
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

an
ua

ry
 2

02
3 
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Degond P, Manhart A, Merino-
Aceituno S, Peurichard D, Sala L. 2022 How

environment affects active particle swarms:

a case study. R. Soc. Open Sci. 9: 220791.
https://doi.org/10.1098/rsos.220791
Received: 14 June 2022

Accepted: 11 November 2022
Subject Category:
Mathematics

Subject Areas:
applied mathematics/mathematical physics/

mathematical modelling

Keywords:
self-propelled particles, collective dynamics,

agent-based models, partial differential

equations, multiscale modelling
Author for correspondence:
Sara Merino-Aceituno

e-mail: sara.merino@univie.ac.at
© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6323678.
How environment affects
active particle swarms:
a case study
Pierre Degond1, Angelika Manhart2, Sara Merino-

Aceituno3, Diane Peurichard4 and Lorenzo Sala5

1Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS,
Toulouse Cedex 9 31062, France
2Mathematics Department, University College London, 25 Gordon Street, London, UK
3Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090,
Austria
4Inria, Laboratoire Jacques-Louis Lions, Sorbonne Université, CNRS, Université de Paris, 4,
Place Jussieu, Paris Cedex 05 75252, France
5INRIA Saclay Ile-de-France, 1 rue Honoré d’Estienne d’Orves, Palaiseau 91120, France

PD, 0000-0002-4886-6968; DP, 0000-0002-0807-2266;
LS, 0000-0002-8878-0616

We investigate the collective motion of self-propelled agents
in an environment filled with obstacles that are tethered to
fixed positions via springs. The active particles are able to
modify the environment by moving the obstacles through
repulsion forces. This creates feedback interactions between
the particles and the obstacles from which a breadth of
patterns emerges (trails, band, clusters, honey-comb
structures, etc.). We will focus on a discrete model first
introduced in Aceves-Sanchez P et al. (2020, Bull. Math. Biol.
82, 125 (doi:10.1007/s11538-020-00805-z)), and derived into a
continuum PDE model. As a first major novelty, we perform
an in-depth investigation of pattern formation of the discrete
and continuum models in two dimensions: we provide
phase-diagrams and determine the key mechanisms for
bifurcations to happen using linear stability analysis. As a
result, we discover that the agent-agent repulsion, the agent-
obstacle repulsion and the obstacle’s spring stiffness are the
key forces in the appearance of patterns, while alignment
forces between the particles play a secondary role. The
second major novelty lies in the development of an
innovative methodology to compare discrete and continuum
models that we apply here to perform an in-depth analysis of
the agreement between the discrete and continuum models.
1. Introduction
Understanding how patterns in collective motion arise from local
interactions between individuals is an exciting and challenging
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Figure 1. Overview of the paper. It includes a summary of the scales, the models and the objects considered in this paper and
introduced in [22] (first three grey lines). The blue boxes indicate the derivation of the different models and derivation assumptions.
The main contributions in the paper appear in the last row corresponding to ‘patterns’ (at the discrete and continuum level and their
correspondence) and the linear stability analysis (bottom right yellow box).
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endeavour that has drawn the attention of the scientific community [1–8]. In many scenarios, the
environment plays a key role in the emergence of collective motion and of the resulting patterns
[9–14]. Examples are evacuation dynamics in the presence of obstacles [6,15,16], sperm dynamics in
the seminal fluid [14,17], swirl of fish under the presence of predators [18], cells moving in a space
filled with fibres [11] or over a substrate [7], etc.

In particular, we are interested in feedback interactions between self-propelled agents and their
environment that they are able to modify. This happens, for example, (i) in the formation of paths in
grass-land by active walkers [19,20], (ii) in the modification of the extracellular matrix (fibres) by
migratory cells [21] or (iii) in ant trail formation due to ant pheromone deposition [4]. In this paper,
we will focus on the model introduced in [22] where collective motion happens in an environment
filled with movable obstacles that are tethered to a fixed point via a spring. The authors in [22]
showed that a variety of patterns are generated due to the feedback interactions between the obstacles
and the self-propelled agents. Indeed, the capacity of the agents to modify their environment (i.e. to
modify the position of the obstacles) is key for patterns to form.

Figure 1 offers an overview of the ideas and messages of this paper. We will consider mostly two
scales (marked in yellow). The reason for this is that understanding the emergent properties of
collective dynamics requires us to establish a link between the agent’s interactions and the continuum
dynamics that emerges at scales much larger than the size of the individual agents. As a consequence,
it is natural to consider two different scales to investigate collective motion: a microscopic scale where
the discrete dynamics of the agents can be described, and a macroscopic scale where the average/
continuum behaviour of the large ensemble can be observed.

From a modelling perspective, it is natural to consider the microscopic scale, where individual-based
models can describe individual-agent behaviour and their interactions. In the left column of figure 1, we
present key features of the individual-based model introduced in [22]. The model assumes that agents
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move trying to avoid obstacles via a repulsion force. Agents interact with each other following Vicsek-
type dynamics [23–26], i.e. they move at a constant speed trying to align their orientation of motion
with one of their neighbours, up to some noise, while repelling each other at short distances. The
discrete system gives the time-evolution of the position of the obstacles ðXiÞi¼1,...,N tethered at fixed
anchor points ðYiÞi¼1,...,N via a spring and the position and orientation of the self-propelled agents
ðZk, akÞk¼1,...,M, where Xi, Yi, Zk [ R2 and αk is a unit vector (see equation (2.1) for a full mathematical
description of the system and figure 1 for a list of the most relevant parameters). We will explore the
variety of patterns that arise depending on the values of the model parameters.

However, the simulation of the discrete model becomes quickly computationally challenging for
systems composed of millions of individuals. Therefore, for large-particle systems, continuum models
are to be preferred since they provide information on the average behaviour and are computationally
less costly (right column of figure 1). Moreover, continuum models are the appropriate framework for
studying large-scale patterns and carrying out mathematical analyses like linear stability analysis. The
drawback is that, from a modelling perspective, they are harder to justify than individual based
models. For this reason, one would like to derive the continuum dynamics from the discrete ones: this
derivation validates the continuum models and provides understanding on the emergence of large-
scale patterns. At the same time, during this derivation process, due to averaging and asymptotic
analysis, some information on the discrete system can be lost.

This rigorous derivation is precisely one of the purposes of kinetic theory. The kinetic theory has been
successfully applied to the study of models like the Vicsek model [23–26] and the Cucker–Smale model
[27–29]. Tools from kinetic theory were applied in [22] to the discrete model described above, see second
and third rows in figure 1.

First, the authors derive the mean-field limit equation (large-particle limit N, M→∞ for both agents
and obstacles). This equation corresponds to a Kolmogorov–Fokker–Plank equation for the time-
evolution of the distribution of the agents g = g(z, α, t) at position z [ R2 and orientation α; and the
time-evolution of the distribution of the obstacles f = f (x, y, t) at position x [ R2 with anchor point at
y [ R2.

Then, from the kinetic equations for these distributions, the authors in [22] obtained continuum
equations for the system under some asymptotic assumptions on the parameters (right blue boxes in
figure 1). In particular, a high stiffness of the obstacle springs, strong local agent-agent repulsion and
fast agent alignment is assumed. In this regime, it was shown in [22] that the obstacle density ρf = ρf(x,
t) becomes a non-local function of the agent density ρg = ρg(x, t) and that the continuum model
consists of a system of two nonlinear non-local equations for ρg and the local mean orientation of the
agents V ¼ Vðx, tÞ, see equations (2.6).

The main objective of this article is to investigate the influence of the tethered obstacles in pattern
formation using the discrete and continuum models first introduced in [22]. The main contributions of
this paper are listed below:

— we focus our study primarily on the continuum equations (which were analysed only in dimension
one in [22]). Here, we introduce two-dimensional simulations of the continuum equations and an
extensive phase diagram (§3.2) that shows the appearance of patterns depending on the value of
the parameters (green box in figure 1). We carry out a linear stability analysis in two dimensions
around uniform states and validate this analysis by comparing its predictions with the numerical
simulations of the discrete and continuum models (right yellow box in figure 1);

— we document in which parameter regime the continuum equations capture the discrete patterns
(bottom grey box in figure 1). To this end, we propose a method to compare discrete and
continuum simulations. This novel method provides an indicator of the distance between different
patterns;

— lastly, we also expand and greatly systematize the parameter exploration of the discrete model
supported by a phase diagram. As a consequence, we detect two new patterns with respect to
[22]: honeycombs structures and pinned agents states (left green box in figure 1).

1.1. Organization of the paper
The paper is organized as follows: we first describe the models (discrete and continuum), including the
derivation assumptions of the continuum model. Then we simulate both systems to construct two
corresponding phase diagrams based on different values of the parameters. Next, to better understand
pattern formation as a function of the model parameters, we perform a linear stability analysis of the
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continuum equations around uniform states and identify bifurcation parameters controlling the
formation of patterns. Finally, an innovative method is proposed to compare discrete and continuum
simulations, which is used to determine in which parameter regime the continuum equations are
in good accordance with the discrete dynamics. We conclude the paper with a discussion of the
main results.
publishing.org/journal/rsos
R.Soc.Open

Sci.9:220791
2. Modelling
2.1. Discrete dynamics
We consider as a starting point the model introduced in [22] for self-propelled particles undergoing
collective motion in an environment filled with obstacles. Obstacles are tethered to a given fixed
anchor point through a Hookean spring. They are characterized by their positions XiðtÞ [ R2 over
time t≥ 0 and their anchor points Yi [ R2 for i = 1, 2,…, N, where N is the total number of obstacles.
The self-propelled particles are characterized by their positions ZkðtÞ [ R2 and orientations akðtÞ [ S1

(unit circle) at time t≥ 0, k = 1, 2,…, M, where M is the total number of agents. We assume that
obstacles and agents interact through a given potential, as explained next.

