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Abstract 

 

Target trial emulation (TTE) applies the principles of randomised controlled trials to the causal 

analysis of observational datasets. On challenge that is rarely considered in TTE is the sources 

of bias that may arise if the variables involved in the definition of eligibility into the trial are 

missing. We highlight patterns of bias that might arise when estimating the causal effect of a 

point exposure when restricting the target trial (TT) to individuals with complete eligibility 

data. Simulations consider realistic scenarios where the variables affecting eligibility modify 

the causal effect of the exposure and are Missing at Random (MAR) or Missing Not at Random 

(MNAR). We discuss multiple means to address these patterns of bias, namely, (i) controlling 

for the collider bias induced by the missing dataon eligibility, and (ii) imputing the missing 

values of the eligibility variables prior to selection into the TT. Results are compared to when 

TTE is performed ignoring the impact of missing eligibility. A study of Palivizumab, a 

monoclonal antibody recommended for the prevention of respiratory hospital admissions due 
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to Respiratory Synctial Virus in high risk infants, is used for illustrations.   

Keywords: Target Trial Emulation, Eligibility, Missing Data, Multiple Imputation, Average 

Causal Effect  

1. Introduction 

Randomised controlled trials (RCTs) are commonly used for estimating causal effects of point 

interventions. However in many epidemiological settings, an RCT may be infeasible or 

ethically nonviable. Hence, observational data are also used to compare effectiveness, with 

various strategies adopted to address the lack of randomization, and indication bias, for 

example by controlling for measured confounders. Analysis of observational data suffers from 

various additional sources of bias such as selection bias, indication bias, and immortal time 

bias [1].  

Target trial emulation (TTE) aims to avoid some of these biases by adopting the design 

principles of RCTs. Individuals in an observational database, such as administrative health 

records, are selected according to a set of eligibility criteria that mirrorthose that would be used 

in an RCT [2]. However, data on variables that determine eligibility are often incomplete, and 

as such not all participants of the Target Trial (TT) are identifiable from the observational 

database. It is typically advised to consider a different target trial with more complete 

eligibility criteria ([1]), or to exclude or censor individuals with missing data [3,4]. Missing 

data is often a source of bias when those excluded are systematically different from the 

observed, i.e. if they are missing at random (MAR) or missing not at random (MNAR) [5,6]. 

Though identified as a potential limitation, there is little work investigating the extent to which 

missing eligible data can impact the analysis of a target trial. 

One solution is to impute missing eligibility prior to selection into a target trial. However, we 

could find only one precedent of imputation of eligibility criteria prior to the creation of a target 

trial in [7]. More generally, multiple imputation of exclusion criteria in observational studies 

has been considered in a recent work [8] for validating error prone confounders, but remains an 

infrequently studied topic. We intend to bring attention to work of this kind to the context to 

TTE.  

In this paper we investigate biases in the average causal effect (ACE) of a point exposure, in a 

target trial with missing eligibility data. Our simulations consider realistic scenarios where the 

eligibility variables modify the true causal effect. We consider two strategies of analysis: (i) 

Conditioning on variables that drive missingness eligibility (ii) recovering the missing 

eligibility data via multiple imputation (MI). A study of Palivizumab, a monoclonal antibody 

for prevention of symptoms of severe Respiratory Synctial Virus (RSV) infection in high risk 

infants based on administrative hospital and pharmacy dispensing data is used to illustrate 

these alternative approaches.  

2. Methods 

1. Setup 

Consider the setting with a binary treatment 𝐴, end of study outcome 𝑌, and confounding 

variables 𝐿1  and 𝐸 , where the latter determines eligibility. Suppose 𝐸  has informative 

missingness with 𝑅𝐸 an indicator of completeness (1=complete, 0=missing). Missingness in 

𝐸 may be missing at random (MAR), driven by variables that are not necessarily confounders, 

which we denote 𝐿2 and 𝐿3, or Missing not at Random (MNAR), if also driven by 𝐸 itself [9] 

(Figure 1). This is a typical setting, whereby 𝐿2 and 𝐿3 are separate causes of respectively 𝐴 

and 𝑌. 
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We emulate a TT where eligibility is defined by 𝐸 being greater than or equal to some value 

𝑒. In practice 𝐸 may represent a set of variables, which determine an eligibility indicator 

variable 𝐼𝐸. The mechanism for inclusion is shown in Figure effg:dag2, represented by the box 

(indicating conditioning) surrounding 𝐼𝐸 = 1. It also shows the selection mechanism induced 

by restricting the TT to individual with complete 𝐸, indicated by the box around 𝑅𝐸 = 1. We 

distinguish between:  

 The source population, from which the TTs are derived.  

 The full eligibility TT (𝑇𝑇𝑡𝑟𝑢𝑒), containing all those who are eligible (𝐼𝐸 = 1).  

 The complete eligibility TT (𝑇𝑇𝑜𝑏𝑠), containing those who are complete and 

eligible, (𝐼𝐸 = 1 and 𝑅𝐸 = 1).  

Our target estimand is the average causal effect (ACE) of 𝐴 on 𝑌 in 𝑇𝑇𝑡𝑟𝑢𝑒, defined as,  

 ACE𝐼𝐸=1 = 𝔼(𝑌(1) − 𝑌(0)|𝐼𝐸 = 1), (1) 

where 𝐸(𝑌(𝑎)) is the average value of 𝑌 , if the exposure 𝐴 were set to take the value 

𝑎, 𝑓𝑜𝑟 𝑎 = 0,1 in the whole population. In reality, 𝑇𝑇𝑡𝑟𝑢𝑒 is not known, and thus ACE𝐼𝐸=1 is 

approximated by the equivalent estimand from 𝑇𝑇𝑜𝑏𝑠,  

 ACE𝐼𝐸=1,𝑅𝐸=1 = 𝔼(𝑌(1) − 𝑌(0)|𝐼𝐸 = 1, 𝑅𝐸 = 1). (2) 

The ACE of a point exposure can be identified by invoking assumptions of no interference, 

counterfactual consistency, and conditional exchangeability (i.e. no unmeasured confounding) 

[2].  

