convenient to use Ṽ−1

ε,h,BSκ,h,
since it is considerably cheaper to apply.

Table II shows assembly times of the different precon-
ditioners in relationship to the assembly time of the non-
preconditioned EFIE. The best result for each column is shown
in bold. We note that the Ṽ−1

ε,h,B variant is almost as cheap
to assemble as the non-preconditioned system despite still
being excellent as preconditioner. We notice our non-optimal
implementation of the RF-S2

κ,h variant. The CMP S2
κ,h suffers

in terms of assembly time from the need to assemble operators
on the barycentrically refined grid. The solution times in
Table III also confirm the effectiveness of the OSRC type

preconditioners and here in particular the Ṽ−1
ε,h,B variant.
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 Ṽ−1
ε, h,A, 1Sκ, h 

 Ṽ−1
ε, h,A, 2Sκ, h 

 Ṽ−1
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Fig. 6. Iterations comparison between different EFIE formulations on a grid
with constant relation κ · h.

TABLE II
T(RSκ,h) /T(Sκ,h) ASSEMBLY TIME RATIOS COMPARISON BETWEEN

DIFFERENT EFIE FORMULATIONS ON A SPHERICAL GRID WITH CONSTANT
RELATION κ · h.

Formulation κ = π κ = 2π κ = 3π κ = 4π
Sκ,h 1.000 1.000 1.000 1.000
S2
κ,h 10.043 8.929 13.330 11.173

RF-S2
κ,h 5.644 23.132 67.077 132.672

Ṽ−1
ε,h,A,1Sκ,h 1.063 1.141 1.203 1.234

Ṽ−1
ε,h,A,2Sκ,h 1.129 1.233 1.365 1.434

Ṽ−1
ε,h,BSκ,h 1.009 1.014 1.015 1.015

TABLE III
T(RSκ,h) /T(Sκ,h) SOLVING TIME RATIOS COMPARISON BETWEEN

DIFFERENT EFIE FORMULATIONS ON A SPHERICAL GRID WITH CONSTANT
RELATION κ · h.

Formulation κ = π κ = 2π κ = 3π κ = 4π
Sκ,h 1.000 1.000 1.000 1.000
S2
κ,h 2.168 1.762 1.521 2.279

RF-S2
κ,h 2.938 17.189 41.086 80.886

Ṽ−1
ε,h,A,1Sκ,h 0.319 0.293 0.211 0.253

Ṽ−1
ε,h,A,2Sκ,h 0.575 0.402 0.263 0.351

Ṽ−1
ε,h,BSκ,h 0.187 0.309 0.121 0.200

C. V−1
ε,h performance under mesh refinement.

1) High frequency regime: Figure 7 compares the various
preconditioners for fixed wavenumber κ = π and decreasing
mesh width. While the EFIE without preconditioning suffers
from the well known ill-conditioning problems all other pre-
conditioners keep the number of iteration bounded or only
very slowly increasing.

2) Low frequency regime: In this scenario (κ = π/10),
the regularised systems keep showing a robust behaviour.
However, the main difference we observe is that the CMP
and RF-CMP perform better (in terms of iterations) than the
MtE preconditioner. This can be explained by the fact that the
latter is based on a high frequency approximation, whereas,
the RF-CMP is based on a low frequency approximation.
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Fig. 7. Iterations comparison between different EFIE formulations on a grid
with varying discretisation.
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Fig. 8. Iterations comparison between different EFIE formulations on a grid
with varying discretisation.

3) Time performance: In terms of time, table IV shows that
in general, assembling Ṽ−1

ε,h,∗,Np
Sκ,h remains cheap as h→ 0.

Table V shows that the solving time ratios of Ṽ−1
ε,h,∗,Np

Sκ,h

improve for smaller h as the number of iterations that takes to
solve the problem remains approximately constant. In both re-
gards, assembly and solving time, Ṽ−1

ε,h,∗,Np
Sκ,h outperforms

S2
κ,h (unless the discretisation is very rough).

