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A B S T R A C T   

Biodiversity underpins ecosystem functions that provide benefits to people, yet the role of rare and endangered 
species (RES) in supporting ecosystem services is unclear. Thus, it remains controversial whether arguments for 
conservation that focus on ecosystem services align with the protection of RES. We designed a systematic review 
protocol to critically assess the evidence for quantitative contributions of RES to terrestrial agricultural pro-
duction, which is a key driver of biodiversity change and, simultaneously, could suffer from the loss of ecosystem 
services provided by biodiversity. Our review search criteria required that studies: 1) provide information on 
RES, 2) focus on an ecosystem service relevant for agriculture; and 3) include a quantitative measure of agri-
cultural production. Surprisingly, we found only four studies that fulfilled these criteria, which was insufficient 
to perform a meta-analysis of results. Thus, we highlight here the gap in quantitative research, discuss the im-
plications of this knowledge gap for the conservation of RES, and suggest future research directions. We conclude 
that further quantitative research is urgently needed to better inform conservation and agricultural policies, 
including research that focuses specifically on RES, incorporates more ecosystem services, and covers a wider 
range of climatic and socioeconomic contexts.   

1. Introduction 

In recent decades justification for biodiversity conservation has 
shifted from species’ intrinsic value towards a focus on the preservation 
of ecosystem services and the benefits they provide to people (Reid et al., 
2005; Mace, 2014; IPBES, 2019; Dasgupta and McKenzie, 2020). This 
trend has raised concerns because it remains unclear to what extent rare 
and endangered species (RES) play important roles in providing 
ecosystem services, and therefore whether arguments focused on bene-
fits to people are sufficient to justify conservation of RES (McCauley, 
2006; Kleijn et al., 2015; Pearson, 2016). Species can be defined as rare 
or endangered due to small population sizes, low population densities, 
small geographical ranges, restricted habitat types, or a combination of 
all these (Rabinowitz, 1981; Lyons et al., 2005; IUCN, 2021). RES have 
been shown to contribute to key provisioning, supporting, and cultural 
ecosystem services that are of direct benefit to people (Dee et al., 2019; 
Mouillot et al., 2013); for example, services provided by RES include 
wildlife watching of rare birds (Booth et al., 2011), medicinal or orna-
mental plants for personal use or as income-earning opportunities 

(Groner et al., 2022), and goods that gain value with increasing rarity 
such as sturgeon caviar (Gault et al., 2008). Moreover, several studies 
have inferred that RES play a role in ecosystem processes that underpin 
services such as carbon cycling (Fauset et al., 2015) and crop pollination 
(Kremen et al., 2002; MacLeod et al., 2020; Winfree et al., 2018). 
However, there is a need to synthesise knowledge of how RES provide 
quantifiable contributions to ecosystem service provision. If RES are 
shown to contribute significantly to ecosystem services, conservation 
arguments focused on benefits to people would align with the protection 
of RES. However, if a small number of common species provide most of 
ecosystem services, as suggested by some studies (e.g., Grime, 1998; 
Smith and Knapp, 2003; Winfree et al., 2015; Lohbeck et al., 2016), then 
conservation actions that focus on maintaining ecosystem services will 
offer little benefit to RES protection (Dee et al., 2019). 

Agriculture is a key driver of biodiversity change (Sala et al., 2000; 
Reid et al., 2005) and, at the same time, could suffer from the loss of 
species (IPBES, 2019; IUCN, 2021). Thus, arguments for conservation 
based on ecosystem services have become a focus of agricultural policies 
(e.g. the UK Agricultural Act 2020; Coe and Finlay, 2020). Food 
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demands continue to increase with the growing world population (van 
Dijk et al., 2021). As we strive for sustainable land use through changes 
in food consumption and diet (FAO, 2018; ‘2030 Agenda for Sustainable 
Development’, United Nations, 2015), it is crucial that there is a strong 
evidence-base to support arguments for conservation that are centred on 
ecosystem services. Aiming to synthesise knowledge that fills this gap, 
we designed a systematic review protocol to 1) assess the strength of 
evidence of the quantitative contribution of RES to agricultural pro-
duction, and 2) identify areas where further research may be needed. 
However, due to a scarcity of research that fulfilled our review criteria, 
we could not perform a meta-analysis of results. Here, we highlight the 
gap in quantitative research, the implications of this gap in knowledge 
for the conservation of RES, and future research directions. 