The evolution for the obstacles ðXiðtÞ, YiÞi¼1,...,N and the agents ðZkðtÞ, akðtÞÞk¼1,...,M over time is given
by the following coupled system of stochastic differential equations:

dXi ¼ � k

h
ðXi � YiÞdt� 1

h

1
M

XM
k¼1

rf(Xi � Zk) dtþ
ffiffiffiffiffiffiffi
2do

p
dBi

t, ð2:1aÞ

dZk ¼ u0ak dt� 1
z

1
N

XN
i¼1

rf(Zk � Xi) dt� 1
z

1
M

XM
l=k

rc(Zk � Zl) dt ð2:1bÞ

and dak ¼ Pa?
k
� n�ak dtþ

ffiffiffiffiffiffiffi
2ds

p
d~B

k
t

h i
, ð2:1cÞ

where the mean direction �ak is defined via the mean flux Jk as follows:

�ak ¼ Jk
jJkj , where Jk ¼

XM
j¼1jZk�Zjj�rA

aj: ð2:2Þ

Equation (2.1a) gives the time-evolution for the obstacles’ positions Xi. The first term on the right-hand
side corresponds to the force generated by the Hookean spring anchored at position Yi with stiffness
constant κ > 0. The tether positions Yi are given and do not change over time. The terms Bi,
i ¼ 1, . . . , N are independent Brownian motions that introduce noise in the dynamics with intensity
d0 > 0. This term accounts for fluctuations in the dynamics. Finally, the second term on the right-hand
side of equation (2.1a) is precisely the interaction force that couples the dynamics of the self-propelled
agents with those of the obstacles. We assume that ϕ is an even and non-negative interaction
potential. Typically, we will assume ϕ to be a repulsive potential to model volume exclusion between
obstacles and self-propelled particles.

Now, equation (2.1b) gives the time-evolution for the position of the self-propelled agents Zk. The first
term on the right-hand side of (2.1b) expresses that agent k moves in the orientation αk at a fixed speed
u0 > 0. The second term is the force due to the interaction potential coupling the self-propelled agents and
the obstacles, as we have seen before. Finally, the last term is a repulsive force between agents given by a
potential ψ which is assumed to be non-negative and even. This force is added to the model to prevent
agents clustering at a single point in space and represents volume exclusion interactions between the
agents [5].

The last equation (2.1c) gives the time-evolution for the orientation of the agents and corresponds to
the terms appearing in the Vicsek model [30], which is a widely used model in collective motion. The
right-hand side of equation (2.1c) is the sum of two competing forces: a force that tries to align the
orientation of the self-propelled agents with the mean orientation of their neighbours and a noise
term that opposes this alignment. The noise is given by ð~BkÞk¼1,...,M which are M independent
Brownian motions (also assumed to be independent from Bi, i ¼ 1, . . . , N) and the intensity of this
noise is given by the parameter ds > 0. The operator Pa?

k
represents the orthonormal projection onto a?

k
(where a?

k is a vector orthogonal to αk) and the symbol ‘°’ indicates that the stochastic differential
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equation has to be understood in the Stratonovich sense [31]. In particular, the projection ensures that, for
all times where the dynamics are defined, αk(t) remains on the sphere, i.e. |αk| = 1. The alignment force is
given by Pa?

k
n�ak where ν > 0 is a positive constant and �ak is the average orientation of the neighbouring

agents that are at distance rA > 0 from agent k, as computed in equation (2.2). Indeed, this term
corresponds to an alignment force since it can be rewritten as

Pa?
k
n�ak ¼ nrak ðak � �akÞ,

where rak denotes the gradient on the sphere. Therefore, this term is a gradient flow that relaxes αk
towards the average orientation �ak at speed ν > 0.

Finally, note that the discrete model (2.1) consists of first-order equations: the model can be derived
from second-order equations in the overdamped (or inertialess) regime. This is the reason why the
parameters η > 0 and ζ > 0 appear in the system: η corresponds to the obstacle friction and ζ to the
agent friction. In an inertialess regime first-order equations give a good approximation of the
dynamics and this regime appears in many biological applications, in particular involving micro-
agents (like sperm cells) in highly viscous environments.

As we will see in later sections, the feedback interactions between agents and between agents and
obstacles give rise to a variety of patterns depending on the value of the parameters.

2.2. Continuum dynamics
When the number of agents and obstacles becomes large, it is useful to derive equations that determine
the average behaviour of the discrete system (2.1). These ‘averaged’ equations correspond to continuum
equations, which were derived in [22] for the discrete system (2.1). In this section, we summarize the
results from this reference.

2.2.1. Main assumptions of the derivation

The derivation of the continuum equations in [22] is done under the following set of assumptions:
(a) Large-particle system assumption. The number of obstacles and agents are assumed to tend to

infinity, i.e. N→∞, M→∞.
Under this assumption, the authors derived formally equations for the evolution of obstacles and

agent density (kinetic equations). Then, some of the parameters of the kinetic equation are scaled by a
small factor 1 � 1, and the continuum equations are obtained in the limit 1 ! 0. We explain next the
scaling assumptions considered.

(b) Scaling assumptions on the parameters. Three types of scaling assumptions are made

(i) the radius of alignment of the agents is supposed to be small and scaled as rA ¼ Oð ffiffiffi
1

p Þ;
(ii) the agent-agent repulsion distance is supposed to be small and scales as rR ¼ Oð1Þ, but it is

ensured that the potential stays of order 1 by settingð
cðxÞdx ¼ m , 1; ð2:3Þ

(iii) the agents alignment rate ν and orientational noise intensity ds in (2.1c) are supposed to be very
large and scale as: ds, n ¼ Oð1=1Þwith ds=n ¼ Oð1Þ: this corresponds to fast agent-agent alignment
and diffusion [30].

(c) Uniform anchor density and stiff regime assumptions. It is assumed that the anchor density for the
obstacles is constant (uniformly distributed) and that the obstacles’ springs are very stiff (the parameter κ
is very large). To this end, we consider the ratio

g ¼ h

k
� 1 ð2:4Þ

to be small. We suppose also a low obstacle noise regime by considering the smallness of

d ¼ dog � 1: ð2:5Þ

The set of assumptions (a) is sufficient to derive continuum equations. The large-particle-limit or
mean-field limit gives rise to kinetic equations for the obstacle density f = f (t, x, y) and the agent
density g = g(t, z, α). The set of assumptions (b) and (c) are sufficient to obtain closed equations for
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the obstacle density ρf = ρf(t, x), the agent density ρg = ρg(x, t) and the mean-agent orientation V ¼ Vðx, tÞ.
In particular, the scaling assumptions rA ¼ Oð ffiffiffi

1
p Þ and rR ¼ Oð1Þ imply that alignment and agent-agent

repulsion forces become localized in space as 1 ! 0. The set of assumptions (c) is used to Taylor expand
the function f with respect to γ and δ.

In summary, the continuum equations approximate a system with a very large number of agents and
obstacles in the regime where the parameters of the system reach a given range of values, as described
above, i.e. in the regime 1 ! 0 (by an asymptotic analysis) and γ≈ 0, δ≈ 0 (by a Taylor expansion
approximation). These approximations will be taken into account when comparing discrete and
continuum simulations, since they determine the range of validity of the continuum dynamics.
/journal/rsos
R.Soc.Open

Sci.9:220791
2.2.2. The continuum model

The authors in [22] obtain the following equations for the dynamics of the density of agents rgðx, tÞ [ R

and their mean orientation Vðx, tÞ [ S1 at a point x [ R2 at time t≥ 0

@trg þr � (Urg) ¼ 0
and rg@tVþ rg(V � r)Vþ d3PV?rrg ¼ gsPV?DðrgVÞ,

�
ð2:6Þ

where

U ¼ d1V� 1
z
r�rf �

m

z
rrg

and

V ¼ d2V� 1
z
r�rf �

m

z
rrg,

where ρf(x, t) is the obstacle density given by

rf

rA
¼ 1þ 1

k
D�rg þ

1
k2

N ð�rgÞ �
h

k2
@tD�rg þO h

k

� �3� �
, N ð�rgÞ : ¼ detHð�rgÞ, ð2:7Þ

where ρA is the distribution of the anchor points in space (assumed to be constant and here taken to be
equal to 1 in the simulations and computations); H denotes the Hessian, ‘det’ denotes the determinant,
and we have defined

�r : ¼ r�f, ð2:8Þ

the convolution between ρ and ϕ, where ϕ is the repulsion kernel between agents and obstacles, equation
(3.1). In the numerical simulations, we will drop the higher order terms in η/κ for ρf. The model
parameters are the friction constants ζ, η, the obstacle-spring constant κ and the agent-agent repulsion
intensity μ given by equation (2.3).

The friction coefficient γs reads

gs ¼
r2A
8

ds
n
þ c2

� �
: ð2:9Þ

The constants d1, d2 and d3 are defined by

di ¼ u0ci, ð2:10Þ

where u0 is the agent speed, and c1, c2 and c3 are explicit constants that depend only on the fraction ds/ν

c1 ¼
ð2p
0

cos umðuÞdu, ð2:11aÞ

c2 ¼
Ð p
0 sin2 u cos umðuÞhðuÞduÐ p

0 sin2 umðuÞhðuÞdu ð2:11bÞ

and c3 ¼ ds
n
, ð2:11cÞ
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where

mðuÞ ¼ 1
Z
exp

n

ds
cos u

� �
and Z : ¼

ð2p
0

exp
n cos u
ds

� �
du,

and where the function h does not have a explicit form but it is the solution to a differential equation.
Specifically, h(θ) = g(θ)/sin (θ) where g is the unique solution (for the exact functional space in which
this unique solution is defined, the reader is referred to [5, Lemma 2.3])

n

ds
sin u

dg
du

þ d2g
du2

¼ sin u:

For an explanation on the meaning of these equations, the reader is referred to [22]. We just point out
here that the system (2.6) for ðrg, VgÞ corresponds to the so-called self-organized hydrodynamics with
repulsion (SOHR) [5] in the case where rx�rf ¼ 0 (i.e. when there is no influence from the obstacles).
The SOHR is the continuum version of the Vicsek model with agent-agent repulsion [5].

