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Highlights: 

 

• Time-invariant state space model of wind turbine allows modal analysis in op-

eration 

• Model combining aerodynamic decoupling and multi-blade coordinate transfor-

mation 

• Complex-valued modal model shows modal coupling and influence of mean 

wind speed 

• Tower and blade dynamic responses match fully coupled model in time and 

frequency domain 

• Modal reduction significantly reduces computation cost, allowing fast fatigue 

analysis 
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Simplified complex-valued modal model for operating wind tur-

bines through aerodynamic decoupling and multi-blade coordi-

nate transformation 

 

Abstract 

An efficient modelling methodology for steady-state operating wind turbines is pro-

posed, combining aerodynamic decoupling, multi-blade coordinate transformation, and 

modal reduction. This leads to a complex-valued, reduced-order modal model for pre-

diction of dynamic responses of the tower-rotor-blade wind turbine system, considering 

rotor rotation, blade flexibility, and vibration coupling between rotor and tower. A fully 

coupled finite element model was first developed, with aerodynamic forces linearised 

and expressed as a viscous aerodynamic damping matrix. A time-invariant state space 

model is formed using multi-blade coordinate transformation, allowing standard modal 

analysis. The complex-valued eigenvalues and mode shapes were obtained, and it is 

shown that the operating wind turbine modes exhibit a combination of tower and blade 

vibrations. Various degrees of modal reduction are applied to the state space model to 

obtain a modal model with fewer degrees of freedom, whose performance was evalu-

ated in the time and frequency domain for operating wind turbines in normal condition. 

The displacement and stress responses are in close agreement with those of the fully 

coupled model with the first 21 modes included. The model already performs well with 

8 modes considered to capture relevant fundamental frequency peaks. This allows sig-

nificantly reduced computational effort and can be particularly beneficial for fatigue 

prediction, reliability analysis, and structural identification. 

 

Keywords: Wind turbines; aerodynamic damping; multi-blade coordinate transfor-

mation; complex modal analysis.  
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1 Introduction 

Wind turbine modelling is usually based on multibody dynamics, in which the motions 

of rigid bodies (e.g., nacelle, hub) and flexible bodies (e.g., tower, blades) are coupled 

at every time step. Given the instantaneous blade vibration velocities, the aerodynamic 

loading on the rotor is calculated at every time step using the unsteady blade element 

momentum (BEM) theory [1]. Fully coupled models have been developed using multi-

body-dynamics-based modelling techniques in wind turbine modelling packages such 

as FAST [2] and HAWC2 [3]. This modelling approach is beneficial to take into ac-

count the complex interaction between different components, the wind-structure inter-

action, and the influence of the control system. However, such fully coupled models 

are usually numerically demanding and thus require significant computation time which 

may be excessive for fatigue or reliability analyses where a large number of simulations 

are required. In order to obtain exact dynamic responses, more complex finite element 

analyses for wind turbines can be employed [4, 5].  

 

Simplified wind turbine models have been developed (e.g., [6–8]) to improve compu-

tational speed. In these studies, aerodynamic decoupling between tower and rotor is 

used to simplify wind turbine models. It is usually implemented by applying the result-

ant rotor thrust at the tower top as a point load, with aerodynamic damping ratios rep-

resenting the aerodynamic damping, and the rotor-nacelle assembly (RNA) mass 

lumped at the tower top ([6, 8]). However, aerodynamic damping ratios cannot accu-

rately capture the complex aerodynamic wind-rotor interaction. Chen et al. ([9, 10]) 

developed an aerodynamic damping matrix to model the aerodynamic damping cou-

pling between the fore-aft (FA) and side-side (SS) directions to better capture the wind-

rotor interaction, considering the influence of tower motions. The blades were assumed 

to be rigid, so the blade vibration was not included, and the aerodynamic damping ma-

trix describes the overall aerodynamic damping caused by the wind-rotor interaction to 

the tower, but not the aerodynamic damping of individual blades. To quantify the aer-

odynamic damping associated with blade bending, studies focussed on linearising the 

aerodynamic forces in the blade sections. For example, Rasmussen et al. [11] and Pe-

tersen et al. [12] presented the linearisation of aerodynamic forces applied to blade el-

ements, in which the blade aerodynamic damping is represented by a 2 by 2 aerody-

namic damping matrix. Linearisation is also employed in FAST [13] by combining all 
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linearised matrices together to form the full-system linear state-space model at an op-

erating point. Wind turbine models have also been linearised in the frequency domain 

[14]. 