2. Methods 

This section summarises the key criteria of the systematic search we 
designed to address our research question. The full systematic review 
protocol and a detailed description of the criteria are available in Ap-
pendix S1. 

2.1. Search strategy 

We performed a comprehensive search of the scientific literature 
adhering to the ‘Guidelines for Systematic Review in Conservation and 
Environmental Management’ (Pullin and Stewart, 2006). In July 2021 
(and updated in November 2022), we searched two electronic databases: 
SCOPUS and Web of Science Core Collection (WOS). Each search string 
was composed of three variables: 1) a synonym of ‘rare’ or ‘endangered’, 
or the name of an endangered species; 2) an ecosystem service relevant 
for agricultural production; and 3) a quantitative measure of agricul-
tural production. We limited the search to peer-reviewed studies pub-
lished up until November 2022 in English, German, French, Dutch, or 
Spanish language. 

2.2. Inclusion criteria 

A full description of the pre-specified inclusion and exclusion criteria 
is provided in Appendix S1 (Section S1.2 and Table S1). We kept our 
inclusion criteria purposefully strict to focus on quantitative research. In 
summary, we focused on terrestrial animals, plants, microbes, and fungi 
that are described in the literature as ‘rare’, ‘endangered’, ‘vulnerable’, 
‘threatened’, or with ‘restricted or declining area’, or ‘restricted or 
declining population’ following IUCN Red List criteria (IUCN, 2021). In 
addition to the criteria-based search, we looked for endangered species 
published in the IUCN Red List of European bees (Nieto et al., 2014), the 
IUCN Red list of Bird and Mammal pollinators (Regan et al., 2015), and 
the Xerces Society Red List of Pollinating Insects of North America 
(National Research Council, 2007). We included studies on ecosystem 
services that can be performed by the included species and are cat-
egorised as relevant for food and agriculture by the FAO (DuVal et al., 
2019), consistent with the Millennium Ecosystem Assessment report 
(Reid et al., 2005): climate regulation, natural-hazard regulation, pest 
and disease regulation, pollination, nutrient cycling, soil formation, 
water cycling, and habitat provisioning. We did not include primary 
production as an ecosystem service in the search because we were 
focusing on those RES that are providing services for agriculture, rather 
than being the agricultural product themselves. As measures of RES 
contribution, we accepted studies that presented quantitative (e.g., crop 
biomass per ha) or monetary (e.g., dollars per ha) assessments of agri-
cultural production. 

2.3. Screening, quality check, and data extraction 

We followed an independent double-screening approach (Appendix 
S1: Section S1.3) to eliminate documents that did not meet the pre- 

specified inclusion criteria (see Section 2.2 and Appendix S1: Section 
S1.2). To be considered as being of satisfactory quality, the paper had to 
report 1) a control experiment, 2) at least one replicate, and 3) un-
certainties associated with quantitative results (e.g., Yanai et al., 2021). 
From the studies that met inclusion and quality criteria, we extracted the 
following information: type of study and region, species, type of rarity 
(e.g., low abundance, IUCN status), ecosystem services, and contribu-
tion to agricultural production. 

