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Abstract 

Sebkha is an Arabic word referring to a closed ground depression temporarily occupied by a salt lake. 

Very few studies on the composition of the microbial communities from these ecosystems in the 

Algerian High Plateaus have been carried out. To fill this gap, four sebkhas in the eastern High 

Plateaus of two different Algerian provinces were probed, in the winter 2020. We employed the 16S 

rRNA amplicon sequencing to understand the distribution and diversity of prokaryotic communities 

in these hypersaline soils. Our results indicate that the overall archaeal community in the hypersaline 

soils was dominated by members of the class Halobacteria followed by members of the yet 

uncultured phyla Hadarchaeota and Nanohaloarchaeota. Within the bacterial classes, 

Alphaproteobacteria was by far the most frequently recovered in all samples, whereas Cyanobacteria 

phylum dominated in one of the sebkhas. It was evident from the data that Halorubrum and 

Halapricum were the most abundant archaeal genera, whilst Rhodovibrio and Limimonas for 



Bacteria, and these were present in all samples. Remarkably, the most abundant OTUs belonging to 

Archaea affiliated especially to the families Haloarculaceae (16.6%) and Halobacteriaceae (16.3%).  
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INTRODUCTION 

Hypersaline regions are analogues of the Earth’s primitive ecosystems, which are generally 

inhabited by a limited variety of life forms including aquatic and terrestrial habitats (Vera-Gargallo and 

Ventosa, 2018). Terrestrial hypersaline ecosystems contain low biomass (Xie et al., 2017). These 

ecosystems are characterized by an extremely variable overall salinity, which is higher than the salinity 

of sea water, exceeding 50% (Zhuang et al., 2016). They also differ from other environments in many 

aspects, such as the ion composition, temperature, pressure, and nutrients. Terrestrial hypersaline habitats 

are widespread, and include coastal salt marshes and sebkhas, inland salt lakes and deep-sea brine pools, 

and were more prevalent during past geological epochs (Yakimov et al., 2013). These environments are 

frequently found in abundance in the desert where the decrease in the water level and the intensity of 

evaporation lead to an accumulation of salt (McKay et al., 2016). Despite the extreme conditions 

prevailing in hypersaline habitats, the halophilic microorganisms thrive in these ecosystems (Rodriguez-

Medina et al., 2020). Generally, the microbial life in these environments is dominated by Bacillus, 

Salinibacter, Haloquadratum and Halorubrum genera, and the candidate division Nanohaloarchaeota 

(Mora-Ruiz et al., 2018). To date, there is limited knowledge of the phylogenetic diversity and the 

potential microbial processes occurring in hypersaline soil ecosystems (Xie et al., 2017; Vera-Gargallo 

and Ventosa, 2018). Since only 1–5% of the microorganisms in these type of environments are 

cultivatable under normal laboratory conditions (Felczykowska et al., 2012), the analysis by 16S 

ribosomal RNA (rRNA) gene amplicons using next generation sequencing platforms has revolutionised 

the microbiome research in these environments. This approach allowed us to study the world of microbial 

communities with unparalleled ease, by improving accuracy and lowering of the cost. Since its discovery, 

it has been widely used to identify the culturable and unculturable bacterial species from environmental 

samples and to perform taxonomic analysis.  

To improve our knowledge of microbial diversity in hypersaline environments, we aimed to 

elucidate the structure and composition of the bacterial and archaeal communities present in four different 

Algerian sebkhas. These sebkhas expand from the coastal areas to the northern Saharan fringes and across 



the High Plateaus. Covering this vast region is beyond the scope of one study. Therefore, in this study 

we focused on the sebkhas in the High Plateaus which are classified as important bird sanctuaries and 

lack direct contact with the sea. These sebkhas remain poorly described except for few ornithology 

studies, as only a few microbial explorations have been conducted in the soils. We investigated the 

composition of microbial communities and their phylogenetic diversity in four distinct soil habitats, from 

distinct sebkhas using 16S rRNA amplicon sequencing. We present our findings which elucidate the 

structure of the bacterial and archaeal communities from four hypersaline soils of these Algerian sebkhas.  