Remark 2.1 (Approximation for ρf and blow-up). The density ρf may take negative values: in that
case the continuum simulations will be stopped. Note also that solutions may ‘blow-up’ in the sense
that particle densities may concentrate at points in space. This happens essentially when the dynamics
leads to very concentrated particle clusters, leading to a highly negative Laplacian that decreases
drastically the local value of the obstacle density given by equation (2.7). We stress the fact that this is
not due to the choice of the numerical parameters but it is intrinsically contained in the macroscopic
dynamics. Indeed, nothing prevents the macroscopic model from generating very concentrated
solutions. We will show the solutions of the macroscopic model before blow up for the sake of
illustration and show that we still observe a very good correspondence with the microscopic dynamics
even in these extreme regimes.
3. Patterns: phase diagrams
3.1. Discrete dynamics

3.1.1. Simulation setup

We here show some simulations of the discrete model (2.1) to give an overview of the different types of
patterns that emerge depending on the values of the parameters. Simulations are performed with N =
M = 3000 agents and obstacles initially distributed uniformly in the periodic domain U = [0, 1] × [0, 1].
We also suppose that anchor points Yk for the obstacles are uniformly distributed in U, and fix the
initial agent direction to π/4.

We consider the following expressions for the agent-agent and agent-obstacle repulsion potentials:

cðxÞ ¼ 6m
pr2R

1� jxj
rR

� �2

þ
and fðxÞ ¼ 3Cf

2pt
1� jxj

t

� �2

þ
, ð3:1Þ

where

x2þ ¼ x if x2 [ Rþ,
0 if x , 0:

�
Therefore, both potentials are compactly supported and act in a radius rR > 0 for agent-agent repulsion
and a radius τ > 0 for agent-obstacle repulsion. Note that the constants have been chosen such that

m ¼
ð
cðxÞdx and Cf ¼

ð
jrfjðxÞdx:

We fix a set of parameters as described in table 1, and focus our study on the interplay between three
parameters: the obstacle spring stiffness κ, the agent friction ζ and the agent-agent repulsion intensity μ.

3.1.2. Phase diagram

Figure 2 shows the output of the simulations at time t = 10: at this time agents and obstacles patterns
seem to have reached a steady state. In this figure, agents’ positions and their orientations are



Table 1. Parameters used for the discrete simulations of figure 2. The various values considered for μ, ζ, κ are specified in the
caption of figure 2.

parameters value description

N 3000 number of obstacles

M 3000 number of agents

u0 1 agent speed

rR 0.075 agent-agent repulsion distance

rA 0.1 agent-agent alignment distance

ν 2 agent-agent alignment intensity

τ 0.15 agent-obstacle repulsion distance

Cf 5 agent-obstacle repulsion intensity

ds 0.02 noise in the agents’ orientation

η 1 obstacle friction

d0 0 obstacle positional noise

μ various agent-agent repulsion intensity

ζ various friction constant of the agents

κ various spring constant coefficient
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represented by black arrows and obstacles’ positions with blue dots. The output of the simulations is
grouped into three panels: panel (a) corresponds to weak obstacle spring stiffness κ = 10, and panels
(b,c) correspond to mild κ = 100 and strong κ = 1000 obstacle spring stiffness, respectively. Inside each
panel, we arrange the simulations in a table: right-to-left columns correspond to increasing values of
the agent-agent repulsion force μ, bottom-to-top rows correspond to increasing values of the friction
coefficient ζ. Note that the value for the agent-agent repulsion force μ is not taken the same in all
panels. Indeed, the values for μ selected are the ones that make different patterns appear in the
simulations. We will justify further the particular choice of the parameters after the linear stability
analysis of the continuum equations. Note that the values for ζ are also different in (c). We refer the
reader to the caption of figure 2 for the exact choices for the parameter values of μ and ζ. Finally, we
point out that the figures marked with a red cross are the ones for which the videos can be found in
the electronic supplementary material, appendix A for more details.

From figure 2, we observe that a rich variety of agents’ patterns emerges when varying the spring
stiffness κ, the intensity of the agent-agent repulsion μ, and the friction coefficient ζ.

We classify these patterns into four main types and we outline the parameter regions corresponding
to each with frames of different colours in figure 2:

— trails of agents (framed in red): agents organize into trails inside the obstacle pool. This behaviour is
mainly observed for weak and mild obstacle spring stiffness (κ = 10 (a) and κ = 100 (b) of figure 2,
respectively);

— honeycomb organization of the agents (framed in orange): for small obstacle spring stiffness κ = 10
(figure 2a) and mild agent-agent repulsion μ > 0.1 (middle columns), we observe that the agents
organize into fixed honeycomb structures, framing the obstacles which concentrate into aggregates
of different sizes and shapes (not necessarily round). We point out that this pattern was not
detected in the previous publication [22];

— travelling bands of agents (framed in yellow): only observed for large values of the obstacle spring
stiffness κ = 103 and large agent friction with the environment ζ = 5, here the agents organize into
bands perpendicular to their direction of motion. The width of the bands increases with the agent-
agent repulsion intensity μ (from left to right plots of the first row of panel (c)); and

— clusters of agents (framed in green): agents organize into clusters more or less round depending on
the regime of parameters. Cluster formation appears in all regimes of obstacle spring stiffness κ = 10,
102, 103 (all three panels), and the size of the clusters changes depending on the obstacle spring
stiffness κ and on the agent-agent repulsion intensity μ but seems independent of the agent
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(c) strong obstacle spring stiffness
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Figure 2. Simulations of the discrete model for the parameters indicated in table 1. Agents are represented as black arrows giving
their direction of motion, obstacles are represented as blue circles. (a) For weak obstacle stiffness κ = 10, (b) for mild obstacle
stiffness κ = 100 and (c) for large obstacle stiffness κ = 1000. In each panel, the vertical axis represents different values of
the friction coefficient ζ ( from bottom to top: ζ = 0.2, 0.5, 1, 2 for (a,b) and ζ = 0.2, 1, 2, 5 for (c)); and the horizontal axis
represents different values of the agent-agent repulsion μ: (a) μ∈ {0.002, 0.02, 0.05, 0.1, 0.4, 0.6}, (b) μ∈ {0.0002, 0.002,
0.005, 0.01, 0.04, 0.06} and (c): μ∈ {2 × 10−5, 2 × 10−4, 6 × 10−4, 2 × 10−3, 4 × 10−3, 6 × 10−3}.
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friction ζ. Particularly, we observe that the cluster sizes increase with μ, until a point is reached in
which μ is so large that agent-agent repulsion counteracts all the other aggregation forces (right
columns of figure 2). Moreover, the parameter μ acts as a phase transition parameter between
different types of patterns. During the transition from clustered to near-homogeneous agent
distributions with increasing repulsion intensity μ, we observe a passage to other pattern types
such as trails (for weak κ = 10 or mild κ = 100 obstacle stiffness), or honeycomb organizations (for
weak obstacle stiffness). Finally, we note that for large obstacle spring stiffness κ and small agent
friction ζ (bottom row of panel (c), simulations marked with a green star) we observe the
formation of ’pinned’ clusters where the agents are grouped into very small clusters that do not
move (see electronic supplementary material, appendix A for access to the videos)

Each of these agent patterns is surrounded by obstacles that are kept at a given distance from the
agents. This distance depends on the stiffness of the obstacles’ springs κ and the agent-agent
repulsion intensity μ. On the one hand, if obstacles are loose enough (i.e. κ is small), the repulsion
force between the agents and the obstacles may be large enough to keep them both at
approximately the obstacle-agent repulsion distance τ (defined in the potential ϕ, equation (3.1)). On
the other hand, agent-agent repulsion opposes this effect, by giving the agent population force to go
against the pressure exerted by the obstacle pool. We indeed observe that increasing the agent-agent
repulsion force μ (left-to-right columns of figure 2) decreases the typical distance between the agent
structures and the obstacles.

Remark 3.1. It is noteworthy that the agent-based model features stochastic terms through the noise
in position and orientation, as well as in the choice of the initial condition. Note that we set the noise in
position to d0 = 0 in all our simulations, but the noise in orientation is fundamental since the macroscopic
model is obtained in the limit of large noise (and large alignment rate, see the scaling assumptions in
§2.2.1). As previously shown on the Vicseck model, the noise has a structural role in the formation of
patterns, as it enables disorder to be controlled. In [32], for instance, the authors study the phase
transitions for kinetic models describing self-propelled particles interacting through alignment, and
highlight how the transitions between isotropic and non-isotropic equilibria are controlled by the
competition between alignment and noise. They show in particular that the ratio between alignment
and noise entirely determines the phase transition features (number and nature of equilibria, stability,
convergence rate and hysteresis), therefore documenting exhaustively the role of noise in these types
of systems.
3.2. Continuum dynamics
In this section, we show numerical simulations of the continuum equations (2.6) using the numerical
scheme detailed in electronic supplementary material, appendix C.
3.2.1. Simulation setup

We perform simulations of the continuum model on the periodic domain U = [0, 1] × [0, 1] discretized
with space step Δx≈ 6.7 × 10−3 (150 discretization points in each direction). The initial homogeneous
agent direction V0 is set to π/4, and initial agent density ρg is a small perturbation of a uniform
distribution with

Ð
V rg ¼ 1. In order to compare the numerical results with the discrete model, we use

the same parameters as for the discrete simulations presented in §3.1 (table 2).
Note that the agent-agent alignment distance at the continuum level is chosen to be rA = 0.15 whereas

for the discrete simulations it was 0.1. This choice corresponds to having rescaled rA approximately by a
scaling factor 1 ¼ 0:5, i.e. r0A ¼ ffiffiffi

1
p

rA, where rA0 = 0.1 is the parameter used in the discrete simulation (see
the scaling assumption (b) in §2.2.1). Note that only the ratio ds/ν is relevant for the continuous model,
independently of their individual values. We therefore just ensure that this ratio is kept the same as for
the discrete simulations and use ds/ν = 0.01.

3.2.2. Phase diagram

We present the output of the continuum simulations. To facilitate the comparison with the discrete
system, we adopt the same representation as the one presented in figure 2. In particular, the



Table 2. Parameters used for the simulations of the continuum equations (2.6) shown in figure 3. The constants d1, d2, d3
depend only on ν/ds and are obtained by computing the expressions (2.10) and (2.11).

parameters value description

h ≈6.7 × 10−3 step-size spatial discretization

v0 1 agent speed

rA 0.15 agent-agent alignment distance

ds/ν 0.01 parameter coming from alignment forces

τ 0.15 agent-obstacle repulsion distance

Cf 5 agent-obstacle repulsion intensity

η 1 obstacle friction

γs 28 × 10−4 viscosity coefficient

μ various agent-agent repulsion intensity

ζ various agent friction constant

γ various γ = η/κ
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continuum densities are discretized as follows: at a simulation time t we distribute randomly N = 3000
agent points in the domain according to the distribution ρg( · , t), and similarly for the obstacle points
using ρf( · , t). In figure 3, we show the simulation results at the final time of the simulation,
corresponding either to the time before blow-up or appearance of negative density for the obstacles
(see remark 2.1) or to t = 10, as for the discrete simulations. As in figure 2, the simulations are
separated in three panels: panel (a) is obtained for weak obstacle stiffness κ = 10, and panels (b) and
(c) are for κ = 100 and κ = 1000, respectively. In each panel, we organize the simulations in tables for
which bottom-to-top rows correspond to increasing values of the friction coefficient ζ, while left-to-
right columns correspond to increasing values of the agent-agent repulsion force intensity μ. See the
legend of figure 3 for more details on the parameter values considered for ζ and μ.

