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With computational advances, Bayesian modeling is becoming more accessible. But because Bayesian 
thinking often differs from learners’ previous statistics training, it can be challenging for novice 
Bayesian learners to conceptualize and interpret the three major components of a Bayesian analysis: 
the prior, likelihood, and posterior. To this end, we developed an R package, bayesrules, which provides 
tools for exploring common introductory Bayesian models: beta-binomial, gamma-Poisson, and 
normal-normal. Specifically, within these model settings, the bayesrules functions provide an active 
learning opportunity to interact with the three Bayesian model components, as well as the effects of 
different model settings on the model results. We present here the package’s visualization functions and 
how they can be utilized in a statistics classroom. 
 
INTRODUCTION 

The typical statistics curriculum exposes students to statistical modeling through the frequentist 
paradigm. In this setting, the models are driven by one component—a likelihood function. Thus, when 
students are eventually exposed to Bayesian modeling, it can be difficult to grasp the three required 
components as well as the synergies among them: the prior, the likelihood, and the posterior. 
Visualizations can help bring these concepts to life and deepen learners’ understanding of the concepts 
(Cole & Davidson, 1989; Micallef et al., 2012; Mosca et al., 2021). For example, tree diagrams (Binder 
et al., 2018), contingency tables (Cole & Davidson, 1989), and mosaic plots (White & Warr, 2021) 
assist the teaching of conditional probability and Bayes’ Rule, two foundational Bayesian concepts. Yet 
one limitation of these existing visualization tools is that they are designed around Bayesian models for 
simple events, whereas modern Bayesian courses often expand into Bayesian models for random 
variables (Dogucu & Hu, 2022), i.e., Bayesian regression. These generalized model settings require a 
unique suite of visualizations.  

As the scientific community draws attention to mis- and over-use of p-values, Bayesian 
methods have been suggested as an alternative to frequentist methods for both answering scientific 
questions (Wasserstein & Lazar, 2016) as well as teaching inferential thinking in science classes 
(Rosenberg et al., 2022) and statistics classes (Dogucu & Hu, 2022). To this end, there exist several 
examples of teaching Bayesian statistics at the undergraduate level (Dogucu & Hu, 2022; Hoegh, 2020; 
Hu, 2020; Johnson et al., 2020; Witmer, 2017).  

As is true for teaching statistics in general, computational tools are recommended for enhancing 
student learning in Bayesian statistics (Albert & Hu, 2020). To this end, to support students’ exploration 
of Bayesian modeling for random variables, we developed the R package bayesrules (Dogucu et al., 
2021) to supplement the Bayes Rules! book (Johnson et al., 2022). The package and book are products 
of our own, as well as our coauthors, undergraduate Bayesian courses and yet are also appropriate for 
comparably trained practitioners. Though we will focus here on the package’s visualization functions, 
the package supports the book and Bayesian classrooms in three other key ways: (a) it contains datasets 
for Bayesian modeling applications; (b) it provides functions for evaluating Bayesian models; and (c) 
it includes functions for numerical summaries of basic Bayesian models.  
 
SAMPLE VISUALIZATIONS 

In this section, we illustrate the bayesrules package’s visualization functions for exploring and 
interacting with the foundational beta-binomial model. The package also includes exploratory tools for 
the gamma-Poisson and the normal-normal models. Because their motivation and syntax are similar, 
we omit a discussion of these tools here. The syntax across the various model functions is outlined in 
Table 1, and interested readers can learn more about the gamma-Poisson and the normal-normal models 
in Chapter 5 of the Bayes Rules! book.  

In a beta-binomial model, the random variable of interest is some proportion, π. For example, 
π might be the proportion of voters that support a given candidate or the proportion of incoming text 
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messages that are spam. The initial step in this beta-binomial analysis is to identify and tune a beta prior 
model, i.e., a model that reflects our prior knowledge of π before observing any data.  

For π ∼ Beta(α, β), the continuous probability density function of beta can be specified by: 

f(π)  =  
Γ(α  +  β)
Γ(α)Γ(β)

 π!"# (1 − π)$"# 		  for  π  ∈  [0,1] 

where Γ(z)  =  ∫ _0^∞ x^{z − 1}e^{−y}dx and Γ(z  +  1)  =  z Γ(z). 
 
