
Landmark based Audio Fingerprinting for Naval Vessels 

Muhammad Abdur Rehman Hashmi 
Department of Electronics and Power Engineering 
Pakistan Navy Engineering College, NUST-PNEC 

Karachi, Pakistan 
abdul.rehman2015@pnec.nust.edu.pk 

Rana Hammad Raza 
Department of Electronics and Power Engineering 
Pakistan Navy Engineering College, NUST-PNEC 

Karachi, Pakistan 
hammad@pnec.nust.edu.pk 

 
 

Abstract— This paper presents a novel landmark based audio 
fingerprinting algorithm for matching naval vessels’ acoustic 
signatures. The algorithm incorporates joint time - frequency 
based approach with parameters optimized for application to 
acoustic signatures of naval vessels. The technique exploits the 
relative time difference between neighboring frequency onsets, 
which is found to remain consistent in different samples 
originating over time from the same vessel. The algorithm has 
been implemented in MATLAB and trialed with real acoustic 
signatures of submarines. The training and test samples of 
submarines have been acquired from resources provided by 
San Francisco National Park Association [14]. Storage 
requirements to populate the database with 500 tracks 
allowing a maximum of 0.5 Million feature hashes per track 
remained below 1GB. On an average PC, the database hash 
table can be populated with feature hashes of database tracks 
@ 1250 hashes/second achieving conversion of 120 seconds of 
audio data into hashes in less than a second. Under varying 
attributes such as time skew, noise and sample length, the 
results prove algorithm robustness in identifying a correct 
match. Experimental results show classification rate of 94% 
using proposed approach which is a considerable improvement 
as compared to 88% achieved by [17] employing existing state 
of the art techniques such as Detection Envelope Modulation 
On Noise (DEMON) [15] and Low Frequency Analysis and 
Recording (LOFAR) [16]. 

Keywords— Under water warfare; acoustic signatures, naval 
vessels; audio fingerprinting; pattern recognition 

I. INTRODUCTION 
The importance of potent Underwater Warfare (UWW) 

capability for a navy cannot be overemphasized. An 
Electronic Support Measure (ESM) system onboard a naval 
vessel monitors the electro-magnetic signatures. The ESM 
system detects, identifies and classifies the raw contacts into 
friend and foe, which thereafter are processed as per the 
prevalent rules of engagement. For a platform to be potent, 
UWW system has a similar overwhelming requirement for 
underwater environment. There are two types of SONARs 
(Sound Navigation and Ranging) active and passive. An 
active SONAR transmits sound energy in a known direction 
and calculates the time taken for the echo to arrive back. This 
information provides range and bearing of targets to the 
SONAR operator. Whereas, a passive SONAR only acquires 
acoustic signatures of other vessels. These raw signatures are 
then manually identified as valid acoustic signal (while 
omitting sea noise) by a human operator having adequate 
training on hydrophone listening. The complex part then 

includes categorization of this acoustic signature generating 
platform into submarine or a ship followed by identification 
of it as a friend or foe. e.g. Is it USS Shark or USS Zumwalt? 
Manual assessment of all this process is very complex and 
comes with a huge risk. Systems such as Landmark based 
Acoustic Target Identification System (LATIS) aid and 
automate this manual and cumbersome process with little to 
no intervention by the human operator. Using a database of 
saved acoustic signatures, the system autonomously queries 
the raw intercepted data with indexed objects in the database 
for a possible match thereby increasing the UWW capability 
onboard.  

Analyzing an audio signature individually using time 
domain will provide signal amplitude stamps that comes 
with lower insight compared to frequency domain analysis. 
Conversely, simple frequency domain analysis becomes 
ineffective in the presence of factors such as noise and 
varying audio length etc. Some of the established algorithms 
for audio fingerprinting have been reported in [1], [2], [3], 
[4] and [5]. These techniques determine the frequency 
points at which maximum energy is concentrated. Different 
algorithms are then applied to these frequency onsets for 
matching the query sample with the database samples. The 
authors at [6] developed frequency histograms of the query 
and database samples and compared them, whereas [7] and 
[8] extracted chroma-based audio statistical features to 
achieve robust matching. A more recent work [9] derived 
binary images from samples’ spectrograms. Upon finding a 
matching portion in binary images of query and database 
samples, the adjacent portions are then compared. The 
process is accelerated by using graphics processing unit. 
These algorithms are being utilized effectively in the music 
industry for identifying a query music clip from a large 
database of popular songs in few seconds. To the best of our 
knowledge, none of the algorithms reported and assessed 
have been applied towards Acoustic Signatures of Naval 
Vessels (ASNVs). Further, the performance evaluation of 
existing algorithms with ASNVs has not been reported so 
far.  

