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Abstract: Conventional models for lensless imaging assume that each measurement results9

from convolving a given scene with a single experimentally measured point-spread function.10

These models fail to simulate lensless cameras truthfully, as these models do not account for11

optical aberrations or scenes with depth variations. Our work shows that learning a supervised12

primal-dual reconstruction method results in image quality matching state of the art in the13

literature without demanding a large network capacity. We show that embedding learnable14

forward and adjoint models improves the reconstruction quality of lensless images (+5dB PSNR)15

compared to works that assume a fixed point-spread function.16

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement17

1. Introduction18

A lensless camera uses a thin mask in place of a conventional lens. Masks can manipulate phase,19

amplitude, or the entire complex light field of a given scene. Unlike lenses in conventional20

cameras, these masks can be placed near the imaging sensor, enabling thinner and lighter21

imaging systems. Additionally, lensless cameras offer the benefits of compressed imaging [1, 2],22

embedding higher dimensional scene information such as depth from a single capture. To benefit23

from these qualities, experts typically model lensless cameras as a linear system and recover24

images computationally by solving the inverse problem.25

Pseudo-random phase masks have demonstrated adequate performance for lensless photogra-26

phy [5, 6]. Unfortunately, image reconstruction typically requires computationally expensive and27

slow iterative reconstruction algorithms (e.g. ADMM [5] and FISTA [7]). To address this, a28

growing number of works use data-driven Convolutional Neural Networks (CNNs) to improve29

the speed and quality of lensless image reconstructions [8–10]. A typical CNN with a limited30

receptive field size fails to accurately model the light transport of the imaging system [11],31

leading to learned models which fail to reconstruct lensless images accurately and efficiently.32

Subsequent work using vision transformers have addressed the limited receptive field-size of33

CNNs, however these require substantial time to train compared to physically informed mod-34

els [12,13]. Recent literature proposes neural networks that include a physical model with a large35

receptive field [6,14]. These neural networks typically use a single-shot calibration measurement36

of the Point-Spread Function (PSF) to represent the physical model of the imaging system.37

However, without the use of precisely engineered masks [6, 15], image formation in lensless38

cameras cannot be fully expressed by a single PSF model [16]. This model mismatch can lead39

data-driven regularizers to hallucinate missing features or create overly smooth images. Therefore,40

the development of models that can correct for model error without increased computational41

complexity or extensive calibration is of critical importance for the widespread adoption of42

lensless imaging. Our proposed method replaces ADMM with a learned optimization scheme,43

improving image quality by reducing model error as opposed to intensive post-processing. The44

result is a versatile deeply-calibrated lensless imaging architecture that avoids model error in45

https://opg.optica.org/library/license_v2.cfm#VOR-OA


Fig. 1. Comparison of our unrolled primal-dual network with state of the art. Intensive
post-processing of lensless images cannot correct the model error, over-smoothing
images and removing important features, such as text. We propose to replace classical
lensless reconstruction methods with our physically-informed unrolled primal-dual
model, where the model includes a series of learned forward and adjoint models (pseudo
point-spread functions and their inverse). As a result, our work can produce plausible
images and recover additional features while reducing the need for deep post-processing
networks such as U-Nets [3] (Source image courtesy MIR Flickr [4]).

the resulting reconstructions. We provide the results of numerous experiments comparing our46

method against existing image reconstruction algorithms for lensless cameras.47

Specifically, our work provides the following contributions:48

• Learned primal-dual for lensless imaging. We show for the first time that a modified49

learned primal-dual optimization framework [17] can recover images from a lensless50

camera using a pseudo-random phase mask.51

• Learned forward-adjoint model. We embed additional linear operators within our learned52

primal-dual framework. These learned forward-adjoint models are jointly optimized with53

the rest of our model using the same paired training examples. We show that our extended54

model provides a significant visual quality enhancement in our image reconstructions. Our55

