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Abstract  

Children learn to speak despite age-related anatomical differences that give rise 

to significant discrepancies between their vocalisations and those of adults. How 

children overcome these obstacles without explicit instructions remains unclear. 

Influential accounts suggest that vocal learning is achieved by producing sounds 

to match auditory memory in both songbirds and humans. However, 

observational studies alone cannot determine whether auditory-guided learning 

is the key mechanism. Here, I use computational modelling to test the feasibility 

of the hypothesis, by training an articulatory synthesiser with three-dimensional 

vocal tract models of an adult and children at different ages to simulate the 

learning of English words. The model involves two kinds of auditory guidance: 1) 

acoustic features to simulate universal perception of phonetic differences in all 

languages, and 2) a deep-learning-based automatic phoneme recogniser to 

simulate language-specific perception of sound contrasts in native languages. 

The results show that words trained by the automatic phoneme recogniser were 

more intelligible than those trained by acoustic features in the listening 

experiments, showing that language-specific perception can resolve the long-

standing problem of anatomical differences between speakers. It demonstrates 

that auditory-guided learning is indeed feasible. In contrast with previous 

simulation attempts that were limited to vowel acquisition, the current model 

learned words containing consonant-vowel sequences that approach the 

intelligibility of natural speech. It has also found that the embodied articulatory 

dynamics limited the scope of vocal practice and somatosensory feedback 

provided additional benefits. Yet, learning was better and easier by the adult than 

by the child articulatory systems. The model experienced challenges in learning 

certain speech sounds, resembling the patterns of child speech development. 

The study further suggests that it is the vocal learning process that helps forge 

the link between speech perception and production. The computational approach 

opens a new path towards examining the cognitive mechanisms behind vocal 

learning. 
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Impact statement 

The study presents a higly effective vocal learning model that shows how an 

infant may learn to speak without explicit instructions. I constructed a biologically-

plausible model that realistically simulates vocal learning at different ages. The 

methodology contains two key innovations: 1) sensory feedback and articulatory 

dynamics were explicitly modelled, which has been largely overlooked in previous 

computation models and, 2) listening experiments were used to evaluate the 

simulation performance, setting a new standard for further simulation studies, and 

showing a potential for quantitative hypothesis testing. By this framework, it is 

demonstrated that learners can use speech perception that encodes native-

language sound categories to self-guide vocal learning, showing a striking 

parallel to songbirds and some mammals. More broadly, the findings have 

opened a window into the cognitive mechanism underpinning language 

acquisition, one of the most mysterious aspects of being human. The modelling 

approach has demonstrated the feasibility of a non-invasive way of investigating 

vocal development in all animals that show a vocal learning behaviour by 

implementing vocal systms with different anatomy. The mechanism-driven 

simulation can make use of recent advances in artificial intelligence to reveal 

mysteries in human intelligence.  

In addition, the study has important implications for non-academic fields as well. 

First of all, these findings have revealed the indispensable role of auditory 

experience in speech acquisition, that is, the capability to perceive phonetic 

contrast is the key to production learning. This may carry implications for 

computational tools that predict speech development, advancing early diagnosis 

and intervention for speech pathology, such as autism spectrum disorders and 

special language impairment. Secondly, the study offers new insight into the 

development of assistive communication devices for people with motor speech 

disorder such as anarthria, dysarthria, and apraxia. The model transforms 

phonetic goals to speech sounds by articulatory systhesis, which can be 

combined with neural decoding techniques to restore speech. In contrast 

with the state-of-art speech synthesis, the present model is less reliant on huge 
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amounts of speech data and extensive computation time. The success in 

generating intelligible words suggests its potential application in speech synthesis 

of low-resource languages. Moreover, the study directly contributes to the 

development of articulatory synthesis, showing a possibility to be incorporated 

into commercial speech synthesis systems. Finally, this work is one of many 

contributions to open science. An online repository has been created to host a 

demonstration video, experiment stimuli and codes used to reproduce the results: 

https://gitlab.com/Anqi_Xu/evoc_learn (Appendix Figure A). 
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Chapter 1 INTRODUCTION 

1.1 BACKGROUND 

Speech is a highly complex cognitive activity and often considered unique to 

humans that requires sophisticated control over multiple articulators including the 

tongue, the lips, the jaw and the larynx. It seems mysterious how babies learn to 

speak without explicit training. The vocal apparatus of an infant is distinct from 

that of the adult, more closely resembling that of a non-human primate 

(Lieberman et al., 1972). It is much shorter in length and smaller in size, rendering 

consistently higher resonance frequencies (formants) than adult speech. A 

challenge that an infant has to face is to produce vocalisations equivalent to adult 

speech, just like using an entirely different musical instrument to play the same 

note. This is known as the speaker normalisation problem (K. Johnson, 2005; K. 

Johnson & Sjerps, 2021) in the field of speech perception or the correspondence 

problem in sensorimotor learning (Brass & Heyes, 2005; Nehaniv & Dautenhahn, 

2002). In particular, unlike other actions such as hand movements, there is very 

limited visual information to help to tackle the problem, as most of the articulators 

are hidden. So, how can an infant manage to link their own vocalisations to adult 

speech? 

Also as skilled vocal learners, songbirds share the same attribute in vocal 

development with humans (Brainard & Doupe, 2002; Doupe & Kuhl, 1999b; Kuhl, 

2003). Considerable evidence has shown that songbirds retain tutor songs in 

long-term memory (Funabiki & Konishi, 2003; Phan et al., 2006), and the memory 

may serve as an ‘auditory template’ for song evaluation (Keller & Hahnloser, 

2009). It has been suggested that likewise in humans, speech production can be 

driven by speech perception through vocal mimicry (Kuhl, 2000). According to 

this view, an infant endeavours to match his own vocalisations with the auditory 

memory of previously heard speech sounds. More importantly, for both song birds 

(Konishi, 1965) and humans (Oller & Eilers, 1988), the lack of auditory input can 
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lead to severe impairment in their vocal development. What is yet unclear is the 

nature of the perceptual representation that guides vocal learning in humans.  

Speech acquisition requires the learning of sensorimotor association that maps 
movements of various articulators with sensory goals. Although a large number 

of studies has shown the existence of the sensorimotor coupling, the ontogeny of 

the coupling remains dimly understood. Several learning mechanisms such as 

error-based learning and reinforcement learning have been proposed (Wolpert et 

al., 2011). It is also suggested that associative learning of correlated sensorimotor 

experience forges the linkage between motor and sensory systems (Cook et al., 

2014; Heyes, 2001; Keysers & Perrett, 2004). The sensorimotor experience can 

be gained from self-observation of actions, synchronous actions and being 

imitated by social partners. Studies on infant sensorimotor learning such as 

crawling (van Elk et al., 2008) and stepping (de Klerk et al., 2015) have shown 

support for this account, but much less attention has been paid to speech 

acquisition. Moreover, we know remarkably little about the contribution of 

different kinds of sensorimotor experience to vocal learning.  

Although there exist extensive amounts of observations and theoretical 

perspectives on vocal learning and sensorimotor learning, the emerging picture 

is still blurry as questions remain regarding the learning mechanisms. 

Computational approach is constructive in delineating the underlying cognitive 

mechanism because it provides a platform for the verification of different 

assumptions. If we can recreate the learning process by simulation, then it is 

possible to probe any component of particular relevance, which is sometimes 

neither practical nor ethical in behavioural experiments. Previous research has 

explored various possible approaches, based on neurobiological modelling 

(Kröger et al., 2014; Tourville & Guenther, 2011), acoustic imitation (Howard & 

Huckvale, 2005; Philippsen et al., 2014; Prom-On et al., 2014a, 2014b), 

caregivers’ feedback (Acevedo-Valle et al., 2020; Messum & Howard, 2015; 

Miura et al., 2012), reinforcement learning (Warlaumont & Finnegan, 2016), self-

motivation (Moulin-Frier et al., 2014) and goal babbling (Philippsen, 2021a; 
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Philippsen et al., 2016). However, so far there has been no clear demonstration 

of successful learning of intelligible words (see Appendix Table A Performance). 

In consequence, we are unable to identify which mechanisms are at play, nor can 

we examine the key aspects of learning quantitatively. In this study, I aim to 

construct a computational model that emulates the learning of intelligible English 

words, allowing an in-deep investigation into both speech sensory and motor 

control during speech acquisition. In this chapter, I will first introduce the research 

on vocal learning in animals, which shows striking parallels to humans. I will then 

discuss speech acquisition in the context of sensorimotor learning and present 

remaining research questions in the field of study. 

1.2 VOCAL LEARNING IN ANIMALS 

1.2.1 SONGBIRDS 

Though speech is unique to humans, vocal learning has been found in other 

animals (Catchpole & Slater, 2008). Since the first spectrogram of songbirds 

made by Thorpe in 1954, their vocal learning behaviour has long been of great 

research interest. Songbirds are often regarded as an ideal model for studying 

human vocal learning (Brainard & Doupe, 2002; Doupe & Kuhl, 1999; Kuhl, 2003; 

Marler, 1970). Although songbirds learn species-specific notes, syllables, and 

prosodic features different from phonetic units in human speech, birdsong 

learning shows striking parallels to human speech learning in terms of the 

developmental stages (Marler, 1970; Doupe & Kuhl, 1999). As shown in Figure 

1, both infants (J. S. Johnson & Newport, 1989; Lenneberg, 1967; Scovel, 2000) 

and songbirds (Marler & Tamura, 1964) have a critical period for learning, after 

which the acquisition of new sound sequences becomes difficult because the 

sensitivity to sensory experience is lowered (Doupe & Kuhl, 1999) 
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Song and speech acquisition both involve two main phases: a period of auditory 

extraction and memorisation of the auditory input, followed by a period of vocal 

mimicry of the auditory representations (Kuhl, 2003).  

 

Figure 1 Timeline of vocal learning in infants and songbirds (Kuhl, 2003). Image 

reproduced with permission of the rights holder, Annual review of neuroscience. 

During the sensory learning phase, songbirds listen to tutor songs and 

progressively develop an ‘auditory template’ (Marler, 1970). The ‘auditory 

template’ of the tutor song is retained in long-term memory, which can even 

survive after the perturbation of auditory feedback (Funabiki & Konishi, 2003). 

The memorisation of an ‘auditory template’ enables song evaluation to guide 

vocal practice, referred to as template learning (Konishi, 1965). This view has 

been supported by evidence from neurophysiological experiments, which 

demonstrates that the auditory brain area selectively reacts to the tutor song 

(Phan et al., 2006). More importantly, recent optogenetic techniques have shown 

a causal relationship between the stored auditory memory and the acoustic 

properties of their song mimicking (Zhao et al., 2019). The study found that the 

activation of synapses in the auditory brain pathway with light pulses of different 

durations significantly modulated the temporal elements in the songs of zebra 

finches.  
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The auditory information is indispensable not only for the sake of forming an 

auditory template, but also for guiding the sensorimotor learning phase. The 

investigation into the neural responses of auditory forebrain suggests its 

functionality in detecting singing errors (Keller & Hahnloser, 2009). Songbirds 

deafened after the early sensory learning phase, who lost the ability to hear their 

own songs, learned abnormal songs during the vocal practice phase, even with 

an intact auditory template stored in their brain (Konishi, 1965). Furthermore, it is 

suggested that the auditory feedback may reflect categorical perception 1  of 

species-specific songs. In swamp sparrow, for instance, auditory responsive 

neurons showed categorical response to varying note durations (Prather et al., 

2009). The neural response boundary happened to precisely correspond with the 

dialectical boundary in birdsongs. 

1.2.2 MAMMALS 

Due to the limitation in audio recording and acoustic analysis techniques in the 

early days, less attention has been given to vocal learning in mammals. In fact, 

the faculty of vocal imitation is more widespread than previously thought. In 

addition to avian species, mammals including cetaceans, pinnipeds, elephants 

and bats likewise demonstrate advanced ability of vocal learning (Janik & 

Knörnschild, 2021; Janik & Slater, 1997). The bat was the first nonprimate 

mammals to be reported to share a similar vocal development trajectory with 

songbirds and human infants (Boughman, 1998; Knörnschild et al., 2006). Bats 

produce renditions of calls independent of social context in the babbling phase, 

and then gradually become attuned to their territorial songs (Knörnschild et al., 

2010). It is worth noting that even though bats and songbirds are alike in their 

 

1 Categorical perception refers to the phenomenon that gradual differences along 
a stimulus continuum are perceived as having sharp discontinuities around 
categorical boundaries (Harnad, 1987). It has been observed in the perception of 
color (Harnad, 1987), facial discrimination (Webster et al., 2004), as well as 
speech (Liberman et al., 1957). 
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babbling behaviour, the babbles of bat pups are not sex-biased and cover the 

whole adult vocal repertoire (Knörnschild et al., 2006). Before the maturation of 

their vocalisations, bats develop an auditory template based on their respective 

tutors. The acoustic feature of the tutor song and pup song correlates remarkably 

regardless of the sex of the pup (Knörnschild et al., 2010).  

Pinnipeds are likewise found to be skilled vocal learners in multiple training 

experiments. Since the anecdotal report of a famous harbour seal named Hoover 

that produced vowel sounds (Ralls et al., 1985), grey seals have intrigued 

researchers’ interest to study their vocal behaviours. Recently, experimental 

studies have verified their capability of modifying fundamental frequencies and 

formant frequencies analogous to humans (Stansbury & Janik, 2019). The seals 

are able to accurately imitate artificially manipulated moan calls with shifted peak 

frequencies and harmonics (Stansbury & Janik, 2019). What is more striking is 

that seals can even copy human simple vowels such as cardinal vowels (/a/, /e/, 

/i/, /ɔ/, and /u/). Interestingly, auditory exposure to recorded vocalisations has 

been found to boost the probability of baby seals producing a matching call 

(Stansbury & Janik, 2021).  

Cetaceans such as beluga whales (Murayama et al., 2014), humpback whales 

and bottlenose dolphins (Janik & Sayigh, 2013) exhibit extraordinary capability of 

imitating species-specific calls, artificial sounds, and sometimes even 

vocalisations from other species. Bottlenose dolphins produce a highly distinct 

vocal repertoire, known as signature whistles, to broadcast the identity of the 

vocalist (Janik & Sayigh, 2013). The emergence of signature whistles happens 

early in life and it is progressively crystallised within the first 3 months (Janik & 

Sayigh, 2013). Not only are they able to learn signature whistles from their 

biological mother (Tyack, 1997), foster mother (Tyack & Sayigh, 1997) and other 

members of the community (Fripp et al., 2005), but also human trainers’ whistles 

(Miksis et al., 2002) and artificial sounds (Richards et al., 1984). Interestingly, it 

is suggested that due to the unstable water pressure, bottlenose dolphins extract 

identity information encoded by frequency modulation regardless of voice 
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features (Janik et al., 2006). In addition, dolphins show remarkable ability to 

recognise artificial signature whistles that resemble those of familiar individuals. 

This implies that dolphins are capable of normalising acoustic signals to a certain 

extent to obtain identity information. 

Whether primates other than humans are vocal learners has been controversial 

for a long period of time (Janik & Slater, 1997).  Despite extensive attempts to 

teach great apes to learn human speech, researchers have not seen successful 

training results (Fitch, 2000). Chimpanzees, one of our nearest relatives, seem 

to lack developmental plasticity in vocal production learning (Menzel, 1964; 

Owren et al., 1992). Infant squirrel monkeys born at the first day of their life were 

found to produce calls very close to adult calls (Winter, 1969). A follow-up study 

further suggests that squirrel monkeys raised by muted caregivers without 

species-specific auditory input also learned identical vocal repertoire to normally 

raised monkeys (Winter et al., 1973).  

The accumulating negative evidence seems to suggest that vocal learning in non-

human primates is doubtful. However, recent studies using more advanced 

recording and acoustic analysis techniques have shed new light on vocal learning 

in primates (Egnor & Hauser, 2004). Infant common marmosets (Callithrix 

jacchus) have been found to produce call types that are not present in adult 

vocalisations, which compose of harmonic and temporal structures outside of 

normal adult call range (Pistorio et al., 2006). The immature vocalisations bear 

resemblance to babbling in humans and songbirds. Another line of study on 

pygmy marmosets provides supporting evidence of early vocal practice. More 

than twenty years of studies in Elowson’s lab show that their babbling behaviours 

parallel those of human babies in many respects (Elowson et al., 1998a, 1998b). 

First of all, the onset of rhythmic and recurring babbling appears between six and 

ten months. Second, the vocalisation is frequent and not limited to call types that 

are present in adult vocal inventories, which is suggestive of vocal practice. Last, 

babbling is universal and independent of social groups. Call types of infant 

marmoset undergo significant changes in spectral and temporal features with 
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reducing variability, which gradually converge to species-specific calls (common 

marmoset: Pistorio et al., 2006; pygmy marmoset: Elowson et al., 1998a). 

The similarities in anatomy make nonhuman primates an even more relevant 

model for human speech acquisition than songbirds. There is a growing body of 

literature that investigates what factors influence their vocal development 

experimentally. A seminal work by Takahashi et al (2015) on marmoset monkeys 

demonstrates clear evidence of vocal developmental changes that is not solely 

due to anatomical changes. Statistical analysis has revealed no significant 

correlation between their vocal tract growth and the changes in acoustic 

parameters. They also show that the amount of contingent parental feedback 

influences the rate of maturation of calls. Studies on twin infant marmoset 

monkeys raised with different amounts of parental feedback corroborate these 

findings. Infant monkeys in a low-feedback group showed delayed vocal 

development compared with a high-feedback group (Takahashi et al., 2017). The 

lack of parental auditory feedback and social feedback has led to long-lasting 

disruption in the acoustic structure of their vocalisations (Gultekin & Hage, 2018). 

In a more extreme case, common marmoset (Callithrix jacchus) infants were 

deafened immediately after birth and they showed abnormal spectral-temporal 

features in their calls, which endured into adulthood (Roupe et al., 2003). The 

series of studies have clearly demonstrated that auditory feedback is crucial for 

vocal learning in marmoset monkeys. 

1.2.3 SUMMARY 

Across the animal kingdom, songbirds and mammals are both promising models 

for investigating vocal production learning. Similar to humans, an early sensory 

phase of perception learning, during which the learners gain experience of 

species-specific signals, has been observed in songbirds (Konishi, 1965). A 

phase of vocal practice exists in humans (Oller, 1980), songbirds (Thorpe, 1954), 

marmosets (Elowson et al., 1998a, 1998b) and bats (Fernandez et al., 2021). 

Vocal practice can be seen as early calibration of vocal systems that converts 
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motor commands to sound production (Marler & Peters 1982; Kuhl & Meltzoff 

1996). The vocal learners seem to have certain learning phases in common: a 

phase of accumulating auditory experience and a phase of vocal practice. 

Bringing together all the experimental evidence, it becomes clear that auditory 

input plays two vital roles in vocal learning: 1) store auditory experience in long-

term memory; 2) to detect production errors during vocal practice. For these vocal 

learners, eliminating the auditory information during the critical sensory period 

can lead to significant impairment in their vocal behaviours (songbirds: Marler & 

Tamura, 1964, marmosets: Roupe et al., 2003). Even after the critical period, 

auditory information is still essential for monitoring production learning 

(songbirds: Konishi, 1965).  

Auditory-guided vocal learning in animals has received considerable attention 

and thus has been well-attested in neurobiological and behaviour experiments. 

As far as humans are concerned, a similar mechanism has been suggested, i.e., 

infants learn the structure of phonetic categories in their native languages by 

listening to the ambient speech during sensory learning phase (Kuhl, 1991). The 

derived auditory representations that contain linguistic information would then 

guide vocal production in the sensorimotor learning phase (Kuhl & Meltzoff, 

1996). When auditory guidance is absent, the production learning becomes 

difficult; for example, congenitally hearing-impaired children showed disrupted 

development in speech production without intervention (See Osberger, & 

McGarr, 1982 for a review). In the next section, I will focus on introducing previous 

studies regarding production and perception development in humans. 

1.3 CHILD SPEECH DEVELOPMENT 

1.3.1 BACKGROUND 

How do infants gradually learn to crack the speech code? The basic function of 

the infantile auditory system is present at birth, while the peripheral and central 
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nervous system grow continuously (Litovsky, 2015). The development of speech 

perception involves a transition from universal perception to language-specific 

perception (Kuhl, 2000; Kuhl et al., 2008). That is, children are born with the 

capability to discriminate the sounds of all languages, and gradually become 

attuned to phonetic contrast in their native languages. Infants also undergo 

complex anatomical restructuring of the vocal tract in the first few years of their 

lives (Vorperian et al., 2005; Vorperian & Kent, 2007). The development involves 

a rapid growth period from birth to 18 months and a period of slow but steady 

growth until maturity. Compared with the adult, the infant’s vocal tract is shorter, 

with proportionally larger anterior tongue mass and narrower pharyngeal cavity 

(Kent, 1992). The anatomical differences contribute to the higher resonance 

frequencies in their speech compared with adult speech (Fitch & Giedd, 1999). 

The maturation of their speech production is accompanied by dramatic 

anatomical changes. Moreover, there is a specific order in which the infants 

acquire the speech sounds in their native languages.  

1.3.2 PERCEPTION DEVELOPMENT  

Not only does the development of speech perception rely on the maturation of 

the peripheral system devoted to encoding temporal, spectral and intensity 

information, but also on the central system which links auditory signals to 

meaning (Litovsky, 2015). At 20 weeks of gestation, foetal cochlear hair cells and 

their innervation are already fairly mature (Locher et al., 2013). By 27-28 weeks’ 

gestation age, foetal heart rates already indicate responses to sounds (Litovsky, 

2015). 2-5 weeks prior to birth, foetuses demonstrate sensitivity to the changes 

in the order of syllables, i.e., /ba/ and /bi/ vs. /bi/ and /ba/, as measured by cardiac 

reactivities (Lecanuet et al., 1987). After birth, infant ear canal diameter and 

length continue to grow during the first two years of life (Keefe et al., 1993). The 

development of middle-ear cavities is more prolonged, which extends to later 

teenage years (Eby & Nadol, 1986). 
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Infants undergo several stages in the perceptual development during the first year 

of their lives, as illustrated in Figure 2. Soon after birth, infants display startling 

sophistication in discriminating phonetic categories (Kuhl, 1993; Werker & 

Lalonde, 1988). Evidence from high-amplitude sucking experiments shows that 

infants as young as 1-month old are already capable of discriminating consonant 

pairs such as /b-p/, /d-t/, and /g-k/ based on the cues in the voice onset time 

(VOT) of synthetic speech (Eimas et al., 1971). Consonantal distinctions, such as 

place of articulation (Eimas, 1974) and manner of articulation (Eimas & Miller, 

1980), were discriminable by infants between the ages of 2 and 4 months. Notice 

that, despite their impressive capability of perceiving acoustic cues, contrasts 

between fricatives can still be challenging for infants (Eilers & Minifie, 1975). More 

strikingly, the perception of phonetic distinction is universal for infants brought up 

in different linguistic environments, that is, their sensitivity to sound contrast is not 

limited to native languages but also in non-native languages. The phenomenon 

is known as universal speech perception (Kuhl, 2004; Werker & Lalonde, 1988).  
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Figure 2 Child speech perception development.  

As the sensory system develops, the ability of non-native language perception 

decays with cumulative capacity for discriminating sounds in native languages 

(Kuhl et al., 2006). Infants exhibit improvement in discriminating native vowels 

since 6-month-old in head turning experiments (Kuhl et al., 1992) and 

neurophysiological experiments (Cheour et al., 1998).  The alternation in the 

perception of vowels normally precedes the change in consonant perception 

(Polka & Werker, 1994). As to consonants, English infants aged 6-8 months are 

able to discriminate between two pairs of Hindi consonants, but by 10 to 12 

months of age, there is a huge decrease in their discriminability (Werker & Tees, 

1984). Meanwhile, there is a significant increase in the performance for English 

infants between 6 and 12 months of age when discriminating /r-l/ contrast (Kuhl 

et al., 2006). Such developmental pattern is buttressed by the evidence that 

English and Mandarin infants gradually exhibit a perceptual inclination to the 

distinction between affricates and fricatives in their own native languages (Tsao 

et al., 2006). By adulthood, the ability of universal listening is obscure and non-

native speech perception becomes extremely difficult (Best et al., 2001; Miyawaki 

et al., 1975; Strange & Jenkins, 1978). The perception of phoneme contrast in 

native languages is known as language-specific perception (Kuhl, 2004; Werker 

& Lalonde, 1988), or phonemic categorization (Hazan, & Barrett, 2000). 

The accumulation of behavioural observations has led to the emergence of 

theories that attempt to elucidate the mechanisms underlying the developmental 

transitions. Early models tend to emphasise the sensitivity to phonetic distinction 
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is an innate ability which is maintained or lost depending on the linguistic 

environment. It is suggested by the phonetic feature detector account that the 

course of human evolution induces phonetic distinctions in speech perception 

(Cooper, 1974; Eimas, 1975). Liberman and Mattingly (1985)’s motor theory of 

speech perception argues that infants may be born to differentiate the acoustic 

differences of linguistic gestures and the capability is altered when the gesture is 

not used. Kuhl proposed the native language magnet model (NLM), in which 

some perceptual area can serve as a prototype that supports the formation of 

categorical perception 2  (Kuhl, 1994, 2000; Kuhl et al., 2008). The warped 

perceptual space later facilitates access to native categories. A similar account 

is the perceptual assimilation model (PAM), which argues that non-native sound 

contrast can be assimilated to the phonological categories of the native language 

(Best, 1994, 1995). According to the natural referent vowel model (NRV), 

however, the anchor for vowel categories is the vowels with the most extreme 

acoustic properties. The exposure to languages triggers the organisation of vowel 

categories (Polka & Bohn, 2011, 2003). Existing theoretical accounts have been 

controversial in explaining the behavioural observations of the developmental 

changes. Nevertheless, much less is known concerning the exact role of 

perceptual development in production development. 

1.3.3 PRODUCTION DEVELOPMENT 

1.3.3.1 Background 

The acoustic portrait of speech production in infants is heavily influenced by the 

growth of the anatomical structure of the vocal tract and the vocal folds. The infant 

 

2 A recent study by Kronrod, Coppess and Feldman (2016) has proposed that the 
categorical perception can be explained by having a Bayesian computational that 
quantifies meaningful to noise variance to unify categorical effects in vowel, 
consonant and fricative perception rather than only vowel perception in the NLM 
model. 
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vocal apparatus is not a miniature of the adult organ. The infant has a vocal tract 

of 6-8 cm in length, while the length of vocal tract of an adult is approximately 15 

cm for female and 18 cm for male (Vorperian et al., 2005). During the first three 

years, the infant vocal tract grows around 3 cm (Vorperian et al., 1999). The 

infant’s vocal tract differs from the adult’s also in shape. It has 1) a proportionally 

larger anterior tongue mass, 2) a narrower pharyngeal cavity, 3) an adjacent 

velum and epiglottis, and 4) a gradual rather than right-angle bend oropharyngeal 

channel (Kent, 1992; Kent & Murray, 1982). The infant vocal folds are 

approximately 4-5 mm long, consisting of uniformly structured lamina propria 

(Sato et al., 2001). In contrast, the mature adult membranous vocal fold length is 

around 17 mm for male and 12 mm for female (Rogers et al., 2014). The 

maturation of vocal ligament occurs gradually along with increase of laryngeal 

size. Controversial results are reported with regard to the appearance of sexual 

dimorphism of voice production in early childhood (Crelin, 1973; Eckel et al., 

1999). However, there is little dispute that during puberty the larynx undergoes 

significant changes, when the male vocal folds are lengthened and the larynx is 

descended at a much higher speed than the female’s (Kahane, 1978, 1982).  

