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Serverless computing is an emerging cloud computing paradigm, being adopted to develop a wide range of software applications.
It allows developers to focus on the application logic in the granularity of function, thereby freeing developers from tedious and
error-prone infrastructure management. Meanwhile, its unique characteristic poses new challenges to the development and deployment
of serverless-based applications. To tackle these challenges, enormous research efforts have been devoted. This paper provides a
comprehensive literature review to characterize the current research state of serverless computing. Specifically, this paper covers 164
papers on 17 research directions of serverless computing, including performance optimization, programming framework, application
migration, multi-cloud development, testing and debugging, etc. It also derives research trends, focus, and commonly-used platforms
for serverless computing, as well as promising research opportunities.
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1 INTRODUCTION

Serverless computing is an emerging cloud computing paradigm. It has been adopted to develop a wide range of software
applications, includingmachine/deep learning [251, 267], numerical computing [226], video processing [74, 124], Internet
of Things [143, 276], big data analytics [119, 129], etc. According to a recent report [1], the serverless market size will
reach nearly $22 thousand million in 2025 from $3 thousand million in 2017. Moreover, it is predicted that serverless
computing can be employed in 50% of global enterprises by 2025 [26].

The popularity of serverless computing can be attributed to its unique characteristics. Specifically, serverless
computing allows software developers to focus on only the application logic in the granularity of function without
having to manage complex and error-prone underlying tasks. The reduction in underlying cloud management is
undoubtedly exciting news for software developers without a background in hardware infrastructure. Moreover, in
serverless computing, software developers pay for only the resources actually consumed or allocated by their applications
at a fine-grained pattern. This point is different from traditional cloud computing, where software developers always
rent and retain resources regardless of whether the application is running. In addition, serverless computing also
makes cloud providers manage resources in a unified manner, improving resource utilization and reducing resource
waste. Based on these benign characteristics and its bright prospect, many major cloud providers have rolled out their
serverless platforms, such as AWS Lambda [16], Microsoft Azure Functions [22], and Google Cloud Functions [35].
Moreover, there are also some available open-source serverless platforms, e.g., OpenWhisk [48] and OpenFaaS [45].

However, the unique characteristics of serverless computing also pose new challenges or issues to the develop-
ment and deployment of serverless-based applications (i.e., serverless applications) [145, 253, 256, 257]. The software
engineering (SE) research community has focused on a wide range of topics about serverless computing, including
serverless evolution [242], characteristic analysis of serverless applications [114, 115], developers’ challenges [256],
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application modelling [271], programming framework of specific applications [84, 276], multi-cloud development [218],
stateful serverless applications [82], application migration [213], serverless economic [63], serverless dataset [120],
technical debt conceptualization [162], testing and debugging [163], etc. Moreover, other communities like the Systems
research community, the Network research community, and the Services Computing research community have made
significant efforts in resource management [136, 199, 274], cold start performance optimization [67, 125, 197], function
communication [142, 229], general programming framework [123, 139], etc. Addressing these challenges or issues can
better facilitate software developers’ application development practices on serverless platforms. However, to the best of
our knowledge, there has not been a thorough analysis effort in these communities to investigate the current research
state of serverless computing from the research scope and depth. A comprehensive literature review is a foundation for
understanding an evolving research area. In the absence of such a literature review, it is challenging for researchers and
practitioners to quickly grasp a global overview of research directions that have been studied and existing solutions in
the serverless computing field. Moreover, it may prevent best software practices for serverless application engineering
and the long-term evolution of the serverless computing ecosystem.

In this paper, to fill this knowledge gap, we present a comprehensive literature review to explore the research scope
and depth of the serverless computing literature. Our literature review is based on the collected 164 research papers to
analyze and answer four key aspects, i.e., research directions, existing solutions, experimental setting and evaluation, and
publication venues. Specifically, first, we aim to construct a taxonomy for research directions of serverless computing to
provide a global literature overview. Our taxonomy contains 17 research categories covering performance optimization,
programming framework, application migration, cost, testing and debugging, etc. Second, we aim to provide an in-depth
analysis of existing solutions. We classify related studies of each research direction and elaborate on proposed solutions.
Third, we aim to explore how the existing solutions conduct the experimental setting and evaluation. We investigate
the distribution of experimental serverless platforms, the availability of experimental validation, and the availability
of experimental datasets or code. Fourth, we aim to show the distribution of publication venues for selected research
papers. Finally, we discuss open challenges and envision promising opportunities for researchers and practitioners
related to serverless computing. In addition, we offer the data for research papers selected in this study 1 as an additional
contribution to allow other researchers to replicate and update the results.

Fig. 1 shows the content structure of this paper. Section 2 introduces the related work. Section 3 summarizes the
background of serverless computing, including evolution, architecture, characteristics, existing serverless platforms,
and comparison with traditional software development. Section 4 presents our research methodology, including the
research questions, the collection of papers, and the construction of taxonomy. Sections 5, 6, 7, and 8 answer our
research questions based on the analysis of the collected papers. Specifically, Section 5 summarizes the research
directions in the serverless computing literature; Section 6 classifies and elaborates on existing solutions for each
research direction; Section 7 investigates the experimental setting and evaluation for solutions; Section 8 shows the
distribution of publication venues. Based on the aforementioned analysis, we discuss opportunities for researchers and
practitioners in Section 9 and Section 10, respectively. Finally, Section 11 concludes this work.

2 RELATEDWORK

There has been previous work that discussed different aspects of existing serverless platforms, including serverless ar-
chitecture design [165, 247], development features and limitations [77, 130, 253], technology aspects [270], performance

1https://github.com/WenJinfeng/Serverless_Survey
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Fig. 1. Tree structure of the contents in this paper.

properties of serverless platforms [171, 257, 258], etc. For instance, Li et al. [165] detailed the serverless architecture
by introducing the related concepts, pros, and cons and provided some architecture implications. Grogan et al. [130]
compared the supported development options (e.g., language, concurrency, memory allocation) and constraints (e.g.,
deployment package size and payload size) of different serverless platforms. Yussupov et al. [270] presented a compre-
hensive technology review to analyze and compare the ten most prominent serverless platforms from development,
event source, observability, access management, etc.

In addition to the aforementioned studies, there have also been efforts to focus on surveying research work targeted
at specific aspects, such as the cold start problem and scheduling policy [164] and resource management [183]. For
example, Mampage et al. [183] presented a comprehensive review on the aspect of resource management. They analyzed
and discussed the existing related work based on the proposed taxonomy. However, these studies cannot provide a
global overview of the current state-of-the-art in research, making the authors may give some wrong or already existing
discussions and prospects. Hassan et al. [134] presented a survey on research papers related to serverless computing.
This survey mainly showed statistical information about research papers, such as the number of published papers per
year, researcher distribution, and use cases, lacking the summary and classification of specific solutions. Overall, as far
as we know, no previous work has provided a comprehensive literature review focused on the current research scope
and in-depth analysis of specific solutions.

3 BACKGROUND

In this section, we introduce the background of serverless computing, including its evolution, architecture, key charac-
teristics, and mainstream serverless platforms. Moreover, we briefly summarize the differences between serverless-based
software development and traditional software development.
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3.1 Evolution of Serverless Computing

Cloud computing provides the ability of computation services via the Internet. According to the NIST definition [187],
traditional cloud computing has three service categories: “Infrastructure as a Service” (IaaS), “Platform as a Service”
(PaaS), and “Software as a Service” (SaaS). Specifically, IaaS allows software developers to configure and use computation,
storage, and network resources. For example, AWS provides a computation service like Elastic Compute Cloud (AWS
EC2) [10] and a storage service like Simple Storage Service (AWS S3) [11]. However, IaaS does not hide the operation
complexity of the application; thus, developers are still responsible for resource provisioning, runtime configuration,
application code management, etc. SaaS allows software developers to directly use the cloud provider’s applications,
such as Gmail [38] and Docs [37] provided by Google. SaaS completely hides the underlying operation complexity, but
use cases are limited. Moreover, developers completely lose control of the application. PaaS allows software developers to
develop, run, and manage applications using execution environments supported by cloud providers. For example, Google
provides the App Engine [34], while Azure offers the App Service [20]. PaaS compromises the operation complexity
between IaaS and SaaS, but software developers related to PaaS are still responsible for a part of the management and
configuration tasks, which may increase the complexity of development and deployment [248].

To ease the cloud management burden on software developers, cloud providers present a new paradigm, i.e., serverless
computing. Serverless computing is similar to PaaS [115, 242]; differently, it almost hides all complex management tasks
about underlying servers for developers, i.e., “server-less”, and it also allows developers to control their applications.
Moreover, serverless computing can automatically scale depending on the demand, while PaaS does not [145, 248].
Unlike PaaS, serverless computing cannot support long-running processes and stateful applications [82]. Nowadays,
there still is no clear-cut answer to the question of whether serverless can be considered the new-era PaaS.

Serverless computing-related applications (i.e., serverless applications) follow the microservice software style, which
decomposes the application into a subset of independent tasks. In practice, serverless computing and microservices
are closely related in certain aspects. For example, they are both dedicated to breaking a large monolith into small
pieces that can be independently developed, deployed, and managed. Execution units of the serverless applications (i.e.,
serverless functions) can be viewed as one way to host microservices. In the aspect of monitoring and management,
the more components contained in the application, the more moving pieces to keep track of, and the more robust the
monitoring and log management tools need to be. However, serverless computing is also different from microservices
as follows. First, the serverless function is a smaller granularity than the microservice, which may perform more than
one function. Second, constructing microservice-based applications still needs additional efforts from developers for
underlying tasks like scalability, fault tolerance, and load balancing, while the infrastructure provisioning of serverless
applications is taken care of by serverless providers.

3.2 Architecture of Serverless Computing

Serverless computing is an emerging and potential cloud computing paradigm, and its significant advantage is to free
software developers from the burden of complex and error-prone server management tasks. Serverless computing
provides “Backend as a Service” (BaaS) and “Function as a Service” (FaaS) [145]. Specifically, BaaS represents tailor-made
cloud services provided by cloud providers, e.g., cloud storage and notification services. These services can service FaaS
optionally to simplify the backend functionality development for developers. FaaS represents that developers can write
stateless, event-driven serverless functions, making them focus on the logic of serverless applications. Generally, FaaS
is the core of serverless computing, allowing developers to develop and control their applications.
Manuscript submitted to ACM
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Fig. 2. The development diagram on the serverless platform.

Software developers leverage the serverless platform provided by cloud providers to develop and execute their
serverless applications composed of multiple serverless functions and cloud services. As shown in Fig. 2, serverless
functions will be triggered by pre-defined events, e.g., HTTP requests, data updates of the cloud storage, and the arrival
of a notification. These events represent the developers’ requirements, and developers can define some rules to bind their
serverless functions with the corresponding events. When serverless functions are triggered, the serverless platform
automatically prepares required runtime environments, e.g., containers or virtual machines (VMs), to serve them.
These runtime environments are called function instances, and their preparation process generally contains instance
initialization, application transmission, application code loading, etc. After executions are complete, the serverless
platform will automatically recycle and release these function instances and the corresponding resources.

3.3 Key Characteristics of Serverless Computing

To better understand serverless computing, we introduce its key characteristics as follows. (1) Functionality and no

operations (NoOps): On serverless platforms, software developers can select appropriate and familiar languages (e.g.,
Python, JavaScript, and Java) to write the function-level code snippet to create serverless applications [114, 115].
Moreover, serverless platforms provide user-friendly integrated development environments (IDEs). For the deployment
of serverless applications, software developers only need to upload their application code to the serverless platform
without complex environment configurations. In addition, BaaS is the equivalent of off-the-shelf backend functionality.
Its related services can be directly used in the application by developers to replace similar backend functionalities.
Therefore, developers do not have to redevelop these functionalities and deal with server configurations [114]. (2)
Auto-scaling: Serverless platforms can automatically scale function instances horizontally and vertically according to
the application workload dynamics [134, 253]. Horizontal scaling is to launch (i.e., scale-in) new function instances
or recycle (i.e., scale-out) running ones, while vertical scaling is to add (i.e., scale-up) or remove (i.e., scale-down)
the amount of computation and other resources from running function instances. After completing requests, the
corresponding function instances and allocated resources will retain in memory for a short time to prepare to be reused
by subsequent requests of the same function. If there are no subsequent requests, these instances and resources will
be automatically recycled by the serverless platform, i.e., scaling to zero. However, scaling to zero makes incoming
new requests face the cold start problem, which takes a long time to prepare required runtime environments from
scratch. (3) Utilization-based billing: In serverless computing, software developers charge for the actually allocated or
consumed resources of the serverless application in the fine-granular execution unit [102, 167]. For example, AWS
Lambda’s pricing is related to the allocated memory, and Azure Functions considers the consumed memory. In addition,
serverless functions are event-driven; thus, they will not run without being triggered, and developers do not pay any
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cost. This feature eliminates the concern of paying for idle resources. In summary, the billing pattern of serverless
computing is relatively reasonable and inexpensive compared with traditional cloud computing, which requires always
renting and paying for resources in memory on standby. (4) Separation of computation and storage: Serverless computing
adopts the separation way of computation and storage [145], i.e., separately scaling and independently provisioning
and pricing. Generally, computation refers to stateless serverless functions, while storage represents cloud storage
services provided by cloud providers to store data from the serverless function. This separation way can ensure the
auto-scaling ability of the serverless platform for bursty workloads. (5) Additional limitations: Cloud providers set some
additional limitations for serverless functions to keep the vital auto-scaling feature of serverless platforms [77, 130].
Generally, these limitations contain function execution timeout, deployment package size, local disk size, memory
allocation maximum, etc. Moreover, different serverless platforms have different demands regarding these additional
limitations. The following section will list specific demands for some serverless platforms.

3.4 Serverless Platforms

Major cloud providers have rolled out their commercial serverless platforms, such as AWS Lambda [16], Microsoft Azure
Functions [22], and Google Cloud Functions [35]. However, these commercial serverless platforms hide the platform’s
underlying details and have a vendor lock-in problem for software developers. To address these restrictions, the serverless
computing field has presented some open-source serverless platforms, such as OpenWhisk [48], OpenFaaS [45], and
OpenLambda [47]. Their recognition and popularity are also due in part to the popularity of container orchestration
like Kubernetes [42]. These open-source serverless platforms are being actively maintained.

Next, we will introduce some mainstream serverless platforms.
AWS Lambda: AWS Lambda is the most widely mentioned serverless platform. Since it was released in November

2014, serverless computing has started to gain increasing attention, and other major cloud providers have followed this
trend by releasing their serverless platforms. AWS Lambda offers different interaction ways for developers, including
the command-line interface (CLI), HTTP-based application programming interface (API), and graphical user interface
(GUI). Moreover, software developers can use the related IDE plugins, e.g., Visual Studio (VS) and Visual Studio Code
(VS Code) [56], to access the platform through language-specific client libraries. The pricing of AWS Lambda is related
to function execution time (in increments of 1 millisecond [17]), allocated memory size, and the number of invocations.
In AWS Lambda, the function execution time, deployment package size, and memory allocation configuration are
limited. At the time our paper was written, its execution time limitation was 900 seconds, its deployment process
supported up to 250 MB uncompressed size and 50 MB compressed size, and its memory allocation can be configured
between 128 MB and 10,240 MB in the increment of 1 MB. For the observability of AWS Lambda, Amazon provides AWS
CloudWatch [9] and AWS CloudTrail [13] to monitor and log serverless functions. In addition, AWS Lambda provides a
serverless marketplace called AWS Serverless Application Repository (AWS SAR) [18] for application development
purposes. This marketplace contains some serverless functions or applications contributed by third-party teams.

Microsoft Azure Functions: Microsoft released its serverless platform Azure Functions in 2016. Azure Functions
offers various interaction ways like CLI, API, and GUI and uses related plugins for VS and VS Code [56] to access the
platform. The pricing model of Azure Functions is similar to AWS Lambda, but it relies on the consumed memory of
serverless functions. Moreover, the minimum execution time of billing is in increments of 100 milliseconds [23]. Azure
Functions uses the function app as the execution and management unit, which is still composed of several functions.
Azure Functions also has a function execution time limitation, e.g., 600 seconds at the time our paper was written.
Azure Functions has no deployment package limit and uses a flexible memory allocation, supporting 1,536 MB at most
Manuscript submitted to ACM
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Table 1. Feature Comparison of Serverless Platforms.

Features AWS Lambda
Microsoft
Azure
Functions

Google
Cloud
Functions

OpenWhisk OpenFaaS OpenLambda

Interface
ways

CLI/API/GUI CLI/API/GUI CLI/API/GUI CLI/API CLI/API/GUI CLI/API

Plugins
for IDEs VS/VS Code VS/VS Code Not available VS Code/X-

code
Not avail-
able

Not available

Billing model Execution time
and allocated
memory

Execution
time and
consumed
memory

Execution
time and
allocated
memory

Execution
time and
allocated
memory

Unknown Unknown

Timeout
limitation 900 seconds 600 seconds 540 seconds 600 seconds 30 seconds Unknown

Package size
limitation

250 MB (un-
compressed)
and 50 MB
(compressed)

No limit 500 MB (un-
compressed)
and 100 MB
(compressed)

48 MB (un-
compressed)

Unknown Unknown

Memory
allocation From 128 MB to

10,240 MB
1,536 MB 128, 256, 512,

1,024, 2,048,
and 4,096 MB

From 128 MB
to 2,048 MB

Unknown Unknown

Observability AWS Cloud-
Watch, AWS
CloudTrail

Azure Ap-
plication
Insights

Google Cloud
Operations

External
tools

External
tools

External
tools

Serverless
marketplace

AWS Serverless
Application
Repository

Azure Market-
place

Not available Not available OpenFaaS
Function
Store

Not available

at the time our paper was written. Microsoft uses Azure Application Insights [21] to provide the observability of Azure
Functions. In addition, Azure Functions adopts three hosting plans: consumption, premium, and dedicated plans for
serverless applications. For the marketplace, Microsoft provides a general-purpose Azure Marketplace [25] to include
serverless applications.