 

For fully coupled models, system matrices are usually time-varying for operating wind 

turbines due to the rotor rotation [15]. This prevents the use of conventional modal 

analysis of the wind turbine dynamic system. Modal analysis can be a powerful tool to 

simplify dynamic systems, as it allows the behaviour of systems with a large number 

of degrees of freedom to be captured by a limited number of dominant modes. Con-

ducting a modal analysis on an operating wind turbine first requires converting the wind 

turbine system into a time-invariant one. Different methods are available to do this, 

such as multi-blade coordinate (MBC) transformation [16] (or Coleman transfor-

mation) and Lyapunov–Floquet (L-F) transformation [17]. Skjoldan and Hansen [17] 

showed that MBC transformation is a special case of L-F transformation, and that L-F 

transformation introduces an indeterminacy on the system frequencies. Hansen [18] 

stated that MBC transformation is a more physically consistent way to set up an eigen-

value problem for operating wind turbines compared to Floquet theory. MBC transfor-

mation has been used for modal analysis and modal identification of wind turbines. For 

example, Hansen ([18–20]) implemented MBC transformation and modal analysis to 

study the stall-induced edgewise blade vibrations and aeroelastic stability of wind tur-

bines. Skjoldan and Hansen [21] investigated the effect of wind shear on modal damp-

ing based on a linearised model of a wind turbine and MBC transformation.  

 

Operational modal analysis (OMA) is often used to identify the modal parameters of 

the system such as natural frequencies, modal damping ratios, and mode shapes from 

dynamic responses caused by ambient loads. This is partially due to a smaller number 

of parameters needed to be identified for a modal model. A time-varying system needs 

to be converted into a time-invariant one so that traditional OMA methods can be used. 

Alternatively, specific identification techniques need to be implemented to identify 

time-varying systems. For instance, Allen et al. [22] developed an output-only identifi-

cation method based on the harmonic transfer function concept to identify modal pa-

rameters of a linear time-periodic wind turbine model. Yang, Tcherniak, and Allen [23] 

compared two modal identification methods applicable to operating wind turbines. The 
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first method used a conventional modal analysis (stochastic subspace identification al-

gorithm) to identify the modal parameters after an MBC transformation. The second 

method utilised the harmonic power spectrum to identify a periodic model for the wind 

turbine. 

 

Although aerodynamic decoupling and MBC transformation have been implemented to 

develop simplified wind turbine models and form the basis of wind turbine system iden-

tification, combining advanced aerodynamic decoupling, MBC transformation, and 

modal reduction has not been investigated for dynamic response calculation of wind 

turbines. This paper shows that combining the above techniques results in a complex-

valued modal model (CMM) that has a significantly reduced number of degrees of free-

dom (DOFs) and can capture the main low-order dynamic characteristics of wind tur-

bines. Thus, the CMM developed here provides some insight into the underlying dy-

namic features of the wind turbine system. As the number of DOFs considered can be 

significantly reduced compared to a fully coupled Finite Element (FE) model, the com-

putational effort needed for this model is much lower. This paper is organised as fol-

lows. Section 2 describes the fully coupled model used as reference. Section 3 proposes 

the methodology to derive the CMM from the fully coupled model. Section 4 shows 

the modal analysis results and section 5 presents dynamic response analysis. Conclu-

sions are provided in Section 6. 

   

2 Reference model and load description 

2.1 Fully coupled aeroelastic reference model 

In the present study, a fully coupled aeroelastic model of an onshore wind turbine, in-

cluding a flexible tower supporting a rotor with flexible blades, was implemented in 

Matlab as a reference model [24]. The schematic of this model is shown in Fig. 1(a). 

The derivation of the reduced CMM presented subsequently is based on this model. As 

this study concentrates on the wind-rotor-tower interaction, the wind turbine demon-

strated in this study is onshore and only contains a rotor with three blades, a nacelle and 

a tower fixed at the bottom. Soil-structure interaction (SSI) is not considered in the 

present model for simplicity. Simplified SSI can be included by introducing linear soil 

springs and dashpots at the tower bottom [24]. However, the nonlinearity introduced by 

SSI cannot be considered in the development of the linear CMM. The fully coupled 
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model is a three-dimensional FE model and the aerodynamic forces are computed using 

unsteady BEM theory. The wind turbine model is based on the widely used 5MW ref-

erence onshore wind turbine published by NREL [25]. The basic properties of this wind 

turbine are listed in Table 1.  