3. Results 

The systematic search identified 2943 unique citations of which only 
four studies met all the inclusion criteria (Fig. 1). Across these four 
studies, the focal species (and study location) were bees (Indonesia), 
microbes (Sweden), arable plants (Germany), and birds (New Zealand). 
Two studies considered endangered species according to the Red List; 
the other studies defined rare as ‘low in abundance’. The ecosystem 
services investigated were pollination (1), pest control (1), and soil 
fertility (2); one study also reported the absence of a dis-services. One 
study provided a monetary estimate of the quantitative contribution ($ 
per ha), two studies measured crop biomass, and one study estimated the 
probability of fruit set after a single pollinator visit. 

From the included studies, we found mixed evidence for RES 
contribution to agricultural production and the data showed no patterns 
related to the type of ecosystem service. Two studies suggested that the 
contribution of RES is of quantitative importance (Klein et al., 2003; 
Kross et al., 2012), one study reported no effect of RES and highlighted 
the absence of a dis-service (Twerski et al., 2021), and one study was 
inconclusive (Gera Hol et al., 2015). 

Further, we found twelve studies that did not fulfil all the criteria for 
our systematic review but are relevant to the debate as to whether ar-
guments focused on benefits to people align with the protection of RES 
(Chen et al., 2020; Hędrzak et al., 2021; Kleijn et al., 2015; Kremen et al., 
2002; MacLeod et al., 2020; Simpson et al., 2022; Soliveres et al., 2016; 
Staton et al., 2022; Sutter et al., 2017; Winfree et al., 2015, 2018; Zhang 
et al., 2022). For example, MacLeod et al. (2020) studied the overlap in 
identity and flower preferences between regionally rare species and 
dominant pollinators in United States (following Kleijn et al.’s (2015) 

Fig. 1. Studies identified in the systematic review that provided quantitative 
measures of the contribution of rare or endangered species (RES) to agricul-
tural production. 
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definition of a dominant crop pollinator as a species that accounts for at 
least 5% of the total number of individual bees collected from a given 
crop) and found that 19% of dominant crop pollinators were regionally 
rare, which supports the idea that RES can be important providers of 
ecosystem service. The study was excluded because it did not provide a 
quantitative contribution of RES to agricultural production. Soliveres 
et al. (2016) studied the relative functional importance of rare and 
common species in driving the biodiversity-multifunctionality rela-
tionship in grasslands. They suggest that locally rare above-ground 
species are the most important diversity component to preserve high 
levels of ecosystem multifunctionality in managed grasslands, perhaps 
due to their lower proportion of negative functional effects. In line with 
this study, Chen et al. (2020) and Zhang et al. (2022) show that rare 
below-ground species drive ecosystem multifunctionality. All three 
studies were excluded because they did not quantify an agricultural 
product. A detailed description of the additional studies and justification 
for exclusions are provided in Appendix S1: Section S2. 

4. Discussion 

To our knowledge, this was the first systematic review that aimed to 
assess the quantitative contribution of RES to agricultural production. 
Considering the conversation around the conservation of species for the 
ecosystem services they provide and/or their intrinsic value, in both the 
scientific community (Dee et al., 2017; Kleijn et al., 2015) and in recent 
politics (e.g. UK Agricultural Act 2020; Coe and Finlay, 2020), it is 
surprising that we found only four studies that fulfilled the criteria 
despite an extensive search strategy. Based on the small number of 
available studies, we conclude that arguments based on ecosystem ser-
vices currently lack a strong evidence base to support the conservation 
of RES. 

Despite conducting a thorough review of the literature, there may 
have been studies looking at the quantitative contribution of RES that 
we missed. For example, because we were interested in the role of RES in 
supporting agricultural production, we did not include studies on RES 
and their contribution to agriculture or the food system more broadly 
through primary productivity. Although our systematic search of the 
published literature covered two extensive databases and multiple lan-
guages, we might have missed studies published in other databases, grey 
literature, or in other languages. Further, we considered only a subset of 
ecosystem services (see Methods; Reid et al., 2005) and excluded marine 
systems. Other processes that contribute indirectly to agricultural pro-
duction were not included in our systematic review, for example biotic 
interactions (Cardinale et al., 2002; Wright et al., 2017) and regulation 
of local climate through biophysical and biogeochemical processes 
(Foley et al., 2003; Groner et al., 2018). 