Google Cloud Functions: In 2017, Google released its serverless platform, i.e., Google Cloud Functions. Like AWS
Lambda and Microsoft Azure Functions, Google Cloud Functions supports various interaction ways like CLI, API, and
GUI. However, Google Cloud Functions has no related plugins for IDEs to access the platform. The pricing model of
Google Cloud Functions is related to provisioned memory and CPU. Similarly, Google Cloud Functions has limitations
regarding the function execution time, deployment package size, and memory allocation size. For example, at the time
our paper was written, the function execution time limitation was 540 seconds. The deployment size had a 500 MB
uncompressed size limit and a 100 MB compressed size limit. Developers can assign fixed memory values like 128 MB,
256 MB, 512 MB, 1,024 MB, 2,048 MB, and 4,096 MB. Google offers its Operation suite (i.e., Google Cloud Operations [36])
to achieve observability. In addition, Google does not provide a marketplace of serverless applications, but it has some
code samples to guide the development process.

OpenWhisk: Apache OpenWhisk is an open-source serverless platform developed and maintained by IBM and
Apache. It was released in 2016. Moreover, IBM Cloud Functions is based on OpenWhisk. In OpenWhisk, it combines
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several key technologies, e.g., Nginx [44], CouchDB [28], Kafka [41], and Docker [32]. Function invocations can be
transformed as HTTP requests and imported into the Nginx server that supports Web protocol. The Nginx server pushes
the request to the controller, which collaborates with the CouchDB that stores the data of the application. The controller
and underlying worker nodes rely on Kafka, a publish-subscribe messaging system, to communicate. Kafka can receive
messages from the controller to confirm the invoked worker node. For the programming model of OpenWhisk, actions,
triggers, and rules are primary concepts. Specifically, actions represent functions to be executed, triggers are predefined
events, and rules refer to the binding description between actions and triggers. In addition, OpenWhisk offers CLI and
API interactions and supports local development and cloud environment development. Developers can leverage IDEs
like VS Code [56] and Xcode [61] to connect OpenWhisk. The billing model of OpenWhisk relies on execution time and
allocated memory that actions use. Each action has a default execution timeout limit of 600 seconds. The maximum
code size for an action is 48 MB. The memory size can be set in the range of 128 MB to 2,048 MB. OpenWhisk relies on
external tools for monitoring, e.g., Prometheus [50]. In OpenWhisk, there is no marketplace for serverless applications.

OpenFaaS: OpenFaaS is a project developed by Alex Ellis in 2016. The underlying system of OpenFaaS is based
on Docker [32] and Kubernetes [42]. OpenFaaS can be deployed in public or private clouds, even in edge devices, due
to its lightweight. In OpenFaaS, developers can use CLI, API, and GUI to implement interaction operations, but no
related development IDEs. Generally, developers utilize CLI to communicate with the OpenFaaS gateway. This gateway
connects an external function monitor tool called Prometheus [50], which records values of function-related metrics.
In addition, OpenFaaS also supports workflow orchestration with synchronous and asynchronous function chains,
parallelism, and branch. The default timeout of OpenFaaS is 30 seconds. OpenFaaS has an OpenFaaS Function Store [46]
as its marketplace.

OpenLambda: OpenLambda is an Apache-licensed open-source serverless platform. This platform is based on
Linux containers. In OpenLambda, developers need to upload their functions to the code store or function registry.
When a serverless function is triggered, requests are sent to the load balancer component. This component can select
appropriate workers leveraging the configured algorithm to serve requests. Function scheduling in OpenLambda is
performed by the Nginx software load balancer. OpenLambda supports Docker containers and lightweight SOCK
containers [197]. Moreover, OpenLambda offers CLI and API interactions for coordination with a variety of backends.
Similarly, some external monitoring tools can also be utilized in OpenLambda for observability.

For these serverless platforms, CLI and API are common interface types to establish programmatic access. Except for
Google Cloud Functions, other platforms support the development and deployment of the custom container image. This
deployment way allows developers to use any programming language and heavy third-party library to avoid potential
language and deployment package size limits. However, it also increases the additional burden of container management
efforts, such as interface requirements and container interaction. For commercial serverless platforms, the corresponding
cloud providers offer tailor-made monitoring and logging services to observe serverless functions. However, open-source
serverless platforms generally integrate external tools to achieve the observability of serverless functions. In addition,
commercial serverless platforms natively offer access management for authentication and resource, while open-source
serverless platforms rely on only the hosting environment to implement the related access management.

3.5 Comparison with Traditional Software Development

Serverless-based software development differs from traditional software development in many aspects. Traditional
software development generally has two types: non-cloud-based software development and cloud-based software
development. In this section, we compare their differences with serverless-based software development from multiple
Manuscript submitted to ACM



Rise of the Planet of Serverless Computing: A Systematic Review

aspects, as shown in Table 2. Note that cloud-based software development mainly refers to software development based
on the IaaS pattern in our work.

Table 2. Comparison between serverless-based software development and traditional software development.

Features Non-cloud-based
software development

Cloud-based
software development

Serverless-based
software development

Server
management Full management tasks Partial management tasks No management tasks

Functionality
implementation

Implement all functionalities
from scratch
Low efficiency

Implement partial functionalities
from scratch
Median efficiency

Write event-driven code
Use BaaS to simplify
High efficiency

Invocation
pattern Client-side calls Client-side calls Event triggers

Execution
limitations

Uncertain limitations,
depending on server capacity

Controllable limitations,
depending on rented resources Fixed inherent limitations

Execution
place

Local Cloud Cloud

Performance
Always activated
No cold starts
No flexibility

Configurably activated
No cold starts
Flexibility

Activated only if triggered
Cold starts
Flexibility

Cost
Pay for everything
Long development time
Long market release time

Pay for rented resources
Accelerable development time
Accelerable market release time

Pay for actually allocated
or assumed resources
Short development time
Short market release time

Tool maturity High Median Low

Server management: In non-cloud-based software development, developers need to coordinate and maintain
various components and implement all server-side functionalities [115, 194]. Moreover, developers endure a high failure
rate for physical servers [63]. In addition, server resources are not guaranteed to be optimally utilized. In cloud-based
software development, developers can rent the required resources from the cloud without having to purchase physical
servers [10]. This way reduces part of the server maintenance, but developers still need to coordinate components of
the server side. In serverless-based software development, developers almost do not manage complex server tasks,
focusing only on application logic. Therefore, the serverless application will require fewer engineers related to the
operation, maintenance, and resource management.

Functionality implementation: In non-cloud-based software development, developers go through a complex
process. First, developers select a technology stack and development framework. Then, they configure the local
development environment and prepare the required resources. Moreover, developers need to implement complex
backend functionalities themselves [52]. Therefore, this way is relatively inefficient. In cloud-based software development,
developers have complete control and configuration over all aspects of the cloud infrastructure and applications, which
obtains greater development efficiency. However, this kind of development still requires time and effort to determine
how to set up and secure [60]. In serverless-based software development, the application can be designed as a set of
event-triggered serverless functions and optional cloud services. Serverless functions are short-lived and stateless.
Cloud services like cloud storage may be required to save data of serverless functions. Moreover, services contained in
BaaS help developers simplify the development of backend functionalities.
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Invocation pattern: Invocations in traditional software development are dependent on client-side calls from the
software developer. Moreover, this way involves a complex server process [63, 194]. In serverless-based software
development, invocations of applications rely on the developer’s predefined events, and the invocation process is
automatic [145, 248].

Execution limitations: In non-cloud-based software development, the execution limitations have a high degree
of uncertainty because they depend on the capacity of their servers [52]. In cloud-based software development, the
execution time is within the lease time of the resources. Moreover, as long as the developer rents enough resources,
there are generally no execution limitations [88]. In serverless-based software development, the application has inherent
execution limitations, including function execution timeout, confined memory size, restricted local disk size of instances,
etc [248].

Execution place: In non-cloud-based software development, applications are executed in the limited local environ-
ment of developers[27]. In cloud-based and serverless-based software development, applications can be executed in the
cloud environment with enough resource provision [194, 242].

Performance: For non-cloud-based software development, runtime environments are always in the active condition
to respond to application requests immediately. However, this will waste too many resources when there are no
requests. Moreover, the local environment may be hard to handle workloads with variable requirements, thereby
lacking flexibility [27, 52]. In cloud-based software development, the rented resources can always keep activated to
serve the application execution, which has no cold start problems for application executions. Moreover, developers can
flexibly select resources’ ability and configure resources’ service time. In serverless-based software development, the
serverless provider is responsible for runtime environment management. The advantage of this kind of unified resource
management is to respond to any bursty workload. These runtime environments are activated when applications are
triggered. When required environments are not active, applications may face the cold start problem, which introduces a
long preparation time. There have been a lot of efforts to alleviate this problem [67, 92, 107, 197, 252, 282].

Cost: In non-cloud-based software development, developers pay for everything, such as physical server purchase and
installation, as well as the cost of maintenance-related engineers [52, 115]. Moreover, non-uniform architecture and low
product maturity make application development time longer and market release time slower [27]. In addition, once the
application is deployed successfully to the server, the server will be “always-on”, and developers have to pay for it [63].
However, in cloud-based software development, developers pay for the service time of leased resources. Since this
development can simplify the server preparation by renting resources, it also speeds up development efficiency for the
developer and market release time of the application compared to non-cloud-based software development. In serverless
computing, software developers pay for only actual resources allocated or consumed by applications [116]. Moreover,
developers do not manage complex underlying tasks, saving a lot of application development time and market release
time.

Tool maturity: For non-cloud-based software development, some functionalities like testing and debugging can be
freely designed and evaluated based on the local environment. Furthermore, the relevant tools are already well-grounded
in the software engineering research community [31]. Before the concept of serverless computing emerged, research
related to traditional cloud computing had been conducted for more than a decade [86, 207]. Therefore, in cloud-based
software development, there are already some tools to help automate its development process [54, 103]. However,
serverless computing is an emerging paradigm of cloud computing. Existing serverless platforms lack rich support
tools, such as testing and debugging [163]. The reason may be that the event-driven, distributed, and platform detail
masking features make the application architecture more complex and the execution flow harder to reproduce.
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4 METHODOLOGY

A systematic literature review is a means of evaluating and interpreting all available research relevant to a topic
area [148]. Following Kitchenham’s standard guidelines [148], we conduct the following review protocol in this section.

4.1 ResearchQuestions

To better understand the research scope and depth of the current research state for the serverless computing field, we
aim to focus on the following four research questions.

RQ1 (Research directions):What research directions have been investigated in the serverless computing literature?

This research question aims to investigate the research goal of existing studies and provide an overview of research
directions about serverless computing.

RQ2 (Existing solutions): How do existing studies tackle specific problems for each research direction? This research
question aims to understand how existing work tackles research problems in each research direction. We classify the
related studies of each research direction and dissect the solutions to problems associated with each research direction.

RQ3 (Experimental setting and evaluation): How do the existing solutions perform experimental setting and

evaluation? This research question aims to explore three sub-research questions related to experimental setting and
evaluation as follows:

• RQ3.1:Where are the existing solutions implemented/evaluated? This sub-research question aims to investigate
which serverless computing platforms existing techniques are implemented or evaluated on.

• RQ3.2: Did the existing solutions have experimental validation? This research question aims to investigate whether
the presented solutions are validated by experimental evaluation.

• RQ3.3: Did the existing studies provide the shared experimental dataset or code? This research question aims to
explore the reproducibility of the existing solutions. We investigate whether the experimental datasets or code is
shared and whether it is still accessible.

RQ4 (Publication venues):Where are the research papers published? This research question aims to investigate
which venues existing serverless computing-related papers are published in.

4.2 Paper Collection

To answer these research questions, we collect relevant published research papers about serverless computing. In this
section, we describe our paper collection criteria. We search the related research papers by defining keywords on
the widely adopted engines and databases. Then, we determine the corresponding selection rules to collect the final
research papers of the literature review for analysis. The specific paper collection process of our methodology is shown
in Fig. 3.

Search String

1. ACM Digital Library
2. IEEE Xplore
3. Google Scholar
4. Elsevier ScienceDirect
5. Scopus
6. SpringerLink
7. DBLP Computer Science 

Bibliography

(serverless OR FaaS OR function as a service OR
function-as-a-service) AND (computing OR
paradigm OR architecture OR model OR application 
OR service OR platform OR programming)

398 papers Inclusion and exclusion 118 papers

Snowballing

164 papers

L
iterature Sources

Initial Result

+ 46

Fig. 3. The paper collection process of our methodology.
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4.2.1 Literature sources. In our study, seven standard online engines or databases [134, 172, 231, 254, 270] are selected
as literature sources. These sources contain (1) ACM Digital Library, (2) IEEE Xplore, (3) Google Scholar, (4) Elsevier
ScienceDirect, (5) Scopus, (6) SpringerLink, and (7) DBLP Computer Science Bibliography.

4.2.2 Search string. To collect the research papers related to serverless computing, we follow the previous work [134,
172] to define the extensive search string and then apply it to literature sources. We define the keywords through a
trial-and-error procedure performed by the first two authors and a discussion among all the authors. The final keywords
used for searching contain (serverless OR FaaS OR function as a service OR function-as-a-service) AND (computing OR
paradigm OR architecture OR model OR application OR service OR platform OR programming). Similarly, this search
string is applied in our study to crawl research papers from the literature sources on January 1, 2022. In this situation,
we collect research papers published between November 2014 (AWS release time) and January 1, 2022. In this process,
we obtain 398 research papers in total.

4.2.3 Inclusion and exclusion criteria. We formulate the inclusion and exclusion criteria to effectively filter and select
relevant research papers on serverless computing.

A paper is retained when satisfying all inclusion criteria. The finalised inclusion criteria are as follows: (1) Publications
that belong to serverless computing; (2) Publications that address and present the corresponding design solutions,
algorithms, optimization approaches, or general ideas in terms of specific aspects of serverless computing; (3) Publications
that are written in English.

A paper is removed when satisfying one of the exclusion criteria. The finalised exclusion criteria are as follows: (1)
Publications that are the benchmark suite; (2) Secondary or tertiary studies, e.g., empirical studies, literature reviews,
and surveys; (3) Publications that are not available or full text because they cannot provide complete information;
(4) Publications that are bachelor, master, or doctoral dissertations; (5) Pre-printed studies that are submitted to the
arXiv website. After the paper screening, exclusion, and duplicate removal, we end up with 118 initial relevant research
papers.

4.2.4 Snowballing. Based on the initial papers, we apply the commonly used snowballing process [134, 166, 254, 275] to
increase the set of relevant research papers. The snowballing includes two steps: forward snowballing, which analyzes
the references in each collected paper, and backward snowballing, which searches for other relevant papers from those
that cite the collected papers. We repeat the snowballing process until no new relevant papers are identified. In this
phase, we add 46 research papers to our paper list. As a result, we obtain 164 research papers in total for our literature
review.

4.3 Taxonomy construction

To provide an overview of research directions about serverless computing (i.e., RQ1), we aim to construct the taxonomy
of research directions. We follow the standard open coding procedure [223], which has been widely adopted in empirical
software engineering research [98, 126, 138, 174, 256], to construct the taxonomy and ensure its reliability. Next, we
illustrate the detailed process.

We randomly sample 70% of research papers to construct the initial taxonomy of research papers. We adopt an open
coding procedure [223] to analyze selected research papers, in order to inductively create categories and subcategories
of the taxonomy in a bottom-up way. The first two authors jointly participate in the taxonomy construction, and
they read research papers over and over again to understand the research objectives. In this process, the Abstract,
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Introduction, Related Work, and Conclusion sections of all research papers are taken into account for careful inspection
to determine their research goals.

The procedure of open coding is as follows. The authors give short phrases to represent research directions and then
continue to group similar short phrases into categories and establish a hierarchical taxonomy of research directions. In
the process of grouping categories, the authors repeatedly iterate between categories and research papers. If research
papers are associated with more than one category, they are assigned to all relevant categories. If the authors have
conflicts over labeling research directions, they introduce a third arbitrator, who has ten years of cloud computing
experience, to discuss and resolve these conflicts. Through such a rigorous procedure, research directions of all research
papers come to an agreement, and all the participants confirm the final label result, i.e., the initial taxonomy.

Next, we perform the extended construction of the taxonomy of research directions. The remaining 30% of research
papers are independently labeled by the first two authors based on the initial taxonomy. Each research paper is marked
with the leaf categories of our taxonomy. For research papers that cannot be classified into the current taxonomy, they
are placed in a new category named Pending. To calculate the inter-rater agreement during the independent labeling,
we use Cohen’s Kappa (𝜅) [101] as the evaluation. The value of the inter-rater agreement is 0.849, indicating an almost
perfect agreement [158] and reliable labeling procedure. Then, the first two authors and the third arbitrator discuss and
resolve existing conflicts. Moreover, the third arbitrator assists in identifying research papers that are temporarily in
the Pending category. As a result, all research papers can be assigned to our taxonomy.

Taxonomy construction approach discussion. There are mainly two kinds of taxonomy construction approaches
(i.e., automatic construction and manual construction) [170, 238]. Automatic construction approaches, including topic
modeling, are generally applicable to datasets with large sample sizes [170, 225]. In our study, the number of selected
research papers is only 164, which is not sufficient to produce reliable clustering and modeling results. In addition, the
taxonomy generated by the automatic construction approach may not be orthogonal. In this paper, we aim to provide
orthogonal categorization of existing research directions. Therefore, we use manual construction instead. These can
explain why almost all the recent surveys [133, 166, 184, 189, 200] also use manual construction.