 

 

Fig. 1. Schematic of wind turbine. Side view of the system (a), front view of the 

rotor (b), and blade cross-section at radius 𝑟 showing elemental aerodynamic forces. 

 

Table 1 Properties of the NREL 5MW reference onshore wind turbine, based on [25]. 

Rotor Diameter, 𝑅 126 m 

Hub Height  87.6 m 

Tower Diameter, 𝐷 3.87-6.00 m 

Tower Thickness, 𝑡 19-27 mm 

Lumped Nacelle and Hub Mass 296780 kg 

Rated Wind Speed 12.1 m/s 

 

(a) 

(b) 

(c) 
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In the FE model, the tower and blades were modelled using three-dimensional Euler-

Bernoulli beam elements. The numbers of beam elements for a single blade and the 

tower are 17 and 11 respectively, so the total number of beam elements in the fully 

coupled model is 62. For each node, there are six DOFs corresponding to three transla-

tional motions and three rotational motions, resulting in 378 DOFs overall for the fully 

coupled model. A convergence study confirmed that the beam element number is suf-

ficient, as the eigenfrequency of the first mode changed by less than 1% when the num-

ber of DOFs are doubled. The finite element division of the blades is also used for the 

aerodynamic loading calculation using BEM so the term ‘element’ takes both meanings 

throughout the paper. Given the material and geometrical properties of the beam ele-

ments, the equations of motion of the fully coupled wind turbine model can be formu-

lated by: 

where 𝐌, 𝐂𝑆𝑡𝑟𝑢, 𝐊 are the mass, structural damping, and stiffness matrices respec-

tively, 𝐅𝐴𝑒𝑟𝑜 is the external force vector containing aerodynamic forces applied to the 

blades. 𝐮 is the displacement vector in the following form: 

where 𝑁𝑡 and 𝑁𝑏 are the node numbers of the tower and a single blade, 𝐮i
𝑇𝑟 con-

tains the three translational displacements and three rotations of the 𝑖𝑡ℎ tower node 

and 𝐮i
𝐵j

 is a vector collecting the DOFs associated with the 𝑖𝑡ℎ  node in the 𝐵𝑗𝑡ℎ 

blade. [ ]T denotes the transpose of a matrix/vector.  

 

In this model, the tower DOFs are referenced to a fixed inertial frame denoted by 

[𝑥, 𝑦, 𝑧], while the blade DOFs are expressed in local rotating frames with the rotor 

rotational speed 𝜔 denoted by [𝑥̅, 𝑦̅, 𝑧̅] as shown in Fig. 1. The coordinate systems 

used in the above two frames are regarded as “physical coordinate systems”. 𝐌 and 

𝐊 are time-dependent matrices [26] when the wind turbine is operating. The structural 

damping is assumed to be proportional Rayleigh damping using the relationship 𝐂 =

𝛼𝐌 + 𝛽𝐊, where 𝛼 and 𝛽 are Rayleigh coefficients. These were determined such 

that the total damping ratios due to the structural damping are around 1% for the first 

tower FA and SS bending modes according to [27]. The structural damping of a single 

blade fixed at the hub was selected as 0.48%, following the default FAST setting. Note 

 𝐌𝐮̈ + 𝐂𝑆𝑡𝑟𝑢𝐮̇ + 𝐊𝐮 = 𝐅𝐴𝑒𝑟𝑜, (1) 

 𝐮

= [𝐮1
𝑇𝑟 , 𝐮2

𝑇𝑟 , … , 𝐮𝑁𝑡
𝑇𝑟 , 𝐮1

𝐵1, 𝐮2
𝐵1, … , 𝐮𝑁𝑏

𝐵1 , … , 𝐮1
𝐵2, … 𝐮𝑁𝑏

𝐵2 , 𝐮1
𝐵3, … , 𝐮𝑁𝑏

𝐵3   ]T, 
(2) 
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that the structural damping matrix is also time-dependent, since mass and stiff matrices 

are. The nacelle was modelled using a concentrated mass at the tower top for simplicity, 

added to the mass matrix, assuming that the centre of gravity of the nacelle was located 

at the tower top and the nacelle’s moments of inertia about all axes are zero. Time 

domain analyses were conducted by implementing the numerical integration scheme 

HHT-𝛼 [28], which is a generalised version of the Newmark-𝛽 method, as integrating 

the full model using a standard ODE solver (e.g. “ode45” in Matlab) proved too time-

consuming.  