 

MATERIALS AND METHODS 
 

Study sites and soil sample collection 

Soil from four Sebkhas (Sebkha Ank-Djemel “ANG”, Sebkha Djendli “DJS”, Sebkha El-Tarf “ETS”, 

Sebkha Guellif “GFS”; Table 1, Fig. 1) were collected on January 2020 at a depth of 0–10 cm from the 

High Plateaus in the Northeastern Algeria: province of Batna “DJS”, and province of Oum El Bouaghi 

“ANG”, ETS”, GFS” (Fig.1). The latter three sebkhas were protected under the auspices of the Ramsar 

International Treaty for Wetlands of 2004 and have been named Ramsar sites (rsis.ramsar.org). These 

regions are rarely flooded with rainwater and has a typical semi-arid climate, with mild winter and hot 

and dry summer. Sampling locations were recorded with a GPS. Collected soils from each sebhka were 

transported to the laboratory in sterile 50 ml falcon tubes in an ice box and immediately frozen at -20˚C. 

 

 

 

Determination of physical and chemical properties 

A portion of the biomass of our samples were centrifuged for 10 min at 10000 rpm. The liquid parts were 

extracted, diluted according the degree of salinity of each sample using milli-Q water. The diluted liquids 

were filtered with 0,45 μm syringe filter (Millipore).  Ionic composition quantifications were performed 

at the Research Technical Services of the University of Alicante (Spain) using ion chromatography. 

Major salt concentrations were calculated from the cations and anions measurements, which were 

previously normalized according to the dilutions applied for their quantification. The ion concentrations 

were combined, thus shaping the main salts composition of hypersaline soils, according to the 

precipitation that experiment in extreme ecosystem. We started with the most important salts (such as 



NaCl) and the other salts presence was dependent of the quantity of cations or anions involved in this 

salt, until the exhausting of the ion concentration. Salinity was measured using a Refractometer. The 

organic matter was measured with the loss of ignition method in a Muffle Furnace (Nabertherm) as 

previously described in Font-Verdera et al. (2021).  

 

DNA extraction 

DNA was extracted according to Högfors-Rönnholma et al. (2018). Eight grams of each soil sample were 

suspended in 12 ml of sodium phosphate buffer (500 mM Na2HPO4 and 500 mM NaH2PO4, pH 7.2), 

stirred for 5 min at 250 rpm, and chilled for 3 min at 4˚C twice. The resulted slurry was centrifuged in 

50 ml falcon tubes at 500 g for 15 min. The supernatant was transferred to clean tubes and stored at room 

temperature in the dark. The pellet was re-suspended again in 12 ml of sodium phosphate buffer and the 

extraction process was repeated one more. Supernatant from both extractions were pooled for each 

sample (approximately 30 ml), aliquoted in to 2 ml Eppendorf tubes and centrifuged at 10,000 g for 15 

minutes. The supernatant, containing the extracellular DNA was discarded and the cell pellets were 

combined in a single sterile 2 ml tube. The cell pellets were washed with 1 ml sodium phosphate buffer 

(centrifuged at 10,000 g for 15min). The cell pellets were resuspended in 500 µl de TES-lysozyme [50 

mM Tris-HCL, 30Mm EDTA, 20 g / 100 ml saccharose, 20 g / ml Lysozyme, pH 8]. The cells were 

lysed, and DNA was extracted as follows. Sodium Dodecyl Sulfate (10%) was added to the samples and 

incubated at 37°C for 30 minutes. DNA-containing supernatant was extracted with an equal volume of 

phenol: chloroform: isoamyl alcohol (25:24:1) and centrifuged at 12,000 g for 5 minutes. The aqueous 

phase was precipitated with 0.7 volumes of isopropanol and 0.1 volumes of 3 M sodium acetate overnight 

at -20°C. After centrifugation at 14,000 g at 4°C for 30 minutes, the DNA was washed with 70% ethanol, 

dried and dissolved in 50 µl sterile nuclease-free water. Concentration of DNA was quantified using a 

NanoDropTM ND-1000 (Thermo Scientific, United States). The extracted DNA samples were stored at -

20 °C until further analysis. 