In figure 3, we observe different patterns for the agents, each framed using the same colour code as
for the discrete simulations: cluster formation (framed in green, present in all three panels), travelling
bands (framed in yellow, (c)), trails (framed in red, (b)), near-honeycomb structures (framed in orange,
(a)), uniform distributions (unframed) and in-between states. Here again, increasing the obstacle
spring stiffness κ (from top to bottom panels) decreases the distance between agents and obstacles
(i.e. the white area around the agents is reduced with increasing κ). We also observe that increasing
the agent-agent repulsion intensity μ increases the size of the agent clusters and this parameter again
serves as a transition parameter between clusters and uniform distribution of the agents, passing
through honeycomb structures (first row of panel (a)), trails (third row of panel (b)) or travelling
bands (first three rows of panel (c)). The effect of the friction parameter ζ becomes more relevant for
large values of κ. For example, in (c), the parameter ζ serves as a transition parameter between
clusters, trails and uniform states.

Comparing phase diagrams. We compare the two phase diagrams from the discrete simulations in
figure 2 and the continuum simulations in figure 3. Note, though, that there is not an exact
correspondence of the values for the parameter ζ used in (c) for the two cases.

It is noteworthy that the patterns observed with the continuum simulations are similar to the patterns
of the discrete simulations (figure 2) for strong and mild obstacle spring stiffness (compare figures 3b,c
and 2), while the two models lead to different types of behaviour in the weak obstacle stiffness
regime (a). These are expected results since the continuum model has been obtained in a strong
obstacle spring stiffness regime (1/κ≈ 0). As a result, the continuum model seems to be unable to
produce the rich variety of patterns offered by the discrete model when considering loose obstacles.
Also, we do not observe the pinned state with the continuum model, which appeared with the
discrete dynamics when considering large obstacle spring stiffness κ and small agent friction ζ. Even
though pinned-states are observed for large values of κ, they correspond to states where agents
collapse into a very small cluster and then the numerical simulations of the continuum equations
blow-up due to a high concentration of the agent density ρg (see remark 2.1).
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Figure 3. Simulations of the continuum model (2.6) for the parameters indicated in table 2. Agents (randomly distributed from
the distribution ρg(x, t)) are represented as black arrows of orientation π/4, obstacles (randomly distributed from the distribution
ρf(x, t)) are represented as blue circles. (a) For weak obstacle stiffness κ = 10, (b) for mild obstacle stiffness κ = 100, (c) for large
obstacle stiffness κ = 1000. In each panel, the vertical axis represents different values of the friction coefficient ζ ( from bottom to
top: ζ = 0.2, 0.5, 1, 2 and the horizontal axis represents different values of the agent-agent repulsion μ): (a) μ∈ {0.002, 0.02,
0.05, 0.1, 0.4, 0.6}, (b) left column: μ∈ {0.0002, 0.002, 0.005, 0.01, 0.04, 0.06} and (c) μ∈ {2 × 10−5, 2 × 10−4, 6 × 10−4, 2 ×
10−3, 4 × 10−3, 6 × 10−3}.
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4. Linear stability of uniform states
4.1. Analysis of the continuum model
Continuum equations are amenable to linear stability analysis around constant solutions or uniform
states. This is useful because the presence of instabilities signals the formation of patterns. In this
section, we obtain an explicit condition for the stability of uniform states.

Before stating the main result, we introduce the following notation: denote by f̂ the Fourier
transform of ϕ defined as, for k [ R2

f̂k :¼ f̂jkj ¼ f̂ ðkÞ ¼
ð
R2

e�ik�xfðxÞdx [ R:

Note that ϕ is assumed rotationally invariant, therefore f̂ is real and rotationally invariant (so we abused
notation and wrote f̂jkj instead of f̂k ).

Theorem 4.1 (Linear instability). Consider fixed constant values ρ0 > 0 and V0 [ S
1. Then, the linearized

system of (2.6) around ðr0, V0Þ is unstable if and only if

there exists z . 0 such that z2ðf̂zÞ2 . mk: ð4:1Þ

The proof of the theorem is given later. First, we derive sufficient conditions for the system to be
stable:

Corollary 4.2 (Conditions for stability). Suppose that ϕ is absolutely continuous, rotationally invariant,
and ϕ, ϕ0 ∈ L1. Then, it holds that

c0 : ¼ max
z[Rþ

z2ðf̂zÞ2 , 1 ð4:2Þ

and if μκ > c0, then the continuum equations (2.6) are linearly stable.
Moreover, if ϕ is given by (3.1), define c00 ¼ c0=C2

f. It holds that the constant c0
0 is independent on the obstacle-

agent repulsion radius τ and the intensity Cf and the system is stable whenever

mk

C2
f

. c00:

Proof. Since by assumption ϕ is absolutely continuous and ϕ, ϕ0 ∈ L1, we have that
jf̂ 0ðkÞje ¼ ejkkf̂ ðkÞj. Moreover, since ϕ0 ∈ L1, then f̂ 0 is bounded. Therefore, jkj2jf̂ ðkÞj2 is bounded and
c0 is finite. In this case, for μκ > c0 the instability condition (4.1) does not hold, so the system is stable.

In the particular case where ϕ takes the shape given in (3.1), one can check that the following self-
similarity condition holds:

jkjf̂k ¼ tjkjf̂ ð1ÞðtjkjÞ 8t,
where ϕ(1) corresponds to ϕ when taking τ = 1. Therefore, it holds that

C2
fc0 ¼ max

k
jkj2ðf̂kÞ2 ¼ max

k
ðtjkjÞ2ðf̂ ð1ÞðtjkjÞÞ2 ¼ max

y
jyj2ðf̂ ð1ÞðjyjÞÞ2,

and so c0 is independent of τ. The rest of the corollary follows: the value of c00 is also clearly independent
of Cf as it is just a multiplicative factor of ϕ. ▪

Remark 4.3 (Limiting case of pillar obstacles). In the case where the obstacles are fixed pillars, i.e.
the case where κ→∞, then the uniform distribution of agents and pillars is always a stable solution. The
effect of this limiting case is that the equations for the agents on ðrg, VÞ become decoupled from the
obstacles’ density ρf = ρA, which is just constant (take the formal limit κ→∞ on the continuum
equations (2.6)). Therefore, there is a striking behavioural change between static obstacles and
obstacles that can move a bit (anchored at a fixed point via a very stiff spring). This shows that, in
this particular setup, the fact that the agents are able to modify their environment is crucial for
interesting patterns to emerge.

The role of the parameters. From the instability condition (4.1), we observe that the main drivers of
the formation of instabilities are: the shape of the agent-obstacle repulsion potential ϕ, the obstacle-spring
stiffness κ, and the agent-agent repulsion intensity μ. High agent-agent repulsion—high values of μ—has
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a stabilizing effect while high agent-obstacle repulsion—high values of Cf—has a destabilizing effect,
and vice versa. Also, high values of the spring constant κ have a stabilizing effect and small values
have the opposite effect.

From corollary 4.2, in the case when ϕ is given in (3.1) the ratio given by

bp : ¼ mk

C2
fc

0
0

ð4:3Þ

is the single value that acts as a bifurcation parameter. However, the obstacle-agent repulsion radius τ
plays a role in determining the size of the patterns (figure 3). Also, from the instability condition (4.1)
and corollary 4.2, for typical shapes of the potential ϕ, we expect to have stability for small and large
values of the wavevector k but instabilities can appear at intermediate values whenever c0 > μκ (where
c0 is given in (4.2)).

The rest of this section is devoted to the proof of theorem 4.1.

Proof of theorem 4.1. We start by linearizing the continuum equations (2.6) around ðr0, V0Þ by
expanding the solution using a small perturbation parameter β

rg ¼ r0 þ br1 þOðb2Þ, V ¼ V0 þ bV1 þOðb2Þ and jVj ¼ 1: ð4:4Þ

Dropping the higher order terms, we obtain the linearized system (where the over-script bar notation is
defined in equation (2.8))

@tr1 þ d1V0 � rr1 þ d1r0r �V1 ¼ �mr0Dr1 þ r0�l(D
2��r1 � gD2@t��r1), ð4:5aÞ

r0@tV1 þ r0d2(V0 � r)V1 þ d3PV?
0
rr1 ¼ gsr0PV?

0
DV1 ð4:5bÞ

and V0 �V1 ¼ 0, ð4:5cÞ

where Δ2 is the bi-Laplacian, i.e. Δ2ρ = Δ(Δρ), and PV?
0
is the orthogonal projection on V?

0 . Note also that
�m ¼ m=z, γ = η/κ and �l ¼ rA=ðkzÞ (we assume ρA = 1).
We now define the functions F, G :Rþ ! R by

FðzÞ :¼ z2 r0
z

1
k z

2ðf̂zÞ2 � m
� �

and GðzÞ :¼ 1þ r0
h
k2z

z4ðf̂zÞ2 . 0,

9=; ð4:6Þ

and given k∈R2, we denote by k0, k1 the quantities

k0 ¼ ðk �V0Þ and k1 ¼ ðk �V?
0 Þ, ð4:7Þ

where V?
0 is the image of V0 by the rotation of angle π/2. Theorem 4.1 is then a direct consequence of the

following proposition.