5 RQ1 (RESEARCH DIRECTIONS)

As shown in Fig. 4, we construct a taxonomy linked to research directions of serverless computing for selected research
papers. Note that a research paper may belong to two or multiple research directions. For example, the work presented
by Cordingly et al. [102] addressed the prediction problem of both application performance and cost because the
cost is closely associated with the performance of the serverless application. Therefore, this work is assigned to the
“Performance Prediction” research direction and “Cost Prediction” research direction.

Our taxonomy includes 11 root categories of research directions represented in the black box, such as “Resource
Management (22)” and “Performance (67)”. The number in parentheses indicates the number of papers that investigate
the corresponding research direction. For example, 22 papers address the resource management problem. In addition,
the boxes with colors (e.g., blue, orange, and grey) represent sub-research directions under a particular research
direction scope. For instance, the research direction “Performance” contains two sub-research directions represented in
the blue box: “Performance Prediction” and “Performance Optimization”. The sub-research direction “Performance
Optimization” includes two smaller research directions represented in the orange box: “Cold Start Performance” and
“Runtime Performance”. Furthermore, “Runtime Performance” is still divided into two smaller research directions
represented as the grey box, i.e., “Function Execution” and “Function Communication”. Non-divisible research directions
are leaf categories. In total, there are 17 non-divisible research directions in this taxonomy.
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Research Directions on Serverless Computing (164)

Specific 
Framework (19)

General 
Framework (13)

Performance 
Prediction (7)

Performance 
Optimization (60)

Function 
Communication (18)

Function 
Execution (8)

Runtime 
Performance (26)

Cold Start 
Performance (34)

Cost 
Prediction (4)

Cost 
Optimization (10)

GPU Support 
(2)

Multi-Cloud 
Development (3)

Resource 
Management (22)

Programming 
Framework (32)

Performance
(67)

Stateful FaaS
(8)

Application 
Modelling (7) Cost (14) Security (5)Application 

Migration (10)

FPGA Support 
(2)

Accelerator
Support (4)

Testing and 
Debugging (2)

Fig. 4. A taxonomy of research directions in the serverless computing literature.

Next, we explain our taxonomy in detail. First, studies related to “Performance” are the most, accounting for 40.85%
(67/164) of all papers in this taxonomy. These studies contain 10.45% (7/67) “Prediction Prediction” and 89.55% (60/67)
“Performance Optimization”. Specifically, the performance of serverless platforms or applications affects resource
utilization or developers’ experience, respectively. Moreover, performance variance affects cost. Therefore, some studies
have targeted the performance prediction of platforms or applications. However, most performance efforts are made on
performance optimization, including 56.67% (34/60) “Cold Start Performance” optimization and 43.34% (26/60) “Runtime
Performance” optimization. For the cold start performance, it refers to the overhead generated by the cold start process.
When there are incoming requests, serverless platformswill automatically prepare the runtime environment from scratch
to serve serverless functions, i.e., cold starts. This process needs to prepare instance initialization, application runtime,
application code preparation, etc., and thus introduce undesired latency for requests and affect the user experience. For
the runtime performance, it refers to the execution overhead of serverless functions (i.e., “Function Execution”, 30.77%
(8/26)) and communication overhead between serverless functions (i.e., “Function Communication”, 69.23% (18/26)).
The function execution overhead represents the time of executing the actual functionality of serverless functions, not
the end-to-end response time of a request. For the function communication overhead, it is due to the stateless feature of
serverless functions. Current serverless platforms do not provide a mature point-to-point communication mechanism
between serverless functions via the network. Generally, developers leverage cloud storage services like AWS S3 [11]
to save data of serverless functions for intermediary state management. In this situation, serverless functions need
to keep fetching the required data in external services to accomplish the collaboration of functions, thus producing a
high-latency communication overhead.

Second, in our taxonomy, the second-largest research direction in proportion is “Programming Framework” (19.51%
(32/164)). Serverless computing is an emerging cloud computing paradigm, and thus it may not fully support applications
with unique type requirements or no type requirements. Therefore, related researchers have designed specific (i.e.,
“Specific Framework”, 59.38% (19/32)) programming frameworks or generic programming frameworks (i.e., “General
Framework”, 40.63% (13/32)) to adapt to the corresponding requirement.

Third, our taxonomy shows that studies related to “Resource Management” account for the third-largest percentage,
i.e., 13.41% (22/164). In serverless computing, resource management aims to manage the resource requirements of
serverless applications and ensure the resource efficiency of serverless platforms. Better resource management will
more easily make serverless platforms and applications achieve service-level agreements.

In addition, our taxonomy contains eight other research directions: “Stateful FaaS” (4.88% (8/164)), “Application
Modelling” (4.27% (7/164)), “Application Migration” (6.10% (10/164)), “Cost” (8.54% (14/164)), “Multi-Cloud Development”
(1.83% (3/164)), “Accelerator Support” (2.44% (4/164)), “Security” (3.05% (5/164)), and “Testing and Debugging” (1.22%
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(2/164)). The specific illustration is as follows. “Stateful FaaS”: Serverless functions are developed in a stateless way.
However, supporting the stateful feature in serverless applications can fulfill a broader range of workloads. Therefore,
some efforts have aimed to design stateful serverless computing. “Application Modelling”: Serverless applications follow
a new development paradigm. Therefore, it may be limited in the expression of the serverless application. Some studies
have addressed the application modelling problem to clearly show the specific representation and dependency for
serverless applications. “Application Migration”: The prevalence and popularity of serverless computing make more and
more legacy applications migrate to the serverless platform to enjoy its advantages like low cost and high scalability.
This migration process corresponds to the application migration research direction of the serverless computing literature.
“Cost”: Major serverless platforms adopt a unique cost pattern, i.e., utilization-based billing. The cost is closely related to
the execution time of the serverless function, allocated or consumed memory size, and the number of invocations. Some
researchers have explored how to predict and optimize the cost of serverless functions or applications based on these
factors and possible impact factors. “Multi-Cloud Development”: Generally, software developers select a fixed serverless
platform to develop their applications. However, different cloud providers offer various features for their serverless
platforms. Using multiple clouds will allow application development and execution to enjoy more benefits. Therefore,
some studies have made efforts toward the multi-cloud development of serverless computing. “Accelerator Support”:
Serverless platforms mainly provide the CPU resource-dominated runtime environment. Therefore, software developers’
applications cannot use other accelerators like Graphics Processing Unit (GPU) and Field Programmable Gate Arrays
(FPGA) hardware resources. However, more and more tasks like machine learning and deep learning require leveraging
such hardware resources to accelerate their performance. In this situation, how to design accelerator-enabled serverless
computing is essential to facilitate wide application availability. “Security”: When using serverless computing, the
serverless platform and application details are agnostic to each other. This situation also leads software developers and
cloud providers to distrust each other. Some security problems have been investigated in the serverless computing
literature. “Testing and Debugging”: Similar to traditional software applications, serverless-related developers are also
required to test and debug their serverless applications. Testing and debugging play a vital role in the software quality
assurance of serverless applications. However, serverless computing hides the underlying system implementation for
software developers. Moreover, serverless functions contained in applications are independent and event-driven. These
features make testing and debugging challenging so that developers cannot determine the application’s correctness.

6 RQ2 (EXISTING SOLUTIONS)

To answer the research question of how existing studies tackle specific problems for each research direction, the first
two authors read the entire content of the research paper over and over again and then write the research summary
together. The first two authors classify related studies of each research direction according to summaries. Next, we
elaborate on the solutions to problems associated with each research direction.

6.1 Resource Management

In serverless computing, resource management is responsible for allocating the proper resource provision for serverless
functions and scheduling serverless functions on appropriate function instances. This process guarantees software
developers’ and cloud providers’ quality of service (QoS) requirements. The QoS goal of software developers is related
to the serverless application’s performance, cost, security, etc. In contrast, the QoS goal of cloud providers is associated
with the serverless platform’s resource utilization, load balancing, throughput, etc. Existing studies have tried to improve
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resource management from four kinds of solutions, including platform QoS requirement, dynamic resource adjustment,
application characteristic, and architecture design. A summary of studies on resource management is shown in Table 3.

• Platform QoS requirement: From the cloud provider’s perspective, achieving efficient resource utilization is
critical in reducing resource waste. Therefore, some studies have considered managing the resource by measuring the
QoS of the serverless platform. A QoS-aware resource manager can satisfy the QoS enforcement while maximizing
the overall resource utilization of the serverless platform. HoseinyFarahabady et al. [136, 137] leveraged the model
predictive controller to present the QoS-aware controller with feedback to guarantee the well-utilization of computation
resources, the response time of processing events, and the QoS demand level for serverless functions. However, their
studies have not considered the effect of the number saturation of the working thread. To address this problem, they
presented a controller that can adjust the number of working threads for each QoS class [154]. This controller used a
QoS violation index to determine the required resources, not the prediction module of the previous work [136, 137].

Tariq et al. [245] first conducted a measurement study to uncover existing serverless platforms’ problems. They
found inconsistent and incorrect concurrency limits, difficulty supporting bursty workloads, and inefficient resource
allocation. To alleviate these problems, they introduced an effective QoS scheduler called Sequoia to realize a variety of
flexible policies. Yuvaraj et al. [272] and Schuler et al. [222] found that inconsistent and runtime limitations (such as
scalability and concurrency) to present resource management framework based on reinforcement learning.

Solutions based on the platform QoS requirement consider the overall serviceability of platforms. In the long term,
serverless platforms can benefit from this kind of solution. However, for user experience, this solution relies on the
factor granularity that may be coarse and does not adjust for task types of developers.

• Dynamic resource adjustment: Efficient and flexible resource management can handle various serverless
workloads with different resources and latency requirements. Moreover, it can minimize cloud providers’ costs. Some
studies have considered how to dynamically adjust resources like CPU in the serverless platform. A potential way is to
analyze history runtime data. For example, Kim et al. [153] presented a fine-grained CPU cap controller to dynamically
adjust CPU usage limit according to the performance requirement similarity of serverless applications. This adjustment
can minimize resource contention, improve the robustness of the controller, and thus reduce performance degradation.
Similarly, function-level schedulers [240, 241] were presented to analyze the resource consumption and lifetime of
serverless functions and then classify and schedule serverless functions. Meanwhile, these schedulers can dynamically
adjust the CPU-share resources of containers for serverless functions. In addition, Mampage et al. [182] considered the
application deadline to adjust and manage the CPU resource and minimize the cloud provider’s cost.

However, some applications may be complex since their consumed resources could vary with workload demands.
Stronger resource management is essential for applications like big data analytics. Leveraging real-time, precise resource
monitoring and feedback may be a possible solution. Enes et al. [119] presented such a real-time approach. This
approach relied on the operating-system-level virtualization to dynamically change provided resources via cgroups and
kernel-backed accounting features. In addition, Yu et al. [266] presented a new serverless resource manager to make
full use of idle resources. This manager used an experience-driven algorithm to estimate the resource saturation point
for the serverless function and then dynamically decided to harvest or offer resources for this serverless function.

Dynamic resource adjustment can change fine-grained resource allocation in a real-time way, showing high flexibility.
However, the above studies have mainly focused on CPU resource adjustment, lacking the management and adjustment
for other resources. In practice, a serverless application has different CPU, memory, and I/O usage requirements.
Considering various resources in resource management can further improve overall performance and utilization.
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• Application characteristic: Some studies have considered application characteristics to design the corresponding
resource management strategies. Application characteristics help to get the corresponding prediction models. For
example, some studies [105, 216] have analyzed the function execution history and network latency of serverless
functions to predict the right memory consumption or function placement.

A serverless application can be viewed as a workflow. Existing serverless platforms may launch multiple containers
to serve multiple serverless functions contained in the workflow, causing resource over-provisioning. In this situation,
Bhasi et al. [87] presented a resource management framework called Kraken, which captured the workflow characteristic
and invocation probability to estimate the number of containers provided and ensure the application performance. An
application workflow may also have a workflow execution deadline. A scheduling algorithm should consider this factor
and meet the constraint cost. Therefore, serverless deadline-budget workflow scheduling algorithms [149, 181, 201] were
presented. These algorithms used a set of heuristic rules to process the workflow graph and assign the corresponding
resources. Palma et al. [199] was a novel scheduling idea. It provided a kind of declarative language for developers
to describe the application requirements, such as expected scheduling policy and performance goals. The underlying
scheduler can understand these requirements to select the appropriate instances.

The above studies have mainly maximized resource utilization. However, considering the billing model of serverless
functions, resource management should also evaluate the task execution cost related to aggregated runtimes. Inter-task
scheduling requires minimizing both cost and task completion time. It is hard to trade off between cost and completion
time since a short completion time means large allocated memory that causes a high pricing unit. A fine-grained
task-level scheduler, Caerus [274], was presented to address this problem by on-demand invoking functions. Caerus
used a step dependency model to model and schedule pipeline-able and non-pipeline-able dependencies across tasks.

These studies have considered different application characteristics, including memory consumption, function ex-
ecution time, workflow graph, function invocation probability, budget, etc. These characteristics are captured by
analyzing the history information or describing specific requirements. A concern is that there is an information gap
between developers, applications, and providers. Some serverless platforms hide the complexity of dynamically changing
infrastructure for developers, and the underlying changes are uncertain, affecting application features.

• Architecture design: Existing scheduling policies have been basically coarse-grained and may not suitably satisfy
the bursty, stateless, and short-lived applications. In this situation, Kaffes et al. [146] presented a new scheduling
architecture with a centralized core-granular scheduler. Core granular can directly assign functions to individual cores,
guaranteeing performance stability. Centralized design can maintain a global view of the cluster to manage cores and
resources and eliminate the migration of heavy functions. However, this scheduling architecture design considered
only the CPU resource allocation.

In serverless platforms, they adopt the strategy of over-provision resources for serverless applications to guarantee
the application QoS. However, developers still pay for only resources that their applications actually consume. This
kind of resource provision way is not friendly for cloud providers of serverless computing. In this situation, a new
architecture may be required to maximize the cloud provider’s benefits. Zhang et al. [279] leveraged Harvest VMs to
design a new architecture. Harvest VMs is a faster, cheaper alternative than VMs. The authors leveraged a series of
measurement results to illustrate the suitability of Harvest VMs in serverless computing. Meanwhile, these results also
guided the architecture design with Harvest VMs.

Designing new schedulers or resource environments can solve the problem fundamentally. However, this kind of
solution inherently requires extensive engineering efforts to modify the underlying resource management strategies.
Moreover, problems with security mechanisms are also addressed additionally.
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Table 3. A summary of studies on resource management.

Study Solution Used strategya Considered factorb

HoseinyFarahabady et
al. [136, 137]

Platform QoS requirement Prediction model Resource utilization

Kim et al. [154] Platform QoS requirement QoS violation index Number saturation of work-
ing threads

Tariq et al. [245] Platform QoS requirement Flexible policies Concurrency limits
Yuvaraj et al. [272] and
Schuler et al. [222]

Platform QoS requirement Reinforcement learning Scalability/concurrency

Kim et al. [153] and
Suresh et al. [240, 241]

Dynamic resource adjustment Runtime data analysis Performance requirement;
Resource consumption and
lifetime

Mampage et al. [182] Dynamic resource adjustment Heuristic algorithm de-
sign

Application deadline

Enes et al. [119] Dynamic resource adjustment Resource monitoring and
feedback

Consumed resources

Yu et al. [266] Dynamic resource adjustment Experience-driven algo-
rithm design

Resource saturation point

Saha et al. [216] andDas
et al. [105]

Application characteristic Prediction model Function execution history,
network latency

Bhasi et al. [87] Application characteristic Estimation of number of
containers

Workflow graph and invo-
cation probability

Related stud-
ies [149, 181, 199, 201]

Application characteristic Heuristic rules Execution deadline, ex-
pected scheduling policy,
and performance goals

Zhang et al. [274] Application characteristic Step dependency model Task dependency
Kaffes et al. [146] Architecture design Centralized core-granular

scheduler
Performance stability and
maintainability

Zhang et al. [279] Architecture design Load balancer Harvest VMs
a The approach adopted or used by the given solution
b The factor considered in the approach used

6.2 Performance

6.2.1 Performance Prediction. For studies related to performance prediction, regression model-based prediction and
statistical learning-based prediction are two common solutions. A summary of studies on performance prediction is
shown in Table 4.

• Regression model prediction: Some studies have tried to train the regression model about performance by
considering several affected factors. Cordingly et al. [102] thought about the performance prediction problem from the
perspective of system resource usage. They generated the regression model for each serverless function to predict its
runtime performance (e.g., CPU user mode time, CPU kernel mode time). This model considered the CPU heterogeneity
of the serverless platform and memory settings. However, this approach trained the corresponding model for each
serverless function; thus, this process may take a long time. Therefore, Eismann et al. [111] presented an approach
called Sizeless that did not require dedicated performance learning. Sizeless designed an offline phase, which monitored
some synthetic functions and collected the resource consumption data (e.g., system CPU time, bytes received) for all
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memory sizes. Based on the collected data, Sizeless trained the multi-target regression model to predict the execution
latency in all memory sizes for a real function.

However, these approaches above targeted only independent serverless functions, not serverless applications with
multiple serverless functions and complex structures. Moreover, obtained performance models did not consider function
features such as task type and input parameter size.

• Statistical learning prediction: Another kind of approach is to consider statistical learning to predict the
performance of serverless platforms, functions, or applications. Some studies [128, 178, 179] have aimed to predict the
performance of serverless platforms. Prediction models were presented to create performance-driven and predictive
serverless platforms. These models considered some key parameters, such as the cold start rate, cold start latency,
arrival rate of warm instances, and instance expiration rate, to the original system with the Markovian arrival process.
Obtained platforms can decrease resource waste and guarantee the QoS of serverless applications.