The anatomical structure determines the acoustic properties of the produced 

speech sounds, leading to the infant’s frequency ranges well above that of the 

adult, as illustrated in Figure 3. A classic work by Peterson and Barney in (1952) 

demonstrates that the fundamental frequency is much higher for children, as well 

as the first and second formants which determine the vowel quality. Infants are 

able to use vocal fry and high register resulting in a F0 ranging from 30 to 2500Hz 

(P. Keating & Buhr, 1978). A rapid declination of average F0 begins at age 3, and 

during adolescence for males when the male and female distinction of F0 

emerges. For American English native speakers, the average F0 for adult male 

and female is 120 Hz and 220 Hz, respectively (Lee et al., 1999), while the first 

formant (F1) of infant vowels ranges from around 450 Hz to 1650 Hz and the 

second formant (F2) ranges from 1500 Hz to 4100 Hz (Kent & Murray, 1982; Kuhl 

& Meltzoff, 1996). In contrast, recordings of American English monolinguals show 

that adult male produce vowels ranging from 250 Hz to 800 Hz for F1 and from 
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1100 Hz to 2500 Hz for F2. F1 of adult female vowels ranges from 350 Hz to 1200 

Hz and F2 ranges from 1200 Hz to 3100 Hz (Hagiwara, 1997). 

 

Figure 3 Average F1–F2 acoustic space for American English males aged 4 years 

through adulthood (Vorperian & Kent, 2007). Image reproduced with permission 

of the rights holder, Journal of speech, language, and hearing research : JSLHR. 

1.3.3.2 Development stages 

The biological development is accompanied by changes in vocal behaviours. The 

stages of infant vocal production are summarised in Figure 4. The infant starts 
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with producing sounds to express discomfort or anger including crying and 

vegetative sounds. Then, cooing occurs at 1-4 months of age, which is produced 

in the velar area where the tongue and the palate are in close contact (Vihman, 

2014). At around 5-6 months after birth, the infant begins to produce consonant-

vowel syllable trains, often referred to as reduplicated babbling (Stark, 1986) or 

canonical babbling (Oller & Eilers, 1988). The canonical syllables consist of fully 

resonant vowels and clear consonants with complete or nearly complete oral 

closure. The repetitive articulator movement is similar to other motor movements 

including the movements of the limbs, the torso and the fingers, which are also 

observed to be repeated at regular time intervals. It is suggested to be a general 

process for coordinating neuromuscular movements (Thelen, 1981). The infant 

seems to gradually acquire the control of laryngeal and articulatory movements 

at this stage. Prosodic features emerge along with frication noises, nasal 

murmurs, and bilabial and uvular trills. At 10-18 months of age, finally infants utter 

their first meaningful words. There are, however, overlaps between the 

development stages as well as individual differences (Stark et al., 1993).  
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Figure 4 Child speech production development.  

1.3.3.3 Vowel development 

The occurrence of corner vowels in English is relatively early, i.e., /a/ at 17 weeks, 

/i/ at 18 weeks and /u/ at 24 weeks (Buhr, 1980). This demonstrates how quickly 

a well-defined vowel triangle emerges. However, these vocalisations are not 

stabilised until 36 weeks for /a/ and /i/ and even more prolonged for /u/. Corner 

vowels such as /i, u, a/ seem easier for the children to acquire, while their mid 

vowels like /ɪ/, /e/, /ɛ/ and /ʊ/ are less accurate (Stoel-Gammon & Pollock, 2008). 

Substitutions of the difficult instances of vowels are commonly seen, showing a 

high variability in their production (Vihman, 1996). For example, /ɪ/ is often 

produced as /i/ or sometimes as /ε/. The usage of substitution declines over time. 

Between the age of 1 and 2, the accuracies of vowels increase rapidly with 
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uneven proficiency across vowel categories, that is, certain vowels are mastered 

earlier than others (Buhr, 1980; Hare, 1983; Paschall, 1983). By the age of 2, 

children’s vowel production has extended to almost all the vowels except rhotic 

vowels, and by the age of 3, the mean vowel accuracy is reported to exceed 97% 

(Pollock & Berni, 2003). In contrast, the rhotic vowel, /ɚ/ is not acquired until 4 

years old. However, the reported order of acquisition is controversial because of 

the different speech materials used in the previous experiments. More recent 

studies measure the identification of the vowels based on auditory transcriptions, 

but in some early studies the listeners could have relied on additional information 

such as a word list. Overall, the order of vowel acquisition in young English 

children can be summarised as follows: Corner vowels (except /æ/) > mid vowels 

> rhotic vowels (Stoel-Gammon & Pollock, 2008). The order of acquisition largely 

matches the pattern reported in Wellman et al. (1931) , as illustrated in Figure 5. 
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Figure 5 English vowel development in 204 children aged 2–6 years using correct 

production by 75% of children in a particular age group as the criterion (Wellman 

et al., 1931). 

1.3.3.4 Consonant development 

A milestone in speech development, canonical babbling, is the benchmark for the 

occurrence of consonants. It has been found that the place of constriction of the 

consonant often assimilates with the following vowel in the babbling of infants: 

bilabial consonants precede central vowels (e.g., /bǝ/), alveolar consonants 

precede high vowels (e.g., /di/), and velar consonants are associated with back 

vowels (e.g., /ku/) (MacNeilage & Davis, 2000). Consonant substitutions in early 

words also follow such an assimilatory effect. For example, bilabial stops before 

a high vowel are produced as alveolar stops (Stoel-Gammon, 1983). The bilabial-

central vowel and alveolar-front vowel association become weaker for older 

children during the 18-24 months (Tyler & Langsdale, 1996; Vihman, 1992). It is 

suggested that consonants are not fully acquired independently in the early 

babbling stage. Rather, the consonants and vowels are controlled as a single 

entity (B. L. Davis & Macneilage, 1995).  

Sander (1972) notes that there is a distinction between the emergence of and the 

stabilisation of consonant production, referred to as ‘customary production’ and 

‘mastery’ respectively. In the first stage, children can produce more than half of 

the sound in different positions (50% criteria) and they are able to produce 

consonants correctly at three word positions in the second stage (90% criteria). 

Figure 6 shows the development of consonant production by the 50% and 90% 
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threshold based on 15 studies on American English children (Crowe & McLeod, 

2020). We can clearly see a long gap between the ‘customary’ and ‘mastery’ 

production. It is well documented that stops, nasals and glides appear in early 

vocalisations (Stoel-Gammon, 1985; Vihman et al., 1985), while other 

consonants were not fully mastered until more than 3 years old (Crowe & 

McLeod, 2020; Mcleod & Crowe, 2018). Children then acquire the affricates, the 

liquids and the fricatives, and the full set of consonants are not acquired until 5-6 

years old (Crowe & McLeod, 2020). The mastery of consonant clusters is even 

more prolonged, which begins at as young as 2 years of age but not fully achieved 

until age 8-9 (Mcleod et al., 2001).  

 

Figure 6 Average age of acquisition of American English consonants, adapted 

from Table 2 in Crowe & McLeod (2020). The arrow starts from 50% and ends 

with 90% criterion.  

1.3.4 SUMMARY 

Studies on the development of speech perception show that infants are born with 

the ability to distinguish phonetic segments in all languages, and they gradually 

show perceptual attunement towards native languages (Werker & Tees, 1992). 

In other words, there is a transition from language-universal  to language-specific 

perception perception during development (Kuhl, 2004; Werker & Lalonde, 1988). 

Difficulties arise, however, when an attempt is made to examine the impact of 
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perception inclination on production development by behaviour experiments 

alone, because of the overlap in the timeline of production and perception 

development (Figure 1).  Moreover, the widely used method of manipulating 

auditory input in the animal studies (Section 1.2) is neither ethical nor practical 

on humans. Whether humans share the same mechanism with other vocal 

learners remains unclear. 

1.4 SENSORIMOTOR INTERACTION 

1.4.1 SENSORIMOTOR LEARNING 

Humans are capable of learning complex motor actions using sensory 

information in various forms, known as sensorimotor learning. A broad definition 

of sensorimotor learning is the process of improving the performance of the motor 

behaviour with the assistance of sensory systems (Krakauer & Mazzoni, 2011; 

Makino et al., 2016; Wolpert et al., 2011). It includes sensory perceptual learning 

(i.e., detection of behaviourally relevant sensory information), sensorimotor 

associative learning (i.e., learning adaptive linkage between sensory and motor 

patterns) and motor skill learning (i.e., learning novel motor behaviours) (Makino 

et al., 2016). However, it is often used in the literature to refer to only speech 

adaptation learning, that is, the process of speech motor system being adjusted 

when the sensory feedback is altered (Parrell & Houde, 2019).  

Based on substantial research into sensorimotor learning, three major 

mechanisms have been identified:  1) Error-based learning, 2) Reinforcement 

learning and 3) Use-dependent learning (Wolpert et al., 2011). Among them, 

error-based learning is the most well-studied. The idea is that when the motor 

system causes an error, it directionally modifies the command following the 

gradient of the error in the next movement. The process has been attested in 

motor adaptation experiments of hand movements such as gripping (Flanagan & 

Wing, 1997) and reaching (Krakauer et al., 2000). It has been long regarded as 

an essential form of learning motor control (Kawato et al., 1987) but it is 
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inadequate for the learning of motor movement with manifold solution, namely, 

many combinations of motor commands will produce a plausible solution  

(Wolpert et al., 2011). Reinforcement learning, in contrast, has the potential to 

further optimise the movement, because the system is adjusted based on reward 

signals rather than the motor error. To be more specific, providing reward that 

signals the utility of the motor command has been proven to facilitate the learning 

of motor skills (Abe et al., 2011). A possible neural underpinning of reinforcement 

learning is the projection of dopaminergic neurons that expedites the encoding of 

motor actions (Hosp et al., 2011; Luft & Schwarz, 2009). This learning mechanism 

has received increasing attention since the prevalent application of similar 

machine learning algorithms (Sutton & Barto, 1998). Finally, during use-

dependent learning, the motor movements are biased by simple repetition without 

error estimation (Butefisch et al., 2000; Classen et al., 1998). For instance, in the 

case of reaching action, repetitive arm movements not only induce a tendency 

towards the neighbouring goal but also a reduction in the variability. This type of 

learning is sometimes modelled as Bayesian integration to simulate the adaptive 

changes (Verstynen & Sabes, 2011). Moreover, it has been found that use-

dependent learning and error-based learning can simultaneously influence motor 

behaviours (Diedrichsen et al., 2010). However, these learning mechanisms are 

not well-attested in the case of speech motor learning. 

1.4.2 IMITATIVE LEARNING 

Another line of studies has focused on sensorimotor learning by imitation. 

Imitation involves perceiving and reproducing motor actions. The process 

translates sensory signals into motor movements, which has been considered as 

an important method of acquiring novel actions (Heyes, 2001). Studies of 

imitative learning have seen an acceleration since the discovery of mirror neurons 

that signifies the remarkable interplay between sensory and motor systems 

(Kilner & Lemon, 2013). Mirror neurons are a group of neurons that are excited 

both when an individual performs a motor action and when he observes the same 
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or similar action executed by another individual (Fadiga et al., 1995; Gallese et 

al., 1996). Mirror neurons were first found in the ventral premotor cortex of the 

macaque monkey which responded both to actions such as grasping food and 

seeing others performing the same action (Gallese et al., 1996; Rizzolatti, Fadiga, 

Gallese, et al., 1996) and later in humans, homologous phenomenon was 

observed (Fadiga et al., 1995; Rizzolatti, Fadiga, Matelli, et al., 1996).  

Regarding speech motor control, in transcranial magnetic stimulation (TMS) 

experiments, participants showed enhanced muscle activities in the tongue 

(Fadiga et al., 2002a, 2002b) and the lips (K. E. Watkins et al., 2003) when 

hearing speech. These findings are consistent with functional magnetic 

resonance imaging (fMRI) evidence showing that brain areas that are involved in 

speech production are activated when participants passively listen to speech 

(Pulvermuller et al., 2006; Wilson et al., 2004). These findings are often 

considered to be evidence of the linkage between speech production and 

perception (Hickok et al., 2011). Research on infant speech perception shows 

that the production-perception link in speech gradually emerges during vocal 

development (Imada et al., 2006). In this study, magnetoencephalography (MEG) 

was used to record the neural response of newborns, 6-month-olds and 12-

month-olds while listening to speech sounds passively. The 6-month-old and 12-

month-old infants showed activation in the inferior frontal cortex (Broca’s area) 

which is involved in speech motor control, but no activation was found in the 

newborns. Interestingly, the advent of motor brain activation during speech 

perception is suggested to be due to canonical babbling which starts around 5 to 

6 months after birth (Imada et al., 2006). This neurological study of infants 

indicates that the perception-production link is not innate but highly likely to be 

reliant on experience. However, more recent studies found that the perceptual 

sensitivity of preverbal infants can be influenced by the inhibition of oral 

movements, which suggests an early coupling between speech production and 

perception (Bruderer et al., 2015; Choi et al., 2019, 2021). One question that still 

needs to be asked, however, is what kind of sensorimotor experience can forge 

the link. 
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The crucial issue of how to link sensory experience with motor actions is known 

as the correspondence problem (Nehaniv & Dautenhahn, 2002). Heyes (2001) 

has proposed that associative sequence learning provides an essential basis for 

solving the problem. According to this view, the coupling of sensorimotor systems 

is the product of correlated motor actions and perceptual experience. The 

contingent and contiguous experience includes 1) self-observation (i.e., seeing 

our own actions), 2) synchronous actions (i.e., performing the same action in a 

social group) and 3) imitative partners (i.e., a caregiver imitating infant facial 

expressions). Experimental studies on infants have provided support for 

associative learning. For example, electroencephalogram (EEG) recording of 

infants at the age of 14 to16 months showed that their motor systems were 

activated while watching a video of crawling and that the motor resonance was 

stronger for infants with more crawling experience (van Elk et al., 2008). Another 

EEG study adopted a training paradigm to investigate the development of 

sensorimotor coupling in pre-walking infants (de Klerk et al., 2015). The infants 

in the post-training session showed significantly more sensorimotor cortex 

activation during the observation of stepping. The account that sensorimotor 

coupling is formed by simultaneous excitation of sensory neurons and motor 

neurons shares similarities with Hebbian learning (Keysers & Perrett, 2004). 

Although Hebbian learning also recognises the critical role of sensorimotor 

experience, it further emphasises the value of experiential canalisation optimised 

by evolution (Giudice et al., 2009). Despite the existence of abundant theoretical 

works, one question that needs to be asked is how to apply associate learning to 

non-visual sensorimotor actions, such as speech. 

1.4.3 SUMMARY 

Speech, a fine motor skill, is one of the most demanding cognitive challenges that 

humans can perform (Penfield & Roberts, 1959). Past research has suggested 

several learning mechanisms including error-based learning, reinforcement 

learning and use-dependent learning (Wolpert et al., 2011). Due to the many-to-
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one mapping between articulation and acoustics (Xu et al., 2021), the possibility 

of driving the learning by error gradient is rather low. Reinforcement learning can 

cope with the manifold problem but has received much less attention when it 

comes to speech motor learning. Use-dependent learning may be involved during 

the phase of canonical babbling when infants repeat speech utterances but it 

seems unlikely to lead to the learning of intelligible words. On the other hand, 

imitative learning of sensorimotor systems has experienced a sharp surge 

especially following the discovery of mirror neurons that show activation during 

both observing and performing motor actions (Fadiga et al., 1995; Gallese et al., 

1996). Even though it is widely known that there is an interaction between 

sensory and motor systems, it remains unclear how the linkage is forged. Some 

suggest that we are born with the imitative system and experience only 

strengthens the link (Lepage & Théoret, 2007), whilst others argue that correlated 

sensorimotor activities play a pivotal role in linking the two systems (Heyes, 

2001). However, unlike most other sensorimotor tasks, there are no obvious 

visual cues for speech, as most of the articulators are hidden, which increases 

the difficulty of imitative learning. Vocal learning is therefore a special case in 

which the common sensorimotor learning strategies are largely inaccessible. The 

research on sensorimotor learning to date cannot fully explain how sensorimotor 

link in speech is acquired. 

1.5 RESEARCH QUESTIONS AND THESIS OUTLINE 

Throughout the animal kingdom, many species show vocal plasticity to a certain 

extent. Noticeable similarities can be seen in the vocal developmental pattern of 

songbirds and humans, in which a phase of auditory extraction paves the way for 

vocal practice (Doupe & Kuhl, 1999b). These observations have naturally led to 

the postulation that auditory experience guides vocal learning in humans and 

songbirds (Kuhl, 2003). It has been found that child speech perception changes 

from language-universal to language-specific perception (Kuhl, 2004; Werker & 

Lalonde, 1988) and production learning follows certain developmental patterns of 
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phoneme acquisition. Unlike birdsong learning, much uncertainty still exists 

concerning the nature of the auditory guidance for speech acquisition in humans, 

as the approaches of manipulating auditory feedback in animal studies are 

unethical. At the same time, studies on human sensorimotor learning have 

proposed several assumptions including error-based learning, reinforcement 

learning, use-dependent learning (Wolpert et al., 2011) and imitative learning 

(Cook et al., 2014). However, vocal learning is essentially dissimilar to other 

motor movements, because of the lack of visual information. What is yet unclear 

is whether these sensorimotor learning mechanisms likewise underlie vocal 

learning. The unsolved questions can be investigated using computational 

approaches, which allows hypothesis testing beyond observational studies. 

Although simulation studies have gained popularity in many scientific fields, it is 

rarely applied to the emulation of vocal development (ter Haar et al., 2021). With 

explicit computational models, it is possible to recreate the internal component of 

speech production and perception to probe into the black box of human vocal 

learning. 

Inspired by the finding that in songbirds (Brainard & Doupe, 2002; Doupe & Kuhl, 

1999b), mammals (Roupe et al., 2003; Stansbury & Janik, 2019, 2021) and 

humans (Brainard & Doupe, 2002; Kuhl, 2003), perception learning precedes 

production learning, it is speculated that successful simulation of vocal learning 

needs to a) use perception to guide vocal exploration, and b) emulate critical 

aspects of the articulation process. To test this idea, I developed a vocal learning 

model with these two components to mimic vocal learning. To the best of my 

knowledge, past work has not succeeded in simulating the learning of intelligible 

words with CV syllables (Appendix Table A Performance). The current study 

attempts a first step in this direction with the goal of learning intelligible English 

words.  

The major aims of the thesis are as follows: 

1) To investigate how language-specific perception and language-universal 

perception impact on production learning (chapter 4); 
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2) To investigate how articulatory dynamics during speech production can be 

modelled (chapter 4); 

3) To investigate whether auditory-guided vocal learning in children and 

adults can be simulated (chapter 5); 

4) To investigate whether anatomical development of the vocal tract 

influences learning (chapter 5); 

5) To examine whether the vocal learning model shows resemblance to child 

speech development (chapter 5); 

In chapter 2, I will first introduce previous vocal learning models with emphasis 

on the model architecture, followed by a review of previous theories on speech 

production and perception and its emulation in the vocal learning models. Finally, 

I will present the remaining issues and knowledge gap in the field of vocal learning 

simulations 

In chapter 3, I present a simulation model of vocal learning. The model contains 

a state-of-the-art articulatory synthesiser with built-in articulatory dynamics, 

consisting of vocal tract models of an adult male, a 1-year-old child and a 3-year-

old child. The vocal exploration scheme is guided by either acoustic features to 

simulate universal perception that detects phonetic differences in all languages 

(Kuhl, 2000; Werker & Lalonde, 1988), or an automatic phoneme recogniser to 

simulate language-specific perception that captures key phonetic properties that 

distinguish words in a language (Kuhl, 2000; Werker & Lalonde, 1988). The 

learning outcome of the simulation models by both a word recogniser and two 

types of listening experiments: an open-vocabulary transcription experiment and 

a close-set transcription experiment. The vocal learning model will be used to 

address the research questions in chapter 4 and 5. 

In chapter 4, I investigate the speech sensory and motor control in detail. First of 

all, I examine the role of auditory and somatosensory feedback on vocal learning 

by comparing the performance of the learned speech in a series of controlled 

simulations. A word recogniser is used to assess the synthetic speech trained by 

acoustic features. Listening experiments are used to compare acoustic features 
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with an automatic phoneme recogniser to determine what kind of auditory 

feedback is more beneficial in guiding vocal learning. Secondly, I then explore 

how to model the dynamic articulatory control of CV coarticulation explicitly by 

the synchronised dimension-specific sequential target approximation model (Liu 

et al., 2022; Xu, 2020). The vocal tract parameters will be optimised through an 

analysis-by-synthesis approach, assisted by the embodiment constraints of the 

coarticulation model. 

In chapter 5, I report the identification accuracy rate of the speech learned by the 

adult and the child vocal tract models. Whether the anatomical structure of the 

vocal tract model influences vocal learning is tested, based on the identification 

accuracy rate in the listening experiments. I additionally compare the child vocal 

tract model with the developmental changes during speech acquisition in real life. 

Additional factors that impact on identification accuracy rate such as syllable type 

and types of listening experiments are assessed. 

In chapter 6, I will discuss all the findings and the research questions raised in 

the dissertation and present the limitations of this work and make suggestions for 

future research. 

Chapter 2 REVIEW OF VOCAL LEARNING MODELS 

2.1 LEARNING STRATEGY 

Early vocal learning has long been a question of great interest and various 

computational models have been proposed (Pagliarini et al., 2021). Appendix 

Table A lists previous computational models of human vocal learning. Some 

models focus on simulating the developmental trajectories of learning stages 

(section 2.1.6 Self-organisation). Other models have centred on simulating 

different learning architectures (the rest of the section).  
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2.1.1 NEUROBIOLOGICAL MODELS 

Several studies have probed the neural and cognitive mechanisms at play in early 

vocal learning by modelling the brain network. The earliest neurobiologically 

motivated computational model is the DIVA model (Guenther, 1994; Guenther et 

al., 2006; Tourville & Guenther, 2011), a neural-network-based model that 

simulates sensorimotor interactions during speech acquisition. An overview of the 

model is shown in Figure 7 (Tourville & Guenther, 2011). It consists of two main 

components: a) a feedforward control system that encodes the movement 

velocities of the articulators, and b) a feedback control system that encodes the 

time-varying sensory expectations. The feedforward articulator velocity map 

controls eight antagonistic pairs of cells that are in charge of the movement of the 

lips, the jaw, the tongue and the larynx. The feedback system incorporates 

auditory feedback based on the range of the first three formants and 22-

dimensional somatosensory vectors that depict the expected tactile and 

proprioceptive signals. The model simulates sensorimotor interaction by finding 

appropriate synaptic weights for mapping the phonetic-to-orosensory space and 

orosensory-to-articulatory space. The synaptic weights that associate sensory 

error map and feedback control map are first tuned by co-occurring motor and 

sensory signals. The error signals are later used by the feedback control map to 

correct motor commands so that the trained model is able to adjust motor actions 

in the presence of sensory errors. Although the DIVA model has been widely 

applied to exemplify speech adaptation or compensation phenomena as a 

theoretical framework (Lane et al., 2007; Perkell et al., 2007), the computational 

implementation of speech acquisition has not led to intelligible speech. 
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Figure 7 Illustration of the DIVA model (Tourville & Guenther, 2011) © copyright  

2022, reprinted by permission of Informa UK Limited, trading as Taylor & Taylor 

& Francis Group, http://www.tandfonline.com. 

As a complementary to the DIVA model, Kröger has proposed a 

neurocomputational model to establish a mapping between speech phonetics 

and sensory signals via self-organisation (Kröger et al., 2009). An artificial vocal 

tract model was trained to imitate speech sounds, which enabled the pairing of 

production and perception to be stored in self-organising maps (Kohonen, 1982). 

The learning was done by the adjustments of synaptic link weights between 

phonetic map and sensorimotor state map. The model contrasts with the DIVA 

model mainly in two respects: 1) it incorporates phonetic map and motor planning 

as intermediate levels, and 2) an error signal of predicted sensory feedback and 

actual feedback is not included. The model claimed to simulate the acquisition of 

CV sequences but no audio samples were provided. 

Westerman & Miranda (2002, 2004) have proposed a sensorimotor learning 

model that simulates how mirror neurons are developed by imitation. The sensory 
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system and motor map were correlated through Gaussian activation of units in 

both receptive fields. Speech sounds evoked a response on the sensory map and 

the associated motor map through imitation. In short, the integration of the two 

maps was established by Hebbian connections (i.e., simultaneous activation) of 

the units on each map. Later, another similar attempt has been made to simulate 

the learning of point vowels by self-organising maps and Hebbian connections 

with additional dynamic components (Heintz et al., 2009). The framework has an 

articulatory vocal tract model and uses the first three formants as auditory input. 

Even though the model also comprises feedforward and feedback control 

systems, it puts more emphasis on the bidirectional association between the two 

systems. Heintz et al.’s model is only concerned with vowel acquisition and the 

articulatory maps do not contain consonant movements. Overall, the 

aforementioned neurobiological models have been inclined to compass neural 

processes of speech production and perception, whereas much less attention 

was paid to generating intelligible speech.  

2.1.2 ACOUSTIC IMITATION 

Vocal mimicry has long been regarded as a crucial mechanism for speech 

acquisition (Kuhl & Meltzoff, 1996). As a consequence, a great deal of research 

has been carried out to simulate vocal imitation by the distal learning framework. 

The distal learning provides a framework that describes how a dynamic system 

can learn actions to perform desired outcomes when supervised by a distal 

‘teacher’ (Jordan & Rumelhart, 1992). The learning is divided into two phases: 1) 

the model learns a predictive forward model that transforms action space to 

sensation space; and 2) the model learns an inverse model to map desired 

sensation to actions by the utilisation of the forward model. The framework is 

suitable for addressing the correspondence problem in speech acquisition 

because it is applicable to non-convex many-to-one mapping relationship 

between articulation and acoustics (Xu et al., 2021). Moreover, speech acoustics 

can be the training data as a distal ‘teacher’ in an imitative learning process. 
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HABLAR model proposed by Bailly is perhaps the earliest model that aims to 

achieve audio-visual-to-articulatory inversion with the distal learning framework 

(Bailly, 1997). The model consists of an auditory system that detects static and 

dynamic status of the speech spectral information and a motor control system 

that converts phonological representations to articulatory movements. A crucial 

aspect of the model is that it explicitly simulates coarticulation by the consecutive 

activation of consonant and vowel goals. A forward model was built through 

polynomial interpolation of the articulatory parameters of X-ray data and auditory 

signals were represented by the first four formants. In line with the distal learning 

framework, an inverse model was derived by the Jacobian inversion of the 

forward model. However, one major drawback of this approach is that the process 

requires articulatory data for the sake of constructing the forward model. 