 

PCR amplification and sequencing of 16S rRNA genes 

Using the extracted DNA from samples as templates V4 variable region of the 16s rRNA was amplified 

using PCR in a thermocycler (model 2720 Thermal cycler Applied Biosystems, United States) with the 

following cycling conditions: 95 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 45 s, 



annealing at 50 °C for 60 s and elongation at 72 °C for 90 s. The primers used were 515´F_5’ -

GTGYCAGCMGCCGCGGTAA- 3’ and 806R_5’ - GGACTACNVGGGTWTCTAAT- 3’ (Caporaso et 

al., 2011), which amplifies the region of interest in both bacteria and archaea. The 50 µL reaction mixture 

contained a PCR master mix 25 µl (MyTaq™, Bioline), 2.5µL of template DNA, 2µL of each 

oligonucleotide primer, and 20.5 µl PCR-grade water. PCR amplicons were examined on a 1% agarose 

gel in a transilluminator (model Syngene GBOX systems). Quality of amplicons were checked with the 

Qubit 4.0 Fluorimeter (Thermo Fisher Scientic, United States), sequenced at FISABIO Sequencing and 

Bioinformatics Service (Valencia, Spain) with Illumina MiseqTM technology, 2 x 250 bp paired end run. 

 

16S rRNA sequencing and bioinformatics analyses  

The prokaryotic community composition was analysed using the V4 region of 16S rRNA gene sequences. 

The sequences were quality-filtered using the Quantitative Insights into Microbial Ecology (QIIME). The 

following reads were discarded: low-quality reads with a quality score <20; reads shorter than 250 bp; 

reads with mismatches in the barcode/primer region; reads containing ambiguous bases or any unresolved 

nucleotides.  Potential chimeric sequences were checked and removed processing with the following 

parameters: --p-trunc-len-f 280 --p-trunc-len-r 220 --p-trim-left-f 19 --p-trim-left-r 22, where the forward 

and reverse reads were further truncated to the length of 280 and 220, respectively, in order to have ~12 

overlapping nucleotides. The remaining high-quality sequences were clustered into operational 

taxonomic units (OTUs) at 97% identity threshold. Representative unique OTUs were aligned using 

SINA tool using SILVA_138_SSURef_NR99 as a reference. SILVA database taxonomy was utilized for 

annotations to establish taxonomic levels of OTUs. 

All analysis of microbial data was performed in R (Rstudio v4.0.3). All datasets were rarefied to 

prevent potential bias caused by different sequencing depths. The alpha diversity was calculated using 

package ampvis2 v2.7.4 and was extracted using the command amp_alphadiv to describe the sample 

complexity (observed OTUs, InvSimpson, Chao1, and Shannon’s indices). Venn diagrams were plotted 

with R package VennDiagram v4.0.5. In addition, the relative abundance of microbial structure was 

assessed using the rarefied dataset and was calculated for each sample using package phyloseq. The 

function “tax_glom” was used to compare the relative abundance of phyla between different samples, 

and the function “transform_sample_counts” was performed to convert the count data to relative 

abundance. Stacked bar plots of phyla abundance were plotted using the package ggplot2. Metabolic 



profiles of the prokaryotic phyla were predicted based on the data compiled in the  FAPROTAX database 

(Louca et al.,2016)  using “microeco” package (v0.2.0, Liu et al., 2021).  