Proposition 4.4. System (4.5) allows for non-trivial plane wave solutions, i.e. solutions of the form

r1ðx, tÞ ¼ ~r eik�xþat and V1ðx, tÞ ¼ ~V eik�xþat, ð4:8Þ

where k [ R2 is the wavevector, a [ C, ~r [ C and ~V [ C
2, and ð~r, ~VÞ = ð0, 0Þ if and only if α and k fulfil the

following dispersion relations:
Case A: k k V0

Option 1: ~r = 0, ~V ¼ 0,

a ¼ a1ðkÞ : ¼ �i
d1k0

Gðjk0jÞ þ
Fðjk0jÞ
Gðjk0jÞ : ð4:9Þ

Option 2: ~r ¼ 0, ~V = 0.

a ¼ a2ðkÞ : ¼ �id2k0 � jkj2gs: ð4:10Þ

Case B: kXV0. Then, α is a root of the following polynomial of degree 2:

a2Gþ a[Gjkj2gs � Fþ ik0(Gd2 þ d1)]

þ d1ðr0d3k21 � d2k20Þ � jkj2gsFþ i(d1k0jkj2gs � d2k0F) ¼ 0: ð4:11Þ
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The real parts of α are negative if and only if the following holds:

GðkÞjkj2gs � FðkÞ . 0, ð4:12Þ
and

HðkÞ :¼ [GðkÞjkj2gs � FðkÞ]2d1d3k21 ð4:13Þ
� gsFðkÞjkj2[ðd1 � d2GðkÞÞ2k20 þ [GðkÞjkj2gs � FðkÞ]2] . 0: ð4:14Þ

Proof of proposition 4.4. Substituting the plane wave ansatz into the equation yields

~raþ i~rd1(V0 � k)þ ir0d1(~V � k) ¼ �jkj2�mr0~rþ jkj4�lr0~rðf̂kÞ2(1� ga), ð4:15aÞ
r0a

~Vþ ir0d2~V(V0 � k)þ i~rd3PV?
0
k ¼ �jkj2r0gs~V ð4:15bÞ

and V0 � ~V ¼ 0, ð4:15cÞ
or (if ~V ¼ vV?

0 )

ðGðjkjÞa� FðjkjÞ þ id1k0Þ~rþ ir0d1k1v ¼ 0

and

id3k1~rþ r0ðaþ id2k0 þ jkj2gsÞv ¼ 0:

This is a homogeneous linear system in ð~r, vÞ which has a non-trivial solution if and only if the
determinant of the system is 0, i.e.

(GðjkjÞa� FðjkjÞ þ id1k0)(aþ id2k0 þ jkj2gs)þ d1d3k21 ¼ 0: ð4:16Þ
If k1 = 0, there are two roots corresponding to either bracket being zero. This leads to (4.9) or (4.10). If k1≠
0, we can recast (4.16) in (4.11).

To determine the sign of the real part of α, we use the Routh–Hurwitz criterion for polynomials with
complex coefficients [33,34]. In our case, the Routh–Hurwitz criterion states that the Re(α) < 0 for all
solutions α if and only if expressions (4.12) and (4.13) hold. ▪

With proposition 4.4, we conclude the proof of theorem 4.1 as follows. Suppose (4.1) holds and let
z0 > 0 be such that z20f̂

2
z0 . mk. Let k ¼ z0V0. Then k0 = z0 and k1 = 0. So F(|k|) = F(z0) > 0 and α = α1(k)

is such that Re(α) > 0. Hence, the linearized system is unstable.
Suppose now (4.1) does not hold, i.e. z2f̂ 2

z , mk, for all z [ Rþ. Then, F(|k|) < 0, for all k [ R2. It
results that Re(α1(|k|)) < 0, Re(α2(|k|)) < 0. Furthermore (4.12) and (4.13) are obviously satisfied for all
k [ R2. Hence the system is stable. ▪
4.2. Numerical validation of the linear stability analysis
In this section, we compare the pattern predictions given by the linear stability analysis with the results
obtained from numerical simulations. This way we check that the linear stability analysis truly captures
pattern formation, i.e. that nonlinear effects are of second order and most of the patterns characteristics
are captured by linear effects.
4.2.1. Predictions from the theoretical analysis and qualitative agreement with the macroscopic simulations

We start by giving insights on the size and shape of the expected patterns based on the theoretical
predictions offered by the stability analysis. To this end, we consider perturbations introduced in the
stability analysis (see proposition 4.4), around the homogeneous density ρ0 = 1 and in constant
direction V0 [ S1. As we are particularly interested in characterizing the patterns corresponding to
clusters or bands, we will focus on the theoretical values for wave vectors parallel to V0 and parallel
to V?

0 :

kthk ¼ argmax Re
kkV0

ð~aðkÞÞ and kth? ¼ argmax Re
kkV?

0

ðaðkÞÞ,

where ~aðkÞ corresponds to case A (equation (4.9)), α(k) corresponds to case B (larger root of equation
(4.11), computed numerically) and the symbol ‘Re’ indicates the real part. With these wavevectors
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Figure 4. Prediction of the linear stability analysis. (a) Values of the maximal growth rate of the plane wave perturbations in the
direction of V0 (continuous lines) and in the orthogonal direction V

?
0 (dashed lines) as functions of the bifurcation parameter bp,

for different values of the agent friction ζ: ζ = 0.1 (blue curves), ζ = 0.5 (red curves), ζ = 1 (yellow curves). (b) Same
representation for the size of the perturbations in the two directions Sth1 and Sth2 .
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maximizing the real part of α, we define the quantities

Sth1 ¼ 2p
jkthk j

and Sth2 ¼ 2p
jkth? j

:

These quantities give the size of the expected patterns in each direction. We will also compute the
maximal growth rates of the perturbations in these two directions

ak
max ¼ max Re

kkV0

ð~aðkÞÞ and a?
max ¼ argmax Re

kkV?
0

ðaðkÞÞ:

Equipped with these quantifiers, we now study the influence of the model parameters on the expected
pattern shapes and sizes. As predicted by the stability analysis, patterns can be expected if the bifurcation
parameter bp (equation (4.3)) is below 1. We fix Cf ¼ 5 and use ϕ as in equation (3.1) giving c0≈ 5.6
independent of τ as shown in the proof of corollary 1 (definition of c0 in equation (4.2)). We vary bp
by changing the values of the agent-agent repulsion intensity μ and aim to study the influence of the
friction constant ζ, the obstacle spring stiffness κ and the agent-obstacle repulsion distance τ. For each
subsection, we compare qualitatively these predictions based on the linear stability analysis with
simulations of the macroscopic model presented in figure 3.

Influence of the friction constant ζ. First, we fix κ = 1000 and τ = 0.15, and show in figure 4 the
values of a

k
max and a?

max (left panel) and of Sth1 and Sth2 (right panel), as functions of the bifurcation
parameter bp and for different values of the agent friction constant ζ: ζ = 0.1 (blue curves), ζ = 0.5
(red curves), ζ = 1 (yellow curves). One can first observe in figure 4a that we indeed recover the
critical value 1 of the bifurcation parameter, below which perturbations grow (Re(α) > 0) and
after which they are damped, independently of the value of ζ. This shows that bp is indeed a
relevant bifurcation parameter. Moreover, one can observe that perturbations grow faster for smaller
values of the friction constant ζ (compare the blue and red curves in a). From figure 4b, we note
first that the size of the clusters increases when increasing the bifurcation parameter (here, by
increasing the agent-agent repulsion μ). These are expected results as stronger agent repulsion leads to
higher pressure in the agent population, leading to larger clusters. Secondly, we observe that the
size of the patterns is independent on the friction constant ζ, but the parameter zone in which
patterns are of travelling band type (i.e. Sth1 . 0 and Sth2 ¼ 0) is larger for larger values of ζ -compare
the yellow and blue dashed curves in b. Thus, high friction substrates seem to favour the formation of
travelling bands compared to low friction environments, provided the bifurcation parameter is large
enough (large obstacle spring stiffness and/or large agent-agent repulsion compared to agent-obstacle
repulsion).

Qualitative comparison with the macroscopic simulations. The influence of the agent friction ζ for
τ = 0.15 and κ = 1000 can be observed in the macroscopic simulations presented in figure 3c, comparing
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perturbations in the two directions Sth1 and Sth2 .
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the rows together (from bottom to top for increasing values of ζ). We first note that in the simulations of
the three panels of figure 3, the values considered for the product μκ were always the same, i.e.

mk [ f0:02, 0:2, 0:5, 1, 4, 6g,
and the value of Cf ¼ 5 was kept constant, corresponding to the following values for the bifurcation
parameter:

bp [ f0:0036, 0:0357, 0:0893, 0:1785, 0:7142, 1:0713g:

We then observe that in each panel of figure 3, patterns are indeed observed in the first five columns of
the tables while the last column displays a homogeneous distribution of agents. This validates the fact
that patterns are observed only when the bifurcation parameter bp is below 1.

Moreover, focusing on the last panel (for which κ = 1000), we recover most of the observations
predicted by the stability analysis: (a) the pattern size increases when increasing the bifurcation
parameter (increasing μ: compare simulations from left to right in figure 3c), (b) the zone of
parameters showing travelling bands increase when increasing the agent friction ζ (compare bottom to
top rows of panel (c)). Therefore, we obtain a very good qualitative agreement between the
simulations of the macro model and the tendencies predicted by the stability analysis as function of ζ.

Influence of the obstacle spring stiffness κ. Here, we adopt the same representation as in the
previous paragraph, but fixing the agent friction constant ζ = 0.5 and playing on the obstacle spring
stiffness κ (we keep the agent-obstacle distance τ = 0.15). Figure 5 shows the values of ak

max and a?
max

(a) and of Sth1 and Sth2 (b), as functions of the bifurcation parameter bp and for κ = 10 (blue curves), κ =
100 (red curves) and κ = 1000 (yellow curves). From figure 5b, we can observe a similar evolution of
the pattern size playing on the obstacle spring stiffness as when changing the friction constant ζ:
increasing the obstacle spring stiffness κ slightly increases the zone of parameters favouring the
formation of bands of agents (compare yellow and red dashed curves in the right panel). One can
particularly note (blue curve of figure 5b) that environments composed of loose obstacles (κ = 10) will
only promote agent clusters the size of which is independent of the value of the bifurcation
parameter. Finally, we note from figure 5a that the growth rate of perturbations does not evolve
monotonically with the spring stiffness κ: faster perturbations are observed for κ = 100 compared to
κ = 10 or κ = 1000 (compare red with blue and yellow curves in a).