In this paper, a novel landmark based audio 
fingerprinting algorithm has been designed for naval 
vessels. The algorithm developed in this paper, takes 
inspiration and guidance from the work reported by 
Professor Dr Dan Ellis [10]. The authors have also utilized 
the excerpts of MATLAB® routines provided at [10] which 
are originally designed for music application.  
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Rest of the paper is organized as follows. In Section II, 
LATIS novel algorithm is discussed followed by LATIS 
implementation details, comparison with state of the art 
existing systems and test results in Section III. Finally, 
Section IV contains the conclusion with possible future 
directions. 

II. LATIS ALGORITHM 
Onboard a naval vessel, the SONAR operator 

continuously monitors the underwater acoustic environment 
manually using headphones. When the operator identifies a 
valid acoustic signal (which may be that of another ship or a 
submarine etc.), he/she directs the SONAR beam 
(hydrophones) towards the possible direction of the target to 
acquire strengthened sample. This sample serves as input to 
LATIS (i.e. computer based system) for automated analysis. 
The acquired sample is compared with the held database to 
find any match. The match is indicated in terms of 
percentage. Details of the LATIS algorithm are explained 
below.  

A spectrogram of audio signal consists of a constellation 
of frequency onsets. Hashes or lines are drawn between 
neighboring onsets and ensembles containing information of 
the first frequency onset f1, the second frequency onset f2 

and the respective occurrence times t1 and t2 are generated. 
The composition of these ensembles may be altered e.g. 
keeping f1 and f=f2-f1 instead of f1 and f2. The feature 
(hashes) extraction is done by applying this approach to 
both query and database samples. The query sample hashes 
are matched with hashes of each of the database samples. 
Instead of single domain dependency, the approach utilizes 
time-frequency analysis that entails robustness. The 
technique exploits the relative time difference between 
frequency onsets. The onset will remain nearly consistent 
for samples originating from the same naval vessel 
regardless of different time frames. It is due to this inherit 
property of the technique that it performs well even if the 
signal is masked with noise. The audio fingerprinting 
method effectively reduces the processing time by utilizing 
hashes rather than comparing each frequency onset. Further, 
depending upon signal strength, a match can be established 
even if a small number of hashes match since it is very rare 
to have same frequency onsets with same time difference 
co-incidently. Intuitively, comparing only frequency onsets 
without linked time details will lead to a large number of 
false positives. Flow diagram of a deterministic acoustic 
fingerprinting method is shown in Fig. 1. Below are some 
attributes that needs to be considered during the proposed 
approach.  

A. Sample Filteration 
The audio recording devices usually sample the SONAR 

hydrophone output at 44.1 kHz or similar. The recorded 
signal is passed through a digital low pass filter to remove  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
all frequency components above 5 kHz. We have used the 
low frequency components till 5 kHz as characteristic 
information of an ASNV. The database and query tracks are 
passed through this filter. The 5 kHz cut-off frequency has 
been selected since characteristic sources of an ASNV 
usually contain frequency components not exceeding 5 kHz. 
The characteristic sources are further explained in the next 
sub-section.  

B. Selection of Sampling Frequency 

During signal transformation (from time to frequency 
domain), the characteristic frequency components 
constituting an ASNV provide basis for selecting the 
sampling frequency. The sampling frequency is directly 
proportional to computational complexity and memory 
requirements. A sampling freqency that just retains the 
required frequency components is a decent option. The 
components of a typical ASNV [11] are listed below for 
readability flow: 

1) Propeller and propeller cavitation noise: The 
formation of air bubbles near the propeller give rise to 
Propeller Cavitation Noise (PCN). PCN characteristics 
depend upon propeller speed, type of propeller and depth of 
propeller. The propeller noise contributes to ASNV in terms 
of 0.1 to 1 Hz component. 