Providing that learners do not have prior knowledge about articulation, another 

similar yet slightly different attempt was made by Howard and Huckvale (2005), 

which bypassed the utilisation of articulatory data.  An inverse model between 

speech acoustics and speech motor control was trained by direct mapping and 

the distal learning. A babbling corpus was first constructed with the Maeda 

synthesiser (Maeda, 1990) to generate random CV sequences based on Hidden 

Markov Model Generator (HMM). The direct inverse model was then trained by a 

classical supervised regression algorithm. The distal learning model was 

supervised by the Euclidean similarity of formant frequencies. The synthesiser 

trained with its own speech had higher performance than the direct inverse model 

trained with human speech. The provided sound spectrograms and the 

supplementary audio samples showed that the learning of CV sequences driven 

by the distal learning was still unsatisfactory. The study further points out an 

essential difficulty in learning an inverse model, that is, the speaker normalisation 

problem. 

More recently, a few studies have constructed vocal mimicry models with a 

structure similar to the distal learning. For example, Philippsen et al. (2014) 

simulated the learning of CV sequences via acoustic imitation. In the first stage, 

recurrent neural networks were trained to learn a forward and an inverse model 
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for CV syllables.  In the second stage, the pre-trained models were refined by 

imitating auditory goals. The speech synthesiser used in the study was 

VocalTractLab (Birkholz, 2013), a highly sophisticated 3D articulatory 

synthesiser. Still, as reported in the paper, the model was not able to learn 

smooth articulatory trajectories even after fine-tuning, which reveals the difficulty 

in training an inverse model. In the same year, Prom-On et al. (2014a, 2014b) 

also trained VocalTractLab (Birkholz, 2013) to learn Thai vowels by acoustic 

imitation. Figure 8 shows an illustration of the model. A stochastic gradient 

descent algorithm was used to optimise the vocal tract parameters by minimising 

the Euclidean distance between the Mel-frequency cepstral coefficients (MFCCs) 

of the synthetic and the natural speech. The synthesis quality of the learned 

vowels was analysed based on both RMSEs of the mean formants and a listening 

experiment by native listeners. The results indicated that the synthetic vowels 

were close to natural speech in terms of formant values (F1, F2 and F3) and 

intelligibility, which indicates that the speaker normalisation problem (see Section 

1.1 Background for details) can be resolved by acoustic imitation as far as vowel 

acquisition is concerned. However, so far, none of the simulation works has 

demonstrated successful learning of intelligible CV syllables.  
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Figure 8 Architecture of an acoustic imitation model (Prom-On et al., 2014a, 

Figure 1) 

2.1.3 INFANT–CAREGIVER INTERACTION  

The speaker normalisation problem (i.e., the correspondence problem) has long 

been considered as a cumbersome burden for vocal learners, which has led to 
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an initiation of research into seeking assistance from caregivers (see Asada, 

2016 for a review). Several attempts have been made to simulate social 

interactions between the infant and the caregiver to facilitate vocal learning. For 

example, Lyon and her colleagues trained a humanoid robot DeeChee with real-

time reinforcement signals from a human teacher, who gave approving 

comments to the robot’s appropriate words (Lyon et al., 2012). A similar social 

interaction paradigm was proposed by Cohen and Billlard, whereby the agent 

produced vocalisations and the virtual caregiver gave reward or punishment 

(Cohen & Billard, 2018). 

Other researchers, however, take the perspective that the caregiver’s 

reformulation of the infant speech, instead of simple positive and negative 

feedback, assists speech acquisition (Asada, 2016). Huckvale, Howard and the 

others have built a virtual infant KLAIR to simulate interactive sensorimotor 

learning (Huckvale, 2011a, 2011b; Huckvale et al., 2009). The multimodal infant 

is able to produce and perceive real-time sounds and show facial expressions.  

KLAIR relies on caregiver’s reformulation to reinforce the acquisition of speech 

to learn a mapping between adult speech and its motor pattern. Following the 

same principle, Howard and Messum proposed another interactive learning 

model, named Elija (Howard & Messum, 2007, 2014, 2011; Messum & Howard, 

2015). As illustrated in Figure 9 (Howard & Messum, 2014), Elija is equipped with 

the Maeda synthesiser (Maeda, 1990) and the articulatory movements are 

calculated by the task dynamic model (Saltzman & Munhall, 1989b).  Elija starts 

exploring speech sounds by unsupervised babbling. Elija then engages in 

imitative interactions with the caregiver iteratively. The caregiver first utters a 

word and Elija tries out different speech sounds that have been stored in the 

babbling repertories.  Elija keeps the vocal movements in the end when the 

caregiver is satisfied with his/her speech. In this way, the correspondence 

between his/her own vocal action and adult speech is established. Importantly, 

the central aspect of this learning architecture is the caregiver’s judgement rather 

than the learner’s own judgement. In the end, Elija has managed to learn some 
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vowels but the learned CV syllables did not sound intelligible and were not tested 

for intelligibility. 

 

 

Figure 9 Illustration of imitative learning paradigm for Elija (Howard & Messum, 

2014) 

Another research group has pursued a similar path to solve the speaker 

normalisation problem independently. They also proposed a caregiver-robot 

interaction model for vowel acquisition (Ishihara et al., 2009; Miura et al., 2007; 

Yoshikawa, Asada, et al., 2003; Yoshikawa, Koga, et al., 2003), based on the 

finding that maternal vocal imitation elicits infant vocalisations (Pelaez et al., 

2011). In this model, the robot produces random speech sounds and the 

caregiver imitates the robot’s vowel production. More recently, the research 

group has revised their auto-mirroring model due to the developmental evidence 



 56 

showing that only in 20% of cases the caregiver imitates the infant utterances 

(Gros-Louis et al., 2006). They show that with a less imitative caregiver, the 

model can still learn how to produce vowels (Miura et al., 2012). Rasilo and his 

colleagues have followed this line of research and built a more sophisticated 

model that can tackle natural caregiver-infant interactions with ambiguity (Rasilo 

et al., 2013; Rasilo & Räsänen, 2017). The model starts with uniformly sampled 

random articulations to explore vocal space. It is then guided by fully online social 

feedback from the caregiver (i.e., human participants) so that the infant can 

correspond its own production with vowel categories of the caregiver. In the end, 

the model has succeeded in learning eight vowels in Finish. Taken together, the 

alternative approach of shifting the burden to the caregiver is again not effective 

enough in solving the speaker normalisation problem, as far as consonant 

acquisition is concerned. 

2.1.4 REINFORCEMENT LEARNING 

Reinforcement learning is a mechanism in which an agent learns an action policy 

in a dynamic environment through trial and error (Kaelbling et al., 1996). The 

agent tries to find a balance between exploration of unknown regions and 

exploitation of available knowledge to maximise rewards. The algorithm requires 

neither explicit correcting actions, nor specifying how the task can be achieved. 

Actions simply get strengthened or weakened depending on the defined reward 

or penalty.  On the one hand, the models of infant–caregiver interaction 

introduced in Section 2.1.3 use reinforcement learning based on extrinsic social 

rewards. On the other hand, a number of studies have explored the possibility of 

using intrinsic reinforcement. Warlaumont and her colleagues combined self-

organisation models (Willshaw, 2006) with reinforcement learning to train speech 

motor learning (Warlaumont et al., 2013; Warlaumont & Finnegan, 2016).  The 

model produces spontaneous speech with a self-organising map that controls the 

muscles of a speech synthesiser. The reinforcement signal comes from the 

auditory salience of these randomly generated sounds. Once it reaches the 
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auditory criteria of phonation or approximation to targeted vowels, the motor 

command will be reinforced. The auditory salience is calculated using Mel-

transformed F0, F1 and F2 in Warlaumont et al. (2013) and a model of cochlear 

processing in Warlaumont & Finnegan (2016). Although the model has been 

trained to learn syllabic sounds, the spectrograms of the audio samples do not 

show any trace of consonants. 

Reinforcement learning can be combined with vocal mimicry or parental-

feedback-based learning. For instance, Murakami et al. (2015) has incorporated 

reinforcement learning with imitation to train VocalTractLab (Birkholz, 2013) to 

learn vowels. The agent adjusts the motor parameters in an iterative manner to 

maximise reward signals. The study shows that the supplementary visual 

reinforcement signal is advantageous in acquiring rounded vowels. Recent 

studies by Acevedo-Valle et al. (2017, 2018, 2020) integrate caregiver-interaction 

with self-motivated exploration. In this framework, the model is driven by social 

reinforcement from a simulated instructor with additional somatosensory 

feedback that predicts the motor action. The scope of the simulation is again 

restricted to vowel acquisition.  

2.1.5 GOAL BABBLING  

Goal babbling is an approach for learning high-dimensional kinematics of robotics 

without prior knowledge (Rolf et al., 2010). The emphasis of this strategy is on 

trying to reach multiple goals from scratch. Through exploration, an internal model 

that describes the relation between motor commands and desired goals is 

established. The action-goal pairs get updated iteratively along a path towards 

the desired outcome. The method is different from feedback-error learning that 

demands prior knowledge of motor error (Kawato, 1990; Wolpert & Kawato, 1998). 

Forestier and Oudeyer (2017) brought together the learning of motor movements 

and speech production by goal babbling. The robot was trained to simultaneously 

learn arm movement, tool use as well as toy names, whereby the exploration was 

directed by the goal of retrieving objects by arms, tools or vocal requests.  



 58 

Philippsen and her colleagues developed a vocal learning model with a goal 

space of vectors derived from acoustic features, as illustrated in Figure 10. An 

Echo state neural network (ESN) (Jaeger, 2001) was first trained to extract the 

time-series information of MFCC features. The obtained ESN representations 

were transformed to a two-dimensional sensory goal space by Principal 

Component Analysis (PCA) (Wold et al., 1987) and Linear Discriminant Analysis 

(LDA) (Fisher, 1936). The agent was equipped with an articulatory synthesiser 

(i.e., VocalTractLab (Birkholz, 2013)) and the articulatory trajectories were 

controlled by Dynamic Movement Primitives (DMP) (Schaal, 2006). The model 

managed to learn a mapping between sensory goal space and motor commands. 

However, the learned speech was limited to vowels and simple CV sequences 

including /maa/ and /baa/. 

 

Figure 10 Illustration of goal babbling for speech acquisition (Philippsen, 2021, 

Figure 1) 

2.1.6 SELF-ORGANISATION 

Of particular concern is how to model the gradual learning behaviour during 

speech development. The progressive emergence of vocal sequences has been 

modelled as self-organised systems in some recent studies. Self-organisation, 
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grounded in evolutionary theory (Kauffman, 1992), refers to the process that a 

highly complex and dynamic system develops internal structure by interacting 

with its own distinct subsystems rather than through external instructions 

(Willshaw, 2006). The idea that spontaneous ordering arises among biological 

oscillators such as nervous systems has become a useful concept in computing 

(Watts & Strogatz, 1998). Self-organisation is suggested to play a role in shaping 

the sound inventory in world’s languages (Lindblom et al., 1983). de Boer (2000) 

implemented the idea by training an agent with an imitation game to simulate how 

vowel systems emerge. Along this line, Oudeyer (2005) proposed a self-

organisation model for speech acquisition, which is endowed with three virtual 

agents: 1) a vocal tract agent, 2) an ear agent, and 3) a brain agent that couples 

these two subsystems. The agent is able to discover vowel inventories based on 

its own subsystems without social interactions. A follow-up study revisited the 

model by adding a goal for babbling (Moulin-Frier & Oudeyer, 2012). They 

compared models of random exploration, random goal reaching and active goal 

reaching and found that active learning led to continuing exploration of auditory 

and acoustic space. They further provided the model with ambient language to 

test the possible influence of speech environment (Moulin-Frier et al., 2014). The 

model demonstrated developmental changes as a result of intrinsic motivations. 

Recently, the same research group proposed a model for the emergence of 

phonological systems, referred to as ‘Communicating about Objects using 

Sensory–Motor Operations’ (COSMO) (Barnaud et al., 2019; Moulin-Frier et al., 

2015). Using a Bayesian modelling approach, motor and auditory systems were 

linked through linguistic objects to develop a mapping between articulation and 

acoustics. The framework showed how vowel systems and syllabic sounds could 

be self-organised during the early stages of learning. 

Kanda et al. (2009) focused on how a model can learn to self-organise vowel 

articulation and speech segmentation. A recurrent neural network with parametric 

bias (RNNPB) (Tani, 2002) was trained to map time-series acoustic signals with 

articulatory movements of the Maeda synthesiser (Maeda, 1990). The parametric 

bias of the model was then manipulated to imitate vowel sequences by 
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approximating acoustic vectors derived from MFCCs. More recently, Najnin and 

Banerjee (2017) proposed a predictive coding framework to learn an internal 

model to predict sensory outcomes. The agent first learns from self-exploration 

and then imitates environmental speech driven by sensory prediction without 

reinforcement. Based on an intrinsically motivated architecture, the system 

learned to produce some vowels and syllables. The main focus of these studies 

is how an infant discovers sound systems at the very early developmental stage 

(i.e., babbling), but whether self-organisation is applicable to the learning of 

intelligible words remains unclear. 

2.1.7 SUMMARY 

On the one hand, some researchers have explored various possible 

computational models, including learning architectures based on 

neurobiologically motivated approaches (Kröger et al., 2009; Tourville & 

Guenther, 2011), acoustic imitation under the distal learning framework 

(Philippsen et al., 2014; Prom-On et al., 2014a), caregiver’s feedback (Messum 

& Howard, 2015; Miura et al., 2012), reinforcement learning (Warlaumont & 

Finnegan, 2016) and goal babbling (Philippsen, 2021a; Philippsen et al., 2016). 

On the other hand, some other researchers are more interested in how children 

discover phonological systems. The developmental change has been modelled 

by self-organisation (Moulin-Frier et al., 2014) and Bayesian models (Barnaud et 

al., 2019; Moulin-Frier et al., 2015). However, even with the state-of-the-art 

machine learning algorithm and articulatory synthesisers, the speaker 

normalisation problem remains unsolved (see Appendix Table A). Although 

numerous learning strategies have been proposed as potential solutions of 

human vocal development, not enough attention was paid to articulatory 

dynamics and sensory feedback. More importantly, none of the studies have 

demonstrated successful learning of intelligible words containing CV syllables, 

not to mention that very few of them have even conducted systematic listening 

experiments to verify the perceptual quality of the vocal learning results.  
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2.2 SPEECH SENSORY SYSTEM 

As far as vocal learning models are concerned, besides different learning 

strategies, a sophisticated sensory system is of great importance. Almost all of 

the previous simulations incorporate some auditory signals but only a few of them 

include somatosensory input (Appendix Table A Sensory system). In this section, 

I will first review observations and theories of speech perception and then discuss 

what kind of sensory representations are plausible training signals for the 

modelling of vocal learning. 

2.2.1 BACKGROUND 

A long-standing issue in speech perception is how the auditory system decodes 

linguistic categories despite variable acoustic information. First of all, the same 

phonetic units exhibit variable surface acoustic forms in different linguistic 

contexts. Liberman et al. (1954)  was the first to report that drastically different 

acoustic signals can be perceived as the same consonant in different vowel 

environments. Take /d/ for example, the formant transition is distinctly different in 

/di/ and /du/, as shown in Figure 11. Secondly, not only does the linguistic context 

influence the acoustic signals, there are also cross-speaker differences. A 

seminal work by Peterson and Barney in 1952 demonstrates overlapping clusters 

of vowels produced by men, women and children in the acoustic space defined 

by the first two formants (F1 and F2). Interestingly, these vowels were still 

correctly identified by native listeners. For instance, spectrograms of /bad/ 

produced by male and female native British English speakers show that vowel 

formant frequencies are quite different for different individuals (Figure 12). The 

phenomenon that there is a considerable variation in speech acoustics across 

speakers while producing the same word, and that listeners still recognise them 

despite the variation, is known as ‘speaker normalisation’ (K. Johnson, 2005; K. 

Johnson & Sjerps, 2021). Together, transforming continuous acoustic space 

across linguistic context and speaker space to discrete perceptual space seems 
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especially critical for speech perception. It poses an important question: how do 

we perceive the highly variable sensory signals that are associated with 

linguistically invariant categories? 

Figure 11 Simplified spectrograms of consonant /d/ followed by vowel /i/ and /u/, 

adapted from Liberman et al. (1954) 

 

Figure 12 Narrow-band spectrograms of /bad/ produced by a female and a male 

native British speaker respectively. 

2.2.2 MECHANISMS BEHIND SPEECH PERCEPTION 

The motor theory of speech perception (Liberman et al., 1967; Liberman & 

Mattingly, 1985) is one of the earliest conceptual frameworks that tries to resolve 

the lack-of-invariance problem. Their proposals are 1) the motor system is 

recruited for speech perception, and 2) speech perception is perceiving gestures. 

The theory was first developed to explain the variable acoustic characteristics of 
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coarticulated syllables, as shown in Figure 11 (Liberman et al., 1952, 1954). 

Based on the experimental findings, Liberman and his colleagues suggest that 

the nature of speech perception is perceiving the intended phonetic gesture of 

the speaker. The assumption is shared by Fowler (1981, 1986, 1989), also from 

Haskins laboratories, who proposed direct-realist theory of speech perception, 

inspired by Gibson (1966). The theory resembles the motor theory, which also 

advocates that the object of speech perception is not acoustic but articulatory 

events. However, direct-realist theory is dissimilar from the motor theory in that 

the object of perception is not neuromotor commands and that the mechanism is 

not speech-specific.  

The motor theory of speech perception has attracted much attention since the 

discovery of ‘mirror neuron’. The accumulating research on mirror systems in 

speech perception seems to support the motor theory on the basis of the analogy 

in the description (Galantucci et al., 2006). However, neurological studies do not 

offer direct support for the presence of linguistically invariant gestures during 

speech perception. The neurological evidence assuring the existence of mirror 

neurons also demonstrated no statistical difference in the participants’ motor-

evoked potentials when real words and non-speech sounds (i. e., bitonal sounds) 

were played to them (Fadiga et al., 2002b). This indicates that the mirror system 

itself is not necessarily for the sake of perceiving articulation. Rather, it only 

shows a well-established fact that production and perception are linked. To 

accommodate new neurobiological evidence (Kohler et al., 2002), the advocators 

of the motor theory abandoned the original claim of speech-specific components 

(Galantucci et al., 2006), and the revised assumption largely aligns with the direct 

realist perspective (Fowler, 1981, 1986, 1989).  

A counterexample to the motor theory is that speech perception can be intact 

even with deficits in speech articulatory control for patients with Broca’s aphasia 

(Goodglass, 1993). As a consequence, there has been concern over the 

necessity of articulatory reference as an intermediate level between acoustics 

and linguistic categories (Lindblom, 1996; Ohala, 1986). A contrasting view to the 

motor theory and the direct realist is that the auditory characteristics of phonetic 
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segments are what the listeners are perceiving instead of articulatory events, 

known as the general approach (Diehl & Kluender, 1989). It is argued that the 

speech sounds are perceived in the same way as environmental sounds using 

general mechanisms of audition that have evolved to categorise complex 

acoustic signals. The accessibility to phonetic information is through auditory 

enhancement and contrast in spectral and durational features (Lotto & Kluender, 

1998). The general auditory approach can account for the fact that some birds 

(Kluender et al., 1987) and chinchilla (Kuhl & Miller, 1978) can be trained to 

identify phonetic categories even though they cannot articulate human speech. 

Both the motor theory and the direct realist theory cannot fully explain why 

animals without human vocal apparatus are still able to detect phonetic cues in 

human languages after training.  

In line with the general approach, some researchers posit that the context-

dependent perception of linguistic units arise from listeners’ accommodation of 

speaker’s voice characteristics. There is considerable amount of behaviour 

research suggesting that the long-term and short-term frequency context of 

sounds facilitates the perception of phonemic contrast   (Laing et al., 2012; A. J. 

Watkins, 1991). The idea of contrast enhancement postulates that the auditory 

system is tuned based on the statistical distribution of the acoustic input. The 

assumption is supported by experimental evidence revealing the neural 

underpinnings of speaker-normalised (Sjerps et al., 2019)  and  categorical 

(Chang et al., 2010) representations in the human auditory cortex. The neural 

responses to speech sounds show both context-dependent and context-

independent normalisation (Sjerps et al., 2019). 

The nature of speech perception has been controversial and much disputed in 

general. Much of the accounts up to now have been descriptive and lack 

specifications. An alternative way of investigating the underlying mechanisms is 

to model speech perception with realistic speech data. If we can simulate how 

the human perception system procedurally handles the statistical properties of 

ambient speech, it may lead us to a deeper understanding of the system. 
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2.2.3 SIMULATION OF SPEECH SENSORY SYSTEM 

The existing body of research on computational models of vocal learning has 

explored different methods of emulating auditory feedback (see Appendix Table 

A Sensory system). Most of the research adopts vowel formants (i.e., F1, F2 and 

sometimes F3) to characterise vowel quantitatively (Acevedo-Valle et al., 2020; 

Bailly, 1997; Forestier & Oudeyer, 2017; Heintz et al., 2009; Howard & Huckvale, 

2005; Miura et al., 2012; Rasilo & Räsänen, 2017). Vowel formants are the 

resonance frequencies of the vocal tract, which has been conventionally 

regarded as the most salient perceptual dimensions of vowels (K. Johnson, 

2005). An alternative approach is to use scaled formants such as Mel-scale 

(Warlaumont et al., 2013) and Bark-scale (Barnaud et al., 2019; de Boer, 2000; 

Kröger et al., 2014; Moulin-Frier et al., 2014) formants to determine the 

perceptual space for vowel learning. Mel-scale reflects human perceptual 

distance of pitches (Stevens et al., 1937). In contrast, Bark scale denotes critical 

bands of frequency response of the human ear (Zwicker, 1961). A comparison of 

Mel-scale, Bark-scale and Hz is displayed in Figure 13. For both Mel-scale and 

Bark-scale, the sensitivity is high for low frequencies below 500 Hz, which is 

almost linear. Bark-scale is slightly more sensitive to low frequencies below 1000 

Hz than Mel-scale. When the frequency is above 1000 Hz, the sensitivity 

decreases for both Mel-scale and Bark-scale. The two scales are in general 

similar in terms of the frequency sensitivity. 
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Figure 13 Bark and Mel scale as a function of frequency from 0 to 8000 Hz. X 

axis shows the physical frequency in hertz and Y axis shows the normalised scale. 

However, formants might be less appropriate when the target of learning is 

beyond vowels and approximants. In addition to the lack of energy during the 

closure, the formant cues to consonants are limited to transitional movements. 

Recent research has sought for more sophisticated acoustic features. A few 

studies have made efforts to include more acoustic details using Bark-scale 

spectrograms (Kröger et al., 2014) or gammatone spectrograms (Howard & 

Messum, 2014; Messum & Howard, 2015). One of the most popular acoustic 

representations in the simulation studies is Mel-frequency cepstral coefficients 

(MFCCs) (Kanda et al., 2009; Prom-On et al., 2014a, 2014b; Rasilo et al., 2013). 

MFCCs are obtained from the log Mel-filterbank energy features. It is a robust 

parametric representation of speech acoustics (S. B. Davis & Mermelstein, 1980), 

widely used in speech recognition and Hidden Markov Model (HMM)-based 

synthesis. There are also some studies that have tried to combine MFCCs with 

formants as the auditory input (Najnin & Banerjee, 2017; Philippsen et al., 2014).  

With development in speech signal processing, the approach towards realistic 

simulation of speech perception has gradually improved. Murakami et al. (2015) 

has proposed an auditory system that generates reward by BRIAN neural 

network simulator. The auditory system simulates the peripheral processing in 
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the cochlea by dual resonance nonlinear (DRNL) filtering of the sound signals 

(Fontaine et al., 2011; Lopez-Poveda & Meddis, 2001). It is implemented by Echo 

State Network (ESN), which is a recurrent neural network with connected hidden 

layers (Jaeger & Haas, 2004). ESN is suitable for modelling time-series data such 

as speech signals. Philippsen (2021) also adopts ESN to encode the temporal 

information of spectral changes. Unlike Murakami et al. (2015), Philippsen (2021) 

applied Principal Component Analysis (PCA) (Wold et al., 1987) and Linear 

Discriminant Analysis (LDA) (Fisher, 1936) to the ESN representations to reduce 

the dimensionality of the acoustic vectors. In addition to the tendency towards 

incorporating acoustic details and temporal characteristics, researchers have 

further explored the possibility of simulating categorical perception. DeeChee 

model proposed by Lyon et al. (2012) is equipped with an automatic phoneme 

recogniser (an adapted version of Microsoft SAPI 5.4) for capturing the statistical 

distribution of phonemes in speech perception. Although extensive research has 

been carried out, no research has systematically examined how various auditory 

representations influence vocal learning.  

A wealth of evidence supports the idea that the auditory system plays a critical 

role in the learning of speech production (Kuhl, 2000, 2004). Somatosensory 

feedback has also been found to interact with auditory feedback and impact on 

the learning  (Lametti et al., 2012). The somatosensory system integrates tactile 

and proprioceptive signals of articulator movements during speech production. 

By simultaneously manipulating two types of feedback during speech production, 

experimental studies found that auditory feedback and somatosensory feedback 

both influence speech learning but auditory feedback shows higher priority  

(Lametti et al., 2012). Studies on vocal learning has recognised the critical role 

played by somatosensory feedback in production learning. For example, the 

DIVA model simulates somatosensory representations by the temporal and 

spatial states of articulatory movements (Guenther, 1994; Kröger et al., 2009, 

2014; Tourville & Guenther, 2011). Another alternative approach is to construct 

a somatosensory model that maps motor commands to internal somaesthetic 

representations, as in Acevedo-Valle et al. (2017, 2018, 2020). In this case, the 
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somatosensory system provides feedback on whether the articulation is fully 

executed.  

Despite various methods of emulating auditory and somatosensory feedback, the 

simulations reviewed above did not systematically examine how it impacts on 

vocal learning. Therein lies the necessity of verifying the role of feedback by 

comparing the model performance in controlled simulation experiments. Previous 

vocal learning models have failed to generate intelligible words containing CV 

syllables, which makes it difficult to use them to evaluate the plausibility of 

different kinds of sensory feedback. In this study, the aim is to examine the role 

of auditory and somatosensory feedback by simulating the learning of real 

English words and quantitatively comparing the learning outcome.  