2. Sources of Bias 

If we attempt to estimate 𝐴𝐶𝐸𝐼𝐸=1 from an estimate of 𝐴𝐶𝐸𝐼𝐸=1,𝑅𝐸=1 we would be prone to 

two sources of bias.  

Collider bias 

The confounders 𝐿1 and 𝐸 are common causes of exposure and outcome which need to be 

controlled for, whilst 𝐿2  and 𝐿3 , the drivers of missingness, are not. However when we 

condition on 𝑅𝐸 = 1, we create a spurious association between 𝐿2 and 𝐿3, which confounds 

the causal effect of 𝐴 on 𝑌 via 𝐴 → 𝐿3 → 𝐿2 → 𝑌 (Figure 2). This is a type of collider bias 

known as Berkson’s Bias [10,11], which must be removed by conditioning on either 𝐿2or 𝐿3.  

Selection bias 

When 𝐸  has informative missing data, the missing eligible ( 𝐼𝐸 = 1, 𝑅𝐸 = 0 ) contain 

information about 𝑇𝑇𝑡𝑟𝑢𝑒 that cannot be recovered by 𝑇𝑇𝑜𝑏𝑠. This can result in selection bias 

when conducting an analysis on 𝑇𝑇𝑜𝑏𝑠  if, for any reason, the causal effect of 𝐴 on 𝑌 is 

different in the missing eligible, compared to the complete eligible. 

By controlling for 𝐿1, 𝐿2, and 𝐸 we identify the causal effect,  

 
ACE(𝐿1,𝐿2,𝐸)

𝐼𝐸=1,𝑅𝐸=1 = 𝔼(𝑌(1) − 𝑌(0)|𝐿1 = 𝑙1, 𝐿2 = 𝑙2, 𝐸 = 𝑒, 𝐼𝐸
= 1, 𝑅𝐸 = 1) ∀ (𝑙1, 𝑙2, 𝑒). 

(3) 

To find ACE𝐼𝐸=1,𝑅𝐸=1 we marginalise (average) ACE(𝐿1,𝐿2,𝐸)
𝐼𝐸=1,𝑅𝐸=1 over the distribution of 𝐿1, 𝐿2 

and 𝐸 in 𝑇𝑇𝑜𝑏𝑠. 
If the effect of 𝐴 on 𝑌 is modified by these confounders, then the value of ACE𝐼𝐸=1,𝑅𝐸=1 

depends on the distribution of that confounder in 𝑇𝑇𝑜𝑏𝑠. 
Hence since we cannot recover the distribution of the confounders in 𝑇𝑇𝑡𝑟𝑢𝑒, ACE𝐼𝐸=1,𝑅𝐸=1, 

obtained from 𝑇𝑇𝑜𝑏𝑠, is a biased approximation of ACE𝐼𝐸=1. In other words the distribution of 

the confounders in 𝑇𝑇𝑜𝑏𝑠, does not match that in 𝑇𝑇𝑡𝑟𝑢𝑒.  
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Suppose 𝐸 was a score capturing standards of hospital care. We might expect a treatment 𝐴 

to be more effective on the outcome at higher standards of care. Now if hospitals of a low 

standard are more likely to have a missing score, then we would over-represent eligible 

hospitals of higher standards in 𝑇𝑇𝑜𝑏𝑠, and lead to a biased ACE. 

Dealing with this bias requires recreating the joint distribution of exposure, outcome and 

confounders of 𝑇𝑇𝑡𝑟𝑢𝑒 for example using multiple imputation ([12,13,14]). 

This bias has been discussed in the wider setting of "data-fusion" of multiple data sources 

([15]), with identification of targeted causal effects involving knowledge of the distribution of 

the confounders in the "fused" population, as we discuss above. This type of bias has been 

referred to as an issue of "transportability" [15] or external validity to a different population 

[16]. Our setting is created by missing information that precludes the identification of the 

target population. This could be viewed as an issue of internal validity of 𝑻𝑇𝒐𝒃𝒔 itself, or 

of its external validity to 𝑻𝑇𝒕𝒓𝒖𝒆. The issue also impacts the generalisability of results to 

other populations.  

3. Strategies 

We indicate possible strategies to address the biases in the estimation of ACE𝐼𝐸=1 above.  

Strategy 1: Ignoring missing eligibility 

In the setting of Figure 2 we fit an outcome regression model for 𝑌 on 𝐴, controlling for 𝐿1 

and 𝐸 in the model, and then estimate ACE𝐼𝐸=1,𝑅𝐸=1 by marginalising over their distribution 

in 𝑇𝑇𝑜𝑏𝑠, as described in [17].  

Strategy 2: Dealing with collider bias 

With this approach we fit an outcome regression model for 𝑌 on 𝐴 controlling for 𝐿1, 𝐸 and 

either 𝐿2 or 𝐿3 in order to block the path opened by conditioning on 𝑅𝐸, and then estimate 

ACE𝐼𝐸=1,𝑅𝐸=1 as in strategy 1. 

If the estimand of interest is ACE𝐼𝐸=1,𝑅𝐸=1, then this strategy is sufficient to remove bias 

induced by missing eligibility data.  