Qualitative comparison with the macroscopic simulations. The influence of the obstacle spring
stiffness κ for τ = 0.15 and ζ = 0.5 can be observed in the macroscopic simulations presented in
figure 3, comparing the second rows (starting from the bottom) in each panel ((a) for κ = 10, (b) for
κ = 100 and (c) for κ = 1000).

Again, we obtain a very good agreement with the theoretical predictions: (a) the pattern sizes increase
when increasing the bifurcation parameter (by increasing μ: compare simulations from left to right in
each panel), (b) the increase in pattern size as function of μ seems less important for κ = 10 (panel (a))
than for larger obstacle spring stiffness (panels (b) and (c)), and (c) travelling bands are only observed
for κ = 1000 (panel (c)).
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Influence of the agent-obstacle repulsion distance τ. Finally, we aim to document the role of the
agent-obstacle repulsion distance τ. We adopt the same methodology as in the two previous
paragraphs: we fix ζ = 0.5 and κ = 1000 and show in figure 6 the values of ak

max and a?
max (a) and of

Sth1 and Sth2 (b), as functions of the bifurcation parameter bp and for τ = 0.15 (blue curves), τ = 0.2 (red
curves) and τ = 0.3 (yellow curves). We first observe that increasing the value of τ slows down the
growth of the perturbation modes (compare blue, red and yellow curves of figure 6a). Moreover, as
predicted by the stability analysis, the critical value of μ for which patterns appear does not depend
on τ: patterns are once again only observed as long as the bifurcation parameter bp does not exceed
the value 1. Secondly, figure 6b shows that the agent-obstacle distance τ has a strong impact on the
size of the clusters: larger τ leads to larger agent clusters (compare for instance yellow and blue curves
in figure 6b), and agent-obstacle repulsion distance does not impact the shape of the patterns (clusters
or bands types).

As the simulations of figure 3 have been generated only for τ = 0.15, we are not able at this point to
compare qualitatively the predictions of the stability analysis with the simulations of the macroscopic
model as functions of this parameter. We will however assess the influence of τ via a quantitative
comparison between the model and the theory in the next section.

Altogether, these results show that agent-agent repulsion favours the spreading of the agents while
agent-obstacle repulsion tends to aggregate the agents (and consequently clusters obstacles together).
Travelling bands of agents seem to be favoured in low friction environments composed of stiff
obstacles, and the size of agent clusters seems to be controlled primarily by the agent-obstacle
distance and the bifurcation parameter (ratio between the agent-agent repulsion intensity and the
agent-obstacle repulsion intensity).
4.2.2. Quantitative agreement between the macroscopic simulations and the stability analysis

Here, we provide a quantitative assessment of the pattern sizes computed numerically on the simulations
of the macroscopic model and the ones predicted by the stability analysis. To this end, we first compute
numerically the pattern sizes using the two-dimensional discrete Fourier transform of the agent density
at equilibrium F̂½rg� ¼ F̂½rg�ðkÞ, and extract the frequency of the two maximal modes kk, k? [ R2 aligned
in the direction of V0 and V?

0 , respectively

kk ¼ argmax
kkV0

jF̂½rg�ðkÞj and k? ¼ argmax
kkV?

0

jF̂½rg�ðkÞj,

where | · | is the modulus of a complex number. Then, the theoretical quantifiers Sth1 and Sth2 will be
compared with

S1 ¼ 2p
jkkj and S2 ¼ 2p

jk?j :
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In figure 7, we show the values of S1 and S2 (dotted curves) and Sth1 , S
th
2 (plain curves), for three

different values of the obstacle spring stiffness κ = 10 (a), κ = 100 (b) and κ = 1000 (c), and three
different values of τ: τ = 0.15 (blue curves), τ = 0.2 (orange curves) and τ = 0.3 (yellow curves). Note
that here ζ = 0.5 so that theoretical predictions correspond to figure 6. Simulations are completed for
V0 ¼ ðcosp=4, sinp=4Þ and ρ0 = 1.

As one can observe, we obtain a fairly good agreement between the values computed on the
numerical solution and the ones predicted by the linear stability analysis as presented in figure 7. As
predicted, the size of the repeating patterns increases as τ increases (compare blue, red and yellow
curves), and as the agent-agent repulsion intensity μ increases while staying below the critical
threshold μ� (above which the homogeneous steady-state profile is stable), corresponding to bp = 1. For
κ = 1000 (figure 7c), we also recover the regime of travelling bands predicted for μ = 4 × 10−3 and here
S1 > 0 and S2 = 0, i.e. patterns (the travelling bands) are only in the direction V0.
 os

R.Soc.Open
Sci.9:220791
5. Quantitative assessment of the continuum model
In this section, we aim to compare quantitatively the continuum and discrete models. As our goal is to
compare continuous density profiles (continuum model) with clouds of points representing individual
positions (discrete model), a method to quantify the ‘proximity’ between these two different types of
solutions has to be devised. A first natural choice would be to use the quantifiers defined in the
previous section, i.e. to compute the maximal eigenmode of the Fourier transform of the agent
distributions from the discrete simulations. This would enable us to construct a space-independent
quantifier which could give an insight into the main structures of the discrete model. However, as one
can observe in figure 2, the agent and obstacle structures that emerge from the discrete dynamics are
not necessarily regularly spaced in the domain, which makes the use of the Fourier transform
imprecise for the discrete simulations. Another interesting statistical approach for comparing the
models was proposed in [35] and consists in the use of correlation functions that characterize
the emergent patterns in the steady state. This approach was successfully used in [36] to study the
structural phase transitions in a Vicseck-type model, enabling a new pattern type (namely a ‘cross-sea’
phase) to be detected. However, the analysis of different patterns in this way necessitates the use of
proper quantifiers and correlation functions adapted to the shape of the patterns of interest. Due to
the richness of the types of motives observed in our case, we opted for the development of a new
comparison method, independent of the types of patterns.

In the following section, we propose a new method to compare discrete point clouds and continuum
densities which does not require some spatial regularity of the patterns.

5.1. Methodology to compare discrete and continuum simulations
In table 3, we summarize the steps of the method we propose to compare discrete and continuum
simulations. After generating two simulations (one with the continuum model and one with the
discrete dynamics, step 1), we first aim to find the optimal Cartesian mesh on which (i) we interpolate
the continuum solution and (ii) we compute the density of the point clouds using a particle-in-cell
(PIC) method (step 2, §5.1.1). At the end of this step, both solutions (continuum and discrete) are
projected on the same Cartesian mesh. In step 3 (§5.1.2), we then compute a Wasserstein-type distance
based on the histograms of the two density distributions.

5.1.1. Discretization of the particle density

A natural choice for comparing point clouds and continuum densities is to choose a Cartesian grid for
both models, and compute the density of the individual agents using for instance a PIC method [37].
However, the choice of grid points spacing is critical, as it depends on the profile of the distribution
as well as on the number of particles present in the computational domain: highly clustered agent
distributions require fine meshes to enable the characteristics of the small and concentrated agent
clusters to be captured, while more homogeneous agent distributions require coarser grids to allow
the capture of larger patterns (figure 8). To be efficient, the grid spacing must, therefore, account for
the characteristic size of the continuum structures that can be captured with a finite number of
individual points. As we want to compare a continuum model with a discrete one, we will use the
continuum simulations as a reference. Our goal here is to find the optimal Cartesian mesh on which a
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continuum density ρΔx(x, t) would be best represented by a cloud of N points, for N given. Note that the
continuum density ρΔx(x, t) is itself already discretized on a Cartesian mesh with spacing Δx, because it
corresponds to a solution of the discretized continuum model.

Given a continuum density profile ρΔx(x, t)—discretized on a Cartesian mesh VDx , V with grid
spacing Δx = 1/Nx in each direction—we first throw N individual points ðy1, . . . , yNÞ [ V according to
the distribution ρΔx(x, t). We now denote by rhPICðy1, . . . , yNÞ the density of the individual points
ðy1, . . . , yNÞ computed on a Cartesian mesh of spacing h > 0 using a PIC method, and PDxðrhPICÞ its



Table 3. Diagram of the methodology used to compare the simulations for the continuum equations (2.6) and the simulation of
the discrete dynamics (2.1a)–(2.1b). PIC, particle-in-cell; EMD, earth movers distance; W, Wasserstein distance.

Step 1 simulation of the continuum equations (2.6) simulation of the particle dynamics (2.1a) and (2.1b)

+ +
Step 2 discretization of the output density on a grid PDx

U

using the PIC method: rDxmac

approximate the particle density on the grip PDx
U

using the PIC method: rDxmic
→ compute the optimal grid size Δx using the ℓ2

distance (§5.1.1)

d e

Step 3 compare rDxmic and r
Dx
mac with the distance WðrDxmic, rDxmacÞ

→ computed with the EMD method (§5.1.2)
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linear interpolation on the initial mesh VDx. We aim at finding the optimal grid spacing h minimizing the
L2 distance between the initial continuum density ρΔx(x, t) and its approximation by N individual points

~h ¼ argmin
h

krDx �PDx	rhPICðy1, . . . , yNÞ
k‘2ðVDxÞ,

where k:k‘2ðVhÞ denotes the discrete l2 norm on a Cartesian mesh Vh

krhk‘2ðVhÞ ¼ h2
XNx

i¼1

XNx

j¼1

jrhðxi, yjÞj2:

The optimal ~h is computed numerically. It therefore corresponds to the best grid spacing one can
hope for approximating a density ρΔx with a set of N points. We therefore will use this quantity to
compare a simulation of the continuum model with one of the discrete model performed with N
agents. The discretized macroscopic density will be denoted by r

~h
mac ¼ r

~h
PICðy1, . . . , yNÞ, and the

approximation from the discrete particle simulation will be denoted by r
~h
mic (computed via the PIC

method on a grid with spacing ~h). In the following section, we describe how to compare r
~h
mac with r

~h
mic.
5.1.2. Comparing discretized and discrete dynamics

The comparison between the discretized and the discrete dynamics will be done in several steps:

(Step 1) Choosing the right distance to compare the micro- and macro-simulations: we want to construct a
quantifier enabling us to compute the distance between the two distributions r

~h
mac and r

~h
mic

described in the previous section (solutions of the continuum and discrete models projected on a
Cartesian mesh with spacing ~h). The first natural choice would be to use the discrete L2 norm as
both quantities are defined on the same meshes. However, we need a quantifier independent of
space translations, as there is no reason for the patterns of the discrete model to match exactly the
locations of those of the continuum model at a given time. For example, if the discrete and
continuum simulations produce band patterns with the same width and speed but not at the same
positions, we still want to consider that the two solutions are very close to each other. Therefore,
we propose here to use a Wasserstein-like distance.