Other studies have aimed to predict the response time of serverless functions or applications. Akhtar et al. [65]
presented a framework called COSE to learn a performance model of the serverless function from execution logs. This
model used the Bayesian Optimization strategy to learn the gap between configuration and runtime statistically, and it
predicted the optimal configuration that provided satisfying user-specified performance. Lin and Khazaei [167] modeled
the application performance into a probabilistic graph considering the structure transformation as well as the runtime
response time of each serverless function.

These above approaches leveraged the collected history runtime information to predict the function or application
performance. In practice, it is impossible to know the historical performance situation for new serverless functions or
applications.

Table 4. A summary of studies on performance prediction.

Study Solution Considered factor Target objectc

Cordingly et al. [102] Regression model
prediction

CPU time (e.g., CPU user mode time and
CPU kernel mode time)

Serverless function

Eismann et al. [111] Regression model
prediction

Resource consumption (e.g., heap used, user
CPU time, system CPU time, voluntary con-
text switches, bytes written to file system,
and bytes received over network)

Serverless function

Mahmoudi et al. [179] Statistical learning
prediction

Cold start rate, the arrival rate of warm in-
stances, and instance expiration rate

Serverless platform

Mahmoudi et al. [178] Statistical learning
prediction

Cold start rate, the arrival rate of each
server, and server expiration rate

Serverless platform

Gias et al. [128] Statistical learning
prediction

Number of functions, function popularity,
arrival rate, service rate, cold start rate, and
idle lifetime rate

Serverless platform

Akhtar et al. [65] Statistical learning
prediction

Configuration (e.g., allocated memory and
location) and execution time

Serverless function

Lin and Khazaei [167] Statistical learning
prediction

Allocated memory, response time, and av-
erage number of invocations

Serverless application

c The target object of the given solution

6.2.2 Performance Optimization. Studies on performance optimization are related to optimizing the cold start perfor-
mance and runtime performance.
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6.2.2.1 Cold Start Performance. To address the cold start problem, serverless platforms like AWS Lambda adopt
the fixed “keep-alive” policy to keep resources in memory for a few minutes, i.e., becoming warm instances, when
serverless functions finish their executions. Subsequent requests can reuse warm instances with the required resources
to reduce the number of cold starts. However, this policy cannot capture the actual invocation frequency of serverless
functions, leading to resource waste in no requests. Therefore, many researchers have continued to tackle the cold
start problem. The main solutions contain instance prewarm preparation, data cache-based optimization, function
scheduling, snapshot-based optimization, and architecture design.

• Instance prewarm preparation: Instance prewarm preparation is to launch some required function instances in
advance to serve the incoming requests. This kind of solution prevents the serverless application from going through
the cold start process. Table 5 shows a summary of instance prewarm preparation studies on cold start performance.
Specifically, some studies [107, 282] have focused on the cold start problem of serverless applications with the chain
structure. The first serverless function contained in the chain-type serverless application is invoked, meaning that the
following serverless functions will also be invoked in a cold start manner. Therefore, they designed the corresponding
approaches to predict and prepare the runtime execution environment in advance for subsequent serverless functions
contained in a chain-type serverless application.

In order to alleviate the cold start problem, some other studies [168, 239] have used a prewarm pool to process
requests quickly. The prewarm pool can have containers with different resource configurations [168], or it can be
adjusted according to the container runtime history over time [239]. However, these approaches may not quickly deal
with burst requests and avoid resource waste. To further address these problems, Horovitz et al. [135] learned the
seasonal invocation pattern of incoming functions through history invocation timestamps and then launched required
instances for serverless functions in time. Similarly, Xu et al. [264] presented an adaptive strategy called AWU to predict
when the serverless function will be invoked and then warm up the runtime execution environment in advance. AWU
was based on time series prediction, which considered the invocation number of the serverless function over time and
the moments between serverless functions being called.

In addition, Shahrad et al. [224] also presented a flexible and practical resource management policy. This policy can
dynamically manage the prewarm time window size for each serverless function through the time series prediction.
Unlike the time series prediction of the study [264], this policy [224] was based on each serverless function’s invocation
frequency and pattern to dynamically adjust the prewarm time and keep alive time.

Studies about instance prewarm preparation have learned specific characteristics, e.g., structure and invocation
frequency, to design prewarm strategies. In these strategies, reducing resource waste becomes a key and important goal.
Setting the window service size of the prewarm pool may be an effective method. However, researchers need to focus
on specific functions that have a fixed execution frequency, guaranteeing the reduction of the number of cold starts.
Therefore, it will be a challenge to set the service window size of the pool for other functions that are called irregularly.

• Data cache-based optimization: The traditional runtime environment of serverless computing is VMs, which
have strong isolation and flexibility. However, VMs lack the advantage of low start latency for applications, and
this latency is usually greater than 1000 ms. In this situation, serverless computing uses another common runtime
environment, containers, which can achieve low start latency (usually 50 ms - 500 ms) than VMs. Moreover, containers
typically include binaries and libraries. Pre-importing necessary or commonly used data on such a runtime environment
can speed up the cold start process.

The representative studies based on data cache-based optimization are SOCK [197] and SAND [67]. Specifically,
SOCK [197] and its previous implementation, Pipsqueak [196], cached interpreters and commonly used libraries in
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Table 5. A summary of instance prewarm preparation studies on cold start performance.

Study Used strategy Considered factor Target object
Daw et al. [107] and
Zuk et al. [282]

Predict the runtime envi-
ronment

Application chain length Serverless applications
with the chain structure

Ling et al. [168] Provide an oversubscribed
prewarm container pool

Different resource configu-
rations

Function requests

Suo et al. [239] Maintain an adaptive live
container pool

Container adjustment Function requests

Horovitz et al. [135], Xu
et al. [264], and Shahrad
et al. [224]

Learn the seasonal invoca-
tion pattern or use time se-
ries prediction

History invocation times-
tamps or invocation fre-
quency

Function requests

containers, and provided the lightweight isolation mechanism for serverless functions. Following this caching idea,
Nuka [211] was a generic serverless engine where a local package caching design is presented to import required
software packages. SAND [67] applied the application-level sandbox runtime sharing to reduce the number of containers
and thus container preparation latency. SAND also provided the isolation mechanism for serverless functions to allocate
or deallocate resources quickly. Similar to SAND, Dukic et al. [110] thought that current strict isolation is not necessary
for safe concurrent requests of the same serverless function. Sharing the runtime may be a possible solution to alleviate
the cold start problem for concurrent requests. Therefore, they presented an ultralightweight execution context named
Photons, which can co-locate multiple function instances of the same serverless function in the same runtime via
workload parallelism. However, the above studies on data cache-based optimization may be impractical since caching
all required libraries or functions in memory will increase resource overhead, and cache policies are not easy to capture
in the real workload.

Some related studies have designed other data cache approaches considering different objects, e.g., networking
resources, image data, and containers. For example, Mohan et al. [188] found that the major overhead during container
startup for concurrency invocations is the creation and initialization of network namespaces. Therefore, they cached
networking resources in some pre-created containers to reduce the network overhead of container startup. Hermes [265]
was a two-level caching mechanism including memory caching and local disk caching to support on-demand loading of
image data and repeated fetching elimination. WLEC [232] was a container-based caching policy, which used cold,
warm, and template queues to place required containers according to runtime information. These containers were
managed and selected by a Container Management Service to respond to requests.

Except for considering different cache objects, Fuerst et al. [125] mapped the keep-alive of serverless computing to
caching study, where keeping instances warm is viewed to cache an object, and the warm start is a cache hit. They
designed FaasCache containing a set of caching-based keep-alive policies to reduce cold start overhead.

In most cases, using the data cache can effectively alleviate the cold start problem. However, this kind of approach
will introduce high resource overhead and imbalanced resource consumption, leading to performance interference from
the system environment. Moreover, cache policies may be hard to be determined in the real world.

• Function scheduling: Generally, the function scheduling solution is to distribute incoming requests to warm
instances to serve them. Warm instances have the prepared runtime execution resources, and thus they can serve
requests faster than cold starts. Table 7 shows a summary of function scheduling studies on cold start performance.
Related studies have aimed to improve the existing schedulers or compensate for the insufficiency of scheduling
strategies in reusing warm containers. First, existing schedulers may be agnostic of container lifecycle, i.e., creation, use,
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Table 6. A summary of data cache-based optimization studies on cold start performance.

Study Used strategy Considered factor Target object
Oakes et al. [196, 197]
and Qin et al. [211]

Add library-related data in
runtime environments

Commonly used data Interpreters and (soft-
ware) libraries

Akkus et al. [67] and
Dukic et al. [110]

Apply the sandbox runtime
sharing

Isolation mechanism Application or function
runtime

Mohan et al. [188] Add networking resources
in pre-created containers

Creation and initialization
of network namespaces

Networking resources

Yan et al. [265] Add image-related data in
runtime environments

Repeated fetching elimina-
tion

Memory and local disk
(image data)

Solaiman et al. [232]
and Fuerst et al. [125]

Design the container-based
approach

Runtime information of re-
quests

Containers

pause, or eviction of containers, and thus they are ineffective in reducing cold starts. In this situation, Wu et al. [262]
proposed a container lifecycle-aware scheduler called CAS to distribute requests. This scheduler leveraged an affinitive
worker to maintain and manage the states of containers. Second, existing schedulers showed erratic performance
behavior in application workloads with multi-tenant and high concurrency. Therefore, Kim et al. [150] designed a novel
scheduling algorithm called FPCSch, allowing serverless platforms to schedule available containers into requests to
obtain stable performance while reducing cold starts.

Other researchers have considered the application structure [85, 159] or dependency relationships [227] among
serverless functions to schedule serverless functions. If independent serverless functions can be fused or composed into
a serverless function, the scheduler assigns these independent serverless functions to be executed on the same function
instance. In this situation, the number of cold starts will directly decrease. Bermbach et al. [85] and Lee et al. [159]
leveraged this knowledge to reduce the number of cold starts. In addition, Shen et al. [227] used a frequent pattern
mining approach and invocation history to find dependencies between serverless functions. These dependencies can
guide the scheduler to schedule the connected functions on the same instance, thus diminishing the occurrences of cold
starts.

Considering that some studies like SOCK [197] and SAND [67] used data cache techniques to alleviate the cold start
problem, the scheduler or load balancing may significantly affect the cache-hit ratio, thus influencing the performance of
cold start and overall application. Based on it, some scheduling algorithms like PASch [75], GRAF [160], and others [62]
have been presented to distribute incoming requests into container instances with pre-loaded cache to improve the
cache hit rate and thus the performance of serverless applications.

Using function scheduling approaches can make requests execute function instances in the warm mode, which
reduces the number of cold starts. Moreover, this kind of approach makes full use of idle resources. However, it is not
clear whether the presented approaches can handle dynamic workloads or other domains.

• Snapshot-based optimization: The industry and academia have used the snapshot way, a promising solution,
to alleviate the high latency of cold starts. Specifically, this way captures the complete state (called snapshot) of the
current function execution and stores the state in local storage (e.g., SSD) or in a disaggregated storage service. When
the same function is invoked again, the serverless platform can quickly initialize the function instance according to the
corresponding snapshot to immediately process this request. Snapshot-based optimization becomes attractive since
it does not require main memory during functional inactivity and can reduce the high latency of cold starts. Table 8
shows a summary of snapshot-based optimization studies on cold start performance.
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Table 7. A summary of function scheduling studies on cold start performance.

Study Used strategy Considered factor Target object
Wu et al. [262] Leverage an affinitive worker to

maintain and manage the states
of containers

Container lifecycle Functions

Kim et al. [150] Design a scheduling algorithm Performance behavior Functions
Related studies [85, 159,
227]

Present a choreography middle-
ware, design a function fusion
solution, or mine frequent de-
pendencies

Application structure and
dependency relationships

Functions

Related studies [62, 75,
160]

Distribute requests into in-
stances with pre-loaded cache

Cache hit rate Functions

Cadden et al. [92] presented SEUSS to capture the function state (containing function logic, language interpreter,
and libraries) at an arbitrary point during executions. Moreover, SEUSS saved the state as an in-memory snapshot.
New invocations of the same function can be rapidly started from its snapshot. A similar idea to SEUSS, Replayable
Execution [252] was to use process-level checkpointing to save and restore the state. Moreover, the state was allowed to
share between different containers. Du et al. [109] found that sandboxes have a high application initialization latency,
which dominated the overhead of cold start latency. To reduce this part of overhead, they designed Catalyzer based on
Google’s gVisor [39] to set checkpoints and restore application and sandbox runtime. Catalyzer minimized the critical
path processing time of VM loading through the snapshot way. Following the same design principles as Catalyzer, a
runtime environment called Firecracker [64] was presented by AWS. Its Firecracker VM was loaded from a snapshot,
which contained the state of the virtual machine monitor and the emulated devices. Moreover, Firecracker customized
the virtual machine manager (e.g., hypervisor) to create microVMs to isolate multiple tenants with affordable overhead.
However, Ustiugov et al. [246] characterized the snapshot-based serverless infrastructure Catalyzer [109] and found that
a function executed from the snapshot took 95% longer to execute than if the same function was executed from a resident
in memory, on average. Due to the state constantly being written to the page, the page frequently generates faults, thus
causing high latency. Fortunately, they found the same stable working set of pages among different invocations of the
same function. Therefore, they leveraged this insight to present REAP. REAP can obtain the function’s stable working
set of guest memory pages and pre-load them into memory to speed up the performance.

Using the snapshot-based optimization approach speeds up the function start time, avoiding creating new runtime
environments from scratch. However, they also pose shortcomings. For example, generating a stable working set (for
the work [246]) is not enough when the input data payload is significantly different among invocations. In this situation,
the runtime environment waited until all data was loaded to start, leading to a slower execution latency.

• Architecture design: Some studies have used novel design principles or underlying environments to present
the new serverless platform, which will fundamentally alleviate the cold start problem. We briefly summarize the
related studies as shown in Table 9. Specifically, Boucher et al. [89] presented a novel serverless platform based on
language-based isolation. Using language-based isolation is faster than using process-level isolation for microsecond-
scale serverless functions. In language-based isolation, a single-threaded worker process is hosted in each worker core,
and it can directly execute serverless functions, one at a time. Moreover, the presented serverless platform used task
preemption, supported by commodity CPUs at a microsecond scale. Other studies have applied lightweight runtime.
Hall and Ramachandran [132] and Long et al. [173] used the lightweight and fast WebAssembly runtime [58] to replace
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Table 8. A summary of snapshot-based optimization studies on cold start performance.

Study Used strategy Considered factor Target object
Cadden et al. [92] Capture function logic, lan-

guage interpreter, and libraries
Function execution state
saving

Same functions

Wang et al. [252] Use process-level checkpoint-
ing

Function execution state
sharing

Same functions

Du et al. [109] and
Ustiugov et al. [246]

Capture sandbox runtime to
minimize the critical path pro-
cessing time

Application initialization la-
tency reduction

Applications or
functions

Agache et al. [64] Capture the state of the virtual
machine monitor and the emu-
lated devices

Fast runtime environment VMs

the container to remedy the performance overhead of cold starts. In contrast to VMs and containers, WebAssembly is a
high-level language VM runtime and shows a binary format with inherent memory and execution safety guarantees.

Unikernel [55] is an emerging fine-grained, lightweight sandbox that uses libarayOS with essential dependency
libraries. Security of the Unikernel is higher than containers, the image size is also small, and notably, the start latency
is within 10 ms. USETL [121] was a Unikernel-based design to be specific to the cold start performance of serverless
extract, transform, and load (ETL) workloads. USETL leveraged strong language preference and maintained a pool of
Unikernels with initialized runtime. Following the Unikernel idea, Tian et al. [243] also used the Unikernel design to
make serverless functions run in the Unikernel, offering extremely low cold start latency to execute functions. Moreover,
this design leveraged a hardware technique named VMFUNC [57] to achieve communication among serverless functions
in different Unikernels.

The above architecture designs and containers have different characteristics, in terms of security, performance, and
flexibility. Using a lightweight design with good security, performance, and flexibility becomes an inevitable trend in
future serverless computing. Probably, the next effort will focus on how to generalize such a design to commodity and
open-source serverless platforms.

Table 9. A summary of architecture design studies on cold start performance optimization.

Study Used strategy Considered factor Target object
Boucher et al. [89] Use the faster than traditional

process-level isolation
Language-based isolation
usage

Architecture

Hall and Ramachan-
dran [132] and Long et
al. [173]

Use the lightweight high-level
language VM runtime

WebAssembly usage Architecture

Fingler et al. [121] and
Tan et al. [243]

Use lightweight sandbox with
libraryOS and has strong flexi-
bility

Unikernel usage Architecture

6.2.2.2 Runtime Performance. Studies on runtime performance optimization are about performance optimizations of
function execution and function communication.

1. Function Execution
In the related studies on performance optimization of function execution, memory configuration, function scheduling,

and architecture design are common solutions. Table 10 shows a summary of these studies.
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• Memory configuration: Generally, the response time of the serverless function is affected by the allocated
memory [258, 268]. However, when the allocated memory size is large enough, the response time of the serverless
function becomes insensitive to the memory [167]. Therefore, changing the size of the allocated memory may be
an opportunity for performance optimization. Lin and Khazaei [167] used their performance model with a heuristic
algorithm to find a memory configuration. This configuration can achieve the minimum average response time of the
serverless application under budget constraints.

• Function scheduling: Designing an appropriate scheduling strategy can reduce resource competition for CPU
and network among function instances, thus improving the execution performance of serverless applications. Current
serverless platforms are agnostic to the application type or invocation frequency during the request processing. It
may make certain serverless functions be located on the same VM node, influencing their execution performance.
Mahmoudi et al. [180] and Przybylski et al. [206] analyzed the collected information or the application’s profile to the
corresponding function scheduling. When there are bursty or real-time workloads, a real-time serverless prototype is
required to execute them at a guaranteed invocation rate and minimal performance effect. Such a prototype can be
achieved through predictive container management and admission control [195]. However, the Alibaba Cloud Function
Compute team found that the deployment way to use custom container images needs to pull large container images
(larger than 1.3 GB) from the backend store. When bursty workloads are to pull the same large container image, it will
cause a severe performance problem of network bandwidth. Therefore, they presented a rapid container provisioning
FaaSNet [250] to accelerate container provisioning to serve bursty requests. FaaSNet organized VMs as function-based
tree structures and used a tree balancing algorithm to dynamically adapt the tree topology to adjust VM joining and
leaving.