Strategy 3: Dealing with collider and selection bias 

We specify an imputation model (IM) to predict the missing eligibility data in the source 

population. We impute 𝐸 in multiple copies of the source population, and from each, construct 

an imputed copy of 𝑇𝑇𝑡𝑟𝑢𝑒 using imputed eligibility criteria. Wethen control for 𝐿1 and 𝐸 as 

in strategy 1 to estimate ACE𝐼𝐸=1 in each copy, which are pooled using Rubin’s Rules [9].  

Implementation  
The imputation step is as follows:  

1. Specify an IM for the missing mechanism of 𝐸.  

2. Generate 𝑚 copies of the source population and impute 𝐸 in each copy based 

on the IM.  

3. Apply the eligibility criteria to each imputed dataset to obtain 𝑚 emulated 

versions of 𝑇𝑇𝑡𝑟𝑢𝑒.  

4. Estimate ACE𝐼𝐸=1 in each imputed 𝑇𝑇𝑡𝑟𝑢𝑒, controlling for 𝐿1 and 𝐸 to obtain 

𝑚 estimates of the causal effect of 𝐴 on 𝑌, 𝐴𝐶𝐸̂𝑚
𝐼𝐸=1.  

5. Obtain Rubin’s pooled estimate of the target causal effect by taking the average 

over the 𝑚 imputed sets:  
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𝐴𝐶𝐸̂𝐼𝐸=1 =
1

𝑚
∑𝐴𝐶𝐸̂𝑚

𝐼𝐸=1

𝑚

𝑖=1

 

6.  

To capture any suspected treatment effect heterogeneity, imputations are carried out separately 

for each value of 𝐴. Note that this technique requires 𝐴 be fully observed [18]. 

Work in [8] highlights that excluding data relevant to inclusion in a study after MI leads to 

biased estimates of Rubin’s pooled estimate of the variance because of incongeniality between 

the imputation and outcome model. We hence consider confidence intervals using a percentile 

based bootstrap.  

Combining Bootstrap and Imputations  
We combine bootstrapping with MI using the "Boot-MI" methodology [19]. This consists of 

the following steps:  

1. Obtain 𝑏 bootstrap samples of the source population.  

2. Apply steps 1-5 of the MI procedure above for each of the 𝑏 datasets and 

obtain 𝑏 estimates of 𝐴𝐶𝐸̂𝑏
𝐼𝐸=1.  

3. A percentile based bootstrapped confidence interval is then derived as the 

𝛼 × 100𝑡ℎ and (1 − 𝛼) × 100𝑡ℎ percentiles of the ordered bootstrapped estimates.  

We use single imputation (𝑚 = 1) which has been shown to have good statistical properties 

[20], and reduce computational burden ([20,19]), nested within 𝑏 = 1000 bootstraps, which 

is at or above the typically recommended number ([21]).  

Sensitivity analyses  

Imputation models for 𝐸 that allow for different mean values depending on 𝐴 could be used  

𝔼(𝐸|𝑌, 𝐴 = 𝑎, 𝐿1, 𝐿2, 𝐿3, 𝑅𝐸) = 𝛽0 +∑𝛽𝑖

3

𝑖=1

𝐿𝑖 + 𝛽5𝑌 + 𝛿𝑎𝑅𝐸   for  𝑎 = 0,1. 

We use fully conditional specification (FCS or MICE) using the "mice" package in R [13,22] 

to impute the data. The parameters 𝛿𝑎  are MNAR sensitivity parameters. If MNAR is 

suspected, setting 𝛿𝑎 ≠ 0 shifts the imputedvalues of 𝐸 (separately for each 𝑎) by an amount 

that accounts for the effect of 𝐸 on its own missingness ([23,24]). In practice, sensible ranges 

for 𝛿𝑎 are chosen, with the data imputed over these ranges.  

3. Simulations 

We investigate strategies 1-3 by simulating data according to the structure of Figure 2. 

Specifically:  

 𝐿1,𝐿2 and 𝐿3 are independent 𝑁(0,1).  

 𝐸 is a normal variable dependent on 𝐿1 and 𝐿2:  

𝐸 ∼ 𝑁(𝐿1 + 𝐿2, 1). 
  

 Eligibility is defined as 𝐼𝐸 = 1  if 𝐸 ≥ 0 , 𝐼𝐸 = 0  otherwise, hence around 

50% of the population are eligible.  

 The missing mechanism of 𝐸 is expressed as a linear function of 𝐿2, 𝐿3, and 

𝐸:  

𝑙𝑜𝑔(odds𝑅𝐸) = 𝜇 + 𝛼𝐿2 + 𝛼𝐿3 + 𝛾𝐸. 

  

 The exposure 𝐴 is a binary variable, and generated in terms of the log-odds of 

exposure, expressed as a linear function of 𝐿1, 𝐿3, and 𝐸:  

𝑙𝑜𝑔(odds𝐴) = 0.1𝐿1 + 0.5𝐿3 + 0.1𝐸. 
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 Around 54% of individuals in the source population are exposed.  

 The outcome 𝑌 is a normal variable that depends on exposure 𝐴, eligibility 𝐸, 

their interaction, and also on 𝐿1 and 𝐿2, with 𝐿2 exercising a stronger impact than 𝐿1:  

𝑌 ∼ 𝑁(𝐴 + 𝐸 + 𝐴𝐸 + 𝐿1 + 2𝐿2, 1). 
  

The source population is of size 𝑛 = 1,000. We investigated strategies 1-3 at different values 

of 𝜇, 𝛼 and 𝛾, the parameters affecting 𝑅𝐸. Specifically, 𝜇 drives the percentage of MCAR 

missingness. 𝛼  drives the strength of the MAR assumption, and the spurious association 

between 𝐿2 and 𝐿3, and 𝛾 drives the strength of the MNAR mechanism, with positive values 

leading to a higher probability of larger values of 𝐸 being observed. 