2) Machinery noise: The machinery noise is 
generated by vessel’s engines, diesel generators and 
hydraulic machinery etc. These frequency components 
usually range upto 4 to 5 kHz.   

3) Flow noise and activity noise: Flow noise is the 
noise caused by contact between vessel’s hull and the sea. 

Fig. 1. Flow diagram – implementation of LATIS algorithm. 
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Activity noise refers to specific activities onboard a vessel 
e.g. drilling and lifting etc. These noises vary from one 
vessel to another and also effected by the type of platform 
under query. For eg. some characteristic transient noises 
generated by a submarine includes torpedo tube opening, 
depth control operations and start/stop of machinery etc.  

C. Generation of Hashes – Database Tracks  

The spectrogram of each database track is generated. 
The spectrogram is a frequency domain representation 
using Short Time Fourier Transform (STFT) and displays 
the frequency onsets against time. A sampling frequency of  
11 kHz is used in STFT calculations to capture all the 
frequency components of ASNV ranging upto 5 kHz i.a.w. 
Nyquist Shannon sampling theorem [12], [13]. Two 
frequency onsets are joined together to form a hash. The 
hash configuration may be selected as one of the following:  

1) Hash configuration I: A hash may contain 
information of the first frequency component f1 and the time 
at which it occurs t1, the second frequency component f2 and 
the time difference t = t2-t1 where t2 is the time at which 
the frequency component f2 occurs. The total memory 
requirement depends upon the required sampling resolution. 
For eg. if 8 bits are used for each of f1, f2, t1 and t, then total 
of 32 bits space is required for a single hash. The details of 
t1 need to be ignored during comparison of hashes to make it 
time invariant. Later, from the hash comparison details, t1 
indicates at what instants of time the matching hashes exist 
in query and database samples. Hash configuration I is used 
in this paper. 

2) Hash configuration II: A hash may contain 
information of the first frequency component f1, the 
frequency difference between frequency f1 and f2 i.e.  

f=f2-f1 and the time difference t = t2-t1. Again, the total 
memory requirement depends upon the sampling resolution. 
For eg. if 8 bits are used for f1 and 6 bits for each of f and 

t, then 20 bits space is required for a single hash.  
Hash density is also defined during hash generation. 

Hash density is the number of hashes generated per unit 
time. Hashes are generated until the defined hash density is 
achieved. In order to realize desired hash density, a 
threshold criterion is required which defines which 
frequency onsets are selected first for hash generation. The 
threshold criterion selects the frequency onsets with largest 
amplitude. Once the desired hash density (e.g. 10 
hashes/second) is acquired then the remaining frequency 
onsets are ignored.   

Matching performance is directly proportional to hash 
density. Increasing the hash density increases the accuracy 
of matching but at the same time, it increases the 
computational complexity and memory requirement. By 
analyzing the algorithm performance with the same dataset 
and different hash densities, an optimal value can be 
identified.   

The training and test samples of submarines have been 
acquired from resources provided by San Francisco 
National Park Association [14]. It is important to 
understand the nature of dataset used. ASNVs do not 
require to be lengthy samples. A 5 to 20 seconds long 
sample usually contains all the characteristic information of 
the platform. The other useful frequencies are those 
generated by the ship’s propellers and machinery.   

The above mentioned technique provides robustness 
against noise. However, the query sample may suffer 
distortion in terms of time skew or time scaling. Such 
distortion is caused by analog to digital conversion. This 
problem needs to be addressed by analyzing the training 
samples and figuring out percentage of tolerance allowed 
for the hash parameters. A tolerance of 1% change in the 
hash parameters is incorporated in this paper.   