TABLE IV
T(RSκ,h) /T(Sκ,h) ASSEMBLY TIME RATIOS COMPARISON BETWEEN
DIFFERENT EFIE FORMULATIONS ON A SPHERICAL GRID WITH VARYING

DISCRETISATION.

κ π/10 π
Formulation h = 0.052 h = 0.833 h = 0.075 h = 0.225

Sκ,h 1.000 1.000 1.000 1.000
S2
κ,h 12.589 9.565 11.645 10.450

RF-S2
κ,h 85.990 2.446 30.652 3.568

Ṽ−1
ε,h,A,1Sκ,h 1.179 1.104 1.122 1.051

Ṽ−1
ε,h,A,2Sκ,h 1.221 1.195 1.257 1.077

Ṽ−1
ε,h,BSκ,h 1.019 1.049 1.015 1.012

D. An example on a less regular surface.

The same tests were performed on a NASA almond-shaped
grid, with a wavenumber of κ = 2π, to see if the condition
number boundedness was preserved on a more interesting
shape. Figure 9 shows that, compared to the non-regularised

TABLE V
T(RSκ,h) /T(Sκ,h) SOLVING TIME RATIOS COMPARISON BETWEEN

DIFFERENT EFIE FORMULATIONS ON A SPHERICAL GRID WITH VARYING
DISCRETISATION.

κ π/10 π
Formulation h = 0.052 h = 0.833 h = 0.075 h = 0.225

Sκ,h 1.000 1.000 1.000 1.000
S2
κ,h 1.629 1.493 1.584 2.489

RF-S2
κ,h 4.137 0.783 6.040 1.636

Ṽ−1
ε,h,A,1Sκ,h 0.422 1.104 0.222 0.338

Ṽ−1
ε,h,A,2Sκ,h 0.552 1.006 0.316 0.457

Ṽ−1
ε,h,BSκ,h 0.180 1.430 0.184 0.231

EFIE, the MtE preconditioner allows to solve the problem
in considerably less iterations than the non-regularised EFIE,
while being substantially cheaper to compute (compared to the
CMP preconditioners).
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 Ṽ−1
ε, h,A, 2Sκ, h 

 Ṽ−1
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Fig. 9. Iterations comparison between different EFIE formulations on an
almond-shaped grid with varying h.

Fig. 10. Example of a NASA almond grid.

E. Heads up: the MtE on an open surface

Finally, in figure 11 we demonstrate the performance of the
MtE preconditioner on an open cylinder (see figure 12 for
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the geometry). The formulation is the usual EFIE for screens
[9, section 7.1]. As figure 11 shows, the iteration count for
the MtE preconditioned version behaves very favourably even
compared to the CMP adapted to screens.
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Fig. 11. Iterations comparison between different EFIE formulations on an
open cylinder grid, with varying κ.

Fig. 12. Example of open cylinder grid.

V. CONCLUSIONS

The aim of this paper was to test an approximation of
the Magnetic to Electric operator proposed in [11] as a
preconditioner operator for the EFIE. This operator (Ṽ−1

ε,Np
)

is based on a rational complex Padé approximant of an OSRC
(V−1

ε ) operator, also proposed in [11].
It was shown that this operator works as a preconditioner

for the EFIE and different alternatives for its discretisation
were proposed and benchmarked. The results from these tests
prove the effectiveness of the proposed preconditioner and
that it also outperforms the standard Calderón Multiplicative
Preconditioner. It is also competitive with a refinement free
version of the CMP, while usually being simpler to implement
as it uses just straight forward sparse matrix discretisations of
surface differential operators that are often already available
or easy to implement within boundary element codes. On

top of this, we performed tests on more complex geometries,
including an open domain. The results obtained from these
tests are very promising, opening the door to the application
of this method to more complex open surfaces.
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