method promises reductions up to 50% in reconstruction error while using a fraction of56

the parameters compared to previous works.57

• Lensless camera prototype. We build a proof of concept lensless camera to test further and58

demonstrate the performance of our model in an actual lensless camera with a pseudo-59

random mask. We provide an automatic calibration routine that can train our model without60

the need for an additional camera with a conventional lens.61

Limitations When compared to models that use a single calibrated forward model, our method62

yields an improvement in the quality of lensless image reconstructions. However, a thorough63

investigation is required to identify explainable links between our learned forward models and64

physically accurate models in the future. In our experiments with our in-house built camera,65

we observe a lesser quality in image reconstructions when compared with the state of the art66

datasets [6, 14]. We believe these originate from the fact that the off-the-shelf diffuser we use67

does not fully resemble the case that we draw our inspiration from [5]. However, our work68



significantly improves the image quality both on benchmark datasets [14] and our in-house built69

camera.70

2. Related work71

We introduce a novel image reconstruction method for lensless cameras. Here, we provide a brief72

survey of prior art in lensless cameras, unsupervised lensless image reconstruction methods and73

learned image reconstruction techniques. Curious readers can read more about lensless cameras74

through the work by Boominathan et al. [18] and Kavakli et al. [19].75

2.1. Lensless cameras76

The idea of building cameras without requiring optical lenses has been a long-standing vision for77

scientists [20] as optical lenses can be bulky, hard to manufacture with great precision, and are78

typically focused at one plane at a time. The advent of ubiquitous high performance computing79

and the promise of high dimensional capture has led to a resurgence of interest in lensless cameras.80

A lensless camera uses a mask as a hardware optical encoder, and is paired with a computational81

reconstruction algorithm to recover the scene content. Mask based lensless cameras have been82

demonstrated with coded illumination [21], coded apertures [22, 23], amplitude-only diffraction83

gratings (e.g., pinhole arrays [24]), photon sieves [25], separable amplitude masks [26], Fresnel84

Zone plates [27]), phase-only diffraction gratings [5, 28] and metalenses [15]. Additionally, the85

mask used in a lensless imaging system can also be co-designed with an algorithm that recovers86

scene information [15]. The depth-varying PSFs of phase mask imaging systems can augment87

existing 2D imaging sensors with near-field 3D imaging [5]. Alternatively, single-pixel detectors88

combined with coded illumination patterns can be used for time-based imaging [29, 30].89

In our work, we show a lensless camera prototype for experimental validation. Our prototype90

is similar to the one demonstrated by [5] but differs in implementation details, which we go91

through in our implementation section.92

2.2. Unsupervised Lensless Image Reconstruction Methods93

The large spatial extent of the PSFs used in phase-mask based lensless cameras necessitates a94

cropped convolution model, owing to the limited size of the imaging sensor. By modelling the95

convolution and the sensor crop as separable sub-problems, the Alternating-Direction Method of96

Multipliers [5] can be used to recover images using convex optimization. Convex optimization97

methods such as ADMM are mathematically rigorous, and offer strong guarantees of convergence98

in contrast to stochastic methods. However, modelling field-varying aberrations is cumbersome99

process using convex optimization approaches, typically requiring a 10x or greater increase in100

computational cost [16].101

2.3. Learned Lensless Image Reconstruction Methods102

The advent of learning-based approaches eases the computational burden of lensless image103

reconstruction. The work by [14] unrolls five iterations of ADMM and uses a large U-Net [3] to104

improve perceptual quality. By augmenting a well-known unrolled optimization with learned105

post-processing, this method clearly separates the role of known physical models and black-box106

neural networks. However, this approach has a limited ability to correct for model error in the107

resulting reconstructions, relying on intensive post-processing to achieve plausible reconstructed108

images. [31] demonstrates a blind deconvolution model for lensless cameras without involving109