2.3 SPEECH MOTOR CONTROL 

Part of this section has been previously been published in conference 

proceedings (ICPhS 2019) with the title “Coarticulation as synchronized 

dimension-specific sequential target approximation: An articulatory synthesis 

simulation” and have been made available at 

assta.org/proceedings/ICPhS2019/papers/ICPhS_254.pdf.  

Another key aspect of a vocal learning model is the plausibility of the motor 

control system. In contrast to the enormous amount of effort to explore learning 

strategies in previous works, surprisingly little attention has been paid to the 

articulatory dynamics during speech production (Appendix Table A Motor control 

and Synthesiser). In addition to a realistic model that can generate natural 

sounding speech, the control of the dynamic movements of the articulators is 

equally important. Of particular concern is the phenomenon of consonant-to-

vowel (CV) coarticulation in speech production (i.e., the articulatory movement of 

the consonant varies with the following vowel), which is the main challenge faced 

by many previous models (Appendix Table A Learning target and Performance). 

In this section, I will first introduce the motor control systems used in past 
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simulations and then focus on discussing CV coarticulation and its 

implementation.  

2.3.1 BACKGROUND 

The early simulations modelled the vocal tract as a source-filter model (Miura et 

al., 2007; Yoshikawa, Asada, et al., 2003; Yoshikawa, Koga, et al., 2003) or a 

pipe model (Westerman & Miranda, 2002; Westermann & Miranda, 2004). A few 

studies adopted articulatory synthesis systems such as Praat synthesis 

(Warlaumont, 2012; Warlaumont et al., 2013; Warlaumont & Finnegan, 2016)  

and Rasilo’s Articulatory model (Rasilo et al., 2013; Rasilo & Räsänen, 2017). 

The majority of the studies used the Maeda synthesiser (de Boer, 2000; Kanda 

et al., 2009) or its modified versions including VLAM (vocal linear articulatory 

model) (Barnaud et al., 2019; Heintz et al., 2009; Moulin-Frier & Oudeyer, 2012), 

VTCALCS (Acevedo-Valle et al., 2017, 2018, 2020; Guenther et al., 2006b; 

Howard & Messum, 2007, 2014; Messum & Howard, 2015; Moulin-Frier et al., 

2014; Najnin & Banerjee, 2017; Tourville & Guenther, 2011) More recently, 

VocalTractLab, an articulatory synthesis with high-dimensional vocal tract 

parameter control, has been used in a number of studies  (Murakami et al., 2015; 

Philippsen et al., 2014, 2016; Prom-On et al., 2014a, 2014b).   

The various speech synthesisers are controlled by different motor systems to 

generate articulatory kinematics. Some studies use the task dynamic model 

(Fowler & Saltzman, 1993; Saltzman & Munhall, 1989) for controlling the 

trajectories of articulatory movements (Howard & Messum, 2007, 2014, 2011; 

Messum & Howard, 2015). The task dynamic model was initially a conceptual 

framework for explaining how linguistically contrastive units can be organised to 

generate contextually varying articulatory kinematics. It was later implemented 

mathematically as a second-order dynamical system (Saltzman & Munhall, 

1989). As an alternative approach, Philippsen (2021) and Forestier and Oudeyer 

(2017) incorporated Dynamic Movement Primitives (DMPs) framework (Ijspeert 

et al., 2013; Schaal, 2006) to control VocalTractLab and DIVA synthesiser 
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(customised Maeda synthesiser), respectively. DMPs was developed to plan the 

trajectories for the motor movements of robots with discrete or rhythmic nonlinear 

dynamic primitives (Schaal, 2006). Whilst these computational models have been 

mostly restricted to vowel acquisition (Appendix Table A Learning target), up to 

now, no study has successfully simulated the learning of intelligible CV syllables 

(Appendix Table A Performance). This suggests that one of the main obstacles 

for the simulation of the motor control system is the modelling of CV 

coarticulation. 

2.3.2 COARTICULATION 

The term ‘coarticulation’ (‘Koartikulation’) was first proposed by Menzerath and 

De Lacerda (Menzerath & de Lacerda, 1933) to describe the phenomenon that 

the articulatory movement of the vowel in a CV sequence starts at the same time 

as the consonant (Kuhnert & Nolan, 1999). By now, however, it is mostly used to 

refer to any variation of a segment with adjacent or nearby segments. The 

contextual variability of segments has intrigued theoretical discussions on how 

linguistically invariant segments take various articulatory-acoustic manifestations 

in speech production.  

Over the last century, researchers have shown enthusiasms for elucidating the 

mechanisms underlying CV coarticulation. Kozhevnikov & Chistovich (1965) 

proposed the concept of “Articulator syllable” supported by the evidence of co-

onset of lip rounding and the movement of the first consonant in Russian complex 

syllables (i.e., CV, CCV and CCCV syllables). According to this theory, the motor 

command of the consonant and the vowel are set simultaneously at the syllable 

onset, resulting in coarticulation. In the task dynamic model (Fowler & Saltzman, 

1993; Fowler, 1980; Saltzman & Munhall, 1989) and Articulatory Phonology 

(Browman & Goldstein, 1989, 1992; Ohala et al., 1986), it is assumed that there 

are temporal overlaps between linguistically relevant movements of the vocal 

tract, referred to as gestures. In a /VdV/ sequence, for example, the alveolar 

consonant and the vowel gesture compete for the control of the jaw, the tongue 
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tip and the tongue body. This coproduction process is called intergestural 

blending. In the window model of coarticulation, a segmental feature has a 

‘window’ consisting of a maximum and a minimum physical value that reflects 

contextual sensitivity. Articulatory execution of segments is an interpolation 

process that paths through these windows (P. A. Keating, 1990). 

Another line of study tended to focus more on how to quantify the coarticulatory 

movements. Bladon & Al-Bamerni (Bladon & Al-Bamerni, 1976) hypothesised 

that there was a specific ‘coarticulation resistance’ value associated with each 

segment, based on the observation that the allophones of English /l/ influenced 

the F2 of neighbouring vowels to varying extents. Later on, quantitative 

measurements of coarticulation resistance have developed with the advances in 

new articulatory imaging techniques. A degrees of articulatory constraint model 

of coarticulation (DAC model) has been proposed, which quantifies the 

coarticulation resistance of segments by means of acoustic, EPG and EMA data 

(Recasens, 1984; Recasens & Espinosa, 2009). Jackson-Singampalli’ statistical 

model (Jackson & Singampalli, 2009) and Iskarous et al.’s Mutual Information 

Scale (Iskarous et al., 2013) both seek to identify the primary articulators for 

phones by measuring the distribution of their changes in physical positions in 

different linguistic environments. Specifically, the vertical anterior part of the 

tongue position was found to correlate with the articulation of alveolar stops; the 

vertical posterior part position of the tongue was critical for velar stops and the 

vertical lip position for bilabial stops. These measurements have revealed to what 

extent a specific articulator is involved with the presence of distinct surrounding 

segments.  

In addition to coarticulation resistance, there have been some efforts that 

measure the coarticulation phenomenon quantitatively. Lindblom (1963) 

observed highly linear relation between formant frequencies at the centre of 

vowels and at the point right after the consonant release, and referred to this 

linear relation as locus equations. The linearity has been suggested to parallel 

findings in coarticulatory resistance (Brancazio & Fowler, 1998), degree of 
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coarticulation (Lindblom & Sussman, 2012; Löfqvist, 1999) and articulator 

synergy (Iskarous et al., 2010). On the other hand, some researchers failed to 

find the correlation between Locus Equation and the kinematic process during 

coarticulation (Tabain, 2000, 2002). As an extension of Locus Equation, Öhman 

(1967) proposed a mathematical function which treated the consonant gestures 

as constrictory gestures superimposed on a diphthongal movement of vowels. 

The results showed that the calculated vocal tract shapes almost resembled the 

empirical X-ray data. This work inspired a large body of literature that adopted 

different approaches to calculate vocal tract area functions for the modelling of 

coarticulation in speech synthesis (Birkholz, 2013; Carré & Chennoukh, 1995; 

Chennoukh et al., 1997; Story, 2005, 2009). For example, Story (2005, 2009)’s 

model implemented Öhman (1967)’s idea and simulated the superposition of the 

consonant on the vowel movements with the aid of MRI and X-ray data. Recently, 

Birkholz (2013) modelled the vocal tract shape of context-sensitive consonants 

based on weighted means of reference shapes of consonants following point 

vowels (i.e., /a/, /i/ and /u/), via acoustic optimization. These synthesis systems 

rely on articulatory data to pre-define the vocal tract shapes. Difficulties arise, 

however, when the coarticulation model is applied to the simulation of vocal 

learning, as learners would not have access to the knowledge of articulation 

behind the speech utterances they hear. 

2.3.3 THE SYNCHRONISED DIMENSION-SPECIFIC SEQUENTIAL TARGET 

APPROXIMATION MODEL 

Different from previous attempts, the synchronised dimension-specific sequential 

target approximation model offers a highly specific way of simulating the learning 

of coarticulation (Liu et al., 2022; Xu, 2020). The framework was proposed to 

explain how the articulators are coordinated during coarticulation, and how 

temporal coordination may benefit vocal learning. It is hypothesised that despite 

the co-onset of the underlying consonantal and vocalic targets, at the level of 

individual articulator dimension, the target approximation is sequential (Xu, 
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2020). Under this model, specific vocal tract parameters controlled by the 

consonant and the vowel asymptotically approach their targets simultaneously at 

the syllable onset, although ending at different time points. For example, in a /gV/ 

sequence, the tongue body vertically moves upward for a contact for the 

consonant, while also moving horizontally to achieve the tongue shape for the 

vowel, resulting in different velar contact locations depending on the vowel. The 

hypothesis is supported by experimental data from Electromagnetic 

Articulography (EMA) and acoustics that show synchronised CV coarticulatory 

movements in disyllabic words (Liu et al., 2022). So far, the synchronised 

dimension-specific sequential target approximation model has not been tested by 

computational modelling.  

Chapter 3 SIMULATION OF VOCAL LEARNING 

In this chapter, I will describe a computational model of vocal learning. The model 

is distinct from the models reviewed in Chapter 2 in the following aspects. 

1. Previous neurobiological models (Section 2.1.1) mainly concentrate on 

modelling the relationship between the sensory and motor systems, whereas the 

current approach aims at successful learning that reaches a high level of 

intelligibility. 

2. The model simulates production learning guided by either universal perception 

or language-specific perception. The universal perception is emulated by 

acoustic features, in which case the learning process is in essence acoustic 

imitation (Section 2.1.2). 

3. Unlike models of infant-caregiver interactions (Section 2.1.3), the model learns 

speech production guided by sensory feedback on its own without the assistance 

from the caregiver. 
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4. The framework is driven by the hypothesis of perception-guided learning in 

vocal learners, rather than based on a particular algorithm such as reinforcement 

learning (Section 2.1.4), goal babbling (Section 2.1.5) or self-organisation 

(Section 2.1.6). 

5. The model simulates the phase of learning from babble to speech, in contrast 

with self-organised models of initial stages of speech acquisition (Section 2.1.6). 

3.1 MODEL OVERVIEW 

The model consists of a motor control and a sensory component, as illustrated in 

Figure 14. The motor control model begins with exploration of a set of articulatory 

targets within the available parameter range for the adult or the child vocal tract 

models (Figure 14A). The articulatory synthesiser is VocalTractLab 2.3 (Birkholz, 

2013), a geometrical 3D vocal tract model. The adult vocal tract model is based 

on the volumetric MRI data of a German male speaker and the child vocal tract 

models are scaled versions of the adult model (Birkholz & Kröger, 2007; 

Goldstein, 1980). During the exploration, the vocal tract model adjusts 19 vocal 

tract parameters that determine the dynamics and physical locations of the active 

articulators. The kinematic trajectories that approach the articulatory targets are 

based on the timing relations specified by a coarticulation model – the 

synchronised dimension-specific sequential target approximation model (Xu, 

2020). The model simulates context-sensitive realisation of consonants and 

vowels (Figure 14B). The time-varying vocal tract shapes are then converted to 

cross-sectional area functions for acoustic simulation (Figure 14C). The aero-

acoustic simulation is based on the enhanced area function (Birkholz, 2014) of 

the time-varying vocal tract shapes to generate spoken words. The synthetic 

speech is evaluated either by acoustic features (Figure 14D) or by an automatic 

phoneme recogniser (Figure 14E). Mel-spectrograms of natural words and 

synthetic words were extracted to calculate the Mel-frequency cepstral 

coefficients (MFCCs) (S. B. Davis & Mermelstein, 1980). The automatic phoneme 

recogniser is a pre-trained deep learning model that maps acoustic feature 
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sequences to a contrastive auditory space. It evaluates the probability of the 

targeted onset consonants, vowels, and coda consonants, as represented by 

International Phonetic Alphabet (IPA) symbols around the circle. In addition to the 

two types of auditory feedback, somatosensory information of oral constriction 

sensing is also included (Figure 14F). The somatosensory information is provided 

by the cross-sectional areas to determine whether there is a closure in the vocal 

tract. The adult and the child vocal tract models were trained to learn English 

words guided by the sensory feedback options in Figure 14D to Figure 14F.  

 

Figure 14 Overview of the vocal learning model 

The learning targets of the vocal learning model are minimal pairs of real English 

words with consonant-vowel-consonant (CVC) and CVCV syllable structures, 

containing bilabial, alveolar, and velar stops, as shown in Table 1. Voiced stops 

were selected as the onset consonant to maximise the number of vowels 

available in English CVC words. The CVC words are first optimised during the 

simulation and the learned vocal tract parameters are reused to resynthesise 

CVCV words to test the generalisability of the learned parameters.  
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Table 1 Target words for the vocal learning model 

 CVC CVCV 

 /bVd/ /dVd/ /gVd/ /bVbi/ /dVbi/ /dVdi/ 

/i:/ bead deed     

/ɪ/ bid did     

/ɛ/ bed dead   Debbie  

/æ/ bad dad    daddy 

/ɒ/ bod  god body   

/u:/ booed      

/ʌ/ bud   buddy   

/ʊ/   good    

 

3.2 MOTOR CONTROL  

A key feature of the vocal learning model is the explicit emulation of the motor 

control system in many respects. A biological-plausible articulatory synthesiser 

was adopted to simulate the child and the adult vocal systems. The articulatory 

dynamics of CV sequences were controlled by the synchronised dimension-

specific sequential target approximation model.  

3.2.1 ARTICULATORY SYNTHESIS 

The articulatory synthesiser (Figure 14A) used is VocalTractLab 2.3 

(vocaltractlab.de) (Birkholz, 2013), which calculates enhanced area functions 

(Birkholz, 2014) for an aero-acoustic simulation on the basis of a 3D vocal tract 

model and a geometrical glottis model. The adult vocal tract model is adapted 

from MRI data of a German male speaker. The static and the active articulators 

of the infant vocal tract models are scaled down based on the relative anatomy 

(Birkholz & Kröger, 2007; Goldstein, 1980). The vocal tract parameters define the 
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airway from the glottis to the lips, with 17 degrees of freedom, as shown in Table 

2. The cross-sectional area of the oral cavity is converted to a transmission-line 

model for acoustic simulation in the time domain. The vocal tract parameters are 

sampled at 5 ms intervals to ensure the precision of the articulatory movement. 

The vocal fold model is a geometric glottis model which accounts for source-filter 

interaction during synthesis (Birkholz, 2014). Compared with the traditional glottal 

flow model, this voice source model is capable of generating asymmetric glottal 

area waveforms and diplophonic double pulsing. The vocal folds were set to be 

fully adducted with moderate longitudinal tension for the vowel targets, while the 

glottis parameters of the consonant targets including the distance between vocal 

cords, chink area and relative amplitude were free parameters. The intonation 

contours of the synthetic words were generated using pitch targets extracted from 

the natural recordings by PENTAtrainer (Xu & Prom-on, 2014), an intonation 

modelling tool. The audio files were synthesised at a sampling rate of 44.1 kHz 

and a quantisation of 16 bit. 
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Table 2 Vocal tract parameters in the model. 

Parameter Description Range 

HX Horizontal hyoid position [0.0, 1.0] cm 

HY Vertical hyoid position [−6.0, −3.0] cm 

JX Jaw position [−0.5, 0.0] cm 

JA Jaw angle [−7.0, 0.0] deg. 

LP Lip protrusion [−1.0, 1.0] cm 

LD Vertical lip distance [−2.0, 4.0] cm 

VS  Velum shape [0.0, 1.0] 

VO Velum opening [−0.10, 1.0] cm2 

TTX Horizontal tongue tip position [1.5, 5.5] cm 

TTY Vertical tongue tip position [−3.0, 2.5] cm 

TBX  Horizontal tongue blade position [−3.0, 4.0] cm 

TBY Vertical tongue blade position [−3.0, 5.0] cm 

TCX Horizontal tongue body centre position [−3.0, 4.0] cm 

TCY Vertical tongue body centre position [−3.0, 1.0] cm 

TS1 – TS3 Tongue side elevation from the posterior 

to the anterior part of the tongue 

 

 

3.2.2 ARTICULATOR DYNAMICS 

The temporal and spatial movements of the articulators were simulated by a 

motor control system that transforms articulatory targets to vocal tract parameter 

trajectories, as illustrated in Figure 15. 
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Figure 15 Workflow of the motor control system. The system takes articulatory 

targets such as consonant or vowel targets as input and returns 17-dimensional 

vocal tract parameter trajectories (Table 2) to be passed to the articulatory 

synthesiser.  

First, during the approximation of the underlying articulatory targets, the 

coordination of multiple articulators is controlled by a coarticulation model, the 

synchronised dimension-specific sequential target approximation model (Liu et 

al., 2022; Xu, 2020). In this framework, the articulation of the phonetic segment 

originates from the execution of both the consonant and the vowel target from the 

syllable onset. Despite the co-onset of consonant and vowel targets, at the level 

of the individual articulator dimensions, the movement towards each articulatory 

target is sequential, so that each articulatory dimension is controlled either by the 

consonant or by the vowel at a particular moment in time. For example, in Figure 

16, at the onset of a consonant-vowel (CV) syllable with a bilabial stop, the 

consonant target (dashed lines) controls the movement of jaw angle (JA), jaw 

horizontal position (JX) and lip distance (LD), while the vowel target (solid lines) 

governs the movement of the rest of the articulatory dimensions, such as the 

horizontal and vertical tongue tip positions (TTX & TTY). When the interval of 

consonant target approximation is over, JX, JA and LD start to move towards the 

vowel target. After the articulatory movements toward the syllable-initial 

consonant and vowel are terminated, all the articulator dimensions begin to 

approach the next set of articulatory targets. The final coda consonant was 

implemented as another hypothetical CV syllable with a voiceless schwa to 

ensure a closure in the oral cavity (coda target) and a release (into the voiceless 
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schwa) (Xu, 2020). The temporal domain of the motor control system is based on 

the timing alignment of the articulatory targets in the natural speech sample. The 

articulatory dimensions governed by the consonant are listed in Table 3, while 

the rest of the articulatory dimensions listed in Table 2 are controlled by the vowel 

target only. 

 

Figure 16 Illustration of the synchronised dimension-specific sequential target 

approximation model in the case of bilabial stop-vowel sequences. Dashed lines 

represent the articulatory trajectories of the consonant target and solid lines 

represent the articulatory trajectories of the vowel target. 

Table 3 Vocal tract parameters controlled by the consonant 

Consonant type Vocal tract parameters 

Bilabial stops LD, JX, JA 

Alveolar stops TTY, TBY, TS3, JX, JA 

Velar stops TCY, TS2, JX, JA 

 

Next, after the coarticulation model was applied, the dynamic trajectories of the 

17 vocal tract parameters were calculated by the target approximation model. 

Quantitatively, each articulatory target is represented by the height (i.e., the 

position of the 17 vocal tract parameters), the slope and the strength (i.e., the 

Jaw position (JX)

Jaw angle (JA)

Lip distance (LD)

Horizontal tongue tip (TTX)

Vertical tongue tip (TTY)

etc.

Consonant                 Vowel
Syllable
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time constant). The slope was set to zero in the simulation because the speech 

materials include only monophthongs rather than diphthongs which involve 

dynamic articulatory movements (Xu, 2020). The movement of the articulators 

(vocal tract parameters) is modelled by a cascade of several identical first-order 

linear systems with the following transfer function: 

𝐻(𝑠) =
𝑌(𝑠)
𝑋(𝑠) =

1
(1 + 𝑠𝜏)! 

where 𝑠  and 𝑁  denote the complex frequency and the order of the system 

respectively. 𝜏  denotes the time constant, which determines how quickly the 

target is approached, hence the (inverse of the) strength of target approximation. 

Here, 𝑁 equals 5, that is, a fifth-order system was used, which reproduces s-

shaped asymptotic movement towards articulatory targets with bell-shaped 

velocity profiles. The time-domain representation of the previous equation can be 

derived using inverse Laplace Transform, which results in: 

𝑦(𝑡) = (𝑐" + 𝑐#𝑡 + ⋯+ 𝑐$%#𝑡$%#)𝑒
%&' + 𝑥(𝑡) 

where 𝑥(𝑡) = 𝑏 is the position of the articulator target and t is the time from the 

beginning of the articulatory target. The coefficients are calculated based on the 

initial state of y and its derivatives of the articulator at the onset of the interval 

(which is equal to the final state of the previous target), as shown in the following 

equation (Birkholz et al., 2011): 

𝑐( = 	 4
𝑦(0) − 𝑏																																																𝑛 = 0
𝑦(*)(𝑜) − ∑ 𝑐(𝑎*%#;*(<𝑖!

*%#
(,"

𝑛! 			0 < 𝑛 < 𝑁
 

 

3.3 SENSORY SYSTEM 

The sensory model contains two kinds of auditory feedback: 1) acoustic features 

for simulating universal perception of phonetic differences in all languages (Kuhl, 
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2000; Werker & Lalonde, 1988), and 2) an automatic phoneme recogniser for 

simulating language-specific perception of sound contrasts in native languages 

(Kuhl, 2000; Werker & Lalonde, 1988). Moreover, somatosensory feedback is 

provided by checking the closure areas within the oral cavity. 

3.3.1 ACOUSTIC FEATURES 

Acoustic features were used to simulate universal perception based on a Mel-

filterbank: Mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 

1980) and Log Mel spectrograms. The Mel-scale approximates human 

perception of frequency, which is more sensitive to low frequencies than high 

frequencies (Stevens et al., 1937). A Log Mel spectrogram is the log power output 

by each filter in the Mel filter bank for each temporal frame of the speech signal 

obtained through windowing. MFCCs are computed by applying the discrete 

cosine transform (DCT) to the Log Mel spectrum for each frame. MFCCs are 

widely used in speech recognition and Log Mel Spectrograms are used in 

machine learning based speech synthesis. Both are robust representations of 

phonetic contents of speech. 

High-frequency emphasis was applied to the sound signals through pre-

emphasis (coefficient = 0.97). Frames were then extracted using 25 ms Hamming 

windows with 5 ms overlap, to be consistent with the sampling rate of the vocal 

tract parameters during synthesis. 26 Mel filters3 with a maximum frequency of 

10 kHz were applied and the logpower of their output was calculated. 26 Mel 

filters The DCT of the Mel log power was calculated to obtain 22-dimensional 

MFCCs (including energy) with sinusoidal cepstral liftering (coefficient = 2 × 

number of MFCCs). 22-dimensional MFCCs4 were selected to make the best use 

 

3 In a pilot experiment, 40 and 26 Mel filters were applied to obtain Log Mel 
Spectrograms and MFCCs. The number of filters did not significantly influence 
the intelligibility of the speech learned by the model. 
4 It has been reported that 12-dimensional and 22-dimensional MFCCs perform 
similarly in guiding vocal learning models for vowels (Gerazov et al., 2020). 
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of spectral information while excluding speaker information (Ryant et al., 2014). 

The acoustic error (E) was calculated using the Euclidean distance between the 

22-dimensional MFCCs or 26-dimensional Log Mel spectrograms of the target 

and the synthetic utterances, with the following equation: 

where n is the number of time frames, m is the number of MFCC coefficients or 

the Log Mel spectrogram filters, 𝑓(- is the jth cepstral coefficient/ Mel frequencies 

of the ith frame of the natural sound, and 𝑓A(-  is the jth cepstral coefficient/ Mel 

frequencies of the ith frame of the synthetic sound.  

Audio recordings of natural speech were made by a female native speaker of 

American English (age: 27) in a sound-attenuated acoustic laboratory. The sound 

files were recorded with a studio-grade microphone and a professional audio 

interface at a sampling frequency of 44.1 kHz with 16-bit quantisation. The use 

of a female speaker was to address the speaker-normalisation problem (Section 

2.2.1) by contrasting with the adult vocal tract model based on a German male 

speaker. 

3.3.2 AUTOMATIC WORD RECOGNITION 

A word recogniser developed in van Niekerk et al. (2022) and Xu et al. (2022) 

were used to evaluate the intelligibility of the synthetic words. The word 

recogniser was trained using the Kaldi Speech Recognition Toolkit and the 

LibriSpeech corpus (Panayotov et al., 2015). The corpus contains speech data 

extracted from audiobooks recorded by adult male and female speakers of varied 

ages. The model is based on Weighted Finite State Transducers (WFSTs) that 

use Gaussian mixture models (GMMs) to model the speech acoustics. The 

MFCC features were transformed with Linear Discriminant Analysis (LDA) and 

the Maximum Likelihood Linear Transform (MLLT) to reduce the dimensionality 

and the size of the acoustic model. The training data consists of 960-hour speech 

from LibriSpeech (Panayotov et al., 2015), normalised using Speaker Adaptive 

E = 	∑ ∑ (𝑓(- − 𝑓A(-)./
-,#

*
(,# 	
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Training (SAT). A small pretrained trigram language model was used in the 

decoding. The word recogniser was effective in evaluating speech sounds 

because it was tested to be robust in recognising natural speech, as shown in 

Figure 17. 

 

Figure 17 Confusion matrices of CVC words produced by a female native 

speaker, evaluated by a word recogniser. The score shows the weighted negative 

log likelihood loss. 