The parameter 𝜇 was set at 0 and 1.5, leading to severe (50%) and moderate (18%) MCAR 

missingness. 𝛼  and 𝛾  were set to range from 0 (no association) up to ±0.4 . For each 

combination we carried out 𝑙 = 1,000 simulations for each of these scenarios using 𝑏 =
1000  bootstraps, reporting for each the average bias in the estimation (𝐴𝐶𝐸𝐼𝐸=1,𝑅𝐸=1 −
𝐴𝐶𝐸𝐼𝐸=1) , its Monte Carlo Error (MCE), Root Mean Squared Error (RMSE) and 95% 

coverage [25].  

4. Results 

Observed and True Target Trial Comparisons 

Table 1 describes the characteristics of a set of single large simulations of 𝑇𝑇𝑜𝑏𝑠 for different 

values of 𝛼 , 𝛾  and 𝜇 . We set 𝑛 = 1,000,000  to minimise random variation. The three 

missingness scenarios are MCAR (𝛼 = 𝛾 = 0),MAR (𝛼 ≠ 0 and 𝛾 = 0), and MNAR (𝛼 ≠ 0 

and 𝛾 ≠ 0). The scenario when 𝐸 is not missing, (𝑇𝑇𝑡𝑟𝑢𝑒) is included for comparison. 

When the mechanism is MCAR, the means and correlations of relevant variables are not 

affected. When the mechanism is MAR, they depart from those found in 𝑇𝑇𝑡𝑟𝑢𝑒: when 𝛼 > 0, 

individuals in 𝑇𝑇𝑜𝑏𝑠  have larger mean values for 𝐸 , 𝐿2  and 𝐿3  than in 𝑇𝑇𝑡𝑟𝑢𝑒 . This is 

because 𝛼 leads to individuals with larger values for 𝐿2  and 𝐿3  being more likely to be 

observed, shifting upwards their distributions, and by extension, the distribution of 𝐸. When 𝛼 

is negative the opposite is true. These biases are more noticeable at 𝜇 = 0 due to the greater 

proportion of missing individuals. 

Under MNAR, setting 𝛾 > 0 makes higher values of 𝐸 more likely to be observed in 𝑇𝑇𝑜𝑏𝑠, 
with the opposite occuring when 𝛾 < 0, leading to shifts in the distributions for 𝐸, 𝐿2 and 𝐿3 

similar to what occurs with 𝛼. 

The combined impact of 𝛼 and 𝛾 varies. When both are of the same sign, their impacts 

compound, and strengthen the corresponding shifts in distribution. When they are of opposite 

sign, their impacts partially offset one another. 

The shifts in distribution for 𝐿1 are complicated, shifted downwards when 𝛼 > 0 but shifted 

upwards when 𝛾 > 0. This is due to a complicated relationship between the spurious negative 

𝐿1 − 𝐿2  association (caused by conditioning on 𝐼𝐸), driving a downward shift in 𝐿1 with 

higher values of 𝐿2 is, and the positive 𝐿1 − 𝐸 association, driving an upward shift with 

higher values of 𝐸.  

Strategies 

For strategies 1 and 2, bias in estimation of ACE increased with higher values of alpha and 

gamma, and was worse when mu=0 (Tables 2 and 3). This is due to having to average over the 

distribution of the confounders to estimate 𝐴𝐶𝐸𝐼𝐸=1. The size and direction of this bias is 
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nearly identical to the shift in the distribution of 𝐸 observed in Table 1. This is because effect 

modification by 𝐸 has effect size equal to 1. 

The impact of collider bias induced by 𝛼 is negligible, as shown by the small differences in 

bias for strategies 1 and 2. The RMSE is smaller for strategy 2, but has more under-coverage, 

possibly because it involves averaging 𝐿2, which also has a shifted distribution.  

Table 1 implies that had 𝐿2 been the effect modifier rather than 𝐸, strategies 1 and 2 would 

have shown more bias under the MAR assumption. This is investigated, in Web Appendix 1. 

Strategy 3 shows unbiased estimates (Within MCE) in all cases indicating a successful 

recovery of the causal effect in 𝑇𝑇𝑡𝑟𝑢𝑒. The CIs however display over-coverage, particularly 

when a large fraction of the eligible are missing. 

Selection bias appears to increase under the following conditions:  

 Larger numbers of missing eligible individuals.  

 Larger values of 𝛼 and 𝛾, the drivers of missingness.  

 A stronger effect modification of the causal effect of 𝐴 on 𝑌 by 𝐸 (or any 

variables related to 𝐸).  

With fewer eligible participants lost to missingness, there is less missing data to drive a 

differentiation in the distributions of 𝐸 in 𝑇𝑇𝑜𝑏𝑠 and 𝑇𝑇𝑡𝑟𝑢𝑒, which is why bias decreased 

when 𝜇 was larger, and the number of missing eligible decreased. None of these features are 

likely to be known in advance.  

When 𝑬  was MNAR, imputation was carried out with the correct values of the 

sensitivity parameters 𝛿𝟎, 𝛿𝟏. This was to demonstrate that, all other biases (including a 

mis-specified imputation model) accounted for, strategy 3 can eliminate the biases of 

Section 2.2 when 𝑬 is MNAR. This is unlikely to be possible in reality, hence in Web 

Appendix 2 we repeat specific MNAR simulations of Table 3 assuming a MAR 

imputation model (𝛿𝟎, 𝛿𝟏) = (𝟎, 𝟎), which shows notable bias. This highlights that in 

practice, MNAR imputation is an exploratory technique, and careful consideration must 

be taken to choose informative values of ranges for 𝛿𝟎 and 𝛿𝟏 to investigate ([23,24]). A 

realistic application of strategy 3 is shown in the case study.  
In summary, strategy 3 is necessary in the case that missing data are noticeably MAR or 

MNAR. If not the case a user may prefer the simpler strategies 1 and 2. Strategy 2 is the most 

precise if this is preferred by the user, but one must account for the possibility of 

undercoverage if a CI is sought.  