PSF measurements. Blind deconvolution methods are appealing as they aim to eschew the need110

for laboratory calibration. Our model requires re-training for each phase mask, yielding higher111

quality lensless reconstructions at the cost of portability. [32] propose a fast learned reconstruction112

model for lensless cameras. By improving boundary conditions inherent in the sensor crop,113
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Fig. 2. Unrolled Primal-Dual network architecture for reconstructing lensless images.
Our model accepts inputs in the form of a batch of RGB lensless measurements with a
predetermined width and height. The blue box illustrates our dual update step, where
variables in the measurement domain ({H8 , H8−1, 1} ∈ . ) are concatenated channel-wise
before passing through two convolutional layers parameterized by \8

3
. The yellow box

illustrates our primal update step, where each variable in the measurement domain
({G8 , G8−1}) is likewise concatenated and convolved with two layers parameterized by
\8? . Our forward-adjoint model tensor, \: , which is initialized with the value of a
PSF measured using a point light source, is also optimized at each epoch. Finally, our
trained model reconstructs images from lensless measurements.

they show that they can recover realistic images in a single step without the need for an iterative114

model. Our work embeds multiple large kernels within an unrolled iterative model to better115

compensate for optical aberrations. [33] tackles model mismatch caused by imperfect modelling116

mainly due to spatially-varying PSFs with varying eccentricity. This is acheived by learning117

residual blocks during each unrolled iteration of ADMM, which are fed into the U-Net denoiser118

to correct for model error. We show that our method yields accurate intermediate reconstructions119

by separating the role of the denoising network from the model reconstruction network. Most120

recently, [34] have proposed pairing multiple Wiener filters with convolutional neural networks121

to recover accurate images in a lensless microscopy application. However, their method requires122

a experimental verification for phase-mask based lensless cameras as it targets microscopy.123

In conclusion, existing learned methods depend both on accurate PSF calibration and additional124

training data to develop a suitable image prior. Our method makes better use of supervision125

by diverting trainable parameters towards improving the underlying physical model of light126

transport. By learning iterations of an implicit optimization procedure, our method produces127

accurate intermediate reconstructions that are more consistent with images captured by a lensed128

camera. To our knowledge, our learned method delivers results that are on-par with the current129

state of the art in terms of speed and image quality, while offering greater parameter efficiency130

than previous works.131



3. Method132

We first introduce the forward model for a phase-mask based imaging system. We then present133

our proposed lensless image reconstruction model. Finally, we illustrate our deep calibration134

procedure which captures the necessary dataset for our supervised model-based reconstruction.135

3.1. Problem Formulation136

We assume that measurements from our imaging system, b, are the result of a linear transformation137

A applied to points in the scene x, with some additional noise n :138

b = Ax + n, (1)

where b, xn are vectors.139

Each column of A corresponds to the linear transformation of a single point in the scene, also140

known as PSFs. Storing PSFs for each point in memory is a demanding task. Rather than storing141

all PSFs, using an aperture enables the approximation of A as a cropped convolution with a PSF142

measured along the optical axis [5]143

b = C(PSF ∗ x) + n (2)

. Here, ∗ represents a circular convolution and C represents a crop down to the size of the144

imaging sensor. The lateral shifting of the large PSF outside of the bounds of the image sensor145

necessitates this cropped convolution model. A single experimentally measured PSF is typically146

used to reconstruct images using the described convolutional forward model [5, 14]. The on-axis147

PSF is typically measured by shining a point light source along the optical axis of an existing148

system. Under the assumption that b is the result of a cropped convolution with an experimentally149

measured PSF, we recover an estimate of the scene x by solving a regularized optimization150

problem:151

x̂← arg min
x

1

2
∥C(PSF ∗ x) − b∥22 + _R(x), (3)

where R is a regularization function that penalizes unlikely solutions in the presence of noise,152

with _ controlling the amount of regularization with respect to the data fidelity term.153