 

2.2 Wind loading 

The wind loading calculation in the fully coupled model is based on classic unsteady 

BEM theory ([1, 29]) with corrections. The iteration loop in a steady BEM code is 

neglected in the unsteady BEM code since the iteration is replaced by a time evolution, 

assuming that the time step chosen is sufficiently small. The corrections adopted in the 

unsteady BEM code include Prandtl and Glauert corrections [1]. To be consistent with 

the derivation leading to the aerodynamic damping matrix (described in Section 3), 

other corrections such as skew wake and dynamic wake corrections were not included 

in the unsteady BEM code.  

 

A non-uniform turbulent inflow wind field was used as the input to the unsteady BEM 

code to calculate the aerodynamic forces acting on the blade elements. It was generated 

by a customised turbulent wind field generator coded in Matlab, producing similar wind 

time series compared to the wind field generator in FAST, TurbSim [30]. Kaimal spec-

trum was used to generate the turbulent wind field, and its relevant parameters (e.g., 

coherence length parameters) were selected as recommended by IEC 61400-3 [31]. The 

relationship between turbulence intensities and mean wind speeds at hub height was 

defined according to the normal turbulence model (NTM). Medium turbulence intensity 

(Category B) was assumed. The inflow wind velocities, the velocity caused by rotor 

rotation and the velocities caused by blade vibration were used as input to the unsteady 

BEM code. The unsteady BEM code calculates the instantaneous local aerodynamic 

forces for all blade elements at every time step in the time integration.  
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2.3 Fully coupled model verification 

    

(a) (b) 

Fig. 2. Tower top (a) and blade tip (b) displacement responses from the fully coupled 

reference model and the FAST model for a mean wind speed of 20 m/s. 

 

FAST (version 8.15) [2] was used to verify the fully coupled reference model developed 

above. The NREL 5MW reference onshore wind turbine was modelled in FAST with 

necessary modifications (including position of nacelle and tower mode shapes) so that 

the FAST model is comparable to the reference fully coupled model. The turbulent 

wind field with a mean wind speed of 20 m/s was generated by the customised wind 

field generator and then input to FAST as the external excitation. The displacement 

responses of the tower top and blade tip from the FAST model were compared to those 

obtained from the fully coupled model with the same wind field, as shown in Fig. 2. 

Fig. 2(a) shows that the tower top responses in the FA and SS directions from these two 

models agree very well. In Fig. 2(b), there are slight differences between the blade tip 

responses from the fully coupled model and the FAST model, especially for the edge-

wise direction.  

 

FAST uses the modal superposition method to model the blade and only considers the 

first blade edgewise mode and the first two blade flapwise modes, while the developed 

fully coupled model considers more vibration modes. This can lead to the differences 

in the blade tip displacement responses. To quantify the accuracy of the fully coupled 

model in generating dynamic responses compared to the responses from the FAST 

model, the time response assurance criterion (TRAC) was used [32]. TRAC can be used 
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to quantify the degree of correlation between the two time histories. Considering two 

response vectors 𝐮1(𝑡) and 𝐮2(𝑡), the TRAC is defined as 

where 𝐮1(𝑡) and 𝐮2(𝑡) have the same duration and time step. A TRAC value close 

to 1 indicates the two time histories are very similar. The TRAC values for the tower 

top displacements in the FA and SS directions are 0.9982 and 0.9483 respectively, 

while the TRAC values for the blade tip responses in the flapwise and edgewise direc-

tions are 0.9678 and 0.8034 respectively. These values also indicate a good agreement 

between the responses from the two models and confirm that the fully coupled model 

can generate accurate dynamic responses compared to FAST.  