The algorithm implementation starts with initializing a 
Database Hash Table (DHT). Using Hash configuration I 
(32 bits per hash), allowing a space for 0.5 Million hashes 
per track, 500 tracks require a storage space of 954MB. The 
system capacity can be increased simply by creating a larger 
DHT requiring more space. The sampled data alongwith 
sampling rate of each track is acquired using 'audioread’ 
function of MATLAB. The function accepts audio files in 
all popular formats i.e. wav, flac, mp3, MPEG-4 and OGG. 
However, MATLAB version 2005a and older versions do 
not have ‘audioread’ function. The alternate method is to 
use ‘waveread’ function and convert the track into PCM 
.wav format by using software like EZ CD audio converter 
etc. The tracks are filtered to retain components of 5 kHz 
and below by using a Hamming window based digital low 
pass filter employing the ‘filter’ function. Each track is 
resampled at 11 kHz using the ‘resample’ function. The 
spectrogram of each track is generated using the ‘specgram’ 
function. The log magnitude values of the peaks are 
extracted to acquire hash details until a hash density of 10 
hashes/second i.a.w the threshold criterion. The hash details 
thus obtained are stored in the DHT already initialized. 
Track ID information is stored in an array to keep reference 
of the source of hashes in the DHT. During hash 
comparison, the column vector in DHT containing the 
occurrence time t1 of the first frequency component f1 is 
ignored to make the comparison time invariant and resistant 
to time skew. The track ID of the database track having 
maximum hashes in common with the query track indicates 
the match result. 

3) Recording of a query sample: Upon acquiring a valid 
ASNV, a sample of it is recorded and saved.  

4) Conversion of query sample into hashes: The query 
sample is converted into hashes in a similar manner as done 
for the database tracks. Resultantly, a set of hashes for the 
query sample is obtained. 
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5) Classification: The query sample hashes are 
compared with the DHT containing information on hashes 
of all the database tracks. How many hash matches are 
sufficient to declare a match safely? This number varies and 
depends upon iterative results obtained using training 
samples. In this paper, it has been found that 5 matches are 
sufficient to declare a match.  

6) Display of Results: Match results are displayed in 
tabular as well as graphical form. The tabular results 
provide the percentage match. The percentage match does 
not provide the true match result since the algorithm 
declares a 100% match if more than 5 hashes match. It is 
due to the reason that the tabular output is intended to 
provide insight that facilitates the operator to make a 
decision. The graphical display shows the detailed picture 
since it plots and overlays the matched hashes of the query 
and database samples. 

III. PERFORMANCE EVALUATION 

A. Realization of LATIS 

MATLAB® release R2016a on an average PC (6th 
generation Intel Core i5 processor @2.3 GHz, 8GB of 
DDR3 memory @1600 MHz,  Windows 10 Home edition) 
has been used to implement the proposed LATIS approach. 
Screen shot of the system display after loading 11 in number 
database tracks is shown in Fig. 2. Screenshot of a tabular 
outcome is shown in Fig. 3, whereas graphical results are 
shown in Figs. 5 and 6. The query sample and the matching 
database sample are shown in each figure, highligting the 
common hashes.  

B. Testing Environment 
The ideal testing environment for the LATIS model is 

onboard a ship having a SONAR providing Hydrophone 
Effect (HE) output to LATIS with a dedicated LATIS 
operator working in co-ordination with the SONAR 
operator. In order to undertake offshore testing, another 
audio signal generating source (i.e. another PC) is used to 
simulate SONAR output for testing.  

C. Training and Test Examples 
To test the system, real acoustic signatures of some 

United States Navy submarines have been used. The 
acoustic signatures have been acquired from resources 
provided by San Francisco National Park Association [14]. 
The dataset provides signature of a submarine in varying 
conditions i.e. at different range, speed and combined with 
different noises. 

For each of the vessels, two samples have been acquired 
recorded under different conditions of noise, depth and of 
varying sample lengths. Both samples originate from the 
same vessel. The first sample is added to the system 
database as the training sample. Conversion of the sample  

 
 

 
 

into hashes stored in the DHT provides necessary training to 
the system to recognize the source from another sample 
recorded under different conditions but originating from the 
same source. The second sample of the same vessel is used 
for testing. The test sample is used as a query sample to let 
the system find out the correct reference database sample 
that originates from the same source.  Ninety-five such 
training and test samples of USN submarines have been 
acquired to verify system performance in terms of true 
positives (TP) and false negatives (FN). Conversely, an 
additional 95 in number test samples have been acquired 
which do not have reference database samples, to test 
system performance in terms of true negatives (TN) and 
false positives (FP). The samples are given arbitrary names 
as mentioned in Figs 2, 3, 5 and 6.  

Before the testing, system must complete its training 
phase by populating DHT with hashes belonging to all the 
database tracks. System populates DHT @ 1250  
hashes/ second. Eleven in number database samples 
comprising 120 seconds of audio, are converted into hashes 
in one second with a target hash density set to 10  
hashes/ second.  