5. Case Study: Effect of Palivizumab on Infant Hospital 

Admission 

Respiratory Syncytial Virus is a major cause of acute lower respiratory tract infection in 

infants, with RSV bronchiolitis responsible for 40,000 hospital admissions annually in England 

[26]. Palivizumab is licensed for passive immunisation to prevent RSV in premature infants 

with Congenital Heart Disease (CHD) or Chronic Lung Disease (CLD). Due to its high cost, 

Palivizumab is typically recommended to more select groups of high risk infants than those in 

clinical trials, with limited data on real world effectiveness [27]. Hence analysis by a selective 

emulated trial is of interest. 

An observational cohort of infants potentially eligible for Palivizumab treatment in England 

has been developed ([27]), using the Hospital Treatment Insights (HTI) database, which links 

pharmacy dispensing records from 43 acute hospitals in England, and hospital records from 

Hospital Episode Statistics (HES). This cohort details infants born between 1st Jan 2010 and 

31st December 2016, with follow up data on Palivizumab prescriptions and hospital admission 

up to their first year of life. HTI is maintained by IQVIA https://www.iqvia.com/. 
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This cohort identifies a source population of 8294 high risk infants, defined as having CLD or 

CHD, under care of an HTI-reporting hospital, alive at the start of their first RSV season 

(October 1st to the 31st March), with a full linked hospital admission history. This is shown in 

the cohort flowchart of Figures 3 and 4.  

Infants in the source population were considered eligible for the TT if they had a diagnosis of 

CLD or CHD and met additional eligibility criteria based on gestational age and chronological 

age at start of RSV season. Specifically, those who met criteria 1a or 2a in Chapter 27a for 

recommendation of treatment by Palivizumab in the Green Book [28] (Web Table 3). 

Gestational age however is missing for 2814 (34%) infants in the source population. As a 

result, the eligibility of many children cannot be identified.  

Target Trial Emulation 

The emulated target trial protocol is detailed in Web Appendix 3 and Web Table 2. We define 

𝑇𝑇𝑜𝑏𝑠  to include all eligible individuals with complete eligible data on gestational age, 

birthweight, index of multiple deprivation (IMD) score and ethnicity. This led to a trial of 1560 

infants. We also aim to recover 𝑇𝑇𝑡𝑟𝑢𝑒 by imputing missing gestational age in the high risk 

cohort. This corresponds to using strategies 2 and 3 respectively.  

We are interested in the effect of any Palivizumab prescription on RSV related hospital 

admission in infants during their first RSV season of life. A full course of treatment by 

Palivizumab requires up to five monthly doses during RSV season. As we could not determine 

adherence to treatment from the HTI data, we define a simplified exposure as a binary indicator 

of having been prescribed at least one dose of Palivizumab in their first RSV season of life. 

Infants are identified in the first month of life for treatment, and typically administered in 

outpatient clinics, not when hospitalised for RSV. Our outcome is a binary indicator of having 

been hospitalised for an RSV related condition during their first RSV season of life.  

Our target estimand is the ACE of palivizumab prescription on RSV related hospital admission 

in 𝑇𝑇𝑡𝑟𝑢𝑒, expressed as the average difference in absolute risk of hospital admission (the intent 

to treat (ITT) effect). 

To balance the confounders in the treated and untreated, we fit a model for the propensity of 

receiving Palivizumab including gestational age, age at start of RSV season, IMD quintiles, 

sex, ethnicity, year of birth, diagnosis of CLD or CHD, or both, andother comorbidities. The 

resultant propensity scores showed reasonable overlap in the treated and untreated (Web 

Figure 1). Mean differences between treated and untreated, adjusted for inverse probability of 

weighting by propensity score, were within 0.1, indicating good confounder balance. 

We fit two different outcome models, a logistic regression model of hospital admission against 

treatment with inverse probability weight of being treated (IPTW), corresponding to a 

Marginal Structural Model (MSM) [29], and a second where we control for the propensity 

score, and all confounders directly in the outcome model, similar to those in two stage 

g-estimation of Structural Nested Mean Models (SNMMs) [30]. The ACE is calculated by 

estimating potential outcomes via the "data stacking" method of [17].  

Continuous gestational age is imputed in the treated and untreated arms separately (to account 

for any interaction between gestational age and Palivizumab) using a MNAR imputation model 

that includes all the variables of the propensity score model, plus the outcome and birthweight. 

Birthweight is not included in the outcome model due to collinearity with gestational age. 

There are thus two sensitivity parameters 𝛿1 for exposed and 𝛿0 for unexposed. We assert 

that infants with missing gestational age may have higher mortality, implying a shorter 

gestation [31]. Hence we run the analysis setting 𝛿1 and 𝛿0 to either 0 (MAR), or -4 (MNAR).  

Based on recommendations in [23], rather than compare the ACE directly to 𝛿0 and 𝛿1, which 

are difficult to interpret physically, we estimate from the imputed data the mean gestational age 
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in treated and untreated infants to contrast against the results.  

Missing birthweight, IMD score and ethnicity and imputed alongside gestational age using 

MICE. We report the results in Tables 4 and 5 below.  

Results 

Analysis of 𝑇𝑇𝑜𝑏𝑠 suggests that treatment by at least one dose of Palivizumab has little effect 

on the risk of being hospitalised, indicated by an ACE of −0.003 using a propensity score 

conditioned outcome model, and −0.01 under IPW (a 0.3% or 1.0% lower risk of hospital 

admission). When imputing the TT under MAR we observe a 0.1% and 0.2% lower risk of 

hospital admission respectively. Under MNAR there is a more noted effect of Palivizumab, 

ranging from −1.0 − 1.3% using a outcome model controlled for the propensity score, and 

−3.1 − 2.3% using IPW. 