3.3.3 AUTOMATIC PHONEME RECOGNITION 

An automatic phoneme recogniser developed in van Niekerk et al. (2022) and Xu 

et al. (2022) was used to simulate language-specific perception. The recognition 

system was trained using clean speech from LibriSpeech corpus (Panayotov et 
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al., 2015). To cover the phonemes in the target word list, speech segments were 

extracted with 11 onset consonants (/b/, /d/, /g/, /p/, /t/, /k/, /j/, /w/, /n/, /m/ and /l/) 

, 11 vowels and 6 diphthongs (stressed /aɪ/, /aʊ/, /eɪ/, /oʊ/, /ɔɪ/,  /i/, /u/, /æ/, /ɑ/, 

/ɔ/, /ɛ/, /ɪ/, /ʊ/, /ʌ/ and unstressed /i/, /oʊ/, /ʌ/) and 6 coda consonants (/b/, /d/, /g/, 

/n/, /m/ and /ŋ/)5. 26-dimensional Log Mel spectrograms of the recordings were 

computed using the previously described parameters without preemphasis6 and 

pre-padded to a length of 200 frames (spanning 1 s) to be used as the input for 

the training. A deep neural network was trained to learn a mapping from the Log 

Mel spectrograms to a 34-dimensional vector one-hot encoding the onset, the 

vowel and the coda phonemes, as illustrated in Figure 18. The network contains 

8 convolutional layers (conv), 6 long short-term memory (LSTM) layers and 3 

dense layers (Dense). Batch normalization layers after each conv, LSTM and 

Dense layers and dropout layers after each LSTM and Dense layers are not 

shown in the diagram. The architecture consists of 3 main parts: spectrotemporal 

feature processing, temporal feature processing and classification. The first 

convolutional layer module (in blue) was designed to learn the feature 

representations that may coexist or correlate in the spectral and temporal 

domains. The temporal feature processing module (in green) was designed to 

learn the temporal dependency and/or the state-based behaviour. Lastly, the 

classification module (in red) was used to learn the relationship between the 

features for classifying phonemes. Training proceeded with early stopping based 

on the validation set loss with a patience of 6 epochs. 

 

5 The speech data used to train the automatic phoneme recogniser included all 
the possible vowel categories in English. Although the learning targets of the 
vocal learning model only contained voiced bilabial, alveolar and velar stops, 
more consonant categories were included to ensure enough phonetic contrast. 
In a pilot experiment, the recogniser trained with only voiced bilabial, alveolar and 
velar stops performed badly in guiding the learning of the three stop consonants.  
6  Pre-emphasis was not applied to the speech sounds because the features 
would be passed to the deep learning model for dealing with the spectral 
information. 
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Figure 18 Schematic diagram of an automatic phoneme recogniser (Niekerk et 

al., 2022; Xu et al., 2022).  

The details of the speech data used for the training are shown in Table 4. The 

speech data varied in syllable types, including 17 vowels, 187 CV syllables and 

1122 CVC words. The trained recogniser had a 94% phoneme accuracy rate in 

the onset position, 88% in the vowel position and 98% in the coda position. A 

model trained using 22-dimensional MFCCs were also tested and the accuracy 

rate was 93%, 87% and 98% respectively. The Log Mel spectrograms had better 

overall performance (93%) than the 22-dimensional MFCCs (92%) and were thus 

adopted in the current simulations. The output vector of the automatic phoneme 

recogniser simulates a categorical perceptual space. The recognition loss of the 

CVC words is the Euclidean distance between the target vector and the 

recognised vector of the synthetic speech, by the following equation: 

𝐿 = 	(𝑝( − 𝑞()
., 	𝑖 = 1, 	 … , 	𝑁 

where 	𝑝( represents the target phoneme vector and 𝑞( 	represents the recognised 

phoneme vector. The 	𝑝( and 𝑞( 	contain probability values between 0 and 1. The 

output vector is a 34-dimensional space for CVC syllables, i.e., N = 34 in the 

equation. 
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Table 4 Speech data extracted from LibriSpeech corpus (Panayotov et al., 2015) 

for training an automatic phoneme recogniser 

 
Number of 
utterances 

Size Duration 

Training 2711615 21 G 116.7 h 

Validation 337109 2.6 G 14.4 h 

Test 345263 2.7 G 15 h 

 

3.3.4 SOMATOSENSORY FEEDBACK 

The somatosensory feedback was simulated by applying two kinds of constraints 

on the vocal tract parameters during vocal exploration. The vowel constraint is to 

ensure that the opening of the vocal tract is larger than a minimal cross-sectional 

area and the stop consonant constraint is to ensure a closure over a limited 

portion of the oral cavity. Two constraints were implemented by checking the tube 

area during the dynamic articulator movements. A tube area in the oral cavity 

larger than 0.25 cm2 for the adult vocal tract model and 0.15 cm2 for the child 

vocal tract models is considered as an open vocal tract, according to the tube 

area function in VocalTractLab (Birkholz, 2013). All the vowel targets that did not 

pass the check were filtered out. With regard to consonant target, the number of 

closed tube areas varied with the place of articulation of the target consonant. 

The total number of tube area sections is 40. A tube area less than 0.0001 cm2 

indicates a closed vocal tract. Up to 4 closed tube sections were allowed to 

ensure closed lips for bilabial stops. Due to the built-in interdependency between 

lip protrusion parameter and lip distance parameter in the articulatory synthesiser, 

the threshold of closed tube area was 0.15 cm2 for bilabial stops preceding 

rounded vowels in /booed/. Moreover, the consonant constraint was implemented 

according to the uneven distribution of the sensory receptors on the tongue. 

Because the tongue tip is highly innervated compared to the tongue dorsum 

(Marlow et al., 1965), the closure tube length was set to be shorter in the anterior 
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tongue section and longer in the posterior tongue section. To be more specific, 

the number of closed tube area sections were set to be less than 3 for alveolar 

stops and less than 9 for velar stops, except for alveolar stops before high vowels. 

In English, alveolar stops preceding high front vowels are likely to be palatalized 

(Bateman, 2007), which suggests a larger area of contact during the consonant 

articulation. The number of closed tube area sections was therefore set to be less 

than 9 for /deed/ and 6 for /did/. 

3.4 OPTIMISATION ALGORITHM 

The articulatory targets were optimised for the speech sound by simulated 

annealing (Kirkpatrick et al., 1983), a stochastic optimisation algorithm that seeks 

an optimal solution through a coarse-to-fine criterion, suitable for non-linear, non-

smooth and non-convex problem with many degrees of freedom, such as speech 

parameter estimation. The articulatory targets were iteratively adjusted and 

tested, and their acceptance is determined by a probability p. 

𝑝 = 	 H 1												𝑖𝑓	∆𝐸 < 0
𝑒%∆1/3 		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where ΔE is the change in the error of the objective function between the current 

and the previous attempt. T is the temperature that controls the annealing 

process. A uniformly distributed random number between 0 and 1 is generated 

as a criterion for deciding whether the current trial is accepted. If the error is lower 

than the current error, the current adjustment is accepted. The algorithm also 

keeps some changes that are not ideal. If the probability of acceptance p > r, the 

new attempt is still accepted. This allows a balance between exploration and 

exploitation of optimal parameters. The control temperature T gradually 

decreases throughout the process, which means that a new motor pattern in the 

earlier stages is likely to be accepted but only good trials with low errors are 

accepted in the later stages. 

Due to the heuristic nature of the algorithm, there was a possibility that the final 

articulator targets were not optimal. Thus, the algorithm was implemented in two 
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stages to stabilise the learning outcome and to improve the chance of finding 

global optima rather than local optima, as shown in Figure 19. In the first stage, 

10 processes were initiated in parallel, each with 2k iterations. Each process 

started with a neutral position (schwa) followed by random adjustments of the 

vocal tract parameters and gradual convergence to a solution. Next, all the trials 

were ordered by the loss and selected the best candidate of each of the 10 

processes for a more localised optimisation. In the second stage, instead of a 

broad motor exploration, the 10 processes randomly walked around the selected 

set of articulatory targets for 200 iterations 7 . More specifically, the model 

generated a neighbour solution based on the previous trial as follows: 

𝑥(4 = 	𝑥(	 + 𝑅𝑊( , 	𝑖 = 1,… ,𝑁  

in which 𝑥(  is the 20-dimensional articulatory target, including 17 vocal tract 

parameters and 1 time constant (𝑁 = 20). 𝑊( is added to adjust the relative step 

of the random walk, based on the range of the vocal tract parameters and the 

time constant. 𝑅 is a uniformly sampled random number between -1 and 1. 𝑥(4 is 

further constrained by the range of the parameters, as shown in Figure 2. 

 

7 The refinement improved the intelligibility of difficult sound sequences such as 

/booed/. 
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Figure 19 Illustration of the two-step optimisation process. Step 1 Exploration: 

Uniformed random parameter search; Step 2 Refinement: Random parameters 

search around good solutions. 

3.5 MODEL EVALUATION 

So far, previous studies have rarely conducted systematic listening experiments 

to evaluate the model outcome (see Appendix Table A Performance). The study 

initiates a new benchmark for vocal learning simulations, that is, making direct 

comparison with natural speech to see whether the model can achieve speech 

acquisition with high intelligibility. Quantitative measurements of intelligibility in 

listening experiments allow theoretical accounts of vocal learning to be linked to 

predictions. 

3.5.1 LISTENING EXPERIMENTS 

Four listening experiments were conducted to evaluate the acoustic-feature-

trained and phoneme-recogniser-trained models in a set of open-vocabulary 

experiments and a set of close-set transcription experiments. American English 

native speakers were recruited and screened on Prolific (prolific.co) and then 

directed to Gorilla (gorilla.sc) for the online experiments. Before the experiment, 
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the participants filled in a brief questionnaire for demographic and language 

background information (see Appendix Figure A). The listeners were all born and 

raised in the US, speaking American English as their first language. To verify their 

accents, participants were asked to read the first two sentences of the story “The 

North Wind and the Sun”, a well-established text recommended by the IPA for 

eliciting English phonetic contrast. Participants were asked to undertake the tasks 

on a computer in a quiet environment without noise or other distractions. A 

headphone screening was conducted to ensure that the participants were 

wearing headphones. The listeners were asked to choose the quietest sounds 

out of three pure tones with one of the tones presented 180° out of phase across 

the stereo channels. The listeners who were wearing headphones were more 

likely to discriminate the sounds because a loudspeaker would have resulted in 

phase cancellation (Woods et al., 2017). The participants who passed the 

screening were given five practice trials to get familiarised with the experiment. 

They were then randomly presented with the words produced by the female 

speaker and the synthetic sounds learned by the adult male, the 1-year-old, and 

the 3-year-old child vocal tract models. 3 unique tokens of the 17 target words 

(Table 1) were included in each condition. For the open-vocabulary transcription 

experiment, the participants were instructed to listen to the audio carefully and 

freely write down the word they had heard. For the close-set transcription task, 

the participants were asked to choose from the 17 target words the one they had 

heard. To make sure that each listening experiment can be finished within 30 

minutes, the stimuli were divided into 4 listening experiments to assess the effect 

of auditory feedback (acoustic features vs. the automatic phoneme recogniser) 

and the effect of listening experiment type (open vs. close transcription). 

Participants were recruited separately for each listening experiment. The audio 

samples for the listening experiment can be found at 

https://gitlab.com/Anqi_Xu/evoc_learn/-/tree/main/Stimuli. 

3.5.2 PARTICIPANTS 
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173 monolingual American English native speakers between 18 to 50 years old 

participated in the experiment. The participants were born and raised in the US, 

without any self-reported speech or hearing disorders. Among them, 47 did not 

pass the headphone screening; 5 were excluded from the experiment because 

of apparently atypical American accents; and 1 was excluded because of noise 

in the submitted recordings that suggested a noisy listening environment. In the 

end, 30 participants were included in each intelligibility experiment (120 listeners 

in total). The procedure has been approved by the Department of Speech, 

Hearing and Phonetic Sciences, University College London and the experiments 

complied with all relevant ethical regulations. Informed consent from all the 

participants was obtained online via Gorilla. 

3.5.3 ANALYSIS 

The responses collected online were annotated with phone labels using the CMU 

pronunciation dictionary (Carnegie Mellon University, 2022) by pronouncing 

package (Parrish, 2022). Phone labels were then manually added for those 

responses without automatic annotation. In the case of phoneme insertion and 

deletion, recognised phonemes were aligned maximally as shown in Table 5. 

Responses recorded before the audio samples finished were excluded in the 

analysis. The recognition rate was calculated in terms of how many segments 

were correctly identified.  

Non-parametric statistical tests were chosen for statistical analysis, in line with 

previous studies that involvedevaluation of synthetic speech (Anumanchipalli et 

al., 2019). Moreover, outliers were found in the response data of the listening 

experiments and the distribution of the data was skewed (Hollander et al., 2014). 

In addition, the medians of the listening experiment are better estimates of the 

identification by native listeners rather than the means. Besides, the sample size 

is too small to determine a normal distribution for the experiment of comparing 

recognition errors of models with and without somatosensory feedback (Section 

3.3.4). Kruskal-Wallis test, Wilcoxon signed rank test and Spearman correlation 
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were conducted to evaluate the reaction time and the phoneme accuracies. 

Multiple comparison correction was applied by Bonferroni correction. 

Table 5 Transcript examples of phoneme insertion and deletion. Phonemes are 

labelled using CMU pronunciation dictionary (Carnegie Mellon University, 2022). 

Target B AA D 
IPA b æ d 

Insertion B L AA D 

 Correct Incorrect Correct 

Deletion  AA DD 

 Incorrect Correct Correct 

 

Chapter 4 SENSORY AND MOTOR SYSTEMS IN 

VOCAL LEARNING 

4.1 SENSORY FEEDBACK 

In this section, I will present the simulation results of the vocal learning model 

trained with different sensory options (Section 3.2 Sensory system). With regard 

to the auditory feedback, universal perception by MFCCs and Log Mel 

spectrograms were simulated, which are both parametric representations of 

speech acoustics. The effectiveness of the two types of acoustic features in 

guiding vocal learning was evaluated by the automatic word recogniser. 

Moreover, language-specific perception was simulated using an automatic 

phoneme recogniser which encodes sound contrast regardless of cross-speaker 

differences. Speech trained by acoustic features and by the recogniser were 

compared, using the automatic word recogniser and human perceptual 
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identification. Finally, the performance of models with and without somatosensory 

feedback were compared to examine its role in facilitating vocal learning. 

4.1.1 ACOUSTIC FEATURES: LOG MEL SPECTROGRAMS VS. MFCCS  

The adult vocal tract model was trained to learn the 13 English CVC words with 

Log Mel spectrograms and MFCCs. The learned synthetic samples were then 

evaluated by the word recogniser. The two types of acoustic features resulted in 

very similar word error rates, as shown in Figure 20 and Figure 21. Only a few 

words were correctly identified in both cases. 

 

Figure 20 Confusion matrices of CVC words learned by adult vocal tract model 

when guided by Log Mel spectrograms, evaluated by a word recogniser. The 

score shows the weighted negative log likelihood loss. 
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Figure 21 Confusion matrices of words learned by adult vocal tract model when 

guided by MFCCs, evaluated by a word recogniser. The score shows the 

weighted negative log likelihood loss. 

Figure 22 shows the quality of the onset consonant trained by MFCCs and Log 

Mel spectrograms, evaluated by the word recogniser. The bilabial stops trained 

by Log Mel spectrograms had fairly high accuracies, while the alveolar stops 

trained by MFCCs had higher accuracies. However, the velar stops trained by 

Log Mel spectrograms were identified as /n/ or /w/. Overall, the speech trained 

by Log Mel spectrograms were slightly better identified than that trained by 

MFCCs. 



 96 

 

Figure 22 Confusion matrices of consonants trained by Log Mel spectrograms 

and MFCCs, evaluated by a word recogniser. The score shows the weighted 

negative log likelihood loss. 

However, the performance of vowel quality showed entirely reversed patterns. As 

shown in Figure 23 and Figure 24, the recognition accuracies were higher for 

vowels trained by MFCCs than the ones trained by Log Mel spectrograms. Both 

acoustic features failed to guide the learning of intelligible vowels in ‘booed’ and 

‘good’. For the rest of the vowel categories, those trained by MFCCs were 

identified more correctly than the ones trained by Log Mel spectrograms. 

Especially, the vowel in ‘bud’ was less successful when trained by Log Mel 

spectrograms. Overall, the two types of acoustic features had comparable 

performance in guiding vocal learning. The consonant quality was better when 

trained by Log Mel spectrograms, while MFCCs were more advantageous in 

training the vowels. The following analysis will be based on MFCCs, which are 

the most frequently used parametric representations in speech synthesis and 

recognition (Barry & van Dommelen, 2005; Davis & Mermelstein, 1980). 
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Figure 23 Confusion matrices of vowels trained by Log Mel spectrograms, 

evaluated by a word recogniser. The score shows the weighted negative log 

likelihood loss. 

 

Figure 24 Confusion matrices of vowels trained by MFCCs, evaluated by a word 

recogniser. The score shows the weighted negative log likelihood loss. 

4.1.2 MFCCS VS. AUTOMATIC PHONEME RECOGNISER 
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With respect to auditory feedback, language-specific perception simulated by the 

automatic phoneme recogniser was more successful than language-universal 

perception simulated by MFCCs. The intelligibility of the speech trained by the 

recogniser and MFCCs by the automatic word recogniser were evaluated by the 

word recogniser. The results of the speech trained by the recogniser are shown 

in Figure 25. If we compare it with Figure 21, it is evident that the word recogniser 

performed better in recognising the CVC words trained by the recogniser than 

those trained by MFCCs, as more target words were correctly identified.  

 

Figure 25 Confusion matrices of words learned by adult vocal tract model when 

guided by an automatic phoneme recogniser, evaluated by a word recogniser. 

The score shows the weighted negative log likelihood loss. 
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To confirm the results, human perception experiments were run to examine the 

intelligibility of the learned speech. As shown in Figure 26, the synthetic words 

trained by the automatic phoneme recogniser were more intelligible than the ones 

trained by MFCCs in both the open-vocabulary transcription experiment and 

close-set transcription experiment (Kruskal-Wallis test: p < .001). Wilcoxon 

Signed Rank test showed that the tendency was the same regardless of vocal 

tract models in both the open-vocabulary (1y: p < .001, 3y: p < .001, Adult: p < 

.001) and close-set experiments (1y: p < .001, 3y: p < .001, Adult: p < .001), as 

indicated by post-hoc comparisons.  

 

Figure 26 By-listener mean phoneme accuracy rates of CVC words learned by 

different vocal tract models in an open-vocabulary transcription experiment and 

a close-set transcription experiment. **** P <= 10-4. 

To test whether the type of auditory feedback influences the identification rate in 

different phoneme positions, the open-vocabulary transcription accuracy rate of 

the learned CVC words was compared. Figure 27 shows by-listener phoneme 

accuracy of vocal tract models of different ages. The onset consonant, the vowel 

and the coda consonant trained by the automatic phoneme recogniser were all 

more intelligible than the ones trained by MFCCs. The benefit is more evident in 

consonants than in vowels. As suggested by Wilcoxon Signed Rank tests, the 
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recogniser-trained words had higher accuracies in the onset (p < .001), the vowel 

(p < .001) and the coda (p < .001) positions.  

 

Figure 27 Distribution of by-listener phoneme accuracy rates for synthetic CVC 

words learned by vocal tract models of different ages in three syllable positions, 

evaluated by an open-vocabulary transcription experiment. **** P <= 10-4. 

In order to test the generalisability of the learned articulatory movements, CVCV 

words were regenerated based on the learned vocal tract parameters of the CVC 

words. The listening experiments show that the vocal tract parameters trained by 

the recogniser had better generalisability than the synthetic speech trained by the 

MFCCs. Figure 28 shows the identification rate of all the phoneme positions in 

the CVCV words trained by the two types of auditory feedback. The recogniser-

trained CVCV words had higher accuracies than the MFCC-trained ones in all the 

phoneme positions (Wilcoxon Signed Rank test: p < .001). 
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Figure 28 Distribution of by-listener phoneme accuracy rates for synthetic CVCV 

words learned by vocal tract models of different ages in four syllable positions, 

evaluated by an open-vocabulary transcription experiment. **** P <= 10-4. 

In addition, the reaction time of the listeners when identifying the CVC and CVCV 

words (n = 153) learned by vocal tract models of different ages were analysed. 

Histograms and density plots of the reaction time in the open-vocabulary and 

close-set transcription experiments are shown in Figure 29. There were many 

more listeners showing hesitation while listening to the synthetic speech trained 

by MFCCs in both types of experiment. Wilcoxon Signed Rank test further 

confirmed that reaction time was significantly longer for MFCC-trained speech 

regardless of the task type (open-vocabulary: p < .001, close-set: p < .001). 
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Figure 29 Reaction time of American English listeners in an open-vocabulary 

transcription (A) and in a close-set transcription experiment (B). The vertical lines 

represent the median reaction time for two types of auditory feedback.  

To test which type of auditory feedback better reflects human speech perception, 

Spearman's rank correlation was conducted to assess the relationship between 

open-vocabulary transcription accuracies and type of auditory feedback. The 

scatter plots with correlation lines are shown in Figure 30. The correlation 

between identification accuracy and MFCC error was non-significant. In contrast, 

the recognition error returned by the recogniser significantly correlated with the 

phoneme identification accuracies in the open-vocabulary transcription 

experiment. The synthetic words with lower recognition error were more likely to 

be judged as having the correct phonemes. The results suggest that the 

recogniser emulates speech perception better than MFCCs.  
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Figure 30 Relationship between phoneme identification rates and auditory 

feedback 

In order to compare the automatic phoneme recogniser and MFCCs with human 

perception in detail, the phoneme accuracies judged by native listeners were 

normalised to values between 0 and 1. The phoneme errors judged by the 

recogniser and MFCC errors were also normalised to have the same range but 

in a reversed order. The normalised perceptual scores of target words evaluated 

by native listeners, the recogniser, MFCCs are shown in Figure 31. The 

distribution of normalised score of the recogniser and the listeners was almost 

symmetrical, whereas the distribution was asymmetrical for MFCCs and the 

listeners. The listener and the recogniser were relatively consistent with each 

other in identifying the learned synthetic speech. The disagreement was only 

found in the case of ‘bid’ and ‘bud’, whereby the native listeners might have been 

biased by the word frequency. It has been suggested that high-frequent words 

are usually preferred to phonetically similar low-frequent words in listening 

experiments (Savin, 1963). ‘bud’ had 57972 occurrences, while ‘bid’ had 

70427114 occurrences in the Google Web Trillion Word Corpus (Tatman, 2017)8. 

 

8 ‘bud’ is one of the least frequent words, while ‘bid’ is one of the most frequent 
words among all the target CVC words starting with a bilabial stop. 
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As a consequence, ‘bud’ had fairly high recognition scores but the listeners failed 

to identify them in the open-vocabulary transcription experiment, probably due to 

the low word frequency. In contrast, the synthetic samples of ‘bid’ were not well 

identified by the recogniser, but the listeners were able to identify them. However, 

unlike the automatic phoneme recogniser, the synthetic speech with low MFCC 

errors was not correctly identified by the listeners.  

 

Figure 31 Comparison of human identification with an automatic phoneme 

recogniser and MFCCs by target words. Perceptual scores are normalised based 

on the phoneme accuracies judged by human participants, the recogniser and 

MFCCs respectively. 

4.1.3 SOMATOSENSORY FEEDBACK 
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Somatosensory feedback was simulated by a constraint on the degree of oral 

opening for each generated vocal tract configuration during vocal exploration. 

The constraint ensured an open vocal tract for vowels and a narrow vocal tract 

for consonants (see 3.2.4 Somatosensory feedback). I compared the recognition 

error of the best 10 instances9 per target CVC words (n = 13) trained with and 

without somatosensory feedback. As shown in Figure 32, with the same number 

of iterations, the model with somatosensory feedback learned more intelligible 

words than the baseline condition (Wilcoxon Signed Rank, p = .001). This 

suggests that somatosensory feedback has effectively restricted the search 

space for the articulatory targets to facilitate learning.     

 

Figure 32 Effect of somatosensory feedback on the phoneme errors of synthetic 

CVC words learned by an adult vocal tract model, evaluated by an automatic 

phoneme recogniser. ** P <= 10-2. 

4.1.4 DISCUSSION 

 

9 10 instances were chosen to ensure sample size for statistical analysis and to 
ensure intelligibility of the learned samples judged by the author. 
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Although various learning strategies have been explored to simulate vocal 

learning, not enough attention has been paid to proper modelling of the sensory 

motor system (see Appendix Table A Sensory system). In contrast with previous 

attempts, I systematically examined different types of sensory feedback by 

training the model to learn English words and compared the performance of 

learned speech in listening experiments. I simulated language-specific perception 

by an automatic phoneme recogniser and universal perception by acoustic 

features. I showed that language-specific perception is better than universal 

perception in guiding vocal learning. The recogniser simulates auditory 

experience that forms a distributional space shaped by all the speech sounds the 

learner has heard, so that the sound categories in it encompass varied forms by 

many speakers. This distributional space was powerful enough to even guide the 

child models although the recogniser was trained without child speech. 

Past models have adopted various acoustic features to simulate the sensory 

system. A vast majority of the studies have used formants (Acevedo-Valle et al., 

2020; Bailly, 1997; Forestier & Oudeyer, 2017; Heintz et al., 2009; Howard & 

Huckvale, 2005; Ishihara et al., 2009; Miura et al., 2007; Rasilo & Räsänen, 2017; 

Westermann & Miranda, 2004) or Bark-scaled formants (Barnaud et al., 2019; de 

Boer, 2000; Kröger et al., 2009; Moulin-Frier et al., 2014, 2015; Moulin-Frier & 

Oudeyer, 2012; Oudeyer, 2005) and Mel-scaled formants (Warlaumont, 2012; 

Warlaumont et al., 2013; Warlaumont & Finnegan, 2016). Other researchers 

have adopted Bark-scaled spectrograms (Kröger et al., 2014) or gammatone 

spectrograms (Howard & Messum, 2014; Messum & Howard, 2015), in order to 

keep more acoustic details of the speech sounds. More recently, quite a few 

studies have attempted to use MFCCs as the auditory feedback (Kanda et al., 

2009; Najnin & Banerjee, 2017; Philippsen et al., 2014; Prom-On et al., 2014a, 

2014b; Rasilo et al., 2013), which is the most popular parametric acoustic 

representation in speech synthesis and recognition (Barry & van Dommelen, 

2005). MFCCs and Log Mel spectrograms were compared by training the model 

with these two acoustic features while keeping the rest of the settings the same. 

The learned English words had comparable identification rates while being 



 107 

judged by the word recogniser. Similar to the previous attempts, the overall 

intelligibility of the synthetic words learned with acoustic guidance was relatively 

low.  

One likely reason is that the acoustic features do not necessarily instantiate 

speech perception. If speech perception is, as has been observed, context-

dependent (Liberman et al., 1954) and speaker-normalised (K. Johnson & Sjerps, 

2021), a realistic model of speech perception should be equipped with knowledge 

of dynamic spectral changes that carry linguistic function as well as cross-

speaker variations. There has been some effort to train recurrent neural networks 

to capture the temporal characteristics of speech acoustics, such as Echo State 

Network (ESN) (Murakami et al., 2015). The usage of recurrent neural networks, 

in effect, encompasses contextual information of time-series speech signals. 

What the system lacks is the representations of phoneme categories. 