•Architecture design: Some new architectures have been designed to optimize the function execution performance.
Atoll [230] was a scalable, low-latency serverless platform where the control and data planes of its architecture were
redesigned via decoupling sandbox allocation from scheduling, introducing deadline-aware scheduling, and co-designing
the load balancing and scheduling layers. Atoll can handle short-lived serverless functions with unpredictable arrival
patterns and maximize the request processing with the user-specified deadline. In addition, instead of using traditional
pre-compiled libraries, Chadha et al. [96] used a Just-in-Time compiler, which is based on LLVM [43] for Python, to
optimize the performance of compute-intensive serverless functions. In addition, Carreira et al. [93] tried to utilize
runtime knowledge to optimize the executed function code. First, they demonstrated the significant impact of runtime
optimizations. Moreover, the code to execute multiple times (i.e., in hot starts) was optimized code, which is executed at
the maximum performance. Then, they presented a holistic system named Ignite to share code optimization information
across runtimes for the same function to reduce profiling and compilation overheads.

For the performance optimization of function runtime, three kinds of solutions have been presented, i.e., memory
configuration, function scheduling, and architecture design. The implementation of memory configuration is relatively
easy because researchers can directly try to adjust the allocated size. Designing new architectures require huge efforts
or changes for researchers. However, these designs may significantly improve the performance of function runtime.

2. Function Communication
Since serverless functions are stateless and are executed in different function instances, they generally rely on external

storage to communicate with each other to accomplish complex tasks. However, such communication collaboration
introduces additional overhead for application execution. Some studies have aimed to alleviate this overhead through
different strategies: memory sharing, cache-based design, storage optimization, and network optimization. Table 11
shows a summary of studies on function communication.

Manuscript submitted to ACM



Wen et al.

Table 10. A summary of studies on function execution.

Study Solution Used strategy Considered factor
Lin and Khazaei [167] Memory configura-

tion
Use a performance model with a
heuristic algorithm

Allocated memory size

Mahmoudi et al. [180] Function scheduling Use statistical machine learning to
analyze resource utilization and
application’s profile

Application type

Przybylski et al. [206] Function scheduling Analyze the collected information Invocation frequency and
function duration time

Nguyen et al. [195] and
Wang et al [250]

Function scheduling Use predictive container manage-
ment or design a rapid container
provisioning

Real-time workloads, con-
tainer image size

Singhvi et al. [230] Architecture design Redesign the control and data
planes of the architecture

The problem between sand-
box and scheduling

Chadha et al. [96] Architecture design Use a Just-in-Time compiler based
on LLVM

Execution cost of compute-
intensive functions

Carreira et al. [93] Architecture design Share code optimization informa-
tion across runtimes

Runtime knowledge (hot
starts)

•Memory sharing:When serverless functions are co-located on the same machine, using memory sharing can
avoid the overhead of data movement. Generally, memory sharing-based approaches [104, 142, 156, 215, 229] refer
to designing and managing shared memory to achieve low-latency communication between serverless functions.
Specifically, Shillaker and Pietzuch [229] presented a runtime called Faasm, which contained a WebAssembly-based
isolation abstraction to isolate the memory of running functions and allow memory to be shared among functions
in the same address space. However, Faasm was based on specific assumptions about the language-based isolation
and application programming interface. Jia et al. [142] presented a runtime named Nightcore to address the overhead
imposed by interactive serverless functions. Nightcore supported arbitrary invocation patterns to execute multiple
invocation requests of the same function in the same container. Moreover, it optimized I/O between requests via
efficient threading. Overall, the internal function call of Faasm [229] and Nightcore [142] had the same functionality.
Differently, Faasm made serverless functions execute within the same process leveraging WebAssembly-based isolation.
Nightcore directly co-located multiple requests on the same container and used shared memory to achieve efficient
function communication. However, Faasm and Nightcore were both to modify the serverless application. In this
situation, Faastlane [156] was presented to minimize the latency between function interactions, supporting unmodified
applications. Its data sharing leveraged simple load/store instructions, and Faastlane made serverless functions contained
in a workflow execute as threads within a shared virtual address space.

• Cache-based design: Some approaches have used caches to improve state consistency guarantees and runtime
performance of serverless applications. Lambdata [244] was a novel serverless system that allowed developers to declare
the data read and write intents of their serverless functions. To speed up the communication performance, Lambdata
leveraged the additional object caching layer of the computation node to save the same data for multiple function
invocations and scheduled the related functions to the same computation node to reuse data. Linking the caching
layer to the computation node was also adopted by Wu et al. [261]. They presented HydroCache to optimize network
traffics. HydroCache chose an autoscaling key-value storage engine, Anna [12], to provide low-latency data access
and transactional causal consistency. However, the worker of HydroCache was established multiple times with the
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storage to obtain the latest version, leading to the tail latency of function execution. To address this problem, Lykhenko
et al. [175] proposed a solution called FaaSTCC, combining a multi-site cache with the storage layer. The key idea was
to leverage a small amount of metadata that is passed from function to function to capture the difference between
versions.

Similar to HydroCache, Sreekanti et al. [236] introduced a stateful serverless platform named Cloudburst, which
also used Anna and imported a local storage cache to execute multiple serverless functions. However, HydroCache
and Cloudburst introduced specific assumptions, such as consistency semantics and protocols, since they relied on
Anna. Moreover, the work of Cloudburst did not discuss the specific caching configuration. A work designed at the
same time as Cloudburst was OFC [191]. OFC designed an opportunistic RAM-based caching system to dynamically
predict caching efficiency and memory usage through machine learning. OFC had stronger consistency and persistence
guarantees than Cloudburst, and it supported more widely workload types. However, these approaches have not
considered another critical factor, i.e., scaling, which may mitigate the data access impact. Therefore, Romero et al. [214]
presented FaaT, which was serverless and bundled in the serverless application as an in-memory caching layer. In FaaT,
different cache replacement and persistence policies were designed to achieve auto-scaling and transparency.

• Storage optimization: Since the data of serverless functions are generally stored in external storage, characteristics
(e.g., data correctness, scalability, and efficiency) of the storage are essential to cooperate serverless functions. Some
studies have aimed at storage optimization to present new storage systems. Sanity [192] was a storage system to tackle
the limitation of duplicated data. Data de-duplication operation was performed close to the event sources to reduce
the function redundancy activation. To use an elastic and distributed data storage, Klimovic et al. [155] presented a
novel storage system named Pocket to access data and automatically scale with the serverless application under desired
performance and cost. Pocket can dynamically adjust resources and provide low latency, high throughput, scalable
resources, and smart data placement across multi-tier storage, such as DRAM, Flash, and disk. Locus [208] used a
mixture of fast but expensive storage and slow but cheap storage to balance the communication performance and
cost. Overall, Pocket and Locus were both to implement the multi-tier storage solution to improve the performance
and cost-efficiency of serverless workloads. A data-driven middleware Zion [219] for object storage was presented to
improve data locality and reduce communication latency. Zion incorporated computation into the data pipeline and
executed it in a scalable way to address the storage’s scalability and resource contention problems. Besides incorporating
computation into the data pipeline, embedding small storage functions into the storage was also noticed by Zhang et
al. [277]. They presented low-latency cloud storage, Shredder, for serverless function chains. Developers can embed
some small storage functions in the storage to directly interact with the required data. These storage functions can
mitigate the network overhead between the serverless application and data.

Mahgoub et al. [177] compared different data passing methods, including VM-Storage, Direct-Passing, and state-
of-practice Remote-Storage. The results showed that these methods performed poorly in all serverless scenarios.
Therefore, they presented a management layer called SONIC to deploy a hybrid approach about three data passing
methods to improve the application performance. A unified API was exposed to developers, allowing them to select the
optimal data-passing method according to application-specific factors, such as input payloads. SONIC also can leverage
optimized storage like Pocket [155] and Locus [277] in its selection methods.

• Network optimization: In practice, current serverless functions cannot directly communicate with each other
via the network. To address this problem, Wawrzoniak et al. [255] presented a system called Boxer to support direct
function-to-function communication in the existing serverless platform. Boxer used the TCP hole-punching technique
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of P2P to bypass the network constraints in conventional TCP/IP network stack. Such a system can directly achieve
direct data exchange to benefit serverless computing.

There are various approaches to address the performance optimization of function communication. The evaluation
results of these approaches show the effectiveness of performance enhancement. However, these approaches are based
on external storage to archive the function interaction. This way inevitably produces additional data transmission
overhead. Implementing direct communication is a challenging task, since the existing work [255] did not yet support
executing large-scale communication-intensive applications and providing high-throughput and low-latency networks.
Therefore, more efforts may be needed in the future to enable direct communication and maintain high scalability.

Table 11. A summary of studies on function communication.

Study Solution Used strategy Considered factor
Related stud-
ies [104, 142, 215]

Memory sharing Co-locate multiple requests on
the same container

Share the same memory in a
container

Shillaker and Piet-
zuch [229]

Memory sharing Leverage WebAssembly-based
isolation to execute functions
within the same process

Specific assumptions

Kotni et al. [156] Memory sharing Leverage simple load/store in-
structions to data sharing

Execute serverless functions as
threads

Related stud-
ies [236, 244, 261]

Cache-based design Leverage the additional object
caching layer of the computa-
tion node to save the same data

Link the caching layer to the
computation node

Lykhenko et
al. [175]

Cache-based design Combine a multi-site cache
with the storage layer

Get a rapid data consistency

Mvondo et al. [191] Cache-based design Design an opportunistic RAM-
based caching system to predict
caching efficiency and memory
usage

Guarantee strong consistency
and persistence

Romero et al. [214] Cache-based design Provide an in-memory caching
layer in applications

Guarantee scaling

Nadgowda et
al. [192]

Storage optimization Present a new storage system
with the data de-duplication op-
eration

Reduce the function redun-
dancy activation near the event
sources

Related stud-
ies [155, 177, 208]

Storage optimization Implement the multi-tier stor-
age solution

Consider multi-tier storage,
multi-tier cost, or multi-tier
data passing methods

Sampe et al. [219] Storage optimization Design a data-driven middle-
ware to improve data locality

Incorporate computation into
the data pipeline

Zhang et al. [277] Storage optimization Present low-latency cloud stor-
age to directly interact with the
required data

Embed small storage functions
into the storage

Wawrzoniak et
al. [255]

Network optimization Use the TCP hole-punching
technique of P2P

Bypass the network constraints
in conventional TCP/IP net-
work stack
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6.3 Stateful FaaS

In the research direction of stateful FaaS, some studies have tried to address it by considering application model design,
log-based mechanism, and architecture design. Table 12 shows a summary of studies on stateful FaaS.

• Application model design: Mainstream cloud providers have rolled out their serverless orchestration services.
In fact, these services play a kind of glue to compose serverless functions together. For example, AWS Step Func-
tions [19] uses the state machine to combine multiple serverless functions in different patterns (e.g., sequential or
parallel executions) and provides the state store in this serverless orchestration service. Microsoft Azure used durable
functions [59] as the extension of serverless functions to allow developers to add the state and establish communication.
In academia, Akhter et al. [66] presented a high-level application model to help developers develop and deploy their
stateful applications. This model can transfer serverless functions and the required data as a stateful dataflow graph,
and the data can be shared automatically to achieve scalability and low latency. Another high-level application model
with an extension stateful function language and a compiler [91] was developed to help software developers generate
cloud infrastructure supporting the state access of the serverless application.

• Log-based mechanism: To build serverless stateful functions on existing serverless platforms, Zhang et al. [273]
was inspired by the log-based fault tolerance protocol to propose Beldi. Beldi introduced new refinements to the existing
log-based fault tolerance approach in terms of data structure and specific algorithms. These refinements can record
the application state and logs. Moreover, Beldi periodically re-executed functions that have not yet finished executing,
guaranteeing the at-least-once execution semantics to prevent duplicated operation execution. In addition, Beldi’s
design motivated Boki’s shared log approach [141] for stateful serverless computing. Boki exported the shared log API
to serverless functions to store the state. Moreover, read and write paths were separated and individually optimized.
However, developers need to adapt the use way of Boki with shared logs to write their applications since Boki-based
development is different from the original development of serverless applications.

• Architecture design: Some studies have designed new architectures for serverless computing to support stateful
applications. Cloudburst [236] was a specified architecture that used Anna storage with flexible auto-scaling. Crucial [81,
82] was also a new design for providing fine-grained state management. The invocation of a serverless function was
mapped to a thread, and a distributed shared object layer was built on the in-memory data store. This way can guarantee
strong state consistency and simplify the global state semantics across threads. Since the Beldi solution [273] offered
the at-least-once execution semantics for failed function attempts, it may expose fractional writes. Therefore, Sreekanti
et al. presented AFT [235] with stronger fault tolerance. AFT demanded servers to interpose and coordinate all database
accesses and introduced a fault-tolerant shim layer for stateful serverless functions. Moreover, it used built-in atomicity
and idempotence guarantees to provide exact-once semantics with safety and liveness in failures. However, AFT
modified the server running so that it was limited to other platforms.

The key to implementing stateful FaaS is how to manage the state and keep the state consistent. Based on it,
developers write stateful serverless applications without having to worry about concurrency control and fault tolerance.
In this situation, most related studies have been based on strongly consistent databases. However, there is concern
about whether the state of different applications is stored in a centralized database or different databases. If using a
centralized database, researchers need to ensure that a malicious request from one application cannot observe the state
of another. If using different databases, state isolation and consistency issues need to be addressed.
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Table 12. A summary of studies on stateful FaaS.

Study Solution Used strategy Considered factor
Akhter et al. [66] Application model de-

sign
Transfer functions and data as
a stateful dataflow graph

Share data in graphs

Brand et al. [91] Application model de-
sign

Use an extension stateful func-
tion language and a compiler

Generate cloud infrastructure
supporting the state access

Zhang et al. [273] Log-based mechanism Refine the log-based fault toler-
ance approach

Record the application state and
logs and guarantee the at-least-
once execution semantics

Jia et al. [141] Log-based mechanism Use the shared log to store the
state

Use specific APIs to develop ap-
plications

Sreekanti et
al. [236]

Architecture design Leverage the additional object
caching layer of the computa-
tion node

Link the caching layer to the
computation node

Barcelona et
al. [81, 82]

Architecture design Map invocations as threads and
built the shared object layer

Guarantee strong state consis-
tency and simplify the global
state semantics across threads

Sreekanti et
al. [235]

Architecture design Introduce a fault-tolerant shim
layer for stateful serverless
functions

Guarantee strong fault toler-
ance

6.4 Application Modelling

This research direction refers to modeling the serverless application to deepen the understanding of software application
design and reflect the changes in high-level abstraction or low-level implementation. There are two kinds of solutions:
specification-based analysis and configuration-based analysis. Table 13 shows a summary of studies on application
modelling.

• Specification-based analysis: It is helpful for application modelling to leverage certain specifications [157,
209, 228, 263]. For example, F(X)-MAN [209] was a model considering services and connectors as entities. Different
connectors (e.g., composition connectors, adaptation connectors, and parallel connectors) are composed of atomic
or composite services. Considering the event-driven feature of serverless computing, Wurster et al. [263] used the
standard topology and orchestration specification for cloud applications (TOSCA) to design an event-driven deployment
modelling approach. However, TOSCAwas incomplete since it did not contain the platform’s requirement representation
and could not support all application lifecycle aspects, such as deployment, requirement, and metric ones. Overall,
there is no specification language to model the serverless application in a platform/cloud-independent manner. To
address this problem, Kritikos et al. [157] proposed the extension of the cloud modelling language named CAMEL
to specify serverless functions in an independent manner. Furthermore, Yussupov et al. [271] relied on TOSCA and
business process model and notation (BPMN) to present a vendor-and technology-agnostic modelling method. BPMN
captured the control flow composed of multiple activities, and this flow can be represented as a semantically-transparent
graphical notation.

• Configuration-based analysis: In serverless computing, the configuration operation is essential for serverless
applications since it represents some developers’ requirements. However, the event-driven feature complicates serverless
application modeling compared to traditional applications. Considering that some configuration information may be
written in a configuration file like “.yml” [53], Obetz et al. [198] analyzed events associated with serverless functions in
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this configuration file to construct a new type of call graph for the serverless application. The call graph modeled the
relationships between serverless functions, events, and used services. On the other hand, configuration changes may
reflect the low-level implementation of the serverless application. To simplify the low-level implementation, Samea
et al. [217] introduced a model-driven approach to automatically transform the source model of applications into the
low-level implementation by analyzing the configuration.

In the related studies of application modelling, specification-based analysis and configuration-based analysis are
two common approaches. These approaches can utilize the specific specification model or configuration files to
model serverless applications. However, serverless applications have different characteristics from traditional software
applications or cloud applications. For example, serverless functions are event-driven, and some cloud services are
optionally used for communication between serverless functions. A standard programming model for serverless
applications is lacking and needs to be proposed to represent this kind of emerging paradigm.

Table 13. A summary of studies on application modelling.