The imputation model implies a high number of missing eligible participants, with over 1000 

more individuals under MAR imputed trial, and up to nearly 2500 more under MNAR. 

When 𝛿0 was set to −4, this led to a reduction in average gestational age in the untreated by 

2.2 weeks. In this case there was stronger reduction in risk of hospital admission when treated. 

When 𝛿1 was set −4, the average gestational age in the treated was reduced by 2.7 weeks and 

there was an increasing risk of hospital admission under treatment. 

No estimate was found to be significant based on a 95% CI. Despite there being a clear 

change in the distribution of gestational age under MNAR conditions, and a large number of 

missing eligible there is only weak evidence of selection bias in this study. This implies that 

gestational age only weakly modifies the effect of Palivizumab on hospital admission. 

The implication is that receiving at least one dose of Palivizumab appears to have little effect 

on hospital admission, and are robust to changes in the missing data assumption.  

6. Discussion 

In this paper we bring to light notable sources of bias in TTE, emanating from ignoring missing 

eligible data. We explore one means to analyse a TT combined with multiple imputation of 

eligibility criteria prior to selection. We demonstrate via simulationthat an imputed TT can 

eliminate sources of selection and collider bias, improve the sample size of a TT and allow 

users to investigate sensitivity to changes in the assumptions of the missing eligible data on 

effect size. 

An imputed TT for the effect of receiving at least one dose of Palivizumab on RSV related 

hospital admission indicated a significant number of infants with missing gestational age were 

eligible, though any selection bias in this case was small. 

We identified characteristics of the data that determine the size of selection bias, namely the 

strength of the MAR or MNAR mechanism, the number of missing eligible individuals and the 

size of the effect modification. None of these characteristics can becalculated from the source 

population but could be inferred using external linked datasets. This selection bias can occur if 

any variable related to eligibility is an effect modifier. We show in Web Appendix 1, that when 

𝐿2 was the effect modifier, strong selection bias was identified when 𝐸 was MAR.  

A limitation of the method is the tendency of confidence intervals to over-cover. The Boot-MI 

method is computationally intensive and thus one should expect an analysis to take several 

hours even with, hence we construct CIs using a percentile bootstrap with just single 

imputation. However single imputation lends itself to overcoverage [19]. In Web Appendix 2 

we apply strategy 3 using MI with 𝑚 = 5, which demonstrates improved coverage. One 

alternative would be to investigate the corrected Rubin’s pooled variance of 𝐴𝐶𝐸𝐼𝐸=1 

suggested in [8]. However, obtaining accurate confidence interval estimates in this way for the 
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ACE using MI requires complex methods [32,33,34]. 

Instead of MI, we could consider using Inverse Probability Weighting to address the bias 

caused by missingness in E ([35]). We investigate this method in Web Appendix 2, and found it 

did not correct the bias. Another possible alternative is toutilize the work in [15], by inferring 

or presuming the distribution of the confounders in 𝑇𝑇𝑡𝑟𝑢𝑒, and standardising the conditional 

ACE estimated in 𝑇𝑇𝑜𝑏𝑠, but would be a considerable challenge. 

It is also worth noting that using strategy 2, and targeting the causal effect in those with 

complete records may be a pragmatic choice if the expected selection bias is limited and 

the source population is cumbersome. 
As data on Palivizumab prescriptions and adherence were limited, this impacted the quality of 

conclusions that could be made. Clinical colleagues reassure us that children hospitalised with 

RSV would not be issued palivizumab, protecting from reverse causation. However, other 

issues such as confounding by indication cannot be discounted. Limitations of the diagnostic 

data also meant a slight inflation of our definition of the eligible population because some of 

the diagnoses may include less severe diseases than listed in the Green Book.  
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Table 1. Summary statistics of simulated variables in 𝑻𝑇𝒐𝒃𝒔 for 𝒏 = 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎 for selected values 

of 𝝁, 𝜶 and 𝜸 

 

𝜇 𝛼  𝛾  𝑃𝑅𝐸|𝐼𝐸=1
a
  𝐸̄  𝐿̄1  𝐿̄2  𝐿̄3  𝜌(1,2)

b
 𝜌(2,3)   