Interestingly, Lyon et al. (2012) has built an on-line conversation robot with a 

phoneme recogniser (i.e., adapted version of Microsoft SAPI 4.5). In the same 

spirit, I simulated speech acquisition guided by an automatic phoneme 

recogniser. The combination of spectrotemporal feature processing, temporal 

feature processing and classification together in the recogniser used in this study 

may have led to the successful learning of English words. The recogniser is 

sensitive to the statistical distribution of acoustic features across context and 

speaker variances.  It may therefore be analogous to the categorical 

representation (Chang et al., 2010) and the speaker-normalised representation 

(Sjerps et al., 2019) in the human auditory cortex.  

A key innovation of the current study is that I developed a new way of testing 

different kinds of auditory feedback, on the basis of the intelligibility of the learned 

speech in listening experiments. For vocal tract models of different ages (Fig. 17), 

the synthetic speech was much more intelligible in all syllable positions when 

guided by the automatic phoneme recogniser than by MFCCs (Fig. 18 & Fig. 19), 

and listeners needed less time to identify words in both the open-vocabulary and 

close-set transcription experiments (Fig. 20). The benefit of the recogniser was 

most clearly seen in the correlation between the identification accuracies of the 
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human listeners and the evaluation of the recogniser. Statistical analysis showed 

no correlation between human identification accuracies and acoustic errors (Fig. 

21A), whereas there was a significant negative relation between human 

identification accuracies and recognition errors (Fig. 21B). Furthermore, I found 

that native listeners and the recogniser had comparable judgement of synthetic 

words, while MFCCs did not realistically reflect human perception (Fig. 22).  

Interpreted at the cognitive level, acoustic features are similar to the language-

universal perception at the early developmental stage, whilst the speech 

recogniser is comparable to language-specific perception at the later stage (Kuhl, 

2000; Werker & Lalonde, 1988). Newborns are capable of discriminating speech 

sounds in world’s language universally (Eimas et al., 1971; Streeter, 1976). They 

then develop perceptual biases toward sound contrasts in native languages 

between 6-12 months after birth (Kuhl et al., 2006; Werker & Tees, 1984). The 

maturation of the perceptual system is the prerequisite for speech production 

acquisition (Kuhl, 2000). Acoustic features do not provide information about 

sound categories that distinguish words in a language. Rather, it merely reflects 

basic auditory processing without extracting information about linguistic contrasts 

(Chládková & Paillereau, 2020). A model of language-specific perception would, 

instead, be able to encode phonetic contrast, which is exactly what the automatic 

phoneme recogniser simulates. The results demonstrate that the ability of 

perceiving phonemes of a given language plays a pivotal role in guiding 

successful vocal learning. I have also shown that somatosensory feedback 

provides additional benefit for speech acquisition (Fig. 23).  

4.2 COARTICULATORY CONTROL 

Not only does the vocal learning model contain a sophisticated sensory system, 

but also the speech motor system is modelled explicitly. The synchronised 

dimension-specific sequential target approximation model was implemented to 

control the coarticulatory dynamics (Section 3.3.2). Here, I will report the learned 
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vocal tract parameters that yielded the highest intelligibility, which was trained by 

the automatic phoneme recogniser with somatosensory feedback. 

4.2.1 LEARNED ARTICULATORY KINEMATICS 

The high intelligibility of the synthetic syllables is partially due to the articulatory 

model’s ability to learn consonant configurations according to vowel contexts 

based on the coarticulation model. Figure 33 illustrates the learned vocal tract 

shapes of the bilabial stops at the moment of maximal constriction. The bilabial 

stop /b/, for example, is articulated with closed lips in all instances but the tongue 

shape of the consonant target is ready for the vowel. During the execution of the 

consonant target, the lips are closed, but at the same time the tongue is high and 

front in ‘bead’ and low and back in ‘bod’. The learned lip distance parameters are 

all below zero10 (Figure 34), which represent virtual articulatory targets of closed 

lips. This indicates that the model learned similar consonant targets despite 

different vowel contexts.  

 

10The lip distance parameter can be below zero in VocalTractLab (Table 2), for 
the purpose of ensuring closed lips as a virtual target. When the parameter 
trajectories are passed to the synthesiser, the minimal tube area will be adjusted 
to 0.001cm2 automatically. 
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Figure 33 Midsagittal sections of the vocal tract shapes of bilabial stop-vowel 

sequences learned by an adult vocal tract model. The solid and dashed lines 

represent the tongue side positions in the front and back respectively. Arrows 

point at the constrictions formed by the consonant targets. 
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Figure 34 Boxplots of the learned lip distance parameters of all bilabial stop-vowel 

sequences learned by an adult vocal tract model. 

As shown in Figure 35, in the case of /d/, an alveolar closure is formed for all of 

the learned consonant targets but the back of the tongue varies with the following 

vowel. If we compare ‘deed’ with ‘did’, it is not difficult to tell that the tongue body 

is higher in ‘deed’ than in ‘did’. The anterior part of the tongue is in a similar shape 

at the moment of the oral constriction, while the posterior part of the tongue is in 

a shape similar to the adjacent vowel. /ɪ/ and /i/ are very similar vowels, but /ɪ/ is 

slightly more open than /i/. The learned lip gestures and the jaw positions also 

suggest the trend of moving towards a more open vowel. Spearman’s correlation 

indicates that there is a significant negative correlation between the tongue tip 

parameters in the x and y-axis (Figure 36). This indicates that when there is a 

consonant constriction formed at the alveolar ridge, the fronter the tongue tip 

position, the lower the closure is formed. The tendency corresponds well with the 

shape of the alveolar ridge which is also low at the front. 
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Figure 35 Midsagittal sections of the vocal tract shapes of alveolar stop-vowel 

sequences learned by an adult vocal tract model. The solid and dashed lines 

represent the tongue side positions in the front and back respectively. Arrows 

point at the constrictions formed by the consonant targets. 

 

Figure 36 Correlation between the learned tongue tip parameters in the horizontal 

and vertical positions of an adult vocal tract model. 

Figure 37 shows the learned vocal tract shapes of the alveolar stops at the 

moment of maximal constriction. For the velar stop /g/, the tongue body is more 
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advanced in ‘good’ than in ‘god’ because /ʊ/ is fronted in American English 

(Thomas, 2001). For horizontal tongue body centre position (TCX), the more 

positive the number, the more front the tongue position. The learned tongue body 

targets of velar stops are similar in the vertical dimension (TCY) but different in 

the horizontal dimension (TCX). As the target vowel changes from /ɒ/ to /ʊ/, the 

learned TCX becomes more positive, indicating more front tongue body positions. 

As the tongue body moves upwards to contact the soft palate, it also moves in 

the horizontal dimension toward the vowel. There was a significant positive 

correlation between the tongue body position in the x and y-axis, which 

corresponds with the shape of the palate (Figure 38). When there is a consonant 

constriction formed near the soft palate, the more anterior the tongue body 

position, the higher the closure is formed. 

 

Figure 37 Midsagittal sections of the vocal tract shapes of velar stop-vowel 

sequences learned by an adult male vocal tract model. The solid and dashed 

lines represent the tongue side positions in the front and back respectively. 

Arrows point at the constrictions formed by the consonant targets. 
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Figure 38 Correlation between the learned tongue body parameters in the 

horizontal and vertical positions of an adult vocal tract model. 

4.2.2 DISCUSSION 

Past studies have not modelled the motor control system in much detail (see 

Appendix Table A Motor control and Synthesiser). The adopted vocal tract 

models are often simplistic, including only a few articulators (Barnaud et al., 2019; 

de Boer, 2000; Miura et al., 2012; Oudeyer, 2005; Warlaumont & Finnegan, 2016; 

Westermann & Miranda, 2004). Even when a sophisticated-vocal tract model 

(i.e., VocalTractLab) was used, the dynamic articulatory movements have been 

overlooked (Murakami et al., 2015; Philippsen et al., 2014). Some studies have 

applied Dynamic movement primitives (DMPs) framework (Forestier & Oudeyer, 

2017; Philippsen, 2021a) and the task dynamic model (Howard & Messum, 2007, 

2014, 2011; Messum & Howard, 2015) to model the time-varying articulatory 

kinematics. However, none of those has been able to generate intelligible CV 

syllables. A central advance in the current study was that I explicitly modelled CV 

coarticulation. Not only did the model learn context-sensitive consonant targets 

that yielded natural sounding syllables (Fig. 17) but also the learned articulatory 
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targets can be generalised to novel multisyllabic words (i.e., CVCV syllables in 

Fig. 19). 

It has been well-established that different segments impact on the articulatory 

movement of the surrounding segments to a varying degree, known as 

‘coarticulation resistance’. The contextual variations have been interpreted as 

originating from variable temporal overlap of gestures between the consonant 

and vowel in the task dynamic model and Articulatory Phonology, which involves 

gestural blending (Browman & Goldstein, 1989, 1992; Fowler & Saltzman, 1993; 

Fowler, 1980; Saltzman & Munhall, 1989). In the present study, I tested the 

alternative hypothesis that even though the consonant and the vowel are 

overlapped in time, the execution of the targets can be serially ordered for specific 

articulatory dimensions (Liu et al., 2022; Xu, 2020). Take the learned /bV/ 

sequences for example, the lip distance is controlled by the consonant, while the 

tongue moves toward the co-produced vowel at the same time. In the case of 

/dV/ and /gV/ sequences, the crucial articulator dimensions of the tongue move 

upwards to form constrictions in the vertical dimension, while the rest of the 

tongue moves backward or forward for the co-produced vowel. The simulated CV 

co-onset brings us back to the observation of vowel and consonant movement 

beginning at the same time upon which the term ‘coarticulation’ was originally 

proposed (Menzerath & de Lacerda, 1933). 

The present study shows that the problem of massive contextual variability of the 

phonetic segment that has been a major irritant in concatenative speech 

synthesis can be resolved in a biologically realistic articulatory synthesis 

paradigm without excessive amounts of training data. Unlike previous articulatory 

synthesis that relies on articulatory data (Birkholz, 2013; Story, 2005, 2009), the 

current method tackles the acoustic-to-articulation problem by implementing 

analysis-by-articulatory-synthesis with internal synchronisation rules. Overall, the 

findings provide support for the hypothesis that CV coarticulation is realised by 

co-onset of multiple target approximation movements, each of which is sequential 

at the level of individual articulator dimensions. The model succeeded in 

simulating the learning of contextual articulatory variances with fairly high 
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intelligibility. The findings therefore offer new insight on the basic mechanisms of 

coarticulation and vocal learning, and may eventually have implications for high-

quality articulatory synthesis. An issue that has not been addressed in this study 

is how the critical articulator dimensions for consonant targets are discovered by 

learners rather than being pre-set as was done in the present study. Another 

limitation of the current study is that coarticulation was only modelled for CV 

syllables. The co-onset of consonant and vowel was not only observed in CV 

syllables but also in more complex CCV and CCCV syllables (Kozhevnikov & 

Chistovich, 1965; Liu & Xu, 2021). Further research should be undertaken to test 

whether the synchronised dimension-specific target approximation also applies 

to consonant clusters.  

Chapter 5 HUMAN VOCAL LEARNING  

Part of this section has been previously submitted to a journal: Xu, A., Niekerk, 

D. R. v., Gerazov, Krug, P., Birkholz, P., Prom-on, S., Halliday, L., & Xu. Y. A 

computational simulation of human vocal learning. (Under review)  

In this chapter, I will compare the vocal learning performance of vocal tract 

models of different ages to test how the anatomical structure of vocal apparatus 

affects production learning. I will then compare the model performance with the 

developmental trajectories of phonetic acquisition to see how well the model can 

reflect the real-life learning scenario. 

5.1 ADULT VOCAL LEARNING 

In this section, I will first present the learning results of the adult vocal tract, so 

that they can serve as a reference for the child vocal tract results to be presented 

later. 
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5.1.1 CVC WORDS 

I trained the adult vocal models to learn English consonant-vowel-consonant 

(CVC) words using the simulation model introduced in Chapter 3. The learned 

synthetic male speech shows a momentary burst of the onset consonant followed 

by clear vowel formants and high energy aspiration of the coda consonant, similar 

to the natural speech of a female speaker (Figure 39).  

 

Figure 39 Waveforms and wide-band Mel-spectrograms of ‘bad’ produced by a 

native speaker and learned by an adult vocal tract model. 

Given that the coda consonant remains the same in the word list, what was 

effectively evaluated in the close-set transcription experiment was the 

intelligibility of the initial CV portion of the words. For synthetic speech, the mean 

phoneme accuracy rate of CV syllables was 74% in the open-vocabulary 

experiment and 76% in the close-set transcription experiment. The mean 

phoneme accuracy rate of CVC words including the coda was 76% in the open-

vocabulary experiment. With regard to natural female speech, the mean 

phoneme accuracy rate of CV syllables was 93% in the open-vocabulary 

experiment and 96% in the close-set experiment. The mean phoneme accuracy 

rate including the coda was 95% in the open-vocabulary transcription experiment. 

Figure 40 shows the overall phoneme accuracy rate of the natural female speech 

and the synthetic speech learned by the adult vocal tract model in the open-

vocabulary and the close-set experiment. Although natural speech had overall 

higher phoneme accuracies, there was still a small proportion of native listeners 
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who were proficient at identifying synthetic speech in both types of listening 

experiments. I can also see that the phoneme accuracies were widely spread out 

for the synthetic speech, indicating a high variability in the listeners’ identification. 

Meanwhile, the data points were slightly more concentrated in the close-set 

experiment than in the open-vocabulary experiment. The natural female speech 

was more intelligible than the synthetic male speech in both types of experiments 

(Wilcoxon signed-rank: p < .001). There was a slight increase in the identification 

rate when the participants were provided with a limited vocabulary. However, 

Wilcoxon Signed Rank test showed that the overall phoneme accuracies did not 

differ across listening task types for either the natural speech (p = 0.111) or the 

synthetic speech (p = .370).  

 

Figure 40 Histograms and Kernel density plots of by-listener mean phoneme 

identification accuracy rates of CV syllables in target CVC words produced by a 

female native speaker and by an adult male vocal tract model in listening 

experiments.  

Figure 41 shows the phoneme accuracies of the natural and synthetic speech in 

each phoneme position. In the open-vocabulary transcription experiment, words 

learned by the adult vocal tract model were relatively intelligible, with a median 

phoneme accuracy rate of 87%, 60%, 82% in the onset, the vowel and the coda 
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position, respectively, although this was short of the natural female words which 

were almost flawlessly recognised (Onset: 95%, Vowel: 97%, Coda: 100%). 

Given that no context was provided in the experiment, the identification rate 

suggests that the model can learn to produce relatively intelligible speech. In the 

close-set transcription task, the listeners had a median of 100% accuracy rate 

and 96% accuracy rate in identifying the onset and the vowel respectively for the 

natural female speech, while the accuracy rate was 88% in the onset and 64% in 

the vowel for the synthetic male speech. Wilcoxon signed-rank test showed that 

the natural speech had higher phoneme accuracies in all the syllable positions in 

the open-vocabulary experiment (Onset: p < .001, Vowel: p < .001, Coda: p < 

.001) and the close-set experiment (Onset: p < .001, Vowel: p < .001). In addition, 

the type of listening experiment did not affect the identification rates of the natural 

female speech in either the onset (p = 0.056) or the vowel position (p = 1.000). 

Similar trend was found for the synthetic male speech in the onset (p = 1.000) 

and vowel position (p = .554). 

 

Figure 41 By-listener phoneme accuracy rates of natural female speech and 

synthetic male speech in different syllable positions, evaluated by an open open-

vocabulary transcription experiment and a close-set transcription experiment. **** 

P <= 10-4. 

*** **** **** **** ****
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Figure 42 shows the learning performance of each target word in the onset, vowel 

and coda position in the open-vocabulary transcription experiment. Several 

synthetic onset consonants were perfectly identified, with accuracies greater than 

or equal to the natural words, such as the bilabial stops in ‘bed’, ‘bid’ and ‘bod’ 

and the alveolar stops in ‘deed’ and ‘did’. The accuracies of the onset consonant 

were relatively low in ‘good’, ‘dad’ and ‘booed’. The vowel learning was less 

successful, as shown in Figure 42. Compared with the high identification 

accuracy in ‘bad’ (i.e., 99%), only less than half of the mid vowels in ‘bed’ and 

‘bid’ were correctly identified. In addition to mid vowels, there is room for 

improvement for the vowel in ‘booed’. It is worth noting that even for natural 

speech some vowels were sometimes misidentified. Finally, the coda accuracies 

were relatively high and stable across vowel contexts. There was only one 

exception in the word ‘bud’, which was frequently heard as ‘but’. 

 

Figure 42 Mean identification rates of CVC words produced by a female native 

speaker and learned by an adult male vocal tract model in the onset position, 

vowel position and coda position in an open-vocabulary transcription experiment. 

Figure 43 shows the mean identification of natural and synthetic utterances in the 

close-set transcription experiment. The synthetic male speech had identification 
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rates similar to the natural speech in the onset position for most of the CVC words. 

The identification rates were lower for the vowels in the synthetic CVC utterances 

compared to natural female speech. The CV combination in synthetic /booed/ 

had the lowest identification rates in both the onset and vowel positions. 

 

Figure 43 Mean identification rates of CVC words produced by a female native 

speaker and learned by an adult male vocal tract model in the onset position and 

vowel position in a close-set transcription experiment. 

Figure 44 shows detailed confusion matrices of the natural and the synthetic 

speech in the close-set transcription experiment. Listeners identified natural 

female speech highly accurately when choosing from a word list, except in one 

instance where ‘bud’ was identified as ‘bod’. With regard to the synthetic male 

speech, there was more confusion on the vowels. For example, listeners 

identified ‘bead’ as ‘bid’, ‘dead’ as ‘dad’, and ‘deed’ as ‘did’. The low percentage 

of correctly identified ‘booed’ indicates that the vowel was confusing for the 

participants. ‘booed’ was frequently heard as ‘bud’ and ‘bid’. The synthetic onset 

consonants had fairly high accuracies but the place of articulation influenced the 
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learning performance. The listeners tended to have more difficulties in identifying 

the alveolar and velar stops in the synthetic speech, whereas bilabial stops were 

not easily mistaken. For example, the velar stop in ‘god’ was often identified as 

alveolar stops. 
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Figure 44 Comparison between natural female speech and synthetic male 

speech. Confusion matrix (%) of CVC words produced by a female native speaker 
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(a) and learned by an adult male vocal tract model (b), measured by a close-set 

transcription experiment.  

5.1.2 CVCV WORDS 

To test whether the articulatory targets learned from single syllables were 

generalisable to novel words that the model was never trained on, I resynthesised 

CVCV words based on the learned articulatory targets. The regenerated 

disyllabic words synthesised with targets from monosyllabic words achieved 

similar accuracies as natural words in the close-set transcription experiment, as 

shown in Figure 45. Especially in the close-set experiment, the distribution of the 

identification accuracies for the natural female speech and synthetic male speech 

was almost identical. In the open-vocabulary experiment, the mean identification 

accuracy rate was 88% and 95% for the synthetic male speech and natural 

female speech, respectively. The natural speech had significantly higher 

identification accuracies than the synthetic speech (Wilcoxon signed-rank, p < 

.001). With respect to the close-set experiment, the mean identification accuracy 

rate was 96% for the synthetic words and 97% for the natural words. The 

synthetic speech and natural speech did not differ significantly (Wilcoxon signed-

rank, p = .442). The type of experiment did not significantly influence the 

identification accuracy of natural speech (Wilcoxon signed-rank, p = .066). 

However, the mean identification accuracies were significantly higher in the 

close-set experiment for the synthetic male speech (Wilcoxon signed-rank, p < 

.001). Overall, the results indicated that the regenerated CVCV words using 

learned vocal tract parameters were relatively intelligible. 
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Figure 45 Distribution of by-listener mean phoneme identification accuracy rates 

of CVCV words produced by a female native speaker and learned by an adult 

male vocal tract model in listening experiments. Kernel density estimate and 

histogram show the distribution of the performance of the listeners. 

I analysed the by-position phoneme accuracies of the natural and synthetic CVCV 

words in the open-vocabulary transcription experiment. The means and standard 

deviations of the phoneme accuracies are shown in Table 6 and the boxplots of 

the identification rate are shown in Figure 46. As we can see from the plot, the 

natural female speech had much higher identification rate mainly in the onset 

positions. The synthetic speech had a similar accuracy rate to the natural speech 

in the two vowel positions. The standard deviations of the identification rate were 

higher in the synthetic speech than the natural speech in all the phoneme 

positions (Table 6), indicating that listeners varied to a greater extent while 

identifying the synthetic speech. Wilcoxon signed-rank tests showed that the 

natural speech had higher accuracy rate than the synthetic speech in the first 

onset (p = .011) and the second onset (p < .001) position, but not in the first vowel 

(p = .104) or the second vowel (p = 1.000) position. This indicated that the adult 

vocal tract model learned close to natural vowels in CVCV words. 
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Table 6 Mean and standard deviation (in parentheses) of natural and synthetic 

CVCV words in each phoneme position, evaluated by an open-vocabulary 

transcription experiment. 

 First onset First vowel Second onset Second vowel 
Natural 
female 

99.72 (1.52) 80.56 (12.05) 98.61 (5.40) 99.72 (1.52) 

Synthetic 
male 

94.72 (10.83) 71.67(17.59) 86.94(14.79) 99.44(2.11) 

 

 

Figure 46 By-listener phoneme accuracy rates of CVCV words produced by a 

native female speaker and learned by an adult male vocal tract model in different 

syllable positions, evaluated by an open-vocabulary transcription experiment. ns 

P > 0.05, * P < 0.05, *** P <= 10-3. 

The identification rates for each phoneme in the target words are shown in Figure 

47. The accuracy rate of the first onset consonants in the synthetic speech was 

all over 90%. The accuracy of the first vowel of the synthetic speech was similar 

to the natural speech in most of the words except for the one in /daddy/. The 

second onset consonant in the learned /daddy/ was lower than the natural speech 

but the other three target words had identification rate close to the natural speech. 
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The final vowel in the synthetic CVCV words had 100% accuracy rate for /Debbie/ 

and /daddy/. Synthetic /buddy/ and /body/ also had nearly perfect identification 

rate in the final vowel position (99% and 98%, respectively). Wilcoxon signed-

rank tests showed that the natural speech had higher identification rate in all the 

phoneme positions than the synthetic speech except the final vowel (First onset: 

p = .003, First vowel: p = .026, Second onset: p < .001, Second vowel:  p = 0.570).  

 

Figure 47 Mean identification rates of CVCV words produced by a female native 

speaker by an adult male vocal tract model in all the phoneme positions in an 

open-vocabulary transcription experiment.  

Figure 48 shows the confusion matrices of the natural and the synthetic speech 

in the close-set transcription experiment. There were some confusions between 
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‘body’ and ‘buddy’ learned by the adult vocal tract model, but ‘Debbie’ and ‘daddy’ 

were almost perfectly identified. Again, vowels were the main source of 

confusion. ‘Debbie’ and ‘daddy’ had distinct consonant combinations and thus 

listeners could rely less on the vowel perception. Interestingly, ‘buddy’ learned by 

the adult male model even had a higher identification rate than the natural 

speech. Only 13% of ‘buddy’ learned by the vocal tract model was identified as 

‘body’.  In contrast, 40% of ‘buddy’ produced by the female native speaker was 

mistaken for ‘body’.  

 

Figure 48 Comparison between natural female speech and synthetic male 

speech. Confusion matrix (%) of CVCV words produced by a female American 

English native speaker (a) and learned by an adult male vocal tract model (b), 

measured in a close-set transcription experiment.  

Overall, the results showed that the learned vocal tract parameters could 

generalise to multisyllabic words that the model was never trained on. 

5.2 CHILD VOCAL LEARNING 

5.2.1 CVC WORDS 

Fairly intelligible words were also learned by the child vocal tract models when 

trained by the recogniser. Figure 49 shows the mean phoneme accuracy rate of 

a b 
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the CV syllables in the CVC words learned by the two child vocal tract models. 

As we can see from the plot, the distribution of the two child vocal tract models 

overlaps greatly in the open-vocabulary experiment. Still, the 3-year-old vocal 

tract model had an overall higher mean accuracy rate than the 1-year-old model. 

The 3-year-old model had a mean phoneme accuracy rate of 49% for the target 

CV syllables in the open-vocabulary experiment, while the 1-year-old model had 

a mean accuracy rate of 44%. The mean phoneme accuracies in the close-set 

transcription experiment were 65% and 55% for the 3-year-old model and 1-year-

old model, respectively. Wilcoxon signed-rank tests showed that the 3-year-old 

vocal tract model had higher phoneme accuracy rate than the 1-year-old model 

in the close-set experiment (p < .001), but not in the open-vocabulary experiment 

(p = 0.120). The type of experiment did not influence the phoneme accuracies for 

either of the child vocal tract models (Wilcoxon signed-rank: p = 1.000). 

 

Figure 49 Distribution of by-listener mean phoneme identification accuracy rates 

of CVC words learned by a 1-year-old and a 3-year-old vocal tract model, tested 

in listening experiments. Kernel density estimate and histogram show the 

distribution of the performance of the listeners. 

Furthermore, I analysed the by-phoneme position accuracy rate of the CVC 

words learned by the two child vocal tract models. In the open-vocabulary 
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transcription task, the 1-year-old model had a median of 56% phoneme accuracy 

rate in the onset position, compared with 63% for the 3-year-old model. Listeners 

correctly transcribed 32% of the vowels learned by the 1-year-old model and 38% 

with the 3-year-old model. For the coda position, the median identification was 

68% for the 1-year-old model and 69% for the 3-year-old model. Both models had 

higher intelligibility in the consonant positions than the vowel position.  

Figure 50 compares the identification accuracy rate of the phonemes in CVC 

words learned by the two child models. Each connected line represents the 

average phoneme accuracy rate of one listener. Solid lines indicate that the 3-

year-old model has higher phoneme accuracies than the 1-year-old model and 

vice versa for the dashed lines. As shown in Figure 50, some listeners had higher 

identification rates when judging speech learned by the 1-year-old model than by 

the 3-year-old model in the open-vocabulary transcription task (dashed lines). In 

contrast, we can rarely see such cases in the close-set transcription task, that is, 

there were only a few cases where the words learned by the 1-year-old model 

were more intelligible than the 3-year-old model. Wilcoxon signed-rank tests 

showed that the 3-year-old model learned more intelligible speech in the onset (p 

= .019) and the coda position (p = .019), but not in the vowel position (p = .063) 

in the open-vocabulary experiment. In the close-set experiment, similarly, the 3-

year-old model had higher accuracies than the 1-year-old model in both the onset 

and the vowel position (Wilcoxon signed-rank: p < .001). The increase in the 

perceptual accuracies suggests that the growing child vocal tract have enhanced 

capability to learn articulatory targets that yielded intelligible speech. 
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Figure 50 Boxplots of by-listener phoneme accuracy rates in different syllable 

positions of CVC words learned by a 1-year-old and a 3-year-old vocal tract 

model, measured in an open-vocabulary transcription experiment (a) and a close-

set transcription experiment (b). ns P > 0.05, * P < 0.05, **** P <= 10-4. 