Inspired from [38], we choose to work with the earth movers distance (EMD). The EMD is based on
the minimal cost that must be paid to transform one distribution into the other and relies on the
solution to a transportation problem issued from linear optimization. As solving the transport
problem in two dimensions is very costly, we ‘compress’/approximate the density distributions
using their signatures (histograms).

(Step 2) Construction of the signatures of the distributions: given a density profile on a grid containing
Nh = 1/h points in each direction (ρij), i ¼ 1 . . .Nh, j ¼ 1 . . .Nh, the signature of ρ,
P½r� ¼ fðp1, v1Þ, . . . , ðpm, vmÞÞg is defined as

pk ¼ kM
nb

and vk ¼
XNh

i¼1

XNh

j¼1

1½pk�1,pk �
	
rij


, k ¼ 1 . . .nb, ð5:1Þ
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different spacing from the point distributions (third row: using a coarse grid with spacing h = 0.1, fourth row: using a finer
grid h = 0.02). As one can see in figure 8, while the number of points to throw to approximate the continuum density does
not play a major role for high-density clustered distributions, it becomes critical for approximating more homogeneous
distributions (compare left and right columns). Moreover, high-density clusters require the use of a fine enough grid to
correctly recover the initial distribution (compare third and fourth rows in the left column), while smoother distributions are
better approximated using a large number of agents and coarse grids (third row of the left columns). These first results
highlight the necessity for adapting the numerical grid used to compute the density of agents from the discrete model if one
hopes to have a consistent quantifier to compare with the continuum model.
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where M = ‖ρ‖∞ =maxi,j ρij and the number of bins nb has been chosen using the Freeman Diaconis
rule, for which the bin width corresponds to 2 (IQR/n3/2), where IQR is the interquartile range of
the data and n is the number of observations (in our case the number of grid points, n = 1/h2). We
give in figure 9 a visual representation of computing the signature of a toy distribution with four
bins and in figure 10 an example of the histograms of two simulations of the continuum model.
Note that when computed on density distributions, the points pk in each cluster correspond to local
density values and the corresponding weights ωk are the number of grid (spatial) points in which
the density is comprised between the values pk−1 and pk.

(Step 3) Definition of the EMD between two signatures: following the lines of [38], we apply the following
linear programming problem: Let P ¼ fðp1, v1Þ, . . . , ðpm, vmÞÞg and Q ¼ fðq1, v1Þ, . . . , ðqn, vnÞÞg be
two signatures with m and n clusters represented by their representatives pk, qℓ and their respective
weights ωk, vℓ for k ¼ 1 . . .m, ‘ ¼ 1 . . . n. We want to find a flow F = ( fkℓ) minimizing the overall cost

WðP, Q, FÞ ¼
Xm
k¼1

Xn
‘¼1

dk‘fk‘,
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Figure 9. Example of the signature of a distribution with four bins, M = 85 and Nx = 13. The different colours represent the
different compartments of the signature.
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where dkℓ is the ground distance matrix between clusters pk and qℓ

dk‘ ¼ jpk � q‘j:

The minimization is made under the following set of constraints:

fij 	 0, 1 � i � m, 1 � j � n, ð5:2ÞXn
j¼1

fij � v pi, 1 � i � m ð5:3Þ

Xm
i¼1

fij � vqj, 1 � j � n ð5:4Þ

and
Xm
i¼1

Xn
j¼1

fij ¼ min
Xm
i¼1

v pi,
Xm
i¼1

vqj

 !
: ð5:5Þ

If we look at the signatures P and Q as a set of goods at given locations (represented by p and q) each
with a given amount (represented by the weights ω and v), the EMD can be seen as a transportation
problem consisting of finding the least expensive flow of goods from the suppliers to the consumers,
where the cost of transporting a single unit of goods is given. Then, constraint (5.2) expresses that
‘supplies’ can be transported from P to Q only, while constraints (5.3), (5.4) limit the amounts of
supplies that can be given by P to Q and that can be received from Q to P, respectively. The final
constraint (5.5) expresses the fact that the total amount of mass transported must be optimal. Once
this transportation problem is solved, the EMD between signatures P and Q, EMD(P, Q) is then
defined as:

EMDðP, QÞ ¼
Pm

i¼1
Pn

j¼1 dijfijPm
i¼1
Pn

j¼1 fij
:

Rubner et al. proved in [38] that when the ground distance is a metric and the total weights of the two
signatures are equal, the EMD is a true metric. Therefore, by considering the Euclidean distance as
ground distance we can use the EMD as a valid dissimilarity measure between signatures.
However, as two different density distributions may have the same signature, the EMD with (5.1)
as signatures is a pseudo-metric. However, as shown in figure 10, the histograms between band like
patterns and clustered state are very different distributions, making this pseudo metric suitable for
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Figure 10. Histograms for simulations of figure 8 as defined in equation (5.1).
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measuring the dissimilarity between pattern types. Moreover, we check carefully in the next paragraph
the validity of the EMD when it can be compared to the classical L2 distance.

(Step 4) Validation of the pseudometric EMD. In order to check the validity of the pseudometric constructed
in this section, we aim to compare the efficiency of the EMD in cases where it can be compared to the
classical L2 distance. More specifically, we use it to measure the dissimilarity between the density
profile of the continuum simulation (high-density clustered simulation of figure 8 left column) and
its approximation by a cloud of N points reconstructed on a grid, using the procedure described in
the previous section. We show these dissimilarity measures in figure 11, as a function of the
number of grid points for the PIC method (NPIC, horizontal axis of figures 11) and different
numbers N of discrete particle (different curves), using the EMD distance based on histograms (a)
or the L2 distance based on point values (b). As one can observe in figure 11, the EMD and the L2

norm are in good accordance. As previously observed in §5.1.1, both metrics show that for each
number of particles used to approximate the continuum density distribution, there exists an optimal
number of grid points for the PIC method which minimizes the distance between the initial density
and its approximation by particles. As expected, this optimal value increases as the number of
particles increases, suggesting that using a larger number of agents allows the use of finer grids
which enables us to better capture the fine structures of the continuum density distribution.
Moreover, this figure shows that the Wasserstein distance based on the EMD between density
signatures seems to be a valid tool to compare density distributions.

In the next section, we present the numerical comparison between the discrete and continuum
models.

Remark 5.1. It is noteworthy that the patterns obtained are robust if we consider different
realizations of the stochastic dynamics or slightly different initial conditions for the macroscopic
dynamics (data not shown). In the following part of the paper, we will therefore compare the models
based on only one realization of the microscopic dynamics.
5.2. Results
We aim to compare quantitatively the steady states of the discrete and continuum models in different
regimes of the parameters, and study the influence of the number of agents for the discrete model N
as well as the scaling parameter e. We recall that the assumptions for the derivation of the continuum
equations are given in §2.2.1. In particular, some of the parameters are scaled by a factor 1 � 1 in the
following way (denoting by a tilde the values used for discrete simulations):

~rR ¼ erR, ~rA ¼ ffiffiffi
e

p
rA, ~ds ¼ ds

e
and ~n ¼ n

e
: ð5:6Þ

For all simulations, we consider the same number of agents and obstacles and set M =N, and we fix the
values of Cf ¼ 5 (leading to c0 = 5.6) and ζ = 0.5. For each set of parameters, we use the method
previously described in §5.1 to compare discrete and continuum simulations.
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Figure 11. Error between the density profile of the continuum simulation (high-density clustered simulation of figure 8 left column)
and its approximations using the procedure described in §5.1.1, as a function of the number of grid points for the PIC method NPIC
(horizontal axis) and different number N of discrete particles (see insert for correspondence between curve colour and N), using the
EMD distance based on histograms (a) or the L2 distance based on point values (b).
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5.2.1. Mild obstacle spring stiffness

In figure12,we showthe simulationsobtained formildobstacle spring stiffnessκ= 100.The left panel is obtained
for μ= 2× 10−3 (corresponding to a bifurcation parameter bp≈ 0.036), and the right panel is for μ= 4.10−2

(corresponding to bp≈ 0.7, close to the stability threshold 1). Top figures show the EMD between the
continuum and discrete solutions as a function of e, for different number of agents used for the discrete
simulations N: N= 500 (blue curve), N= 1000 (red curve), N= 3000 (yellow curve) and N= 5000 (purple
curves). The corresponding simulations are shown below in tables: for each, the left column shows the
simulations of the continuum model, and the next columns are simulations of the discrete model for different
values of e: e ¼ 0:1 (second column), e ¼ 0:5 (third column), e ¼ 0:8 (fourth column), e ¼ 1 (last column).
The different rows of the tables correspond to different number of agents for the discrete simulations as well
as for the discretization of the continuum density (from top to bottom: N= 500, N= 1000, N= 3000, N= 5000).

Figure 12 suggests that the discrete and continuum models are in quite good agreement in the case of
week agent-agent repulsion (bp≪ 1, left panel), where both models are able to reproduce agent clusters,
while their correspondence is more tenuous for stronger agent-agent repulsion (bp close to the instability
threshold, right panel), where the discrete dynamics seems to produce more trail-like patterns than the
continuum model. For both regimes, however, we can observe a significant improvement of the discrete-
continuum correspondence as e decreases, suggesting that the continuum model becomes a good
approximation of the discrete dynamics as e goes to zero. Indeed, for weak agent-agent repulsion (left
panel), we observe that decreasing e is accompanied by an increase in the cluster sizes and a decrease
of the distance between the boundary of the clusters and the obstacles, getting closer to the cluster
types observed with the macroscopic dynamics. For stronger agent-agent repulsion (right panel), the
clusters thicken as e decreases and get closer to the continuum structures.