 

RESULTS 

General soil properties 

The physical and chemical properties of the sampled soils and information on sampling site are 

summarized in Table 1. The salinity of the soils were between 18.9% to 26.7%. Lowest NaCl 

concentration (1.504 M) and conductivity (948 μS/cm) were measured for GFS. Additionally, all samples 

exhibited trace amounts of MgSO4, MgCl2, KCl, and CaCl2, ranging between 0.064-0.190 M, 0-0.313 

M, 0.001-0.037 M and 0.02-0.035 M, respectively. CaCO3 values were comprised between 2.646-

1.368M. Noticeably, high concentrations of NaCl, MgSO4 and CaCO3 were detected in ETS and low 

concentrations in GFS. All sampled soils were generally neutral to subtly basic, with pH values ranging 

from 7.2 – 8.5. Organic matter was generally lower in GFS sample (8.39%) and increased in the others 

samples but did not exceed 15% in any samples. 

 

Microbial community composition 

The number of sequences per individual site ranged from 155,942 to 161,327. After quality filtering, 

denoising, and chimera removal, a total of 93,853 rRNA sequences were obtained (34,908, 17,635, 

14,926 and 26,384 sequences were acquired from ANG, DJS, ETS and GFS, respectively). These high-

quality reads were assembled into 863 OTUs. 

To compare the microbial abundance, samples were rarefied to 14,431 reads obtaining a total number of 

45,534 sequences for Bacteria (49.23%) and 46,950 sequences for Archaea (50.75%). Our analysis of the 

hypersaline soils of Algerian sebkhas showed that the prokaryotic community composition was different 

among all sites (Fig. 2A). Taxonomic distribution indicated that altogether there were 27 different 

representative phyla, 9 from the bacterial and 18 for the archaeal domains. Members of the archaeal 

phylum Euryarchaeota and of the bacterial phylum Proteobacteria dominated almost in all sites. 

Alphaproteobacteria were the most predominant of the Proteobacteria (Fig. 2B). Proteobacteria 

represented 63% in DJS, 61% both in ETS and GFS, with the exception of ANG sample (< 32%), that 

was dominated by Cyanobacteria with 48% (Fig. 3). Less than 3% of the total number of sequences of 

the bacterial fraction were represented by Firmicutes OTUs: 10 OTUs were assigned to Clostridia and 2 



OTUs to the class Bacilli. 9.25% were assigned to Patescibacteria, representing the classes 

Parcubacteria (<1%), Gracilibacteria (2.92%), and Saccharimonadia (1.21%), which were exclusively 

detected only in DJS. Additionally, the number of OTUs classified as Actinobacteriota were also only 

detected in DJS (9%). Other taxa that were identified as a minor taxonomic group in the four samples 

were Verrucomicrobiota, which the higher proportion was detected in ETS (17%) and the lower value 

was registered in DJS (5%).  Bacteroidetes phylum was represented by 51 OTUs identified by the lowest 

number of reads.  

At each sample site, the Euryarchaeota were the most abundant, accounting for 81% in GFS, 

79% in DJS, 75% in ANG, and 59% in ETS of the total archaeal sequences (Fig. 3). Euryarchaeota 

mostly comprised of the class Halobacteria, and the families Haloarculaceae (16.62%) and 

Halobacteriaceae (16.3%). The four phyla Hadarchaeota, Nanoarchaeota, Nanohaloarchaeota, and 

Thermoplasmatota together accounted for 19% and 41% of the total archaeal sequences among all 

samples. The highest proportion of sequences belonging to the phylum Hadarchaeota within the class 

Hadarchaeia, were detected in ETS (18%), and the lowest in ANG (3%) samples. The highest abundance 

for Nanohaloarchaeota was registered in ANG (10%) followed by ETS (7%) whereas Nanoarchaeota 

was represented with 7%, 6%, 3%, and 2% in ANG, ETS, GFS, and DJS, respectively. Other phyla did 

not exceed 2% across all samples.  In summary, microbial community distribution is remarkably diverse 

among bacteria compared to the archaeal fraction, which was mainly monopolized by phylum 

Euryarchaeota in all samples. 