When the word list was given, listeners could identify the words learned by both 

models more easily. There were less variances in the phoneme accuracy rate of 

the close-set transcription task than the open-vocabulary transcription task. The 

median phoneme accuracies increased in the onset consonant position 

(Wilcoxon signed-rank: 1y: p < .001, 3y: p < .001), which was 85% and 72% for 

the 1-year-old model and 3-year-old model respectively. There was improvement 

in the vowel accuracies as well (Wilcoxon signed-rank: 1y: p = 0.017, 3y: p = 

0.003). The median vowel accuracy rate was 44% and 38% for the 3-year-old 

model and 1-year-old model respectively. 

Figure 51 shows the by-position phoneme accuracy rate of each target CVC word 

learned by the two child vocal tract models. The two child vocal tract models had 

similar accuracies for bilabial stops and alveolar stops. However, the 1-year-old 

vocal tract model learned poorer velar stops in ‘god’ and ‘good’, when compared 

with the 3-year-old model. With respect to the learning of vowels, the two models 

had comparable performance for most of the vowels. The 3-year-old model yet 

again showed better results in the case of /ʊ/ in ‘good’ and /ɒ/ in ‘god’ than the 1-

year-old model. Both child models failed to learn intelligible /ɒ/ in ‘bod’. 
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Figure 51 By-listener mean phoneme accuracy rates of utterances learned by a 

1-year-old and a 3-year-old vocal tract models in the onset position, the vowel 

position, the coda position of the CVC words, measured by an open-vocabulary 

transcription task. 

The confusion matrices of the CVC words of the two child vocal tract models in 

the close-set transcription experiment are shown in Figure 52. The child vocal 

tract model learned relatively intelligible vowels in ‘bad’ (1y: 71%; 3y: 68%), ‘bed’ 

(1y: 60%; 3y: 59%), and ‘bid’ (1y: 64%; 3y: 64%). The bilabial stops were rarely 

mistaken as other types of consonants except for the one in ‘bod’, which was 

sometimes mistaken as an alveolar stop. The place of articulation of alveolar 

stops was almost always correctly identified for both child vocal tract models. The 

learning of velar stops was relatively successful for the 3-year-old vocal tract 

model but not for the 1-year-old model. The velar stops learned by the 1-year-old 

model were often identified as alveolar stops and bilabial stops. Only a very small 

proportion of velar stops was correctly identified (4% in ‘good’ and 22% in ‘god’) 

for the 1-year-old model. In contrast, the velar stops learned by the 3-year-old 

model had a fairly high accuracy rate, which was 89% in ‘god’ and 93% in ‘good’.  

Both models had difficulty in learning vowels with similar openness and tongue 

height. For instance, ‘bead’ was often mistaken as ‘bid’, and ‘bud’ as ‘bod’. The 

learning of the vowel /ɒ/ in ‘bod’ was unsuccessful for both child models, which 

was heard as /ɪ/ in ‘bid’. The rounded vowel /u/ was difficult for both child vocal 

tract models. Compared with the 3-year-old model, the 1-year-old model learned 
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much less intelligible vowels following velar stops in ‘god’ and ‘good’. Only 7% 

was correctly identified for the 1-year-old model and 9% for the 3-year-old model. 
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Figure 52 Confusion matrices (%) of CVC words learned by a 1-year-old (a) and 

a 3-year-old vocal tract model (b), measured by a close-set transcription 

experiment.  
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5.2.2 CVCV WORDS 

The learned vocal tract parameters of the CVC words were used to regenerate 

CVCV words. The CVCV words of both child vocal tract models were fairly 

intelligible. Figure 53 shows the distribution of the mean identification rate of the 

CVCV words learned by the two child models. As shown in Figure 53, most of the 

listeners had higher accuracies while identifying the speech learned by the 3-

year-old model than the 1-year-old model. A few listeners were able to identify all 

phonemes in both types of experiments, while the others had a difficult time in 

identifying the phonemes. The distribution of the mean identification rate was 

more concentrated in the close-set experiment than in the open-vocabulary 

transcription experiment. In the open-vocabulary transcription experiment, the 

mean identification accuracy rate of CVCV words was 64% for the 1-year-old 

vocal tract model and 78% for the 3-year-old model. The 3-year-old model 

achieved a significantly higher identification rate than the 1-year-old model in the 

open-vocabulary transcription experiment (Wilcoxon signed-rank: p < .001). 

Furthermore, the mean accuracy rate of CVCV words was 76% for the 1-year-old 

model and 86% for the 3-year-old model in the close-set experiment. The learning 

performance of the two child vocal tract models was significantly different in the 

close-set experiment (Wilcoxon signed-rank: p < .001). Wilcoxon signed-rank 

also showed that the mean accuracy rate was significantly higher in the open-

vocabulary transcription experiment than in the close-set experiment for the 1-

year-old model (p < .001) and the 3-year-old model (p = .017). 
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Figure 53 Distribution of by-listener mean phoneme identification accuracy rates 

of CVCV words learned by a 1-year-old and 3-year-old vocal tract model, tested 

in listening experiments. Kernel density estimate and histogram show the 

distribution of the performance of the listeners. 

Figure 54 and Table 7 show the by-position phoneme identification accuracy rate 

of the CVCV words learned by the two child vocal tract models in the open-

vocabulary transcription experiment. As shown in Table7, the 3-year-old vocal 

tract model had higher accuracy rates than the 1-year-old model in all the 

phoneme positions. Both models had relatively high accuracies in the two onset 

consonant positions with the 3-year-old model being much more intelligible than 

the 1-year-old model. The final vowels learned by both child models were nearly 

perfectly identified, whereas the identification rate was lower for the first vowel. 

Figure 54 shows that for both child models there was much variability in the 

identification rate. The 3-year-old learned more intelligible phonemes in the first 

onset and the second vowel position (Wilcoxon signed-rank: p < .001). However, 

the two child models had similar identification rates in the second onset (Wilcoxon 

signed-rank: p = 0.146) and the second vowel (Wilcoxon signed-rank: p = 1) 

position. 
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Table 7 Mean (%) and standard deviation (%) of CVCV words learned by the two 

child models in each phoneme position, evaluated by the open-vocabulary 

transcription experiment. 

 First onset First vowel Second onset Second vowel 
1-year-old 
child 

62.90(17.87) 34.58 (13.14) 62.37(20.73) 96.94 (9.66) 

3-year-old 
child 

86.11 (16.57) 53.81(20.42) 73.28 (21.24) 97.22 (6.32) 

 

 

Figure 54 By-listener phoneme accuracy rates of learned CVCV words learned 

by two child vocal tract models in different syllable positions, evaluated by an 

open-vocabulary transcription experiment. ns P > 0.05, *** P <= 10-3. 

Figure 55 shows the phoneme accuracy rate of the four CVCV words learned by 

the two child vocal tract models. With regard to the first onset consonant, the 3-

year-old model had fairly high intelligibility for all target words. Especially for 

‘Debbie’ and ‘body’, the accuracy rate of the 3-year-old model was remarkably 

higher than the 1-year-old model. The onset consonants in ‘daddy’ and ‘buddy’ 

both had relatively high accuracy rate. The first vowel in ‘daddy’ and ‘body’ 

learned by the 3-year-old model were again more intelligible than the 1-year-old 
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model. Both models performed well in the learning of the first vowel in ‘daddy’, 

but had difficulties in learning the first vowel in ‘buddy’. As far as the second onset 

consonant is concerned, both child models learned intelligible alveolar stops in 

‘daddy’, ‘buddy’ and ‘body’. However, the 3-year-old model again had much better 

performance in learning the bilabial stops in ‘Debbie’. Finally, the 3-year-old 

model outperformed the 1-year-old model for all the second vowels in the CVCV 

words. 

 

Figure 55 Mean identification rates of CVCV words learned by two child vocal 

tract models in all the phoneme positions in an open-vocabulary transcription 

experiment.  

The confusion matrices of the close-set experiment for CVCV words are shown 

in Figure 56. Target word ‘body’ was often identified as ‘daddy’ for the 1-year-old 
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model, while the one learned by the 3-year-old model was quite intelligible. ‘buddy’ 

learned by both models was identified as ‘body’, but the 3-year-old model still had 

better performance. Both models learned a relatively intelligible ‘daddy’ with 

similar identification rate. ‘Debbie’ learned by both models was often identified as 

‘daddy’, which indicated that the bilabial stops were the main source of confusion. 

Overall, the CVCV words regenerated by the learned vocal tract parameters of 

CVC words had fairly good performance. Moreover, the articulatory targets 

learned by the 3-year-old model had better generalisability than the 1-year-old 

model.  

 

Figure 56 Comparison between two vocal tract models. Confusion matrices of 

CVCV words regenerated by learned vocal tract parameters of a 1-year-old (a) 

and a 3-year-old vocal tract model (b), measured by a close-set transcription 

experiment.  
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The results reported so far have demonstrated that learning performance of 

different vocal tract models vary with anatomical structure. If we compare the 

identification rates of the learned synthetic speech, the difference in perceptual 

quality is evident, as shown in Figure 57. The anatomical structure of the vocal 

tract model had a significant effect on accuracies in both the open-vocabulary 

and the close-set transcription experiments (Kruskal-Wallis test: p < .001). 

Furthermore, the difference between the results for vocal tract models of each 
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age group was significant as well for all the comparisons (Wilcoxon signed-rank: 

p < .001) except for the phoneme accuracies of two child models in the open-

vocabulary transcription experiment (Wilcoxon signed-rank: p = .360). The results 

indicated that the identification rate upsurged as the age of the vocal tract model 

increased11.  

 

Figure 57 By-listener mean phoneme accuracy rates of CV syllables learned by 

a 1-year-old, a 3-year-old and an adult male vocal tract model, evaluated by an 

open-vocabulary transcription experiment and a close-set transcription 

experiment. Error bars show standard errors. ns P > 0.05, **** P <= 10-4. 

Figure 58 shows the by-position phoneme accuracy rate of the CVC words 

learned by the vocal tract models. The overall tendency of the identification rate 

in each phoneme position was similar to the mean identification rate. The age of 

the model had a significant effect on the phoneme accuracy rate of the learned 

synthetic words in all the syllable positions (Kruskal-Wallis test: p < .001). The 

adult vocal tract model learned more intelligible speech than the two vocal tract 

models in all phoneme positions (Wilcoxon signed-rank: p < .001). 

 

11 See section 1.3.3.1 for the details of anatomical changes in the vocal tract 
during development. 
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Figure 58 Phoneme accuracy rates of CVC words learned by an adult and two 

child vocal tract models in different syllable positions, evaluated by an open-

vocabulary transcription experiment. **** P <= 10-4. 

Figure 59 shows the phoneme accuracy rate of the regenerated CVCV words 

learned by the vocal tract models. Kruskal-Wallis test indicated that the 

anatomical structure of the vocal tract model had a significant effect on the 

phoneme accuracies of all the phoneme positions (p < .001) except for the 

second vowel position (p = 1.000). Wilcoxon signed-rank tests showed that the 

adult vocal tract had higher accuracies in the first onset position than the 1-year-

old model (p < .001), but not the 3-year-old model (p = .300). The adult model 

learned more intelligible speech in the first vowel position than the two child vocal 

tract models (1y: p < .001, 3y: p = .010). The adult model and the 3-year-old 

model had similar accuracies in the second onset position (p = .080). The 

identification rate of the 1-year-old model was significantly lower than the adult 

model in the second onset position (p < .001). Finally, all the vocal tract models 

learned intelligible final vowels and the performance was almost 

undistinguishable (p = 1.000). 



Onset Vowel Coda

40

60

80

100

Ac
cu

ra
cy

 (%
)

1y boy 3y boy Adult



 142 

 

Figure 59 By-listener phoneme accuracy rates of CVCV words learned by an 

adult and two child vocal tract models in different syllable positions, evaluated by 

an open-vocabulary transcription experiment. ns P > 0.05, **** P <= 10-4. 

The vocal tract models of different ages yielded divergent recognition errors with 

the same number of iterations, as shown in Figure 60. Consistent with the 

listening experiments, the models of different ages yielded significantly divergent 

recognition errors within the same number of iterations (Kruskal-Wallis test: p < 

.001). Wilcoxon signed-rank tests showed that the adult male vocal tract model 

learned CVC words with lower recognition errors than the child models (1y: p < 

.001 and 3y: p < .001). The 3-year-old model had lower recognition errors 

compared with the 1-year-old model (p = .038).  
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Figure 60 Recognition error distribution of 10-best CVC words evaluated by an 

automatic phoneme recogniser. ns P > 0.05, **** P <= 10-4. 

The phoneme accuracy rate of the CV syllables in the learned CVC words (‘bud’, 

‘bod’, ‘bead’, ‘dead’, ‘deed’, ‘dad’) and the regenerated CVCV words (‘body’, 

‘buddy’, ‘Debbie’, ‘daddy’) were compared. The adult models outperformed the 

child models and that there was a marked facilitation effect of syllable type, as 

shown in Figure 61. Wilcoxon signed-rank tests showed that the adult vocal tract 

model had overall higher accuracies than the two child models (p < .001), 

whereas the two child models did not differ significantly (p = .190). As the number 

of syllables increased, word identification became easier for the listeners 

(Kruskal-Wallis test: p < .001), regardless of the age of the model. Wilcoxon 

signed-rank tests indicated that the identification rate was higher for CVCV words 

than for CVC words for all the vocal tract models (1y: p < .001, 3y: p < .001, Adult: 

p < .001).  
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Figure 61 By-listener phoneme accuracy rates of the CV syllables in CVC words 

and CVCV words learned by adult and child vocal tract models in an open-

vocabulary transcription experiment. **** P <= 10-4. 

To compare the acoustic space of the learned vowels, I selected the best 20 

instances per target word based on recognition error evaluated by the speech 

recogniser. I then compared the first formant (F1) and the second formant (F2) of 

the learned vowels in bilabial-vowel (bV) sequences by VocalTractLab (Birkholz, 

2013), as shown in Figure 62. F1 and F2 of the vowels in the same category 

forms consistent clusters for the adult vocal tract model, which bears 

resemblance to the acoustic space of natural speech reported in previous studies 

(Clopper, Pisoni, & de Jong, 2005; Hagiwara, 1997; Peterson & Barney, 1952). 

However, there is no clear clustering of vowels for the child models. The acoustic 

space of the learned high vowels (i.e., /i/ and /u/) of the child vocal tract models 

heavily overlapped with one another. The high F2 values of vowel /u/ suggested 

that the learned tongue position was not retracted. The mid front vowels /ɛ/ and 

/æ/ were not well separated in acoustic space for both child models. The learning 

of the low back vowel /ɑ/ was also unsuccessful for both child model. To be more 

specific, the tongue position of the learned /ɑ/ by was not retracted for the 1-year-

old model, while /ɑ/ learned by the 3-year-old model was indistinguishable from 

/ʌ/. 



40

60

80

100

1y boy 3y boy Adult

Ac
cu

ra
cy

 (%
)

CVC CVCV



 145 

 

Figure 62 Comparison of vocal tract models of different ages. First formant (F1) 

and Second formant (F2) of vowels in CVC words with bilabial stops learned by 

a 1-year-old model (a), a 3-year-old model (b) and an adult male model (c). The 

squared IPA labels represent the median. The F1 and F2 were based on the 

vowel spectra calculated by VocalTractLab 2.3 (Birkholz, 2013). 

5.4 DISCUSSION 

Learning to speak requires the acquisition of sophisticated control of both sensory 

and motor systems. Previous computational models of vocal learning have 

centred on simulating learning architectures, based on neurobiologically 

motivated approaches (Kröger et al., 2009; Tourville & Guenther, 2011), acoustic 

imitation under the distal learning framework (Philippsen et al., 2014; Prom-On et 

al., 2014a), caregiver’s feedback (Messum & Howard, 2015; Miura et al., 2012), 

reinforcement learning (Warlaumont & Finnegan, 2016) and goal babbling 
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(Philippsen, 2021a; Philippsen et al., 2016). However, so far there has been no 

clear demonstration of successful learning of intelligible words containing CV 

syllables (see Appendix Table A Performance). In this study, I have demonstrated 

that vocal learning is achievable with two key components: 1) a speech 

perception system that encodes phonetic categories, and 2) coordinated 

articulatory movements that are context-dependent. I explicitly modelled 

language-specific perception and coarticulatory dynamics, which contrasts with 

previous attempts that focus more on the learning architecture. The model further 

shows learning progress that resembles the developmental patterns of child 

speech acquisition. 

At the first glance, it is tremendously difficult for a child to acquire speech given 

the huge acoustic mismatch between the adult and the child speech (Vorperian 

& Kent, 2007) due to the large discrepancies between their vocal apparatuses 

(Fitch & Giedd, 1999), known as the speaker normalisation (K. Johnson, 2005)/ 

correspondence problem (Brass & Heyes, 2005; Nehaniv & Dautenhahn, 2002). 

This problem has prompted a considerable amount of work on simulating 

caregiver-infant interactions (Acevedo-Valle et al., 2020; Cohen & Billard, 2018; 

Huckvale, 2011a; Messum & Howard, 2015; Miura et al., 2012; Rasilo & 

Räsänen, 2017). In these mirroring interaction paradigms, a child establishes the 

correspondence between his own motor repertoire and the mature speech by the 

caregiver’s response to his vocalisations. The paradigm is based on the 

assumption that children are not equipped with the ability to judge the similarities 

between their own vocalisations and those of the adults (Messum & Howard, 

2015). However, there is in fact evidence that children are able to learn speaker-

normalised phonetic categories in the presence of variability in the auditory input 

(Rost & McMurray, 2009). Moreover, if we posit that being imitated by the 

caregiver is necessary for tackling the speaker normalisation problem, then vocal 

learning cannot be achieved without it. Yet, in the case of children raised in Gusii 

rural communities, verbal mother-child interactions are nearly absent but they 

manage to learn to speak (Lancy, 2014; LeVine, 2004; Mesman et al., 2021).  
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The fact that children can still learn to speak with limited verbal maternal 

interaction shows that children are capable of solving the speaker normalisation 

problem on their own to a great extent. Here, I use computation simulation to 

explore the possibility that a child can teach herself/himself to learn to speak 

when guided by auditory feedback. The approach is in line with the learning 

mechanism suggested for humans (Kuhl, 2000) and songbirds (Brainard & 

Doupe, 2002; Doupe & Kuhl, 1999b), that the motor manoeuvrer can be learned 

by producing sounds to match the perceptual representations of ambient sounds. 

Songbirds first form internal song memory and then use the auditory feedback for 

song evaluation to drive the learning (Funabiki & Konishi, 2003; Keller & 

Hahnloser, 2009), while infants develop a perception system with a language-

specific filter for phonetic categories which later guides production learning 

(Vihman, 1993; Kuhl, 1998). The absence of auditory feedback can lead to 

impaired vocalisations in songbirds (Marler & Tamura, 1964) and marmoset 

monkeys (Roupe et al., 2003). It is of no surprise that, in humans, the 

vocalisations of children with hearing difficulties are remarkably different from that 

of normal hearing children (Oller et al., 1985; Oller & Eilers, 1988). The onset of 

their babbling is delayed, and when it emerges, most of the sounds are visually 

prominent syllables such as /ma/ and /ba/ (Stoel-Gammon, 1988). It is also worth 

noting that the language-related genes such as FoxP2 show similar expression 

patterns in the auditory and motor systems in humans, songbirds (Teramitsu et 

al., 2004) and marmosets (Kato et al., 2014), who are all vocal learners. The 

notable resemblance may indicate that auditory-guided vocal learning can be a 

shared cognitive mechanism across species. 

There are, of course, remarkable distinctions in the sound structure of child and 

adult vocalisations. What is not yet clear is the nature of the auditory 

representations in human vocal learning. Past models have attempted to use 

acoustics of individual utterances as the auditory feedback (Howard & Huckvale, 

2005; Philippsen et al., 2014; Prom-On et al., 2014a, 2014b). It turned out that 

vowels can be acquired by simple acoustic matching (Prom-On et al., 2014a, 

2014b), while consonant learning has been relatively unsuccessful (Philippsen et 
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al., 2014). The main obstacle for this method is the lack-of-invariance in the 

acoustic manifestation of CV coarticulation. It is well-known that while being 

perceived as the same phoneme, the acoustic signals can vary according to both 

linguistic context (Liberman et al., 1952, 1954a) and individual speakers (K. 

Johnson, 2005; K. Johnson & Sjerps, 2021). The present results show, however, 

that the lack of invariance problem is also solvable, provided that motor dynamics 

and perceptual guidance are both simulated, as done in the current study. These 

findings are still compatible with the idea that the vocal learning is guided by 

auditory representations (Vihman, 1993; Kuhl, 1998), but the nature of auditory 

representations in guiding vocal learning is not universal listening but language-

specific perception.  

Having successfully simulated the learning of intelligible English words, we can 

now evaluate the factors that may influence the learning. I compared the 

intelligibility of speech learned by vocal tract models of different ages. The two 

child models differ in terms of the phoneme accuracies of the learned speech. 

That the 1-year-old model had lower intelligibility than the 3-year-old model could 

be attributed to the anatomical differences in their vocal apparatuses. The child’s 

vocal tract undergoes huge anatomical changes in the first three years of their 

life (Kent, 1992; Kent & Murray, 1982) and I have confirmed that the 3-year-old 

vocal tract model is more advantageous than the 1-year-old model while learning 

speech.  In addition, the results show that although an infant vocal tract is speech 

ready, the learning performance is compromised compared to the adult vocal 

tract model. The findings need to be interpreted with caution because the 

automatic phoneme recognizer was trained without child speech data and thus it 

may be disadvantageous in evaluating child speech. Further studies should 

incorporate child data while training the recogniser and assess whether it would 

improve the child learning performance.  

If we compare the model performance with speech development in real life, the 

difficult cases of speech sounds for the model seem to correspond well with the 

ones that are normally acquired later in real life. Children acquire corner vowels 
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(e.g., /i/, /a/, /ɒ/ and /u/) before mid vowels12, such as /ɪ/, /e/, /ɛ/ and /ʊ/ (Stoel-

Gammon & Pollock, 2008). It has also been found that the adult vocal tract model 

had extremely high accuracies while learning corner vowels /æ/, /ɒ/ compared 

with mid vowels and both child models had the highest accuracy rate for vowels 

/æ/. One of the common confusions in children’s production is /ɪ/ being mistaken 

as /i/ and /ε/ (Vihman, 1996). Interestingly, /ɪ/ learned by the child vocal tract 

models was also frequently mistaken as /i/ and /ε/ in the close-set transcription 

experiment as well. However, the corner vowel /u/, which is supposed to be an 

easy vowel for children to acquire, has been a difficult case for all the vocal tract 

models. The model learned unrounded vowels in ‘booed’, similar to the 

congenitally blind population (Ménard et al., 2014). It is therefore suspect that 

visual cues play a vital role in learning rounded vowels (Murakami et al., 2015). 

Further studies need to be conducted to investigate how visual signals influence 

the vocal learning process. Another possible reason for the learning difficulty is 

that the training data for the automatic phoneme recogniser is not optimal. The 

production of /u/ differs greatly across regional accents for American English 

native speakers (Clopper et al., 2005; Fridland et al., 2014) and thus the 

recogniser may not be efficient enough in discriminating the /u/ well from other 

vowels. This can explain why unlike the other vowels, the acoustic space of the 

learned /u/ varied to a great extent (Fig. 58c). More work will need to be done to 

trim the speech data to improve the performance of the recogniser. 

With regard to the consonants, it has been reported that among the voiced stops, 

the production of bilabials occurs before alveolars and velars, which are also fully 

acquired the earliest (Crowe & McLeod, 2020). Similarly, both the adult and child 

models had higher identification accuracies for bilabials than for alveolars and 

velars. Most of the bilabial stops were correctly recognised but alveolar stops 

were sometimes identified as bilabial stops. The velar stops, on the other hand, 

were often identified as alveolar stops for vocal tract models of all the ages. The 

 

12 Mid vowels are normally acquired later in life probably because they require 
more precise control for tongue positions (Xu et al., 2021). 
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velar stops were extremely difficult for the 1-year-old vocal tract model with a 

phoneme accuracy rate of less than 10%, compared with around 45% for the 3-

year-old vocal tract model. The growing anatomical structure of the child vocal 

tract and the maturation of muscle control is likely to accelerate the acquisition of 

velar stops. As far as syllables are concerned, it has been found that the CV 

combinations with consonants having the place of articulation similar to the 

following vowel was easier for the model to acquire, in line with the developmental 

patterns (MacNeilage & Davis, 2000). For example, CV sequences consisting of 

alveolar consonants followed by high vowels (e.g., ‘deed’, ‘did’) had higher 

identification rates than the other pairs (e.g., ‘dad’ and ‘dead’).  

Moreover, I have also identified some external factors that impact on the 

identification accuracy rate. First of all, context information may interfere with 

phoneme perception. Child synthetic speech was better recognised in the close-

set task than the open-vocabulary transcription task, while the same effect was 

not found for adult speech. Second, identification rates increased when the same 

articulatory targets for CVC words were used to regenerate CVCV words. As the 

number of syllables increased, the identification became easier for the listeners, 

regardless of the age of the model. The facilitation was more evident for the 

regenerated longer words learned by the two child models. In a word, it suggests 

that not only lexicon background but also syllable types can make up for the 

difficulty in perceiving child speech. These findings are consistent with previous 

studies showing that linguistic context supports word identification (Benichov et 

al., 2012). Given that the caregivers are very likely to know the limited vocabulary 

that children can produce, external factors may facilitate the perception to a great 

extent in daily life. 

These findings raise intriguing questions regarding the interplay between speech 

production and perception through vocal imitation. Previous research on mirror 

neurons has established that the observation of actions activates the motor 

system that can perform the same action (Hari et al., 1998). The sensorimotor 

linkage has been found not only in motor actions such as hand movements 

(Fadiga et al., 1995; Gallese et al., 1996; Rizzolatti, Fadiga, Gallese, et al., 1996) 
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but also in speech production (Fadiga et al., 2002b, 2002a; Pulvermuller et al., 

2006; K. E. Watkins et al., 2003; Wilson et al., 2004). Despite extensive research 

on verifying the existence of sensorimotor link, how it is forged remains dimly 

understood. Some advocates of mirror neurons believe that humans are born 

with perception-motor interaction and the experience of motor actions only 

enhances the existing coupling (Lepage & Théoret, 2007).  Others argue that the 

linkage is forged through association of sensory and motor experience, such as 

self-observation, synchronous actions, and being imitated by social partners 

(Cook et al., 2014; Heyes, 2001; Keysers & Perrett, 2004). The associative 

learning theory has not been widely used to account for speech motor learning, 

as there are very limited visual cues. Establishing the link between speech 

production and perception have traditionally been challenging so far.  Some 

researchers have resorted to shifting the burden to adults and posits that being 

imitated by the caregiver supports the establishment of the sensorimotor link 

(Messum & Howard, 2015). The simulation results instead indicate that it is the 

self-learning process that helps forge the link between speech perception and 

speech production. The model has solved the correspondence problem by self-

guidance (i.e., self-observation) without any assistance from social partners 

(Brass & Heyes, 2005; Nehaniv & Dautenhahn, 2002).  