These observations are confirmed by the measurements of the EMD between the discrete and continuum
agent distributions (top plots of figure 12). Indeed, one notes in the left panel that the distance between the two
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Figure 12. Comparison between the discrete and continuum simulations for mild obstacle spring stiffness κ = 100 and agent
friction ζ = 0.5. Left figures: for weak agent-agent repulsion μ = 2 × 10−3, right figures, for μ = 4 × 10−2. Top figures: EMD
between the approximated continuum density and the discrete one as a function of e for different values of the number of
agents N: N = 500 (blue curve), N = 1000 (red curve) and N = 3000 (yellow curve) and N = 5000 ( purple curve). Bottom
tables: simulations of the continuum model (left column), and of the discrete one for different values of e: e ¼ 0:1 (second
column), e ¼ 0:5 (third column), e ¼ 0:8 (fourth column) e ¼ 1 (last column). The different rows correspond to different
number of agents for the discrete simulations as well as for the discretization of the continuum density (from top to bottom:
N = 500, N = 1000, N = 3000, N = 5000).
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distributions decreases as the scaling parameter e decreases, independently of the number of agents.
Moreover, the top plot on the right panel shows that the discrete-continuum distance is larger for stronger
agent-agent repulsion (bp close to 1) compared to the case where bp≪ 1 (left panel). From the right figure,
we also observe a strong dependency of the discrete-continuum distance as a function of the number of
agents used in the discrete model. When the agent-agent repulsion is strong (or equivalently when bp is
close to 1), it becomes crucial to use a large number of individuals for the discrete simulations, while the
number of agents does not seem to significantly impact the discrete-continuum agreement in regimes
favouring the apparition of small and dense clusters (small agent-agent repulsion or equivalently small bp).

These first observations tend to suggest that the choice of the number of agents in the discrete setting
seems to depend both on the choice of e and on the regime of parameters. In order to give more insights
into the influence of N and bp on the discrete-continuum match, we plot in figure 13 the EMD between
the discrete and continuum models as a function of bp (by changing the value of μ for fixed κ = 100),
having fixed e ¼ 0:1 and for different N:N = 500 (blue curve), N = 1000 (red curve) and N = 3000
(yellow curve) and N = 5000 (purple curve).

As one can see in figure 13, the discrete-continuum distance increases with bp independently of the
number of agents N, suggesting indeed that the discrete and continuum models are closer far from
the instability threshold. As the agent-agent repulsion increases (increasing values of bp), the number
of agents used in the discrete simulations has increasing influence on the match between the discrete
and continuum simulations. These results suggest that large agent clusters with low density are better
captured by a large number of agents.

5.2.2. Strong obstacle spring stiffness

Here, we aim to study the discrete-continuum agreement for strong obstacle spring stiffness κ = 1000. In
figure 14, the left panel is obtained for μ = 2 × 10−4 (corresponding to a bifurcation parameter bp≈ 0.036),
and the right panel is for μ = 4 × 10−3 (corresponding to bp≈ 0.7, close to the stability threshold 1). Top
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Figure 13. EMD between the approximated continuum density and the discrete one as a function of bp for κ = 100, ζ = 0.5 and
e ¼ 0:1, and for different values of the number of agents N: N = 500 (blue curve), N = 1000 (red curve) and N = 3000 (yellow
curve) and N = 5000 ( purple curve).
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figures show the EMD between the continuum and discrete solutions as a function of e, for different
number of agents used for the discrete simulations N: N = 500 (blue curve), N = 1000 (red curve), N =
3000 (yellow curve) and N = 5000 (purple curves). As in the previous section, the corresponding
simulations are shown below in tables: for each, the left column shows the simulations of the
continuum model, and the next columns are simulations of the discrete model for different values of
e: e ¼ 0:05 (second column), e ¼ 0:1 (third column), e ¼ 0:5 (fourth column) e ¼ 0:8 (fifth column) and
e ¼ 1 (last column). As before, the different rows of the tables correspond to different number of
agents for the discrete simulations as well as for the discretization of the continuum density (from top
to bottom: N = 500, N = 1000, N = 3000, N = 5000).

For strong obstacle spring stiffness κ = 1000, we again observe that the discrete and continuous
models are in good agreement far from the instability threshold (left panel), where both models
reproduce clusters, while the agreement between the two models worsens for stronger agent-agent
repulsion (right panel), where the discrete system fails to reproduce the travelling band patterns
observed with the continuum model. Again, the discrete-continuum agreement improves as e

decreases: for low agent-agent repulsion the discrete pattern sizes converge to those of the continuum
model as e decreases (from right to left in the left panel), and for strong agent-agent repulsion (last
rows of the right panel), decreasing e induces a phase transition between clustered states and trail-like
agent patterns, closer to the formation of bands.

It is noteworthy that for small agent-agent-repulsion (bp≪ 1, left figure), the agreement between the
discrete and continuum dynamics seems to be better when using fewer agents in the discrete model,
independently of the value of e (compare purple and blue curves on the left panel), while close to the
instability threshold (bp close to 1, right figure) the choice of N seems to be related to e: the discrete-
continuum error decreases when using larger N for small e, smaller N for larger e.

5.2.3. Summary of observations

We conclude that the continuum equations are a good approximation of the discrete dynamics in the
limit of small rescaling parameter 1, as long as the agent-agent repulsion μ is small enough (i.e. in a
parameter regime far from the instability threshold, bp≪ 1). On the contrary, the trend is less apparent
when μ gets closer to the instability threshold μ� (corresponding to bp = 1). In particular, when m 
 m�,
the rescaling factor 1 can act as a phase transition parameter between different types of patterns (right
panel, figure 14). This phase transition is due to the fact that the instability condition is given by (4.1).
Indeed, the presence of μ in this formula hints at the fact that at the discrete level the agent-agent
repulsion potential ψ plays a key role in determining the patterns that emerge. Therefore, it is no
wonder that by rescaling the value of agent-agent repulsion radius ~rR ¼ 1rR (and therefore changing
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Figure 14. Comparison between the discrete and continuum simulations for strong obstacle spring stiffness κ = 1000 and agent
friction ζ = 0.5. Left figures: for weak agent-agent repulsion μ = 2 × 10−4, right figures, for μ = 4 × 10−3. Top figures: EMD
between the approximated continuum density and the discrete one as function of e for different values of the number of
agents N: N = 500 (blue curve), N = 1000 (red curve) and N = 3000 (yellow curve) and N = 5000 ( purple curve). Bottom
tables: simulations of the continuum model (left column), and of the discrete one for different values of e: e ¼ 0:05 (second
column), e ¼ 0:1 (third column), e ¼ 0:5 (fourth column) e ¼ 0:8 (fifth column) and e ¼ 1 (last column). The different
rows correspond to different number of agents for the discrete simulations as well as for the discretization of the continuum
density (from top to bottom: N = 500, N = 1000, N = 3000, N = 5000).
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the value of ψ) the shape of the patterns also changes. However, the smaller the μ the less relevant the role
of ψ, thus the predictions of the continuum simulations become more robust.

There is also another important factor to take into account: the continuum dynamics just gives
averaged behaviour of the discrete dynamics. If there is a wide variability in the discrete dynamics,
due to its intrinsic stochasticity, then the average behaviour will not be able to represent well
particular realizations of the discrete dynamics. It seems that closer to the boundary of the instability
region (m 
 m�) this variability is larger.
6. Discussion
In this article, we have investigated a model for collective dynamics in an environment filled with
obstacles that are tethered to a fixed point via a spring. The model was first introduced in [22]. In
particular, the paper has presented the following novelties:

(i) phase diagram of the continuum equations in dimension 2;
(ii) a linear stability analysis of constant solutions;
(iii) method to discriminate between different types of patterns that has been used to compare

quantitatively the relation between discrete and continuum simulations; and
(iv) a more extensive phase diagram of the discrete dynamics that has allowed us to identify two new

types of patterns with respect to [22] (honey comb structures and pinned cluster states).

The continuum description captures well the behaviour of the system when it is comprised of a large
number of agents and obstacles, and involves huge computational savings compared with the
simulation of the discrete system. Comparing discrete and continuum simulations is in general not
straightforward. We have proposed a method to compare the two types of solutions to investigate in
which parameter regime they are in good correspondence. This parameter regime includes the
assumptions made for the derivation of the continuum equations in §2.2.1: the spring stiffness must
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be large κ≫ 1, the number of agents and obstacles must be large N, M≫ 1, the scaling parameter 1 � 1
(see (5.6) for the rescaled parameters) must be small. However, we require one more condition to have a
good correspondence between discrete and continuum dynamics: the agent-agent repulsion intensity μ
must be much smaller than the critical value m�, which is at the threshold of the instability condition (4.1).
For values closer to m�, the intrinsic variability of the system is too large to be described just with the
averaged behaviour that captures the continuum equations.

This work has also showcased the impact of the environment in pattern formation in collective
dynamics. The phase diagrams of both discrete and continuum dynamics show that the feedback
interactions between agents and obstacles give rise to a rich variety of patterns. In particular, we have
observed that trails, travelling bands, moving clusters, uniform configurations and other in-between
patterns emerge. The fact that agents can modify their environment by moving the obstacles is
fundamental to this pattern emergence. This can be clearly seen in the linear stability analysis where
the instability condition (4.1) depends crucially on the agent-obstacle repulsion force ϕ which is the
only interaction force between agents and obstacles, and on the spring stiffness κ which indicates the
degree of mobility of the obstacles around their tethered positions.

As a prospective work, we would like to use the models investigated here to study the impact of the
environment in collective dynamics under a different setup. Following previous works on the Vicsek
model [32], where the authors study the phase transitions for kinetic models describing self-propelled
particles interacting through alignment, we could consider different initial conditions to study the
impact of initialization on the types of patterns, and study exhaustively the phase transitions features
(stability, convergence rate and hysteresis). Another interesting setup is collective motion in a complex
fluid. To investigate this, the idea is to couple the current model with a fluid model. Then the
environment in which collective motion takes place will be the combination of the fluid with the
obstacles. The idea of representing a complex fluid in this manner is similar to other existing models
in the literature, such as the Oldroyd-B model that describes the visco-elasticity of fluids filled with
spring dumbbells [39]. The coupling of the current discrete model with a fluid model will require a
new derivation of the continuum equations and a new linear stability analysis to understand how the
presence of the fluid impacts the dynamics and pattern formation.

Another extension of this work will investigate the impact in collective dynamics of an environment
filled with a different type of obstacle (i.e. obstacles of a different nature than the ones considered in this
work). For example, one can consider solid obstacles that are movable but are not tethered or have a
particular shape (like elongated fibres).
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