 

3 Methodology 

3.1 Aerodynamic decoupling for blade elements 

It is assumed that the rotor is facing an inflow wind represented by 𝑉0 pointing in the 

positive direction of the 𝑥 axis. The rotor rotates positively clockwise around the 𝑥 

axis at a speed 𝜔, so a blade element at distance 𝑟 along the blade length moves at a 

speed 𝑉𝑟 = 𝜔𝑟 in the rotation direction, as indicated in Fig. 1(b). The azimuthal angle 

𝛾𝐵𝑗(𝑡) indicates the azimuthal position of the 𝑗𝑡ℎ blade. The vibration of the tower 

and blades produces a velocity in the normal direction 𝑥̇, and a velocity in the tangen-

tial direction 𝑦̇ in the local coordinate system. These velocities cause small variations 

in the relative wind speeds experienced by blade elements, as shown in Fig. 1(c). For 

an arbitrary blade element, the relative wind speed experienced in the normal direction, 

𝑉𝑥𝑅𝑒𝑙, can be written as 

and the relative wind speed in tangential direction, 𝑉𝑟𝑅𝑒𝑙, is 

 

Assuming that the tower and blades are rigid, the steady-state aerodynamic forces in 

normal and tangential directions applied to the blade element are denoted 𝑑𝑇(𝑉0, 𝑉𝑟) 

and 𝑑𝑆(𝑉0, 𝑉𝑟) respectively. When the tower and blades are flexible, assuming the 

changes in relative wind speed experienced by every blade element are sufficiently 

 
𝑇𝑅𝐴𝐶 =

[𝐮1(𝑡)
T𝐮2(𝑡)]

2 

[𝐮1(𝑡)
T𝐮1(𝑡)][𝐮2(𝑡)

T𝐮2(𝑡)]
 , (3) 

 𝑉𝑥𝑅𝑒𝑙 = 𝑉0 − 𝑥̇; (4) 

 𝑉𝑟𝑅𝑒𝑙 = 𝑉𝑟 − 𝑦̇. (5) 

                  



 

12 

 
 

small [9], the aerodynamic loads considering the motions of the tower and blades can 

be obtained using a first order Taylor expansion of the forces around the steady-state 

normal and tangential wind velocities. Effectively, this linearises the aerodynamic 

forces in terms of velocity. The force in the normal direction is given by: 

and the force in the tangential direction is given by:  

The derivation of 
𝜕(𝑑𝑇)

𝜕𝑉0
, 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
, 

𝜕(𝑑𝑆)

𝜕𝑉0
 and 

𝜕(𝑑𝑆)

𝜕𝑉𝑟
 is provided in Appendix A. The 

steady-state aerodynamic forces are collected in an elemental force vector 𝐅𝑚
𝑒 =

[𝑑𝑇(𝑉0, 𝑉𝑟),−𝑑𝑆(𝑉0, 𝑉𝑟)]
T. This force vector is not dependent on wind turbine vibration 

but becomes time-varying when wind turbulence is considered.  

From Eq. 7. the elemental aerodynamic force vector can be written as 

where 𝐮̇𝑒 is a velocity vector expressed by 𝐮̇𝑒 = [𝑥̇, 𝑦̇]T. 𝐂𝐴𝑒𝑟𝑜
𝑒  is the elemental aer-

odynamic damping matrix for the single blade element expressed by  

𝐂𝐴𝑒𝑟𝑜
𝑒  is asymmetric. The elemental aerodynamic force can be integrated over the 

whole rotor to obtain the resultant external force vector 𝐅𝐴𝑒𝑟𝑜 in Eq. (1). The lineari-

sation of the elemental force allows the resultant 𝐅𝐴𝑒𝑟𝑜 be written as a steady-state 

aerodynamic force vector 𝐅𝑚 plus a global aerodynamic damping matrix 𝐂𝐴𝑒𝑟𝑜 mul-

tiplied by the velocity vector, which can be written as 

where 𝐅𝑚 and 𝐂𝐴𝑒𝑟𝑜 collect the terms in 𝐅𝑚
𝑒  and 𝐂𝐴𝑒𝑟𝑜

𝑒  at corresponding locations. 

𝐅𝑚 can also be calculated using the unsteady BEM theory mentioned in Section 2.2. 

𝐂𝐴𝑒𝑟𝑜 is also asymmetric as it collects all elemental aerodynamic damping matrices. 