 

Predominant prokaryotic genera 

Of the 863 total OTUs identified in all samples there were 85 OTUs, which constituted at least 0.1% of 

relative read abundance each (Fig. 4) in a single sample and 229 OTUs were distributed among 16 genera 

affiliated to both domains, with a relative sequence abundance of more than 1% each of the total 

communities in the four soil samples (Fig. 4 and Fig. 5). In the archaeal domain, Euryarchaeota displayed 

a substantial diversity, and was by far the most dominant phylum with most detected genera in all 

samples, representing 23 genera. Only 12 genera were dominant with a relative read abundance of more 

than 1% (Fig. 4). These were Halapricum (6.4% - 24.5%), Halorubrum (4.9% - 13.2%), 

Halodesulfurarchaeum (4.3% - 13.7%), Halococcus (4.9% -10.3%), Natronomonas (3.5% - 5.8%) and 

Haloplanus (2.4% - 5.2%). The remaining archaeal genera detected were Haloarcula (0.5% - 7.4%), 



Halobellus (1% - 2.8%), Halovenus (1.6% - 4.2%) and Halonotius, which was represented with 4.9% in 

ANG and 4.7% in GFS, not detected in sample ETS. The genera Halomicroarcula and Halorubellus were 

found with abundances <1.8% among all samples. Some genera were found in lower abundance of <1% 

in only one sample, such as Halarchaeum (0.6% of abundance), that was detected only in DJS (Fig. 4). 

Additionally, the genera Haloquadratum and Halorientalis were present in all samples, with the 

exception of ETS with lower abundances. Halobacterium was detected in ETS and GFS with 0.6% - 

0.1% of relative abundances, respectively. However, the bacterial fraction was much less diverse in terms 

of abundance than that of Archaea. Rhodovibrio, Limimonas, Desulfitibacter and Salinibacter were the 

4 most representative genera with relative read abundances of more than 1%, at least in each individual 

sample. Rhodovibrio represented relative sequence read abundances of >25%, except in the ETS sample 

(Fig.5). Similarly, Limimonas represented between 5.4% – 13.5% and Desulfitibacter (within Firmicutes) 

between 1.1% – 3.8% of the reads. The genus Salinibacter displayed a lower relative abundance ranging 

from 0.1% to 1.2%. All other genera, including Desulfovermiculus, Altererythrobacter, Enhydrobacter 

and Erythrobacter displayed a very lower relative abundance (<0.9%) overall and were not detected in 

all samples in our study. Interestingly, most of the above mentioned bacterial genera were abundant in 

the ANG sebkha except for the genus Limimonas, which was least abundant in ANG (5.4%). Some genera 

were detected in only one sample and were absent in the others with a relative abundance ˂0.2% such as 

Altererythrobacter, Erythrobacter and Salinimicrobium which were detected only in DJS, and 

Enhydrobacter which was detected only in ETS. We speculate that this may be due to the lower 

abundance of these genera in these soils and therefore below the detection threshold of the 16S rRNA 

sequencing. 

 

Soil prokaryotic community diversity 

The microbial diversity within each sample was estimated using Shannon and Simpson diversity index 

(Table 2). Shannon index ranged between 4.28 and 5. Simpson evenness remained stable across all 

samples, ranging only within 0.95 - 0.98. The Inverse Simpson index was highly variable among the 

different sites, from 21.99 (ANG) to 95.46 (ETS). 

Among the 863 OTUs observed in the four soil samples, only 34 were found common within them (Fig. 

8). The highest number of 359 OTUs were detected in ANG (41.59% of the total OTUs) followed by 

GFS (319 OTUs, 36.96%), DJS (291 OTUs, 33.71%) and ETS (248 OTUs, 28.73%). Moreover, ANG 



also included the highest number of unique OTUs (190 OTUs), closely followed by ETS (186 OTUs). 

Samples GFS and DJS displayed 142 and 141 unique OTUs respectively.  