No Missingness      

0  0 0 1.00  1.38  0.46  0.46  0.0 -0.27  0.0   

MCAR      

1.5  0 0  0.82  1.38  0.46  0.46  0.0  -0.27  0.0   

0  0 0  0.50  1.38  0.46  0.46  0.0  -0.27  0.0   

MAR      

1.5  0.4 0 0.83 1.40  0.45  0.51  0.07 -0.27 -0.02   

1.5  0.2 0 0.83 1.39  0.45  0.49  0.04 -0.27 -0.01   

1.5  -0.2 0 0.80 1.37  0.47  0.43  -0.04 -0.27 -0.01   

1.5  -0.4 0 0.78 1.35  0.48  0.39  -0.08 -0.27 -0.02   

0  0.4 0 0.54 1.44  0.42  0.60  0.17  -0.25 -0.03   

0  0.2 0 0.52 1.41  0.44  0.53  0.09  -0.26 -0.01   

0  -0.2 0 0.48 1.34  0.48  0.38  -0.10 -0.28 -0.01   

0  -0.4 0 0.46 1.31  0.50  0.30  -0.20 -0.28 -0.03   

MNAR      

1.5  0.4 0.4  0.88 1.43  0.46  0.51  0.05 -0.26 -0.02   

1.5  0.2 0.2  0.86 1.42  0.46  0.49  0.03  -0.26 -0.01   

1.5  -0.2 -0.2 0.75 1.31  0.45  0.40  -0.05 -0.29 -0.01   

1.5  -0.4 -0.4 0.67 1.20  0.44  0.32  -0.12 -0.31 -0.04   

1.5  0 -0.4 0.71 1.25  0.42  0.42  0.00 -0.30 0.00   

1.5  0.4 -0.4  0.42 1.23  0.34  0.55  0.22 -0.29 -0.02   

1.5  -0.4 0.4  0.58 1.49  0.55  0.39  -0.16 -0.24 -0.02   

1.5  0.2 -0.2 0.46 1.31  0.40  0.50  0.11 -0.28 -0.01   

1.5  -0.2 0.2 0.55 1.45  0.51  0.42  -0.09 -0.26 -0.00   

0  0.4 -0.4  0.74 1.31  0.40  0.50  0.10 -0.28 -0.01   

0  -0.4 0.4  0.85 1.42  0.49  0.43  -0.06 -0.26 0.00   

0  0.2 -0.2 0.78 1.35  0.44  0.48  0.04 -0.27 0.00   

0  -0.2 0.2 0.84 1.40  0.48  0.44  -0.03 -0.26 0.00   

0  0.4 0.4  0.66 1.54  0.48  0.60  0.13 -0.25 -0.04   

0  0.2 0.2  0.59 1.49  0.47  0.55  0.08 -0.25 -0.01   

0  -0.2 -0.2 0.41 1.22  0.45  0.33  -0.11 -0.31 -0.01   

0  -0.4 -0.4 0.34 1.07  0.44  0.19  -0.24 -0.34 -0.04   

0  0 -0.4 0.37 1.13  0.38  0.38  0.00 -0.32 0.00   

 

𝑇𝑇𝑜𝑏𝑠:Observed Target Trial, MCAR:Missing Completely at Random, MAR:Missing at Random, 
MNAR:Missing not at Random. 
aNote that 𝑃𝑅𝐸|𝐼𝐸=1 = 𝑃𝑟(𝑅𝐸 = 1|𝐼𝐸 = 1) is a measure of the number of missing eligible. 
b𝜌1,2 = Corr(𝐿1, 𝐿2); 𝜌2,3 = Corr(𝐿2, 𝐿3).  ORIG
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Table 2. Results of applying the three strategies to data generated under different scenarios, with 

𝝁 = 𝟏. 𝟓 and 𝒏 = 𝟏, 𝟎𝟎𝟎. 

 
Strategy  𝛼a 𝛾  Bias  Coverage RMSE  MCE   

       
No Missingness  

1 0  0 0.00  95.0  0.00  0.01   
       

MCAR  
1 0  0 0.01  94.4  0.17  0.01  
2   0.01  93.9  0.1  0.00  

3   -0.01  95.4  0.17  0.01  

       
MAR  

1 -0.4  0  -0.04  94.8  0.20  0.01  
2   -0.03  93.4  0.14  0.00  

3   0.00  95.9  0.17  0.01  

1 0.4  0  0.02  94.2  0.17  0.01  
2   0.03  93.1  0.10  0.00  

3   -0.01  95.3  0.17  0.01  

       
MNAR  

1 0.4  0.4  0.05  93.9  0.17  0.01  
2   0.06  91.6  0.14  0.00  

3   -0.01  95.2  0.05  0.01  

1 0.2  0.2  0.04  94.6  0.17  0.01  
2   0.04  92.2  0.10  0.00  

3   -0.01  95.4  0.17  0.01  

1 -0.2  -0.2  -0.07  93.1  0.20  0.01  
2   -0.07  89.9  0.14  0.00  

3   0.01  95.7  0.05  0.01  

1 -0.4  -0.4  -0.19  82.4  0.26  0.01  
2   -0.17  70.4  0.22  0.00  

3   0.00  96.9  0.20  0.01  

 
MCAR:Missing Completely at Random, MAR:Missing at Random, MNAR:Missing not at Random, 
RMSE:Root Mean Square Error, MCE:Monte Carlo Error. 
aAverage size of 𝑇𝑇𝑜𝑏𝑠 for the seven settings of 𝛼 and 𝛾 are n= 410, 387, 415, 442, 430, 374 and 

332 respectively. Average size of 𝑇𝑇𝑡𝑟𝑢𝑒  is 500. Note that 𝐴𝐶𝐸𝐼𝐸=1 was calculated from a single 

simulation with 𝑛 = 1,000,000 and was estimated at 2.386.  
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Table 3. Results of applying the three strategies to data generated under different scenarios, with 𝝁 = 𝟎 

and 𝒏 = 𝟏, 𝟎𝟎𝟎. 

 
Strategy  𝛼𝑎  𝛾  Bias  Coverage RMSE  MCE   

       
No Missingness   

1 0  0 0.00  95.0  0.00  0.01   
       

MCAR  
1 0  0 0.01  95.0  0.24  0.01  
2   0.01  94.6  0.14  0.00  

3   0.00  97.9  0.22  0.01  

       
MAR  

1 -0.4  0  -0.09  93.2  0.26  0.01  
2   -0.07  91.7  0.17  0.00  

3   -0.01  97.9  0.24  0.01  

1 0.4  0  0.05  94.3  0.22  0.01  
2   0.07  92.8  0.14  0.00  

3   0.00  97.6  0.22  0.01  

       
MCAR  

1 0.4  0.4  0.16  86.3  0.26  0.01  
2   0.17  73.0  0.22  0.00  

3   -0.00  97.3  0.20  0.01  

1 0.2  0.2  0.12  90.4  0.24  0.01  
2   0.12  85.3  0.17  0.00  

3   0.00  97.6  0.22  0.01  

1 -0.2  -0.2  -0.17  90.0  0.30  0.01  
2   -0.15  83.3  0.22  0.00  

3   0.00  98.2  0.07  0.01  

1 -0.4  -0.4  -0.33  75.3  0.42  0.01  
2   -0.31  53.4  0.34  0.01  

3   0.01  98.7  0.17 0.01  

 
MCAR:Missing Completely at Random, MAR:Missing at Random, MNAR:Missing not at Random, 
RMSE:Root Mean Square Error, MCE:Monte Carlo Error. 
aAverage size of 𝑇𝑇𝑜𝑏𝑠 for the seven settings of 𝛼 and 𝛾 are n= 250, 228, 271, 328, 294, 206 and 