Study Solution Used strategy Considered factor
Chen et al. [209] Specification-based

analysis
Use a model considering ser-
vices and connectors as entities

Compose atomic or composite
services

Wurster et
al. [263] and Yus-
supov et al. [271]

Specification-based
analysis

Use the standard topology, or
add business process model and
notation

Capture the lifecycle of applica-
tion provision andmanagement,
or control flow

Kritikos et
al. [157]

Specification-based
analysis

Propose the extension of the
cloud modelling language

Cover all application lifecycle
aspects

Obetz et al. [198] Configuration-based
analysis

Analyze events associated with
serverless functions

Construct a new type of call
graph for the serverless appli-
cation

Samea et al. [217] Configuration-based
analysis

Analyze the configuration and
introduce a model-driven ap-
proach

Transform the source model of
applications into the low-level
implementation

6.5 Programming Framework

Some limitations of serverless computing urge researchers to present new programming frameworks to serve specific
applications and general applications. Fig. 5 shows the type distribution of programming frameworks presented by
existing studies. We find that designing frameworks for general applications is the most common, accounting for
40.63% of all frameworks. In frameworks of specific applications, the Internet of Things (IoT) scenario is most widely
investigated, accounting for 21.88% of all frameworks. Next, we introduce specific frameworks and general frameworks.

6.5.1 Specific Framework. Serverless computing has been applied to various specific scenarios, including numerical
computing, video processing, the Internet of Things, file processing, big data analytics, and machine/deep learning.
However, different scenarios may pose new challenges that need to be solved in the serverless computing paradigm or
have some problems that leverage serverless computing to overcome further. A summary is shown in Table 14.

• Numerical computing: Traditional numerical computing tasks need scientists to manage infrastructure and
maintain scalability in order to handle the varied resource parallelism. Serverless computing can free scientists from
these burdens. Moreover, serverless computing shows a disaggregated data center pattern. In fact, this disaggregation
makes linear algebra workloads with large dynamic requirements of memory and computation obtain benefits. However,
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Fig. 5. The type distribution of programming frameworks presented by existing studies.

the computation time of such workloads is the dominant overhead. In this situation, a serverless linear algebra framework
named NumPyWren [226] was presented to address this problem. NumPyWren analyzed the data dependencies in
the serverless application to extract the task graph that had potential parallel executions. Parallel functions can use
an intermediate state in a distributed object store to speed up the processing latency. In practice, NumPyWren was
implemented based on PyWren [144], which was a queue-based master-worker approach and processed serverless
functions in parallel when possible.

• Video processing: Video processing workloads would invoke thousands of threads of execution in a few seconds.
However, fine-grained parallelism did not support video encoders. In this demand, ExCamera [124] and Sprocket [74]
were developed for serverless video processing. ExCamera achieved a high-parallel video encoder to handle chunks
of video. Furthermore, ExCamera used a state machine for tasks to support fine-grained control and overcome the
communication challenge. Sprocket was a scalable video processing framework to enable much more sophisticated video
processing applications. Sproket transformed a single video input according to a user-specified program. Moreover, it
supported dynamic task creation during processing through dynamic levels of parallelism.

• Internet of Things: The development paradigm of serverless computing could be beneficial for IoT applications.
In the industry, AWS presented AWS IoT Greengrass service [15] to process data on edge. Azure designed Azure
IoT edge service [24] to connect edge devices and serverless functions. In academia, some researchers also have
focused on IoT frameworks. Specifically, the event-driven programming pattern and the separation of computation and
storage make IoT applications inefficient. To address the supportability for data-intensive or dataflow IoT applications,
Cheng et al. [99] proposed a functional programming model to allow the movement between code and data. However,
considering that resources are constrained on edge nodes, Pfandzelter and Bermbach [205] designed a lightweight
serverless framework, tinyFaaS, to adapt the edge feature. Specifically, tinyFaaS provided a specified endpoint with
alternative messaging protocols for the communication of low-power devices. Moreover, their team also presented
another approach called AuctionWhisk [84]. AuctionWhisk used the auction-inspired mechanism to control and arrange
function locations across geo-distributed sites. A serverless teleoperable hybrid cloud system called STOIC [276] was
presented to cooperate with edge clouds and public clouds. Dyninka [122] was designed to define and compose multiple
serverless functions leveraging the multi-tier programming paradigm and compiler.
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To simplify the deployment operation of IoT applications, a new IoT programming model, CSPOT [260], was designed
to host services at device scale, edge scale, and cloud scale. CSPOT integrated various features, including multi-tier
processing, robustness, compatibility, security guarantee, and record-and-replay debugging. To consider the platform
heterogeneity, Jindal et al. [143] introduced an extension framework of FaaS to address the data access behavior over
heterogeneous clusters via Function Delivery Network (FDN). FDN can deliver the function to the appropriate cluster
according to the required computation and data.

• File processing: Serverless computing allows developers to upload their files to the serverless platform. Triggered
serverless functions handle them and return the processed output. However, early serverless platforms were limited
to supporting all programming languages. Therefore, Pérez et al. [203, 204] introduced a highly-parallel event-driven
programming model, which combined a middleware that can simplify the development and deployment process.
Moreover, it used customized runtime environments, i.e., container images, to bypass the language limitation. However,
at the time our paper was written, serverless platforms had provided the deployment way of the container image
to support serverless applications written in any language. Compared with simply providing the source code to the
serverless platform, using a custom container image has to follow specific interface requirements, introducing additional
management efforts for software developers.

• Big data analytics:MapReduce is one of the most widely used programming models for big data applications.
Giménez-Alventosa et al. [129] investigated the suitability that serverless computing was applied in MapReduce tasks.
Moreover, they presented a new framework with high performance for MapReduce tasks. This framework automated
the partitioning of input data according to the allocated memory. Similarly, for MapReduce jobs, Enes et al. [119]
relied on operating-system-level virtualization technology to design a novel scalable framework to provide resources
dynamically.

• Machine/deep learning: Serverless computing can provide flexible resource provisioning and easy-to-use
deployment opportunity for machine learning (ML) applications. Moreover, the billing advantage of serverless computing
is attractive to developers of machine learning. SIREN [251], a serverless programming framework for distributed
machine learning, was presented to process data via serverless functions. SIREN leveraged deep reinforcement learning
to design a novel serverless scheduler. This scheduler can dynamically adjust the assignment of function instances and
memory sizes in each ML training epoch, reducing the training cost.

ML tasks generally generate and save the trained models in order to be used for the subsequent inference. However,
some models may be larger than the deployment size limit of serverless computing, showing the infeasibility issue.
To fill this gap, researchers presented Gillis [267] and AMPS-Inf [140] frameworks. They used the automatic model
partitioning idea for the large model in the serverless computing environment.

Serverless computing is suitable for ML inference tasks due to the short-lived execution feature. Batching is a crucial
factor in improving the execution performance in ML inference tasks. However, serverless computing is stateless, which
may not support batching and its associated setting parameters (batch size and timeout). Ali et al. [70] demonstrated
that ML inference tasks could not benefit from serverless computing without batching. Therefore, they presented the
BATCH framework to support batching for ML tasks in serverless computing using a dispatching buffer. Moreover,
BATCH can provide automated adaptive batching and setting parameters to guarantee performance and cost.

In the serverless computing literature, there are six types of specific scenarios that have been applied to serverless
computing. These related studies have presented the corresponding frameworks to address specific limitations, improving
feasibility and execution efficiency. IoT-based serverless frameworks are most widely investigated, implying the potential
future trend of edge serverless computing.
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Table 14. A summary of specific framework studies on programming framework.

Study Used startegy Target object
Shankar et al. [226] and
Jonas et al. [144]

Speed up the computation time of workloads with large
dynamic requirements

Numerical computing

Fouladi et al. [124] and
Ao et al. [74]

Support the high or dynamic parallelism Video processing

Cheng et al. [99] Provide the supportability of data moving for data-intensive
IoT applications

Internet of Things

Bermbach et al. [84, 205]
and Zhang et al. [276]

Address resource constraint and function placement on
edge nodes

Internet of Things

Fortier et al. [122] Implement function composition and communication Internet of Things
Wolski et al. [260] Simplify deployment operations Internet of Things
Jindal et al. [143] Implement data access over heterogeneous clusters Internet of Things
Pérez et al. [203, 204] Support all programming languages File processing
Related studies [119, 129] Support MapReduce tasks Big data analytics
Wang et al. [251] Reduce the training cost for ML training epoch Machine/deep learning
Related studies [140, 267] Address the deployment size limit for the large model Machine/deep learning
Ali et al. [70] Support batching and its associated setting parameters Machine/deep learning

6.5.2 General Framework. Many general programming frameworks have been designed to make serverless computing
popular and less restrictive and facilitate the practice of broader applications. These frameworks have been based on
various improvement points, including orchestration model design, function scheduling, runtime mechanism, abstract-
based design, and architecture design. Table 15 shows a summary of general framework studies on programming
framework.

• Orchestration model design: Major cloud providers of serverless computing have presented the corresponding
orchestration services of serverless functions, such as AWS Step Functions [19] and Azure Durable Functions [59].
These services allow software developers to construct complex applications with more serverless functions and various
structures via a central orchestrator or workflow engine. This way is similar to the service composition approach [169],
integrating multiple services with different types to obtain new benefits.

Except for orchestration services from the industry, some studies in academia have also proposed new orchestration
models. Baldini et al. [79] presented a robust programming model to express and build the orchestration of existing
software function blocks. Considering that the type of input arguments and intermediate results should be checked
on their compatibility during the function orchestration, Gerasimov [127] designed an orchestration-specific domain
language called Anzer to check the compatibility between serverless functions. GlobalFlow [280] was a new orchestration
model to address the cross-region scenario problem of serverless functions. There were two strategies, including a
copy-based strategy and a connector-based strategy. In the copy-based strategy, all serverless functions were copied
to execute in one region. This strategy is suitable for tasks without any data usage or data communication. In the
connector-based strategy, serverless functions were grouped according to regions, and functions with the same region
were integrated into a sub-workflow. Then, a lightweight connector was used to establish the communication of
sub-workflows. This strategy can achieve data locality and reduce the data communication overhead. In addition,
Maslov and Petrashenko [185] used a control-flow graph and the finite automaton to arrange the function orchestration
according to developers’ demands.
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• Function scheduling: Researchers have considered designing efficient schedulers in new programming frame-
works.WUKONG [94, 95] was presented as a serverless-oriented and decentralized framework. It adopted a decentralized
scheduler that incorporated static scheduling and dynamic scheduling. Specifically, first, it partitioned the global task
graph into multiple local subgraphs before and during executions. Then, each WUKONG’s executor scheduled and
executed the functions contained in the subgraph, improving the data locality. Moreover, the data reading and writing
problem was addressed by task clustering and delayed I/O. WUKONG can greatly improve application performance
and resource utilization. However, WUKONG may introduce additional security risks due to its weak isolation.

• Runtime mechanism: For some presented general frameworks, researchers have modified their runtime mecha-
nisms to obtain a stronger processing ability. Specifically, to allow software developers to develop general-purpose
parallel applications on serverless platforms, functionality partition challenges need to be solved to satisfy the ex-
ecution constraint of serverless functions. A programming framework called Kappa [278] was designed to address
these challenges. Kappa ran the serverless application code on the original serverless platforms like AWS Lambda.
Then, it used checkpoints to check the timeout issue of serverless functions and provided concurrency mechanisms
for general-purpose parallel applications. Instead of checking the application code, Al-Ali et al. [68] designed the new
application primitive that provided the process, not the function, to execute a broad class of applications in the serverless
architecture. In addition, gg [123] was presented. In gg, a unique intermediate representation layer was designed to
manage various applications by abstracting the computation and storage. Additionally, gg leveraged common services
like dependency management, straggler mitigation, and scheduling to support widely used applications, e.g., software
compilation, unit tests, and video encoding.

• Abstract-based design: Some studies have considered different abstract representations to design general pro-
gramming frameworks. 𝜆 [139] was an operational semantics to keep low-level behaviors of serverless platforms,
including concurrency, function retry, failure, and instance usage. In addition, retro-𝜆 [186] was a concept specified for
serverless applications. It extended the event sources to obtain the application persistence, allowing the application
logic decomposition to support the retroactive programming capability of serverless platforms.

• Architecture design: Serverless platforms restrict the function execution time and storage space of function
instances, making some applications unable to run on the platform. Therefore, Mujezinović and Ljubović [190] proposed
a novel architecture, which combined AWS Lambda with AWS Fargate technology [14] to bypass these limitations.
Moreover, the architecture used the famous producer-consumer architectural pattern to handle applications with
high-frequency data. In addition, to address the shuffle operation problem that needs to exchange data across all
instances, Sánchez-Artigas et al. [220] presented the design of Primula, which had the shuffle operator ability by
employing object storage for serverless functions. Moreover, Primula also provided automatic parallelism and data
detection to guarantee executions.

The above general serverless programming frameworks are based on different solutions, including orchestration-
based model design, function scheduling, runtime mechanism, abstract-based design, and architecture design. These
frameworks help software developers to develop serverless applications with fewer usage restrictions. Moreover, they
support a wider range of application types. However, presented programming frameworks require application execution
to be deterministic. For dynamic applications or workloads, their execution paths may be mutable, causing general
frameworks not to work.
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Table 15. A summary of general framework studies on programming framework.

Study Solution Used strategy Considered factor
Baldini et al. [79] Orchestration model de-

sign
Express and build the orchestra-
tion of existing software func-
tion blocks

Robustness of the pro-
gramming model

Gerasimov et al. [127] Orchestration model de-
sign

Design an orchestration-
specific domain language

Data compatibility

Zheng et al. [280] Orchestration model de-
sign

Adopt the copy-based strategy
and connector-based strategy

Supportability of cross-
regional scenarios

Maslov and Pe-
trashenko [185]

Orchestration model de-
sign

Use a control-flow graph and
the finite automaton

Developers’ demand

Carver et al. [94, 95] Function scheduling Design a decentralized sched-
uler that incorporated static
scheduling and dynamic sched-
uling

Task graph coordina-
tion

Zhang et al. [278] Runtime mechanism Use checkpoints in the applica-
tion code

Function timeout issue

Al-Ali et al. [68] Runtime mechanism Design the new application
primitive

Function alternative

Fouladi et al. [123] Runtime mechanism Design a unique intermediation
representation layer

Diversity of application
types

Jangda et al. [139] Abstract-based design Design operational semantics Low-level behaviors
Meissner et al. [186] Abstract-based design Extend the event sources to ob-

tain the application persistence
Retroactive program-
ming capability

Mujezinović and
Ljubović [190]

Architecture design Combine AWS Lambda with
AWS Fargate technology

Function execution
time and storage space
issues

Sánchez-Artigas et
al. [220]

Architecture design Employ object storage for
serverless functions

Shuffle operation prob-
lem

6.6 Application Migration

In studies related to application migration, manual and automated conversion approaches have been presented. A
summary of studies on application migration is shown in Table 16.

•Manual conversion: For manual conversion approaches, researchers of related studies have illustrated step-by-
step how to transform applications in a manual way. However, major studies have been specific to a certain class of
applications. For example, a partial migration method [78] was proposed to handle web applications. In this method,
some scalable and resource-intensive components were implemented as microservices, while components with short-
lived functionality were transformed into serverless functions. Christidis et al. [100] and Chahal et al. [97] processed
AI-related applications by considering some restricted factors, such as the code size, model storage, training and
inference difference, and performance tuning. Elordi et al. [118] aimed at deep neural network inference tasks. They
provided a specific decomposition methodology, where original applications can be transformed into an application
pattern that can execute on AWS Lambda.

Except for specific applications, Stafford et al. [237] designed multiple refactoring iterations for general applications
to analyze memory usage and execution time before and after the refactoring. Then, they determined the best practices,
such as function type, dependency relationship, and request type.
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• Automated conversion: For automated conversion approaches, the application conversion process is done
automatically. However, in this process, applications need to be assessed for their portability on a specific serverless
platform before migration. SEAPORT [269] was an automated assessment method that used a canonical serverless
application model and assessment metrics (e.g., service and component similarity). TheArchitect [202] was a rule-based
system to automatically generate high-level serverless architecture design diagrams, simplifying the conversion process.
However, how to automate conversions is still a critical question. ToLambda [147] targeted Java applications to serverless
applications. Node2FAAS [108] and DAF [213] targeted Node.js monolithic applications into serverless applications.
These approaches automatically parsed the original code and transferred it as event-driven functions.

Although some studies have presented the corresponding application migration approaches, there are still two
problems to be addressed. First, how to automate conversions is a critical question, since a mature approach is lacking.
Second, providing a generic application migration approach is challenging for different application types. Researchers
may consider a series of factors, such as the vendor lock-in problem, function granularity, and state management.

Table 16. A summary of studies on application migration.

Study Solution Used strategy Target object
Bajaj et al. [78] Manual conversion Implement components with short-

lived functionality as serverless
functions

Web applications

Christidis et al. [100] and
Chahal et al. [97]

Manual conversion Address some restricted factors AI-related applica-
tions

Elordi et al. [118] Manual conversion Provide a specific decomposition
methodology

Deep neural network
inference applica-
tions

Stafford et al. [237] Manual conversion Design multiple refactoring itera-
tions

General applications

Yussupov et al. [269] Automated conversion Use a canonical serverless applica-
tion model and assessment metrics

Specific applications

Perera et al. [202] Automated conversion Generate high-level serverless ar-
chitecture design diagrams

Specific applications

Kaplunovich et al. [147] Automated conversion Parse and refactor the original code Java applications
Related studies [108, 213] Automated conversion Parse and refactor the original code Node.js applications

6.7 Cost

Regarding the cost aspect of serverless computing, related researchers have addressed problems of cost prediction and
cost optimization of serverless applications.

6.7.1 Cost Prediction. For cost prediction studies, there are mainly two common solutions, including regression model
prediction and statistical learning prediction. Table 17 shows a summary of cost prediction studies.