In this work, we seek to improve the quality of lensless imaging by embedding learnable154

convolution kernels that are the same size as the PSF within a learned optimization scheme.155

3.2. Learning Large Kernels with Physically Informed Networks156

Access to paired training examples unlocks a vast landscape of learned reconstruction techniques.157

Purely data-based architectures, such as U-Nets, typically require large numbers of paired training158

examples and suffer from poor generalization on unseen data. These limitations can be overcome159

by incorporating knowledge of physical processes, such as light transport [35], into the neural160

network architecture. Physically informed networks such as learned primal-dual [17] are highly161

data-efficient, requiring only a moderate number of training examples, and tend to generalize162

well to unseen data. With access to paired training examples, but without knowledge of the true163

linear system A, we propose to train a reconstruction network G with the goal of minimizing the164

average mean squared distance to ground truth reconstructions from a lensed camera xgt:165

L"(� := ∥G\ (b) − xgt∥
2
2 (4)

In the next section, we explain the design of � \ . As the focus of our work is to recover the signal166

encoded in b, we exclusively use mean-squared error as our loss function.167



3.2.1. Learned Primal Dual with a Physical Model168

We propose a modified learned primal-dual architecture as our learned reconstruction network G169

(Equation 4). Figure 2 illustrates how our data and parameters flow through the network. We170

extend the original work by [17] in three ways. First, we replace the forward operator T and its171

adjoint mT with the cropped convolution operation of our lensless camera in Equation (2):172

T (G) ← C(PSF ∗ G)

mT (H) ← P(PSF★ H),
(5)

where P represents zero padding up to twice the size of the imaging sensor, and ★ represents173

circular cross-correlation. G ∈ - and H ∈ . are primal and dual variables respectively, with174

the former belonging to the domain of reconstructed images - and the latter in the domain of175

lensless measurements . .176

Second, we allow the PSF to be optimized during training. We initialize \: ← PSF, allowing177

the network to modify the physical PSF during training:178

T (G) ← C(\: ∗ G)

mT (H) ← P(\: ★ H),
(6)

Finally, we wish to learn multiple kernels to improve our estimate of the true physical system.179

We choose to learn = convolution kernels, equal to the number of primal and dual variables. Let180

x =

[

G1 G2 . . . G=
]

y =

[

H1 H2 . . . H=
]

,

): =

[

\1
:

\2
:

. . . \=
:

]

,

(7)

then each primal and dual variable G1...=, H1...= is convolved or cross-correlated with its own181

learned kernel \1...=
:

182

T (x) ← C(): ∗ x)

mT (y) ← P(): ★ y).
(8)

The above modifications result in a variation of the learned primal-dual algorithm with the183

following update steps:184

y8 ← Γ\ 8
3
(y8−1,T (x8−1), b)

x8 ← Λ\ 8?
(x8−1, mT (y8)),

(9)

where Γ\ 8
3
, Λ\ 8?

are small convolutional neural networks that are parameterized by each unrolled185

iteration 8 ∈ 1 . . . 10. At the end of the unrolled iterations, the variable G1
10

is chosen as our best186

estimate of x̂.187

3.3. Per-channel & Mixed-channel models188

To improve the performance of our method against baseline image quality metrics such as PSNR189

and SSIM, we propose an additional model based on higher dimensional feature maps as opposed190

to RGB images. Specifically, we replace : learned RGB kernels with 3× : single channel kernels,191

allowing for cross-channel communication across feature maps. This results in a model with an192

increased signal-to-noise performance at the cost of a decrease in subjective color accuracy. We193

provide a visual comparison of these two models and quantitative metrics in our results section.194



4. Implementation195

In this section we document the development of our own lensless camera as shown in Figure 1.196

Additional details are provided in the supplementary material.197

Camera Design We use a Raspberry Pi High-Quality camera connected to a Raspberry Pi198