D. Test Results 
The LATIS system testing shows encouraging results. In 

94 out of 95 tests, the system matched the noisy query 
sample with correct database sample even if query sample's 
length was one tenth of the database sample. Few matching 
patterns are shown in Figs. 5 and 6. The figures show that 
the algorithm is able to extract most of the characteristic 
hashes under conditions of time skew and noise, thus 
enabling correct detection and suppressing false rejection. 

Fig. 3. Tabular display of classification result. 

Fig. 2. System display after loading database tracks. 
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Chance matches are discouraged by the system due 
significantly low probability of having identical hash for 
two samples originating from different sources. While 
querying 95 samples having no reference in database, the 
system correctly rejected 85 out of 95 samples. The 10 in 
number false positives encountered have been further 
analyzed. It was found that 10 query samples although did 
not match the correct vessel, however, they matched to same 
class of submarines. So, even this information gained 
through false positives is not completely undesirable, since 
it provides closest match. Each comparison reveals that even 
with small length samples averaging about 8 seconds, atleast 
10-15 hashes have been found common in the query and 
reference database sample. Thus, the system is able to 
perform correctly even with further shorter length samples 
since 5 hashes are sufficient to declare a match safely. The 
classification performance of LATIS is shown in terms of 
confusion matrix and Receiver Operating Characteristic 
(ROC) curve in Table I and Fig. 4 respectively. ROC curve 
revealed an Area Under the Curve (AUC) value of 0.9776 
square units. 

The existing state of the art technique for detection and 
classification of ASNVs is DEMON (Detection Envelope 
Modulation On Noise) [15] and LOFAR (Low Frequency 
Analysis and Recording) [16] respectively. DEMON 
involves narrow band analysis to find frequency 
components in the range of 0 to 50 Hz created by propeller 
cavitation noise. This in turn provides propeller 
characteristics including number of shafts, shaft rotation 
speed and propeller blade rate. LOFAR involves broadband 
analysis to extract frequency components contributed by 
ship’s machinery noise. The authors at [17] employ the 
techniques after pre-processing the samples acquired 
through a passive SONAR installed on a Brazilian navy 
submarine. The pre-processing mainly involves Independent 
Component Analysis [ICA] [18] to remove signal 
interference. The reported classification performance is 88% 
on mixed signals (containing interference) pre-processed 
with ICA. Employment of LOFAR for target classification 
in [17] is inherently prune to errors. It is because varying 
noise in different environmental conditions may completely 
mask few of the characteristic frequency components, 
leading to false matching results. Whereas, LATIS by 
increasing the hash density is capable of extracting 
characteristic frequency components even mapped with 
noise. Moreover, LOFAR relies only on the frequency 
spectrum details to generate feature vectors and cannot 
distinguish between ASNVs containing same frequency 
components but occurring in different order. Whereas, 
LATIS employs a joint time – frequency technique which 
accurately distinguishes between ASNVs having same 
frequency components but occurring in different orders. 
Resultantly, LATIS offers a considerably better 
classification performance of 94% as compared to [17]. The 
dataset utilized by [17] is not available publicly for 

TABLE I. CONFUSION MATRIX OF LATIS 

Total population = 190 Predicted YES Predicted NO
Actual YES=95 TP=94 FN=01
Actual NO=95 FP=10 TN=85

 

 
 
 
performance evaluation of LATIS. Resultantly, LATIS has 
been evaluated on a comparable dataset retrieved from 
resources provided by [14]. 
 

IV. CONCLUSION 
A landmark based audio fingerprinting algorithm has 

been proposed to acquire promising results on acoustic 
signatures of naval vessels. A classification performance of 
94% is achieved by employing a joint time-frequency based 

 

 
(a) 

 

(b) 
 
 

Fig. 5. LATIS matching performance (a) Hashes of query audio 1 (b) 
Matching query hashes with SM Bluegill 1 (complete length of database 
sample shown). 

Fig. 4. Receiver operating characteristic curve of LATIS. 
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technique. Same has provided a baseline for development of 
such models for acoustic signals. The proposed approach is 
considered valuable in under water detection systems. 
Moreover, the proposed approach may find utility in 
classification of other underwater acoustic sources like 
marine life etc. 
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