• Regression model prediction: Some cloud providers of serverless computing have provided pricing calculators
on their websites, but these calculators do not generate the corresponding cost for average runtime and memory size.
Therefore, Cordingly et al. [102] referenced the platform’s pricing policy to estimate the cost for the predicted runtime
performance. The runtime performance was obtained from the regression model that considered different CPUs and
memory settings. Differently, Eismann and Grohmann [113] found that the execution latency of the function was
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related to the function’s input parameters. Based on this insight, they presented a prediction approach, which applied
the monitoring data from this function to mixture density networks to predict distributions of execution latency and
output parameters of the serverless function. Then, runtime performance information was combined into a workflow
model to estimate the cost via the Monte Carlo simulation.

• Statistical learning prediction: Another kind of approach is to consider statistical learning. Considering that the
cost is affected by the allocated memory, Akhtar et al. [65] proposed a framework called COSE. COSE used Bayesian
Optimization to learn the relationship between cost and unseen configurations of a serverless function from trace logs.
COSE can predict the cost under different configurations. Lin and Khazaei [167] treated the serverless application as
the directed acyclic graph. Then, they introduced a probability-based cost graph that can get the average cost of the
serverless application. This graph considered the consumed memory and execution time of each serverless function, as
well as the transition probability between serverless functions.

Table 17. A summary of studies on cost prediction.

Study Solution Used strategy
Cordingly et
al. [102]

Regression model prediction Consider CPUs and memory settings to train the model

Eismann and
Grohmann [113]

Regression model prediction Consider function’s input parameters and monitoring
data to mixture density networks

Akhtar et al. [65] Statistical learning prediction Consider cost and unseen configurations to learn their
relationship using Bayesian Optimization

Lin and Khaz-
aei [167]

Statistical learning prediction Consider the consumed memory and execution time to
generate a probability-based cost graph

6.7.2 Cost Optimization. In studies related to cost optimization, there are three solutions, including function scheduling,
underlying combination, and resource adjustment. Table 18 shows a summary of cost optimization studies.

• Function scheduling: Generally, the serverless application is composed of one or more serverless functions. The
transition from one function to another will increase the number of invocations. However, the price is related to the
number of invocations. In this situation, a possible solution is to fuse multiple functions as a function and then schedule
this function to an appropriate instance for executions. Based on it, Elgamal [117] discussed the problems of function
fusion and function placement and then presented the corresponding cost graph. The cost optimization was concluded
as the constrained shortest path problem about this cost graph to find the best structure. In addition, developers may
use a hybrid public-private cloud to develop and execute their applications. In such an infrastructure environment, the
scheduling strategy of functions is critical in minimizing the cost of public cloud usage while meeting the specified
performance deadline. A hybrid cloud scheduling strategy called Skedulix [105] was presented to solve this problem.
Moreover, Skedulix used a greedy algorithm to determine the function placement dynamically.

• Underlying combination: Specific applications executed on serverless platforms may be costly since serverless
computing is currently good at short-lived and stateless tasks. The combination of serverless computing and VM
rentals may make applications cost more cost-effective. Some studies [131, 135, 176] have presented scalable and hybrid
approaches to analyze and choose the optimal cost in the environment of serverless computing and VM rentals, while
ensuring the performance constraint.

• Resource adjustment: The cost of the serverless function is affected by the pre-allocated memory size. Therefore,
some studies [65, 90, 167, 281] have presented optimization algorithms to provide an optimal configuration setting (e.g.,
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memory) that can achieve the minimum cost under performance constraints. In addition to finding the optimal memory
configuration, Spillner [234] measured the memory consumption situation of the serverless function within a particular
time and then created trace profiles in advance to automatically update memory.

Cost is closely related to performance. Therefore, the related studies have first leveraged the performance information
to further predict and optimize the cost. Moreover, these studies have considered memory allocation size and function
duration time according to the billing pattern of serverless platforms. However, this billing pattern is effective for
CPU-bound computation workloads. Other workloads (such as I/O-bound workloads) need to pay for extra computation
resources that they are underutilizing. Therefore, a new optimization insight may be useful for cost optimization.
Moreover, serverless providers may consider a broader range of factors (e.g., memory, networking, and storage) in the
billing pattern, in order to provide a fair cost prediction.

Table 18. A summary of studies on cost optimization.

Study Solution Used strategy
Elgamal et al. [117] Function scheduling Analyze function fusion and function placement to

present the cost graph
Das et al. [105] Function scheduling Consider the performance deadline to minimize the cost

of public cloud usage
Related stud-
ies [131, 135, 176]

Underlying combination Combine serverless computing andVM rentals to design
scalable and hybrid approaches

Related studies [65,
90, 167, 234, 281]

Resource adjustment Present optimization algorithms to provide an optimal
memory configuration

6.8 Multi-Cloud Development

To support the multi-cloud development of serverless computing, researchers have mainly designed new serverless
computing architectures or frameworks. Table 19 shows a summary of studies on multi-cloud development. Soltani [233]
was a Peer to Peer architecture that used container clustermanager technology to allow developers to enjoy the respective
strengths of multiple clouds. The multi-cloud development architecture presented by Vasconcelos [249] contained
three key components, i.e., FaaS Cluster, FaaS Proxy, and Multi-Cloud Resource Allocator. Specifically, FaaS Cluster
represented a cluster that contained multiple instances from geographically different cloud infrastructures, while FaaS
Proxy provided the request interface like a gateway. Multi-Cloud Resource Allocator can control resources in any of
the clouds. In addition, Sampé et al. [218] presented an extensible multi-cloud framework to execute regular Python
code on any serverless platform transparently. The architecture design of this framework was motivated by Python’s
multiprocessing and dynamism features.

The existing studies have designed new architectures to support multi-cloud development. Through these architec-
tures, developers may enjoy benefits from different clouds. For example, AWS is arguably the most innovative cloud,
while Google Cloud Platform offers superior services. However, cloud services from different clouds are still unable to
communicate and interact, which may lead to inefficiencies in the collaboration of multiple clouds. Therefore, bridging
the interaction between different cloud services may be an important topic in the research of multi-cloud development.
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Table 19. A summary of studies on multi-cloud development.

Study Used strategy
Soltani et al. [233] Use container cluster manager technology
Vasconcelos et al. [249] Design the multi-cloud development architecture with customize three components
Sampé et al. [218] Leverage Python’s multiprocessing and dynamism features to design the framework

6.9 Accelerator Support

Generally, the runtime environment of serverless platforms is mainly based on CPU resources. However, more and
more tasks like video processing and deep learning require leveraging other hardware resources to accelerate. In the
related studies, researchers have tried to support GPU and FPGA accelerators in serverless platforms. A summary is
shown in Table 20.

6.9.1 GPU Support. To address the GPU supportability, Kim et al. [151] presented a new serverless framework, which
integrated NVIDIA-Docker into the open-source serverless framework. Moreover, this new framework can support the
deployment of GPU-supported containers. However, the biggest disadvantage of this approach is that each GPU cannot
serve multiple function invocations simultaneously.

Different from using GPU-support containers, Naranjo et al. [193] used GPU virtualization. They tried several
virtualized access methods to GPUs, including remote access to GPU devices via the rCUDA framework [51], as well as
direct access to GPU devices via PCI passthrough [49]. The results showed that using GPU virtualization is an efficient
and accelerated way of serverless computing, achieving the sharing of GPUs among functions.

6.9.2 FPGA Support. To make the serverless platform support FPGAs, Ringlein et al. [212] designed a platform
architecture with disaggregated FPGAs for serverless computing. In addition, BlastFunction [76] was a distributed FPGA
sharing platform, which contained multiple device managers to monitor and time-share FPGAs. Moreover, BlastFunction
can achieve multi-tenancy for FPGAs.

In serverless computing, the most widely used function instances are based on the CPU. In this research direction,
the existing studies have aimed at GPU support and FPGA support. Although more accelerators supported in serverless
platforms may not be economically viable for most application types, the mix of multiple heterogeneous accelerators
may create a new research dimension.

Table 20. A summary of studies on accelerator support.

Study Solution Used strategy
Kim et al. [151] GPU support Integrate NVIDIA-Docker and support GPU-based containers
Naranjo et al. [193] GPU support Use GPU virtualization
Ringlein et al. [212] FPGA support Design a platform architecture with disaggregated FPGAs
Bacis et al. [76] FPGA support Monitor and time-share FPGAs

6.10 Security

In the security aspect of serverless computing, there are mainly two kinds of solutions, including SGX-based design and
information flow tracking. Table 21 show a summary.
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• SGX-based design: Serverless applications follow the event-driven paradigm, and they generally are triggered by
HTTP requests; thus, the API gateway is a crucial component. However, this component often suffers from malicious
attacks. To alleviate this situation, Qiang et al. [210] leveraged Intel Software Guard Extensions (SGX) and WebAssembly
sandboxed environment to design Se-Lambda to protect the API gateway. Particularly, SGX can create a trusted
execution environment where sensitive data can be stored and used normally, preventing malicious attackers from
stealing sensitive data from the serverless application. Moreover, Alder et al. [69] used SGX with the trustworthy
resource measurement mechanism in the serverless platform to guarantee security and accountability.

• Information flow tracking: Since serverless applications are composed of multiple serverless functions, using
information flow control (IFC) methods may be suitable and beneficial for information security in serverless computing.
Trapeze [71] was implemented as a dynamic IFC model to track and monitor the global information flow. Trapeze
achieved the security guarantee through static program labeling with dynamic data labeling. However, on one hand,
Trapeze left the burden for developers on the definition of information flow policies and the implementation of
declassification functions. In contrast, Valve [106] did not require declassification. Valve was a transparent function-
level information flow model, allowing developers to use fine-grained controls in their serverless applications and write
proper policy configurations. On the other hand, Trapeze’s implementation also relied on the programming language of
serverless functions and pre-defined key-value store functions. Based on these limitations of Trapeze, a transparent
approach named will.iam [221] was presented, which was agnostic to serverless functions and underlying platforms.
will.iam can automatically check access control policies and make a decision for requests in advance. Valve and will.iam
were complementary, where Valve was to understand the data flow information of their serverless applications and
write reasonable policies for will.iam.

The programming paradigm of serverless computing can reduce the attack surface, since maintaining and patching
up the security loopholes is assigned to the cloud providers. The existing studies on security have mainly presented
solutions from the serverless platform. According to the development pattern of serverless applications, the serverless
platform offers multiple settings and features and features. Developers may use incorrect settings or configurations,
resulting in a security thread. Moreover, these settings or configurations can act as an entry point for attacks against
serverless architectures. On the other hand, the permissions or rights to the functions should be properly configured.
However, in practice, it can create a situation where serverless functions become overprivileged, thus causing a potential
security threat. Therefore, studies related to security issues can also be added to the configuration analysis.

Table 21. A summary of studies on security.

Study Solution Used strategy
Qiang et al. [210] SGX-based design Leverage Intel Software Guard Extensions and We-

bAssembly sandboxed environment to protect the API
gateway

Alder et al. [69] SGX-based design Use SGX with the trustworthy resource measurement
mechanism

Alpernas et al. [71] Information flow tracking Achieve the security guarantee through static program
labeling with dynamic data labeling

Datta et al. [106] Information flow tracking Design transparent function-level information flow
model

Sankaran et al. [221] Information flow tracking Check access control policies and make a decision for
requests in advance
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6.11 Testing and Debugging

Table 22 shows a summary of studies on testing and debugging. In the distribution environment of serverless computing,
serverless functions interact with other functions or cloud services. It makes serverless application testing challeng-
ing [163]. Winzinger and Wirtz [259] implemented a data flow testing framework to obtain the function coverage. This
framework used additional instrumentations in the source code to detect data flows between functions and services,
between return values, and between functions and functions.

Debugging the serverless application is an essential step in facilitating serverless computing [161, 242, 256]. The
current solution is to use the record and replay approach. Watchtower [72] was presented to observe the application
changes through instrumenting libraries. Watchtower can be structured as a serverless application to scale at the
same rate. Then, developers can analyze output logs to detect the violations affecting the correctness of serverless
applications. If a violation was found, a record-and-replay debugger contained in Watchtower could be used to recreate
and re-execute the application from a specific state on the developer’s local machine.

Software testing and debugging are critical to assess whether a software application successfully meets requirements
and specifications. That is also applied to serverless applications. However, the related studies are relatively few. In
serverless applications, several serverless functions or external services are integrated. Therefore, a sufficient testing
tool should focus more on the interactions between serverless functions and external services. In addition, serverless
functions are event-driven. The actual root cause of the error may be challenging to locate the specific execution flows.
Therefore, the distributed tracing approach with serverless features may be useful.

Table 22. A summary of studies on testing and debugging.

Study Used strategy
Winzinger and Wirtz [259] Use additional instrumentation to obtain the function coverage
Alpernas et al. [72] Design a record-and-replay debugger to recreate and re-execute the application

7 RQ3 (EXPERIMENTAL SETTING AND EVALUATION)

To answer the research question of how the existing solutions perform experimental setting and evaluation, we aim to
explore three sub-research questions, i.e., RQ3.1, RQ3.2, and RQ3.3. For RQ3.1 and RQ3.2, the first two authors indepen-
dently view the Implementation and Evaluation parts in each research paper, in order to determine the experimental
serverless platforms and the availability of experimental validation for the presented solution. For RQ3.3, the first
two authors independently view the full text in each research paper to check whether the experimental datasets or
code is shared and whether it is still accessible via website search. These answers about RQ3.1, RQ3.2, and RQ3.3 are
deterministic. The results given by the first authors are aggregated together to find the conflicts. These conflicts are
resolved by the third arbitrator, and the final answer agrees with the first two authors. Figs. 6, 7, and 8 show the final
results.

We use Fig. 6 to answer RQ3.1. Fig. 6 shows the distribution of experimental or evaluated serverless platforms for
existing solutions. The distribution shows that a wide variety of serverless platforms are available for implementing or
evaluating proposed solutions. These serverless platforms include custom systems related to serverless computing, AWS
Lambda, OpenWhisk, OpenFaaS, OpenLambda, Google Cloud Functions, IBM Cloud Functions, Azure Functions, and
other serverless platforms (such as Alibaba Cloud Function Compute and Knative). From the percentage of serverless
platforms in Fig. 6, we can summarize the following four points. First, a custom system related to serverless computing
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Fig. 6. The distribution of experimental or evaluated serverless platforms for existing solutions.

is the widest implementation way, accounting for 31.49% of all serverless platforms. To address problems of a certain
serverless aspect, some researchers [67, 92, 109, 146, 153, 245] have designed new serverless platforms to implement
or host their solutions. For example, SAND [67] was a novel, high-performance serverless platform, which designed
some custom components to improve the cold start performance. Kaffes et al. [146] designed a new serverless system to
execute highly bursty, stateless, and short-lived applications. This platform highlighted a centralized core-granular
scheduler, which is more fine-grained than traditional serverless schedulers. The new requirement of the scheduler
forced researchers to present the new underlying design of serverless platforms; thus, their solution was implemented in
a custom system. Second, AWS Lambda is the second most widely used serverless platform in the serverless computing
literature, accounting for 30.94% of all serverless platforms. Moreover, AWS Lambda is used far more than other
commercial serverless platforms like Google Cloud Functions and Azure Functions. It illustrates that AWS Lambda
is more mature regarding serverless features and infrastructure to help researchers design or present their solutions.
For instance, Pocket [155] was a novel storage system for optimizing the communication problem between serverless
functions. Pocket placed the original storage and collaborated with AWS Lambda to scale with the serverless functions
automatically. Third, the most commonly used open-source serverless platform is OpenWhisk, which accounts for
13.26% of all serverless platforms. The specific detail of OpenWhisk is explained in Section 3. Researchers can modify
the underlying architecture of OpenWhisk to add or redesign components to achieve their goals. For instance, Zhang
et al. [279] presented a new insight into using Harvest VMs, whose resource management differed from traditional
underlying resource management for VMs and containers. Considering the characteristics of Harvest VMs, they
redesigned a load balancer in OpenWhisk. Finally, the “Others” category in Fig. 6 refers to serverless platforms with low
usage, containing Alibaba Cloud Function Compute, Knative, Fission, Kubeless, and Huawei’s FaaS Framework. These
serverless platforms account for only 4.42% of the total platforms, illustrating that these platforms have not been widely
used in the serverless computing literature. For example, the Alibaba Cloud Function Compute team [8] presented a
rapid container provisioning approach, FaaSNet [250], to improve its own platform’s container provisioning speed to
serve requests.

We use Fig. 7 to answer RQ3.2. Fig. 7 represents the distribution of the availability of experimental validation of
the existing solutions. The result shows that 93.90% of the existing solutions are evaluated by using experimental
validation. For instance, Barcelona-Pons et al. [82] leveraged different application types and presented four evaluation
questions to validate the benefits of their solution. The distribution result is related to our inclusion criteria for selecting
research papers. In our paper, we select research papers addressing specific problems related to serverless computing
and presenting the corresponding solutions. Generally, presented solutions need to be evaluated to demonstrate their
benefits or efficiency. Therefore, a majority of existing solutions have experimental validation, while only 6.10% of all
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solutions are not validated experimentally. For example, Boucher et al. [89] presented a novel proposal to describe a
FaaS design that attempts to be truly micro, but this design lacked the related experimental evaluation.

We use Fig. 8 to answer RQ3.3. Fig. 8 represents the distribution of the availability of experimental datasets or code of
the existing studies. The results show the following two points. First, 45.12% of the existing studies provide the shared
datasets or code, while 54.88% of studies do not release the used datasets or code. It shows that more studies have
focused on describing the design and implementation of their solutions rather than further providing reproducibility
possibilities. Second, for the shared datasets or code, 95.95% is accessible, indicating high reproducibility. Only 4.05%
of the shared links are inaccessible. For example, the data links provided by Chadha et al. [96] and Jindal et al. [143]
cannot point to valid pages on the Internet. It suggests the researchers pay attention to the correctness of publicly
available data links.
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8 RQ4 (PUBLICATION VENUES)

To answer the research question of where research papers are published, the first two authors independently search
Google Scholar to determine each research paper’s publication venue, e.g., a specific publication conference or journal.
The results given by the first two authors are compared to find the conflicts, and these conflicts are resolved by the
third arbitrator. Moreover, all authors agree on the final results.