As far as sensorimotor learning is concerned, previous computational 

approaches have modelled speech motor learning based on sensory feedback in 

a speech development scenario (Guenther, 1994; Kröger et al., 2009, 2014; 

Tourville & Guenther, 2011), but have seen little success in learning intelligible 

words. Even though the current model also makes use of auditory and 

somatosensory feedback for evaluation, it does not rely on either corrective motor 

movements as in the DIVA model (Guenther, 1994; Tourville & Guenther, 2011) 

or sensory predictions as in the SFC (Haith & Krakauer, 2013; Shadmehr et al., 

2010) and the FACTS models (Parrell et al., 2019; Parrell & Houde, 2019). The 

high learning performance of the present model suggests that the learning of 

novel motor repertories may not require a fully developed sensorimotor link. Still, 

it has been found that the link is forged gradually throughout speech 
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development. Toddlers are not capable of adjusting articulation when given 

altered auditory feedback (MacDonald et al., 2012), while older children and 

adults can compensate for the changes in auditory signals  (Caudrelier et al., 

2019; Shiller et al., 2010). So far, I have only modelled the learning progress from 

canonical babbling to first words (Fig. 32), while subsequent maturation of the 

sensorimotor systems is yet to be investigated by future simulations. The 

modelling approach opens a path toward resolving the mystery behind speech 

production and perception by implementations of the theoretical accounts. 

Chapter 6 GENERAL DISCUSSION 

To the best of my knowledge, this dissertation reports the first ever successful 

simulation of vocal learning that is able to generate English words with a 

biologically plausible articulatory synthesiser. Although numerous models of 

vocal learning have been proposed previously (Pagliarini et al., 2021), none has 

modelled the speech motor and the sensory systems rigorously, and there has 

been only limited success in learning CV syllables (see Appendix Table A 

Performance). Here, I trained an articulatory synthesiser that emulated adult and 

child vocal systems with either acoustic features that simulates universal 

perception (Kuhl, 2000; Werker & Lalonde, 1988), or an automatic phoneme 

recogniser that simulates language-specific perception (Kuhl, 2000; Werker & 

Lalonde, 1988). I have demonstrated that perception-guided learning as 

suggested by the research on both birdsong learning (Brainard & Doupe, 2002; 

Phan et al., 2006; Zhao et al., 2019) and human vocal learning (Kuhl, 2000) is 

indeed feasible and probably necessary. The perception-guided vocal learning 

can resolve the long-standing problem of acoustic mismatch (Vorperian & Kent, 

2007) due to anatomical differences between children and adults (Fitch & Giedd, 

1999). This may further suggest that it is the vocal learning process that helps 

forge the link between perception and motor production (Fadiga et al., 2002a; 

Fadiga et al., 2002b; Liberman & Mattingly, 1985).   
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The following are the main novel aspects of the present work: 

1. The study demonstrates that the hitherto considered unbreakable problem 

of cross-speaker variations in speech can be resolved by learners using 

language-specific perception to self-guide their vocal learning. This shows how 

children can learn to speak without formal instructions. More importantly, it shows 

a striking parallel to birdsong acquisition, which is also guided by auditory 

memory.  

2. The study shows that the key to a successful learning of syllables is the 

articulatory dynamics and temporal coordination. Previous works have only been 

able to simulate the learning of isolated static vowels. 

3. It shows a comprehensive use of human listening experiments to evaluate 

the intelligibility of synthetic speech in direct comparison with natural speech. The 

adult vocal tract model learned synthetic CVC and CVCV words with a mean 

accuracy rate of 82%, compared with 94% for natural speech in open-vocabulary 

transcription experiments. I pioneered the use of natural speech as the 

benchmark for quantitative evaluation of vocal learning models. This has set a 

new standard for assessing the quality of future simulation studies. 

In chapter 3, I introduced a vocal learning model that can mimic vocal exploration 

at different ages. The model can be decomposed into two components: 1) a 

sensory system that provides auditory and somatosensory feedback, and 2) a 

motor system that controls the articulatory kinematics. The sensory system 

includes different kinds of sensory feedback including acoustic features, an 

automatic phoneme recogniser and somatosensory information. The speech 

motor system controls the coarticulatory dynamics of a state-of-the-art 

articulatory synthesis. I systematically evaluated the two types of auditory 

feedback by presenting the learned synthetic speech to native speakers in 

listening experiments. 

In chapter 4, the results show that the recogniser trained speech had higher 

identification rates than the speech trained by acoustics. The effectiveness of 
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recogniser-guided exploration suggests that language-specific perception may 

be the critical link that has been missing from previous modelling work. In 

contrast, acoustic features, which reflect universal perception, correlated poorly 

with linguistic perception, and led to unsatisfactory learning outcomes. Moreover, 

the effectiveness of the motor control model plays a crucial role in vocal 

exploration, which has enabled the learning of syllables beyond static vowels and 

the extrapolation into new syllable types.  

In chapter 5, I show that both the adult and the child vocal tract models learned 

intelligible CVC and CVCV words. It has been found that the child’s vocal learning 

showed greater difficulty than the adult and the 1-year-old model had worse 

performance than the 3-year-old model partly because of the anatomical 

structure. The speech error patterns of the vocal tract models match empirical 

data on early speech acquisition. I have therefore demonstrated that perception-

guided learning as suggested by research on both birdsong learning and human 

vocal learning is indeed feasible and probably necessary. The indispensable role 

of speech perception in human vocal learning highly resembles songbirds and 

mammals.  

This work is far from complete. First of all, the auditory guidance for the child 

vocal learning model may not be ideal because the automatic phoneme 

recogniser used to simulate speech perception was trained by a corpus without 

child speech data. Consequently, the simulated auditory representations may not 

fully capture the phonetic properties of child speech. Further studies should 

incorporate child speech data and child-directed speech under even more 

ecological settings to investigate how auditory exposure and social interactions 

affect production learning. In addition, previous literature has found that visual 

input plays an important role in the learning of visually explicit sounds (Murakami 

et al., 2015). There is therefore abundant room for further progress in 

incorporating visual information to guide the movement of visible articulators such 

as the lips and the jaw. In addition, more research is also needed to determine 

the mechanisms behind speech adaptation (see section 1.3.1). Even though the 

current model integrates the speech motor control with sensory outcome, it is 
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unclear whether the model can adjust its articulation when the auditory feedback 

is altered. Finally, the scope of this study was limited in terms of the 

developmental stages in speech acquisition. The current model only simulated 

the learning process from vocal practice to producing intelligible words and thus 

there is a fruitful area for further work that elucidates early and later 

developmental stages. For example, it remains unclear whether the coordination 

of CV syllables is learned during canonical babbling. In future investigations, it is 

also necessary to explore how children can learn to segment continuous speech 

and discover the duration of the speech segments. Another natural progression 

of this work is to simulate the learning of complex syllable structures and 

connecting words to sentences. 

The finding that vocal learning may be guided by auditory experience has 

implications on the long-standing debate over the link between speech perception 

and production, as it suggests that the process of vocal learning can help forge 

this intimate link.  Moreover, this study has improved our understanding of the 

role of speech perception in production learning, which may carry clinical 

implications for the diagnosis and intervention of language disorders. The model 

is able to predict speech production development given perceptual ability. For 

children with hearing aids or cochlear implants, the model prediction of production 

accuracy can be used as a tool for assessing learning progress and designing 

individual interventions. All of these are fundamental issues about language, one 

of the most important attributes that make us human. This computational 

approach offers new possibilities of investigating shared cognitive mechanisms 

of vocal ontogeny across species. It raises the possibility that computational 

models can bridge between behaviour studies and theoretical work. The recent 

advance in artificial intelligence (AI) has demonstrated impressive achievement 

without prior knowledge of human intelligence but this work contributes to a 

growing literature on constructing computational systems to probe questions 

about human cognition. Therefore, it may also help to bridge the large gap 

between artificial intelligence and human intelligence.  
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APPENDIX 

Table A: Summary table of human vocal learning models 

Model Motor control Synthesiser Sensory 
system 

Learning 
strategy 

Learning 
target Performance 

HABLAR 
(Bailly, 
1997) 

8 articulator 
parameters (lip, 
jaw, tongue, apex 
positions); 
 
Consonant goal 
imposed on the 
vowel goal to 
simulate 
coarticulation 

Articulatory-
to-acoustic 
model 
(Beautemps 
et al., 1996) 

F1, F2, F3, F4+ 
lip area 
trajectories 

Speech Maps: 
audio-visual-to-
articulatory 
inversion (Abry 
et al., 1994) 

Single 
vowel, vowel 
sequences, 
VCV 

NA 

(de 
Boer, 
2000) 

3 vocal tract 
parameters: 
tongue position, 
tongue height, and 
lip rounding 

Maeda 
synthesiser 
(Maeda, 
1990) 

Bark-scale F1, 
F2, F3, F4 

Self-
organization, 
imitation 

Vowels NA 

(Wester
man & 
Miranda, 
2002; 
Westerm

3 glottis 
parameters + 3 
vocal tract 
parameters 

Pipe 
synthesiser 

Auditory map: 
F1 and F2; 
 
Visual 
information 

Sensorimotor 
integration, 
Hebbian 
connections 

Vowels NA 
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ann & 
Miranda, 
2004) 

(Heintz et 
al., 2009) 

12 articulatory 
parameters 

VLAM (vocal 
linear 
articulatory 
model): modified 
Maeda 
synthesiser 
(Maeda, 1990) 

Vectors derived 
from F1, F2, F3 

Self-organising 
maps and 
Hebbian 
connections 

Point 
vowels /a, 
i, u/ 

NA 

(Kanda et 
al., 2009) 

7 vocal tract 
parameters 

Maeda 
synthesiser 
(Maeda, 1990) 

5-dimensional 
vectors from low-
third to low-
seventh 
dimension out of 
12-dimensional 
MFCCs; 
F0 analysis by 
STRAIGHT 
(Kawahara et al., 
1999) 
 

Self-
organization, 
recurrent neural 
network with 
parametric bias 
(RNNPB) (Tani, 
2002) 

Vowels NA 

(Huckvale 
& Howard, 
2005) 

9 articulatory 
parameters 

VTCALCS 
(Maeda 
synthesiser 
(Maeda, 1990)) 

F1, F2 
Distal 
supervised 
learning 

Sentences 
containing 
vowels and 
consonants 

The sound 
spectrogram 
shows that 
the vowel 
quality is 
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good but the 
consonant 
quality is poor 

KLAIR 
(Huckvale, 
2011b, 
2011a; 
Huckvale 
et al., 
2009) 

6 vocal tract 
parameters 
(Huckvale et al., 
2009); 
 
8 vocal tract 
parameters + 4 
glottis parameters 
(Huckvale, 2011b, 
2011a) 

KLAIR's 
Synthesiser: 
infant-sized 
Maeda 
synthesiser 
(Maeda, 1990) 

Adult 
reformulations 

Online infant- 
caregiver 
interaction 
(caregiver 
imitate infant) 

Words 
including 
vowels and 
consonants 

NA 

(Guenth
er, 1994; 
Guenthe
r et al., 
2006; 
Tourville 
& 
Guenthe
r, 2011) 

8 articulators 

modified 
Maeda 
synthesiser 
(Maeda, 
1990) 

Auditory 
feedback: F1, 
F2, F3; 
 
Somatosensory 
feedback: 22-
dimensional 
vector 

Neurobiological 
modelling, 
neural networks 

CVC 
(Guenther, 
1994); 
 
VV, CV, 
CVCV 
(Guenther et 
al., 2006) 

NA 

(Yoshika
wa, 
Asada, 
et al., 
2003; 

5 motor controllers Source-filter 
model Formant vector 

Caregiver’s 
imitation of 
infant speech 

Four vowels: 
/a, i, u, e/ NA 



 159 

Yoshika
wa, 
Koga, et 
al., 
2003) 

(Ishihara 
et al., 
2009; 
Miura et 
al., 
2007) 

6 vocal tract 
parameters (Miura 
et al., 2007); 
 
NA (Ishihara et al., 
2009); 

Source-filter 
model 
(Miura et al., 
2007); 
 
NA (Ishihara 
et al., 2009) 

Social feedback: 
F1 and F2 of 
caregiver’s 
imitation of 
infant speech 

Caregiver’s 
imitation of 
infant speech 

Five vowels: 
/a, i, u, e ,o/ 
(Miura et al., 
2007); 
 
Vowels 
(Ishihara et 
al., 2009) 
 

NA 

(Miura et 
al., 
2012) 

NA NA 

Social feedback: 
F1 and F2 of 
caregiver’s 
imitation of 
infant speech 

Auto-mirroring 
bias (AMB): 
less imitative 
caregiver 

Five vowels: 
/a, i, u , e, o/ NA 

(Lyon et 
al., 
2012) 

NA 

eSpeak 
synthesiser (Aslin 
et al., 1996) 
 

Auditory 
feedback: 
Microsoft SAPI 
5.4 
(Phoneme 
recogniser); 
 
Social feedback: 

Human-robot 
interaction 

V, CV, VC 
and CVC 
 
 

NA 
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Teacher’s 
positive/negative 
feedback 
 

(Prom-
On et 
al., 
2014a, 
2014b) 

18 vocal tract 
parameters 

VocalTractL
ab (Birkholz, 
2013) 
 
 

MFCCs 
 

Distal learning, 
Gradient 
descent 

Thai 
vowels 

Good vowel 
quality 

(Kröger 
et al., 
2009) 

270 proto-vocalic 
states 

Articulatory 
vectors 
generated by 
VocalTractLab 
(Birkholz, 2013) 

Auditory 
feedback: Bark-
scale F1, F2, F3; 
 
Somatosensory 
feedback: 
Vocal tract state 
 

Neurobiological 
modelling 

V, VC and 
CV 
 

NA 

(Kröger 
et al., 
2014) 

Motor plan states 

Articulatory 
vectors 
generated by 
VocalTractLab 
(Birkholz, 2013) 

Bark-scaled 
spectrogram 
 
Somatosensory 
feedback: 
Vocal tract state 

Self-organising 
maps and 
Hebbian 
connections 

50 CV 
syllables 

78% 
transcription 
by one 
phonetician 

Elija 
(Howard 
& 
Messum
, 2007, 

2 vocal tract 
parameters for 
young infant, 7 
vocal tract 
parameters for old 

VTCALCS 
(modified Maeda 
synthesiser 
(Maeda, 1990)) 

Sensory 
salience: 
spectral change 
and low 
frequency power 

Caregiver’s 
imitation of 
infant speech 

NA (Howard 
& Messum, 
2007) 
 
CV, VC, or 

NA (Howard 
& Messum, 
2007, 2011); 
 
Synthetic 



 161 

2014, 
2011; 
Messum 
& 
Howard, 
2015) 

child + 2 glottis 
parameters 
(Howard & 
Messum, 2007); 
 
7 vocal tract 
parameters + 2 
glottis parameters 
(Howard & 
Messum, 2014, 
2011; Messum & 
Howard, 2015); 
 
Task dynamics 
model (Fowler & 
Saltzman, 1993; 
Saltzman & 
Munhall, 1989) 

(Howard & 
Messum, 2007); 
 
Template-based 
dynamic time 
warping 
(Howard & 
Messum, 2011); 
 
Gammatone 
spectrogram 
(Howard & 
Messum, 
2014; Messum 
& Howard, 
2015); 
 
Social 
feedback: 
Caregiver’s 
reformulation 
of infant 
speech 

CVV 
(Howard & 
Messum, 
2011); 
 
VV, CV, VC 
and CVV 
(Howard & 
Messum, 
2014; 
Messum & 
Howard, 
2015) 

samples are 
provided. 
Good vowel 
quality; 
 
Consonants 
are 
unintelligible 
(no trace of 
consonant 
burst or 
frication) 
(Howard & 
Messum, 
2014; 
Messum & 
Howard, 
2015); 

(Muraka
mi et al., 
2015) 

16 vocal tract 
parameters 

VocalTractLab 
(Birkholz, 2013) 

Auditory 
reservoir 
generated by 
BRIAN neural 
network 

Reinforcement 
learning Vowels NA 
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simulator 
(Fontaine et al., 
2011; Lopez-
Poveda & 
Meddis, 2001); 
 
Visual input 

(Warlaum
ont, 
2012; 
Warlaum
ont et al., 
2013; 
Warlaum
ont & 
Finnegan
, 2016) 

Jaw and lips 
(Warlaumont, 
2012); 
 
Lungs, 
trachea, 
larynx, 
pharynx, oral 
cavity, and 
nasal cavity 
(Warlaumont 
et al., 2013; 
Warlaumont & 
Finnegan, 
2016); 

Praat 
synthesis of 
a female 
vocal tract 
 
Muscle 
activations 
controlled 
by a spiking 
neural 
network 
(Maass, 
1997); 

Caregiver’s 
judgment as the 
reward 
(Warlaumont, 
2012); 
 
Mel-scale F0, F1 
and F2 
(Warlaumont et 
al., 2013) 
 
Estimated 
auditory salience 
(Coath et al., 
2009) 
(Warlaumont & 
Finnegan, 
2016); 

Reinforcem
ent learning 

VCV 
sequences 
(Warlaumont
, 2012); 
 
Vowels 
(Warlaumont 
et al., 2013); 
 
Single 
consonant 
and 
consonant 
clusters 
(Warlaumo
nt & 
Finnegan, 
2016) 
 

NA 
(Warlaumont, 
2012); 
 
NA 
(Warlaumont 
et al., 2013); 
 
Synthetic 
samples are 
provided. No 
trace of 
consonants 
in the 
spectrogram 
(Warlaumon
t & 
Finnegan, 
2016) 
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LeVI 
(Rasilo & 
Räsänen, 
2017) 
 

9 vocal tract 
parameters 

Rasilo’s 
Articulatory 
model 

Auditory 
feedback: 
11 MFCCs 
without energy 
(Rasilo et al., 
2013); 
 
F1, F2 (Rasilo & 
Räsänen, 2017); 
 
Social feedback: 
Phase1: 
positive/negative 
feedback 
Phase 2: 
imitation of 
infants’ babbles 
by caregivers 

Caregiver’s 
imitation of 
infant 
speech 

VCVC 
sequences 
containing 
all 25 
Finnish 
phonemes 
(Rasilo et 
al., 2013); 
 
 
CVCV 
sequences 
(Rasilo & 
Räsänen, 
2017); 

Synthetic 
samples are 
provided 
(unintelligibl
e) LeVI 
(Rasilo et 
al., 2013); 
 
 
Synthetic 
samples are 
provided 
(Vowels are 
not clear; 
Consonants 
are 
unintelligible 
and no trace 
of 
consonant 
burst/ 
frication) 
(Rasilo & 
Räsänen, 
2017); 
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(Najnin & 
Banerjee, 
2017) 

11 vocal tract 
parameters + 2 
glottis parameters 

DIVA model 
(Guenther, 
1994a; 
Guenther et 
al., 2006a; 
Tourville & 
Guenther, 
2011)/ 
modified 
Maeda 
synthesier 
(Maeda, 1990) 

F1, F2, F3 + 
phonation level 
+ 
12 MFCCs 

Self-
organization 

NN, CN, 
NC, VN, 
NV, VV, 
CV, VC, 
CC 
sequences 

NA 

(Forestier 
& 
Oudeyer, 
2017) 

7 vocal tract 
parameters 

DIVA model 
(Guenther, 
1994a; 
Guenther et 
al., 2006a; 
Tourville & 
Guenther, 
2011)/ 
modified 
Maeda 
synthesier 
(Maeda, 
1990); 
 
Dynamic 
Movement 

Auditory 
feedback: F1, 
F2 
 
Social 
feedback: 
Simulated 
caregiver’s 
guidance 
through 
objects 
 
Sensory 
feedback: 
state of the 
environment 

Goal-babbling 

Vowel 
sequences 
including 
/o, u, i, e, 
y/ 

NA 
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Primitives 
(DMPs) 
(Schaal, 2006) 
for controlling 
the articulatory 
trajectories 

including the 
position of the 
caregiver, the 
stick and the 
toys 

(Cohen & 
Billard, 
2018) 

10 words NA 

PerAc 
(perception/act
ion) 
architecture(B
oucenna et al., 
2010; 
Gaussier & 
Zrehen, 1995) 

Caregiver-
infant 
interaction 
through 
objects 

CVCV 
sequences NA 

(Oudeye
r, 2005) 

3 vocal tract 
parameters 

de Boer’s 
synthesiser 
(Abstract 
liner 
articulatory 
synthesiser) 

Perceptual 
representations 
based on Bark-
scale F1, F2, F3, 
F4 

Sensory motor 
interaction Vowels NA 

(Moulin-
Frier & 
Oudeyer
, 2012) 

7 vocal tract 
parameters 
 

VLAM 
(vocal linear 
articulatory 
model): 
modified 
Maeda 
synthesiser 
(Maeda, 

Bark-scale F1, 
weighted 
average of F2 
and F3 

Goal-babbling 
1) Random 

motor 
exploration 

2) Random 
goal 
selection 
with 

Five vowels: 
/a, i, u , e ,o/ NA 
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1990) reaching 
3) Curiosity-

driven active 
goal 
selection 
with 
reaching 

(Moulin-
Frier et 
al., 
2014) 

7 parameters 
based on the PCA 
of the vocal tract 
shapes; 
over-damped 
spring-mass 
model for dynamic 
control 

DIVA model 
(Guenther, 
1994a; 
Guenther et 
al., 2006a; 
Tourville & 
Guenther, 
2011)/ 
modified 
Maeda 
synthesier 
(Maeda, 
1990) 

Scaled F1, F2, 
intensity 

1) Goal-
babbling 

 

VV, VC, CV, 
CC NA 

(Barnau
d et al., 
2019; 
Moulin-
Frier et 
al., 
2015) 

Jaw, tongue body, 
tongue dorsum, lip 
protrusion, tongue 
tip, lip separation, 
larynx height 

VLAM 
(vocal linear 
articulatory 
model): 
modified 
Maeda 
synthesiser 
(Maeda, 

Bark-scale F1, 
F2, F3 (Moulin-
Frier et al., 
2015); 
 
Bark-scale F1, 
F2 (Barnaud et 
al., 2019) 

Bayesian 
modelling 

VV, VC, 
CV, CC 
(Moulin-
Frier et al., 
2015); 
 
Vowels 
(Barnaud et 

NA 
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1990) al., 2019) 

(Aceved
o-Valle 
et al., 
2018) 

NA 

DIVA model 
(Guenther, 
1994a; 
Guenther et 
al., 2006a; 
Tourville & 
Guenther, 
2011)/ 
modified 
Maeda 
synthesier 
(Maeda, 
1990) 

Auditory 
feedback: 
F1, F2; 
 
Somatosensory 
feedback: 
proprioceptive 
input 

Reinforce 
learning 
through 
auditory and 
somatosensory 
feedback 
GMMs 
(Gaussian 
mixture models) 

NA 
(Acevedo-
Valle et al., 
2018) 

NA 

(Aceved
o-Valle 
et al., 
2017, 
2020) 

7 vocal tract 
parameters + 2 
glottis parameters 
(Acevedo-Valle et 
al., 2018); 
 
10 vocal tract 
parameters + 3 
glottis parameters 
(Acevedo-Valle et 

DIVA model 
(Guenther, 
1994a; 
Guenther et 
al., 2006a; 
Tourville & 
Guenther, 
2011)/ 
modified 
Maeda 

Auditory 
feedback: 
F1, F2; 
 
Somatosensory 
feedback: 
proprioceptive 
input 

Caregiver’s 
imitation of 
infant speech: 
GMMs 
(Gaussian 
mixture models) 

NA 
(Acevedo-
Valle et al., 
2018); 
 
Vowel 
sequences 
containing 
17 German 
vowels 

NA 
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al., 2020) synthesier 
(Maeda, 
1990) 

(Acevedo-
Valle et al., 
2020) 

(Philipps
en et al., 
2014) 

22 vocal tract 
parameters + 4 
glottis parameters 

VocalTractL
ab (Birkholz, 
2013) 

39 MFCCs 
(energy, 
12MFCCs, first 
and second 
derivatives) 

Distal 
supervised 
learning by 
acoustic 
imitation (Echo 
State Network) 

CV 
sequences 
containing 8 
vowels and 
8 
consonants 

Perceptual 
evaluation 
was 
conducted by 
the authors 

(Philipps
en et al., 
2016) 

20 vocal tract 
parameters 
 

VocalTractL
ab (Birkholz, 
2013) 

F1, F2, F3 + 39 
MFCCs (energy, 
12MFCCs, first 
and second 
derivatives) 
projected by 
Principal 
Component 
Analysis (PCA) 
and Linear 
Discriminant 
Analysis (LDA) 
to 10-D features 

Goal babbling 
(exploration 
and adaptation) 

6 vowels NA 

(Philipps
en, 
2021b) 

18 vocal tract 
parameters + 3 
glottis parameters 

VocalTractL
ab (Birkholz, 
2013) 
 

Echo State 
Network (ESN) 
10-D vectors 
were based on 

Goal babbling 
6 vowels, 
/baa/ and 
/maa/ 

Good vowel 
and 
consonant 
quality 
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Dynamic 
Movement 
Primitives 
(DMPs) 
(Schaal, 
2006) for 
controlling 
the 
articulatory 
trajectories 

F1, F2, F3 + 39 
MFCCs (energy, 
12MFCCs, first 
and second 
derivatives), 
then PCA and 
LDA were 
applied 
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Figure A An introduction to the online repository 
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Step 1: Installation

Create virtual environment to install the dependencies (recommended):

For Linux & Unix (Mac M1 is not supported at the moment)

For Windows

Step 2: Set up

Select and copy an initialisation file from Initialization_files

Paste it in Code

*See Instructions for further details of the initialization files

Step 3: Run

For Linux & Unix

For Windows

The process will generate three synthetic samples with the lowest error. The auditory feedback errors of all the accepted trails will be listed in
'_costs.csv'. The learned articulatory parameters of accepted trails will be listed in '_VTP1.csv'(consonant), '_VTP2.csv'(vowel), '_VTP_taus.csv'(time
constants of the consonant and the vowel). The learned glottis parameters of accepted trails will be listed in '_GLP1.csv'(consonant),
'_GLP2.csv'(vowel), '_GLP_taus.csv'(time constants of the consonant and the vowel).

Step 4: Exit

python3 -m venv env

source env/bin/activate

pip install evoclearn-rec

py -m venv env

.\env\Scripts\activate

pip install evoclearn-rec

python3 optimization.py

py optimization.py

deactivate

Anqi XU / Evoc Learn · GitLab https://gitlab.com/Anqi_Xu/evoc_learn

2 of 2 01/09/2022, 09:42
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Figure B Demographic and language background questionnaire on Gorilla 
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