172 respectively. Average size of 𝑇𝑇𝑡𝑟𝑢𝑒  is 500. Note that 𝐴𝐶𝐸𝐼𝐸=1 was calculated from a single 

simulation with 𝑛 = 1,000,000 and was estimated at 2.386.  
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Table 4. Estimate of the ACE for the Palivizumab case study obtained using strategies 2 (𝑻𝑇𝒐𝒃𝒔) and 3 

(𝑻𝑇𝒊𝒎𝒑), using an outcome model controlled for confounders and propensity score. 

 
Sensitivity  Trial Size  ACÊa  ACÊ  95% CI  Mean G-age  Mean G-age   

Parameters    (%)  (Treated)  (Untreated)   

𝑇𝑇𝑜𝑏𝑠   
NA  1,560  -0.003  -0.3%  (-0.05,0.05)  26.5  27.2   

𝑇𝑇𝑖𝑚𝑝   
(0,0)  2,643  -0.002  -0.2%  (-0.04,0.04)  26.9  27.7   
(-4,0)  3,659  -0.010  -1.0%  (-0.04,0.03)  26.9  25.5   
(0,-4)  2,985  0.013  1.3%  (-0.03,0.05)  24.2  27.7   
(-4,-4)  3,964  0.006  0.6%  (-0.02,0.04)  24.2  25.5   

 

𝑇𝑇𝑜𝑏𝑠: Target Trial emulated from observed data, 𝑇𝑇𝑖𝑚𝑝: Target Trial emulated from observed  
and imputed data, ACE: Average Causal Effect of treatment, G-age: Gestational Age. 
aThe ACE is expressed as a risk difference both in absolute value and in percentage risk difference 
The sensitivity parameters are listed in order (𝛿0, 𝛿1).  
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Table 5. Estimated ACE for the Palivizumab case study obtained using strategies 2 (𝑻𝑇𝒐𝒃𝒔) and 3 

(𝑻𝑇𝒊𝒎𝒑), using an Inverse Probability Weighted Outcome Model.  

 
Sensitivity  Trial Size  ACÊa ACÊ  95% CI  Mean G-age  Mean G-age   

Parameters    (%)  (Treated)  (Untreated)   

𝑇𝑇𝑜𝑏𝑠   
NA  1,560  -0.010  -1.0%  (-0.06,0.04)  26.5  27.2   

𝑇𝑇𝑖𝑚𝑝   
(0,0)  2,643  -0.001  -0.1%  (-0.04,0.04)  26.9  27.7   
(-4,0)  3,659  -0.031  -3.1%  (-0.08,0.01)  26.9  25.5   
(0,-4)  2,985  0.023  2.3%  (-0.03,0.07)  24.2  27.7   
(-4,-4)  3,964  0.011  (1.1%) (-0.03,0.05)  24.2  25.5   

 

𝑇𝑇𝑜𝑏𝑠: Target Trial emulated from observed data, 𝑇𝑇𝑖𝑚𝑝: Target Trial emulated from observed  
and imputed data, ACE: Average Causal Effect of treatment, G-age: Gestational Age. 
aThe ACE is expressed as a risk difference both in absolute value and in percentage risk difference 
The sensitivity parameters are listed in order (𝛿0, 𝛿1).  
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Figure 1. Directed Acyclic Graph of the assumed relationships between exposure, outcome, confounders, 

and data missingness indicator. A and Y are the exposure and outcome respectively. 𝐿𝟏 are confounders 

of the association between A and Y, with E the variable which determined eligibility into the target trial. 

𝐿𝟐 and 𝐿𝟑 are drivers of missing data in 𝑬. 

Figure 2. Directed Acyclic Graph of the assumed relationships between exposure, outcome, and 

confounders, and the eligibility processes represented by the indicator 𝐼𝑬 plus the missing mechanism in 

𝑬 represented by 𝑅𝑬. The solid and dashed boxes around these main indicators represent conditioning 

and the dotted lines represent spurious associations caused by this conditioning. 

Figure 3. Derivation of the source population for the IQVIA cohort; Infants born in England between 1st 

Jan 2010 and 31st December 2016 with linked Hospital Episodes Statistics (HES) and prescription data. 

Note that the Palivizumab prescriptions database is a separate but overlapping population to those in the 

HTI database. Thus this population is denoted by 𝒕 until linked to individuals in the HTI database 

population (𝒏). 

Figure 4. Derivation of the complete records target trial and of the imputed target trials of Palivizumab 

treatment; Infants born in England between 1st Jan 2010 and 31st December 2016 with linked HES and 

prescription data who were eligible to receive treatment under Criteria 1a and 2a. Note the exact size of the 

Imputed Target Trial is unknown, and depends on the imputed data, but must be at least of size 1753 

(those with complete eligible data who qualify). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ac202/6887820 by guest on 03 January 2023



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ac202/6887820 by guest on 03 January 2023



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ac202/6887820 by guest on 03 January 2023



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ac202/6887820 by guest on 03 January 2023



 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ac202/6887820 by guest on 03 January 2023