We analyze publication venues for research papers according to the well-adopted metrics of Computer Science
Rankings (CSRankings 2). Fig. 9 shows the main distribution of publication venues for research papers addressing
specific problems. Meanwhile, we also investigate other important publication venues related to software engineering,
cloud computing, etc., in Fig. 9. Table 23 shows a summary of main publication venues and their covered research
directions. Due to the long name of the publication venue, we use abbreviations to represent them, and the corresponding
full names are shown in Fig. 9. For example, “OSDI” represents USENIX Symposium on Operating Systems Design and

Implementations, while “TOSEM” represents ACM Transactions on Software Engineering and Methodology.
From Fig. 9 and Table 23, we can summarize the following points. First, the top publication venues are “SoCC”,

“TPDS”, and “CLOUD”, accounting for 28 of the 164 papers, respectively. Serverless computing is the next generation of
a promising cloud computing paradigm. Therefore, it is reasonable that more research papers are published in cloud
computing-related conferences like “SoCC” and “CLOUD”. Second, the publication venue covers multiple research
2https://csrankings.org
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Fig. 9. The main distribution of publication venues for research papers addressing specific problems.

Table 23. A summary of main publication venues and their covered research directions.

Publication venues Covered research directions (leaf node representation)
ASPLOS Cold Start Performance; Function Communication
NSDI/INFOCOM Specific Framework; Cost Prediction; Cost Optimization; Performance Prediction; Resource Manage-

ment; Cold Start Performance; Function Communication; Stateful FaaS
SIGMOD/VLDB Function Communication; Stateful FaaS
SC Specific Framework
OSDI/SOSP/EuroSys/USENIX ATC Resource Management; General Framework; Cold Start Performance; Function Communication;

Function Execution; Stateful FaaS
OOPSLA Security; General Framework
TOSEM/SPE/IEEE Software Application Modelling; Specific Framework; Cold Start Performance; Multi-Cloud Development;

Application Migration; Stateful FaaS
WWW Security; Resource Management
SoCC/TPDS/CLOUD Testing and Debugging; Cost Prediction; Cost Optimization; Performance Prediction; Application

Modelling; General Framework; Specific Framework; Resource Management; Cold Start Performance;
Function Communication; Function Execution; FPGA Support

directions related to serverless computing. For example, Table 23 shows that conferences for “OSDI”, “SOSP”, “EuroSys”,
and “USENIX ATC” have six research directions of serverless computing, including resource management, general
framework, cold start performance, function communication, function execution, stateful FaaS. In addition, publication
venues about “SoCC”, “TPDS”, and “CLOUD” include twelve research directions, ranging from testing and debugging [72]
to resource management [87]. Third, current publication venues mainly contain two kinds of communities, i.e., the
Software Engineering community and the Systems community. Specifically, some studies have been published in
software engineering-related journals, such as “SPE”, “IEEE Software” and “TOSEM”. These studies have addressed
problems with the application modelling [271], programming framework of specific framework [84, 276], multi-cloud
development [218], application migration [213], etc. Other researchers have presented their approaches in system-
related venues, such as “OSDI”, “SOSP”, “EuroSys”, and “USENIX ATC”. These approaches mainly resolved problems
with resource management [274, 279], cold start issues [109, 125, 246], function communication [155, 208], etc. Overall,
this key point indicates that current serverless computing has difficult unresolved issues on the software application
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side and serverless platform side. In practice, the biggest beneficiaries of serverless computing are software developers.
Existing difficult issues will prevent software developers from enjoying the advantages of easy development and fast
application execution. Therefore, addressing issues on the software application side and serverless platform side is to
better facilitate software developers’ application development practices on serverless platforms.

Note that we do not use any analysis framework. In our work, we use an Excel spreadsheet to provide all of the
extracted papers and the analyses, following a similar strategy from other studies [73, 80, 98, 256].

9 OPPORTUNITIES FOR RESEARCHERS

In this section, we aim to discuss open challenges compared to the efforts already made and envision promising research
opportunities for future research on serverless computing.
Generalizability of application conversion approaches. Based on the benign characteristics of serverless computing,
various applications are migrated to the serverless platform for executions. As reported in the characterization study
about serverless applications [114], applications are diverse and not limited to any specific types. However, existing
application conversion approaches have targeted only a few specific applications, such as AI applications [97, 100, 118],
Web applications [78], and Java applications [108, 147]. There are not yet generic conversion tools for any application.
Though Stafford et al. [237] presented a multiple-refactoring iteration approach, this approach just changed the runtime
results of different states. Then, it determined which change was beneficial to the application. Moreover, this approach
did not provide specific conversion steps. Providing a generic application conversion approach is challenging, which
requires addressing a series of problems, e.g., application type, vendor lock-in, function granularity identification,
event-driven code transformation, cloud service selection, and state communication.
Cold start performance problem of serverless applications. Although the state-of-the-art solutions for cold start
performance optimization (e.g., data cache-based optimization [67, 197] and snapshot-based optimization [92, 252]) can
effectively improve the cold start performance, they mainly target the acceleration of container creation or runtime
initiation. However, containers generally lack isolation or flexibility due to their inherent nature. Therefore, providing
isolation or flexibility for current common sandboxes like containers is a tricky problem. On the other hand, even if
there is a short time for container acceleration, cold start performance still faces another overhead, i.e., application
initialization overhead, which may take up a large portion of the cold start time in the future. In this situation, it also
reveals a new opportunity, i.e., how to optimize the overhead of application initialization in the case of faster runtime
initialization already available.
Performance variability of serverless functions. In related studies of performance prediction for serverless functions,
most solutions have been based on the collected runtime information of a serverless function in a period to predict the
performance value of a constant [65, 102, 111]. However, the auto-scaling feature of serverless computing makes function
performance variable and resource allocation dynamic. It is not enough to rely on factors considered constant value to
predict dynamic performance. Eismann et al. [112] discussed the performance variability of serverless computing and
determined serverless-specific changes, such as uncertainty in cold and warm starts, load intensity, and short-term and
long-term performance fluctuations. Therefore, it is essential that the performance problem of serverless computing
take into account the dynamic feature or distributions. Unfortunately, most serverless platforms are untouchable to
software developers and expose little to no information about the underlying environment. Therefore, considering
performance variability in serverless performance is difficult, but it also hints at a future research opportunity.
Data privacy of IoT applications. In the related studies of the programming framework, IoT-specified serverless
frameworks are the most widely studied in specific application scenarios, accounting for 36.84% (7/19) of all specific
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frameworks. Presented frameworks have addressed the movement problem of data and code [99], resource constraint
problem of edge devices [205, 276], deployment operation problem [260], heterogeneous cluster access problem [143],
etc. However, these studies have not focused on the data privacy challenge for IoT applications. Edge devices are placed
in different geographical locations and may collect data not wanted to be made public. Moreover, they communicate
with each other. In this situation, edge devices have no unified cloud management like serverless functions; thus, they
are vulnerable to attacks. Data privacy preservation is critical for IoT applications. With respect to data confidentiality,
developers can encrypt the data before storing it in external cloud storage when writing IoT functions. However, when
another IoT function queries the required data from the storage, query operation may encounter obstacles in the absence
of decryption. In future research, a possible solution is to design a novel “index”, which uses encryption techniques that
can support the execution of operations or query evaluation.
Testing tools. AWS Lambda can use GUI to invoke serverless functions, indirectly implementing the intent of the
function testing. In practice, there is still a lack of mature testing tools for serverless applications. Although Winzinger
andWirtz [259] implemented a data flow testing framework, tested applications still need to be deployed to the serverless
platform after modifying the corresponding source code. The most challenging part of implementing testing tools may
be to mock the real serverless environment in the local environment [163]. This is unlike monolithic applications and
microservice applications, where the environment can be tested directly locally. In serverless computing, software
developers do not knowwhich containers will be used in underlying platforms during deployment; thus, it shows an open
challenge for serverless application testing. Moreover, the serverless application is composed of multiple dependent
serverless functions. Integration testing may be necessary to ensure the correctness of the serverless application.
Therefore, providing a serverless-specific testing tool will be a promising opportunity for serverless applications.
Security and efficient direct communication between serverless functions. To alleviate the function communica-
tion problem, researchers have adopted various optimization solutions, such as memory sharing [142, 156], cache-based
design [244, 261], and storage optimization [155, 208]. However, these strategies have still been built on the idea of
temporary data stored in a specific place like memory and external storage for function communication. On the one
hand, this idea may expose security issues, especially for sensitive data. Even if data can be encrypted during function
communication, data shared in memory or cached in containers may still be maliciously attacked or stolen by other
tenants. Therefore, providing a secure serverless platform remains challenging but also a research opportunity. On the
other hand, this idea of temporary data stored in a specific place cannot avoid the additional overhead of saving and
fetching or managing data. Boxer [255] supported the direct communication between serverless functions. It leveraged
a modified network, which used TCP hole-punching techniques of P2P to solve the limitation of the conventional
network. However, for large-scale communication-intensive applications, Boxer may not provide high-throughput
and low-latency networks for functions. Therefore, it will elicit a promising research opportunity, i.e., how to design
efficient direct network communication for serverless functions.
Effectiveness of the pricing model. Existing studies about cost prediction and optimization [117, 176, 234, 281]
have been based on the billing model that pays for actually consumed computation resources. Such a billing model
is effective and economical for computation-intensive workloads. However, when developers execute I/O-intensive
or disk-intensive workloads, the current billing model may be expensive, and allocated computation resources are
also not efficiently utilized. In this situation, the challenges that cloud providers of serverless computing face are to
further consider a more suitable billing pattern for various resource types, e.g., CPU, memory, networking, and storage.
Moreover, existing solutions of cost prediction and optimization studies relied solely on the consumption of computation
resources. A dynamic pricing prediction and optimization scheme may be a research opportunity in the future.
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Fine-grained resource configuration on application development. Generally, software developers configure a
small set of parameters (e.g., function timeout, memory size, and cloud providers) for their applications, and these
parameters are simple. This development way frees developers from underlying resource management. However, some
experienced developers may be willing to configure the fine-grained resource policies to effectively improve the overall
quality of service of applications [65]. Therefore, this situation also motivates a research opportunity for performance
improvement. The serverless platform can optionally support some fine-grained configuration options about the
underlying runtime information. For example, developers can configure network conditions, function placement, I/O
bandwidth, and so on.
Heterogeneous accelerator support. Besides existing studies about GPU support [151, 193] and FPGA support [76,
212], other accelerators like Tensor Processing Unit (TPU) also should be noticed for cloud providers of serverless
computing. However, supporting new accelerators may be challenging in serverless platforms because it may require
designing a new scheduler, resource allocation pattern, or billing model. Moreover, accelerators generally have some
internal restrictions, e.g., I/O bandwidth and energy efficiency, and thus they are difficult to implement in the serverless
platform. On the other hand, supporting more accelerators may not be economically viable for certain scenarios.
However, providing heterogeneous accelerator support creates a new research dimension of significant importance for
scenarios that use function instances with a mix of CPU, GPU, FPGA, and TPU.
Monitoring tools. The monitoring capability may not be enough for current serverless platforms. Some third-party
monitoring tools, such as Epsagon [33] and Datadog [29], may also be applied to trace the serverless application.
However, they still do not contain resource consumption and infrastructure-related metrics, e.g., CPU utilization,
network condition, and infrastructure performance, to further understand the serverless application and platform.
Therefore, in the serverless platform, providing comprehensive observability of both serverless applications and
platforms is a complex undertaking, but it is also an opportunity for future research on serverless computing.
Representativeness and completeness of benchmark dataset. Studies related to serverless computing have used
some benchmark datasets to verify the efficiency of their solutions [67, 113, 141, 279] or obtain characterization re-
sults [114, 171, 257, 258]. However, we find that these studies have not used a standard benchmark dataset. For example,
SAND [67] used image processing applications, while Boki used the real applications from DeathStarBench microser-
vices [30]. Moreover, the measurement work [279] used multiple Python serverless functions from FunctionBench [152].
To characterize serverless applications, the authors [114] collected different applications from open-source projects,
academic literature, industrial literature, and domain-specific feedback. This situation of the used benchmark dataset
indicates that the serverless computing field has not a uniform and representative dataset. On the other hand, the
completeness of the benchmark dataset (i.e., containing diverse application types) is also critical for evaluating generic
techniques or frameworks. A complete dataset can validate key insights and find potential weaknesses. Therefore,
constructing a representative and complete benchmark dataset will be a promising opportunity for future serverless
research.
Computing continuum. One potential research direction is the computing continuum. Serverless computing hides the
differences away and allows developers to deploy and execute stateless and lightweight functions. This paradigm can
collaborate with technologies related to the mobile, edge, and cloud computing to form the computing continuum [83].
This continuum enables the convergence of heterogeneous infrastructures and creates disruptive applications in the
future. For example, Baresi et al. [83] provided an implementation possibility in the computing continuum scenario,
which combined serverless computing with technologies related to mobile and edge computing.
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Configuration management. In serverless computing, the concept of infrastructure as code is used to simplify the
custom usage of resources for developers [40]. Infrastructure as code means that developers configure the required
resources through the specific resource configuration format without hand-coded programming. However, some
configuration-based questions [2–7] are frequently asked by developers in Stack Overflow. These questions account for
the second-largest percentage of the total challenges that developers develop their serverless applications [256]. Thus,
fixing configuration-related errors can significantly reduce the deployment time of serverless applications. An automated
detection may be useful to reduce the risk of misconfiguration and ease the burden of configuration management on
serverless-based developers. Perhaps, researchers will design a new resource configuration pattern or configuration
management mechanism specific to serverless computing.

10 OPPORTUNITIES FOR PRACTITIONERS

Serverless computing is an emerging concept, and its related techniques will continue to be updated and adapted in the
future. In our study, we aim to provide a snapshot of the current research state of the art of serverless computing at the
time of writing. Meanwhile, we also aim to provide some software practices of serverless application engineering for
future practitioners.

We present and answer RQ3 about experimental setting and evaluation. This part shows the distribution of ex-
perimental serverless platforms and the availability of experimental datasets/code. The results in Fig. 6 hint at the
popularity of serverless platforms. Therefore, when developing serverless applications, practitioners can implement
the serverless-related custom system themselves, or they can use AWS Lambda (a mainstream commercial serverless
platform) or OpenWhisk (an open-source serverless platform). Moreover, Fig. 8 shows that nearly half of the studies
have open-source datasets or code. Practitioners can directly access such information to facilitate their development
process of serverless applications.

From Fig. 5, we can observe the type distribution of specific frameworks, where IoT applications are widely studied,
accounting for 36.84% (7/19) of all specific frameworks. In practice, practitioners also focus on and develop a large
number of IoT applications, because these applications are closely related to daily life. For example, IoT applications
can be useful in smart homes. A home is where people always need safety and security, and locks are the foundation of
home security. Traditional locks have keys, but keys get lost easily. In this situation, a digital smart door lock system
can be developed by practitioners to make homes more secure. Although practitioners may encounter some problems
(e.g., data access, data moving, and resource constraint of edge devices) in designing such a system, they can all benefit
from the existing research efforts [99, 143, 205, 276].

Furthermore, we observe that the performance problem is a main focus in the serverless computing literature. In our
study, we summarize solutions of performance optimization, containing cold start performance, function execution
performance, and function communication performance. In designing latency-sensitive applications, practitioners can
check which part of the application is the performance bottleneck and then refer to the corresponding solution. For
example, for the cold start performance of applications, practitioners can try to reduce the number of cold starts by
fusing multiple serverless functions into a serverless function [85, 159, 227]. For the function execution performance,
practitioners can consider the effect of memory allocation size. Based on the historical execution information, the
memory size that makes the performance optimal can be inferred [167].

In the future, some potential trends in serverless applications will appear. For example, (1) containers are considered
more coarse-grained in comparison to serverless functions, and they are treated as an alternative choice. A potential
trend is that containers and serverless become an infrastructure foundation for application platforms. Such a way can
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give full play to respective strengths, since serverless platforms have started supporting containers to package and
deploy the application code. (2) For serverless computing, there is a lack of standardization and interoperability between
serverless providers. Some open-source serverless platforms like Knative may speed up the standardization process
by leveraging Kubernetes techniques. Moreover, through standards such as cloud events, developers do not have to
feel locked into a single cloud service provider for services anymore. However, there is a question to think about: in
practical use, should developers or users expect that serverless application code becomes easily portable across various
serverless platforms? Perhaps, an efficient serverless code needs to depend on cloud-specific services like databases. (3)
The low-code development way can reduce the burden of development projects and minimize the need for specialized
technical skills. Moreover, it accelerates the application transformation. Overall, this way has allowed solution-oriented
developers without having any engineering background to create valuable applications. Thus, in serverless computing,
combining low-code development can further improve productivity and solve business problems quickly.

11 CONCLUSION

In this paper, we presented a comprehensive literature review to summarize the current research state of the arts
of serverless computing. Specifically, first, we collected and analyzed 164 research papers to construct a taxonomy
containing 17 research directions of the serverless computing literature. Second, we classified the related studies of each
research direction and elaborated on existing solutions. Third, we explored the experimental setting and evaluation of
solutions. Fourth, we showed the distribution of publication venues for selected research papers. Finally, we discussed
open challenges and envisioned promising research opportunities for future research on serverless computing. Our
analysis of available research work on serverless computing can significantly decrease ambiguity and the entry barrier
for novice researchers and practitioners. Moreover, summarized taxonomy, solutions, distributions, and analyses will be
of great value for (1) future researchers to pursue promising research topics and insightful ideas for solutions and (2)
future practitioners to conduct best software practices of serverless application engineering.
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