Zero W. This specific camera features a removable lens housing which we replaced with our199

own 3D printed design. Following [14], we used a 0.5 degree engineered diffuser as our mask,200

placed ∼10mm away from the image sensor. Our 3D printed housing is also illustrated in Figure201

1. Our custom housing ensures that the optical element is placed at the desired distance from the202

imaging sensor, and contains space for an optional infrared filter.203

Data Capture To capture a training and test dataset, we place our camera ∼15cm away from a204

5.5 inch OLED display. We illuminate a 5x5 square grid of pixels in the center of the display and205

capture the resulting image to measure the on-axis PSF. We then use FISTA [7] to reconstruct a206

test image. This test image is used to estimate a homography that warps each ground truth image207

to match the perspective of the lensless camera. Automated software shows a variety of images208

from the DIV2K dataset [36], capturing 8000 training images and 1000 test images.209

5. Evaluation210

We first present the results of comparing our method against two central state-of-the-art work211

that uses DiffuserCam dataset [14,33]. We additionally perform ablation studies to determine the212

contribution from each component in our method on reconstructed image quality. Finally, we213

verify our method using our hardware prototype.214

5.1. DiffuserCam results215

We compare our model’s results against the work that uses DiffuserCam dataset [14] in Table 1,216

where the number of parameters used, the size of training and testing examples, processing time,217

and image quality are considered.218

Our results suggest that our proposed method improves the quality of images reconstructed219

from measurements captured by a lensless camera. This is supported by qualitative results in220

Figure 3, which appear to reproduce features that are more faithful to the original ground truth221

images.222

5.2. Ablation Studies223

Disabling U-Net Denoiser. To further confirm that the quality of our reconstructions has224

increased as a result of correcting for model error, we measure the quality of intermediate225

reconstructions without the use of a U-Net for denoising. We show our qualitative results in226

Figure 4 and quantitative results in Table 1. When our U-Net is disabled, the resulting images are227

noisy but are faithful to the ground truth images. Our intermediate reconstructions demonstrate228

that our model-based reconstruction network performs the bulk of the work in producing usable229

lensless reconstructions.230

Effect of learning multiple models We ran an additional study to quantify the effect of231

decreasing the number of learned models from 5 to 1. We include quantitative results in Table 1232

and present reconstructed images from our reduced model in Figure 4. Decreasing the number of233

learned models from 5 to 1 decreases the resulting image quality after post-processing by ∼2dB.234



Method PSFs U-Net PSNR LPIPS Parameters
Runtime
(ms)

Training
Exam-
ples

Iterations

ADMM
1 RGB
(fixed)

11.97 0.60 - 1190 0 100

Le-
ADMM

1 RGB
(fixed)

11.89 0.57 20 50 100 5

Le-
ADMM-
U

1 RGB
(fixed)

✓ 20.46 0.37 10.6M 55 24,000 5

Ours
(RGB)

1 RGB
(learned)

16.74 0.54 0.4M 74 9,000 10

✓ 21.47 0.43 1.2M 77 9,000 10

Ours
(RGB)

5 RGB
(learned)

16.91 0.51 2.0M 80 9,000 10

✓ 23.48 0.40 2.7M 88 9,000 10

Ours
(Mixed)

15
(learned)

19.00 0.48 2.0M 82 9,000 10

✓ 25.34 0.35 3.8M 84 9,000 10

Table 1. Comparison of our models against previous work by [14]. Our model achieves
produces modestly accurate reconstructions quickly without the use of a large U-Net, at
the cost of learning additional large kernels \: . These kernels occupy the majority of
our parameter space. Adding a small U-Net to our models improves reconstruction
quality further. Increasing the number of learned kernels improves PSNR by ∼2dB
when combined with U-Net denoising, with cross-channel denoising adding another
∼2dB.