The plot_beta() visualization function helps familiarize students with the beta model. For 

instance, the following code visualizes the probability density function (pdf), expected value (mean), 
and mode of the beta model with shape and rate parameters of 1 and 13, respectively (Figure 1): 
plot_beta(alpha = 1, beta = 13, mean = TRUE, mode = TRUE).  
 

 
 

Figure 1. A Beta (1, 13) prior model plotted with its mean and mode 
 

If 𝜋 were to represent the proportion of voters that support a political candidate, then this 
particular prior model reflects an understanding that there is little voter support for the candidate. 
Specifically, even though  𝜋 could be anywhere between 0 and 1, there is a strong prior understanding 
that π is likely near 0 and almost certainly below 0.25, with an expected value around 0.07 and a mode 
at 0. Yet by changing the alpha and beta arguments, students can explore the impact of these parameters 
and how to tune them to accurately to reflect their prior knowledge of π. With or without visualizations, 
students are often challenged by the fact that the appropriate prior model is not typically defined by the 
context—they must tune their prior and there is not necessarily a singular “correct” choice. Thus, though 
the plot_beta() function can facilitate exploration, instructors still need to support their students 
in switching to Bayesian thinking and deepening their understanding of the prior model. 

Following the tuning of a prior model, the second step in a beta-binomial analysis is to 
incorporate the observed data through the binomial likelihood function. To quantify this with numbers, 
reconsider the voter support example. Assume that in a survey of 50 voters, 25 have indicated their 
support for the political candidate. The posterior model of π then reflects some balance or consideration 
of the information in the prior model and data through the likelihood function. Students can explore 
these three components, and their synergies, using the plot_beta_binomial() function. For 
instance, the code below visualizes a Beta (1, 13) prior model, a binomial likelihood function reflecting 
25 successes out of 50 trials, and the resulting beta posterior model (Figure 2): 
plot_beta_binomial(alpha = 1, beta = 13, y = 25, n = 50, prior = TRUE, 
likelihood = TRUE, posterior = TRUE) 
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Figure 2. Prior, likelihood, and the posterior 
 

By observing all three components of a Bayesian analysis side-by-side, students can more 
easily explore the fundamental balance that our posterior understanding of π strikes between our prior 
knowledge and the data. Specifically, through repeated usage of this function, learners will arrive at the 
bigger picture shown in Figure 3. This figure displays three different prior scenarios, from highly 
informative to flat priors, and three different likelihood scenarios where the maximum likelihood 
estimate is the same but the sample size is different. Through the exploration of these scenarios, students 
will directly observe that the weight of the prior is heavier when the prior is highly informative. 
Similarly, the data, as represented through the likelihood function, has a higher weight when the sample 
size is larger (i.e., when we have more evidence). 
 

 
 

Figure 3. Posterior models constructed under different combinations of prior models and observed 
data 
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Table 1. A summary of the visualization functions within the bayesrules package 
 

Model Name Prior Model Full Bayesian Model 
Beta-

Binomial 
plot_beta (alpha = 
1, beta = 13, mean = 
TRUE, mode = TRUE) 

plot_beta_binomial (alpha = 1, 
beta = 13, y = 25, n = 50, 
prior = TRUE, likelihood = 
TRUE, posterior = TRUE) 

Gamma-
Poisson 

plot_gamma (shape = 
2, rate = 11, mean = 
TRUE, mode = TRUE) 

 
 

plot_gamma_poisson (shape = 
100, rate = 20, sum_y = 39, n 
= 6, prior = TRUE, likelihood 
= TRUE, posterior = TRUE) 

Normal-
Normal 

plot_normal (mean = 
3.5, sd = 0.5) 

 
 

plot_normal_normal (mean = 0, 
sd = 3, sigma= 4, y_bar = 5, n 
= 3, prior = TRUE, likelihood 
= TRUE, posterior = TRUE) 

 
CONCLUSION 

One of the six recommendations in the Guidelines for Assessment and Instruction in Statistics 
Education (GAISE) college report is to foster active learning (GAISE College Report ASA Revision 
Committee, 2016). The functions we have presented here provide an opportunity for students to actively 
engage with the key Bayesian modeling components and concepts. In general, regardless of whether a 
course is Bayesian or not, we recommend the inclusion of R tools that allow students to explore 
statistical modeling outcomes under different scenarios. For instructors interested in developing their 
own course-specific R functions, we highly recommend a package infrastructure. We have relied 
heavily on Wickham’s (2015) R packages book in writing and maintaining our package and recommend 
it to others. 
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