 

 

 

 

 

Fig. 1. Sampling locations of different sebkhas in the High Plateaus in Algeria: ANG, sebkha Ank-Djemel; DJS, sebkha Djendeli; 

ETS, sebkha El-Tarf; GFS, sebkha Guellif. 

 

 Table 1. Soil physical, chemical and geographical properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties ANG DJS ETS GFS 

pH 7.2 8.0 7.8 8.5 

Salinity (%)  24.5 26.7 18.9 25.7 

EC(μS/cm) 1,130 1,260 1,023 948 

NaCl (M)  2.725 2.847 3.275 1.504 

CaCO3 (M)  1.391 2.052 2.646 1.368 

MgSO4 (M)  0.064 0.158 0.190 0.146 

MgCl2 (M)  0.00 0.167 0.230 0.313 

KCl (M) 0.004 0.037 0.033 0.001 

CaCl2 (M)  0.035 0.029 0.025 0.02 

% OM  14.673 14.454 13.510 8.396 

Altitude (m) 826 870 834 830 

Latitude  35,7770556° 35,7236044° 35,7224167° 35,7752778° 

Longitude  6,8724444° 6,5241975° 7,0872222° 6,92725° 

Date of soil sampling Jan,2020 Jan,2020 Jan,2020 Jan,2020 

Province Oum Bouaghi Batna Oum Bouaghi Oum Bouaghi 



(A)                   (B) 

 

 
Fig. 2. Relative abundance of OTUs in each soil sample at the kingdom and class levels. (A) Relative abundance of Bacteria and 

Archaea kingdoms. (B) Relative abundance of the 10 most abundant classes. 

 

 

 
 

 
Fig. 3. Taxonomic distribution at the phylum level for both kingdoms Bacteria and Archaea in all samples of hypersaline soils. 

Patescibacteria is considered a superphylum (Tian et al. 2020). 
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Fig. 4. Heatmap displaying the relative abundances of top 25 

microbial genera for all soils samples. The colour from 

red to blue represents the most abundant to least 

abundant. The numbers represent percentage of 

relative abundance of 16S rRNA genes, grouping the 

dominant of bacterial and archaeal genera in each 

sample. 

 

 

 

 



Fig. 5. Boxplot for average abundance of the top 18 major genera with their families in the hypersaline soils from different sebkhas (x-

axis = Read abundance is displayed on a log-scale, vertical bold line = the boxplot depicts the median, horizontal lines = 

minimum and maximum value; and dots = outliers). 

 

 

 

 

 

Fig. 6. Rarefaction curves indicating the observed number of 

OTUs based on sequencing depth in all samples of 

hypersaline soils ANG, DJS, ETS, and GFS. 

 

 

 

Table 2. Richness and diversity indices of prokaryotes for the four hypersaline soils from different sebkhas. 

Sample ID Observed 

OTUs 

Shannon Simpson InvSimpson Chao-1  ACE 

ANG 360 4.28 0.95 21.99 361.28 363.70 

DJS 292 4.62 0.97 43.73 292.33 293.35 

GFS 320 4.72 0.98 52.51 320 320 

ETS 249 5.00 0.98 95.46 249 249 

 

 

Fig. 7. Principal Coordinates Analysis (PCoA) based on the 

Bray-Curtis dissimilarity of all samples from 

hypersaline soils. Principal Components (PCs) 1 and 2 

explained 76.5% and 17.1% of the variance, 

respectively. 

 

 

 

 

Fig. 8. Venn diagram showing the unique and shared OTUs in 

all soil samples. ANG, sebkha Ank-Djemel; DJS, 

sebkha Djendeli; ETS, sebkha El-Tarf; GFS, sebkha 

Guellif. 

 

 

 



 

Fig. 9. Difference in functional pathway prediction using 

microeco package between the 16S RNA data of 

hypersaline soils and published metagenome shotgun 

sequencing data. 
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