The small number of available studies highlights the need for more 
research to understand the role of RES in ecosystem services in the 
context of agricultural production. We identify three areas for future 
research. First, studies of ecosystem services in agricultural landscapes 
should focus specifically on RES. Studies of RES are particularly difficult 
because such species are less likely to be observed performing a service 
than are dominant or abundant species. RES contributions may also not 
have been picked up in previous studies because they can be highly 
context dependent and vary across space (Loreau et al., 2003) and time 
(Yachi and Loreau, 1999). This could be partly addressed with longer 
and more frequent observations. Further, RES may be more difficult to 
identify because researchers might be less familiar with their specific 
traits and classify them only to family level. Such specific traits could be 
crucial to understand RES contribution to ecosystem function and 
resilience (e.g., Diaz et al., 2013; Jain et al., 2014). This could be 
overcome with expert training or the use of multiple methods, for 
example human observation in combination with video recordings (e.g., 
Frank et al., 2007). Second, studies of the role of RES in agricultural 
landscapes should include a broader range of ecosystem services and 
taxonomic groups. We found that the literature is heavily biased towards 

pollination services and insects as service providers. Exploring the in-
teractions of ecosystem services could add another level of complexity to 
the system (Bennett et al., 2009; Garibaldi et al., 2018); for example, it 
has been shown that pest control can boost crop yield due to increased 
insect pollination (Lundin et al., 2012; Sutter and Albrecht, 2016). 
Large-scale mapping of species-based ecosystem services could benefit 
from a better understanding of RES’ contribution and a more appro-
priate representation of RES in weighted provider richness (Ceaușu 
et al., 2021). Third, future studies should consider a broader range of 
climatic and socioeconomic contexts. We found that studies tended to be 
biased towards wealthy countries with good data availability. In the 
future, studies should aim to reach a larger spatial coverage to explore 
the role of RES in agricultural systems of different climatic and socio-
economic contexts. This includes the effects of farm size (e.g., small-
holder vs commercial), farming practices (e.g., organic vs conventional), 
and level of intensification. 

CRediT authorship contribution statement 

VG and RP conceptualised the study; VG performed online search, 
analysis, and led paper writing with input from all authors; VG and JW 
screened articles. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All data that support the findings of this study are referenced in the 
article. 

Acknowledgements 

This study forms part of the Sustainable and Healthy Food Systems 
program supported by the Wellcome Trust’s Our Planet, Our Health 
program [grant number: 205200/Z/16/Z]. For Open Access, the authors 
have applied a CC BY public copyright licence to any Author Accepted 
Manuscript version arising from this submission. Thanks to E. Comyn- 
Platt, C. Outhwaite, and SHEFS colleagues for ideas and support, G. 
Albaladejo Robles, C. Dalin, and B. Reijenga for translations, and A. 
Dangour for internal review. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.agee.2022.108326. 

References 

Bennett, E.M., Peterson, G.D., Gordon, L.J., 2009. Understanding relationships among 
multiple ecosystem services. Ecol. Lett. 12 (12), 1394–1404. https://doi.org/ 
10.1111/j.1461-0248.2009.01387.x. 

Booth, J.E., Gaston, K.J., Evans, K.L., Armsworth, P.R., 2011. The value of species rarity 
in biodiversity recreation: a birdwatching example. Biol. Conserv. 144 (11), 
2728–2732. https://doi.org/10.1016/j.biocon.2011.02.018. 

Cardinale, B.J., Palmer, M.A., Collins, S.L., 2002. Species diversity enhances ecosystem 
functioning through interspecific facilitation. Nature 415 (6870), 426–429. https:// 
doi.org/10.1038/415426a. 

Ceaușu, S., Apaza-Quevedo, A., Schmid, M., Martín-López, B., Cortés-Avizanda, A., 
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