5.3. Prototype results235

We additionally compare the results of our learned model using a prototype camera built in the236

lab. We present sample reconstructions in Figure 5 and provide additional reconstructions in our237

supplementary material.238

6. Discussion239

Comparison to classical methods. Our proposed models are end-to-end differentiable. They240

are trained to learn an unrolled iterative reconstruction algorithm, a physically informed model, and241

a suitable image prior. While our model appears to produce accurate intermediate reconstructions,242

it is difficult to discretely map each learned component of the model to a specific component243

existing classical methods. One line of future work could be to establish whether embedding244

learnable physical models within a classical variational method can achieve similar results.245

A forward model that is learned independently of image priors and a chosen reconstruction246

algorithm could be used to evaluate the data fidelity of reconstructed images against their247

lensless measurements. While the need for supervision in the form of paired image examples is248

cumbersome, the accuracy of the recovered images is clearly improved.249
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Fig. 3. Comparison of reconstructed test images against the ground truth images. We
compare our method against MMCN [33]. MMCN is based on five unrolled iterations
of ADMM with additional residual blocks to correct for model error. Our per-channel
model (RGB) improves subjective color accuracy while our mixed-channel model
(Mixed) recovers higher frequency content. The primary feature of both models is that
multiple large kernels are learned to correct for model error.
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Fig. 4. Comparison of our learned model-based reconstruction networks against
unsupervised ADMM (converged) [5]. U-Net denoising was disabled to show that our
intermediate reconstructions consist of images that are more faithful to the ground truth
data. Learning additional kernels appears to improve accuracy while yielding results
faster than classical methods. We reason that our network prioritises consistency with
the true physical model, resulting in fewer artifacts.

Comparison to learned methods. When compared to learned methods that use a fixed PSF250

calibration measurement, our method is able to reconstruct images that more closely resemble251

images captured by a lensed camera. It is clear that the improved performance of our method is252

achieved by redistributing model parameters away from deep neural networks and towards the253



Fig. 5. Reconstructions from our lensless camera prototype trained using our RGB
model. Our optical element consists of a thick holographic diffuser (0.76mm) with bulk
scattering, leading to a degradation in image quality.

underlying physical model of light transport in lensless cameras. Additionally, in comparison254

to methods that use unrolled ADMM iterations such as [14], we find that our method is robust255

to zero initialization of all model parameters. However, the exact mechanism through which256

our model improves performance against existing learned methods is unclear. It is possible that257

our model could be correcting for field-varying aberrations that are not captured by a single258

on-axis calibration measurement. However, we note that our proposed methods lack any explicit259

mechanism to apply each learned model to a specific spatial region. Finally, we note that our260

claim of improved data fidelity can only be measured implicitly by comparing our reconstructions261

with a lensed camera. In future work, we would like to use measured or simulated field-varying262

PSFs to design robust models that can explicitly correct for field-varying aberrations without the263

need for manual calibration.264

Color Accuracy. Our two proposed models highlight a potential trade-off between the recovery265

of high frequency details and color accuracy in our chosen network architecture. Allowing266

the mixing of color channels appears to increase the frequency content of recovered images.267

However, our informal subjective opinion is that our per-channel model is able to reproduce color268

more accurately. We suspect that our per-channel model is vulnerable to color fringing artifacts269

introduced by the chosen phase masks. Future work could investigate treatment through the use270

of additional loss functions (such as those proposed by [37]), improved phase mask design [6], or271

improved network architectures [13].272

7. Conclusion273

Unconventional camera designs with thin masks in place of conventional lenses offer freedom274

from the constraints of traditional optics. However, the speed of reconstruction and image275



quality in mask-based lensless camera designs remains a significant drawback. We argue that276

neural networks with learnable physical priors for lensless imaging can help to counter this277

drawback. We show that such hybrid models can provide on-par image reconstruction quality278

with limited supervision, and without demanding extensive resources in training. We hope that279

our work can motivate the development of performant and interpretable methods for lensless280

image reconstruction.281
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