Substituting Eq. (10) in Eq. (1), the equation of motion of the wind turbine system can 

be written by 

𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑇(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑇)

𝜕𝑉0

(−𝑥̇) +
𝜕(𝑑𝑇)

𝜕𝑉𝑟

(−𝑦̇); (6) 

𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = −(𝑑𝑆(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑆)

𝜕𝑉0

(−𝑥̇) +
𝜕(𝑑𝑆)

𝜕𝑉𝑟

(−𝑦̇)). (7) 

 𝐅𝐴𝑒𝑟𝑜
𝑒 = 𝐅𝑚

𝑒 − 𝐂𝐴𝑒𝑟𝑜
𝑒 𝐮̇𝑒, (8) 

 

𝐂𝐴𝑒𝑟𝑜
𝑒 =

[
 
 
 
 

𝜕(𝑑𝑇)

𝜕𝑉0

𝜕(𝑑𝑇)

𝜕𝑉𝑟

−
𝜕(𝑑𝑆)

𝜕𝑉0
−

𝜕(𝑑𝑆)

𝜕𝑉𝑟 ]
 
 
 
 

. (9) 

 𝐅𝐴𝑒𝑟𝑜 = 𝐅𝑚 − 𝐂𝐴𝑒𝑟𝑜𝐮̇, (10) 

 𝐌𝐮̈ + 𝐂𝐮̇ + 𝐊𝐮 = 𝐅𝑚, (11) 
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where the damping matrix 𝐂 defined by 𝐂 = 𝐂𝑠𝑡𝑟𝑢 + 𝐂𝐴𝑒𝑟𝑜 is also asymmetric.  

 

In this way, the fully coupled wind turbine model is aerodynamically linearised because 

the aerodynamic forces applied on every blade element are expressed as the sum of 

steady-state aerodynamic forces and the elemental viscous term equal to the aerody-

namic damping matrix multiplied by the blade element velocities. It should be men-

tioned that for certain cases (e.g., dynamic stall) the nonlinearity of the aerodynamic 

forces can be important and may need to be considered [1]. 

 

3.2 Multi-blade coordinate transformation 

The system matrices in Eq. (11) are time-varying and assumed periodic i.e., 𝐌(𝑡) =

𝐌(𝑡 + 𝑇), 𝐂(𝑡) = 𝐂(𝑡 + 𝑇)  and 𝐊(𝑡) = 𝐊(𝑡 + 𝑇), where 𝑇 = 2𝜋/𝜔  is the rotor 

rotation period. To perform a modal reduction, the system matrices are required to be 

time-invariant, which is achieved using MBC transformation [18]. The MBC transfor-

mation of the displacement vector 𝐮 is represented by 

where 

𝐈6𝑁𝑡 represents an identity matrix whose size is 6𝑁𝑡 × 6𝑁𝑡. This transformation con-

verts the three blade displacements 𝐮𝑖
𝐵1, 𝐮𝑖

𝐵2 and 𝐮𝑖
𝐵3 described in the local rotating 

coordinate system into three displacements denoted by 𝐚0,𝑖, 𝐚1,𝑖 and 𝐛1,𝑖 in the MBC 

coordinate system, leaving the tower displacements unchanged. 𝐚0,𝑖 , 𝐚1,𝑖  and 𝐛1,𝑖 

describe the cumulative motions of all rotor blades (not individual blades).  

 

For the 𝑖𝑡ℎ  node in the 𝐵𝑗𝑡ℎ  blade, the displacement vector 𝐮𝑖
𝐵𝑗

 is related to the 

MBC displacements by 

The transformed displacement vector 𝐳 is expressed as 

 𝐮 = 𝐓𝐳, (12) 

 

𝐓 =

[
 
 
 
𝐈6𝑁𝑡 𝟎 𝟎 𝟎

𝟎 𝐈6𝑁𝑏 𝐈6𝑁𝑏 cos 𝛾𝐵1(𝑡) 𝐈6𝑁𝑏 sin 𝛾B1(𝑡)

𝟎 𝐈6𝑁𝑏 𝐈6𝑁𝑏 cos 𝛾B2(𝑡) 𝐈6𝑁𝑏 sin 𝛾B2(𝑡)

𝟎 𝐈6𝑁𝑏 𝐈6𝑁𝑏 cos 𝛾B3(𝑡) 𝐈6𝑁𝑏 sin 𝛾B3(𝑡)]
 
 
 
. (13) 

 𝐮𝑖
𝐵𝑗

= 𝐚0,𝑖 + 𝐚1,𝑖 cos 𝛾𝐵𝑗(𝑡) + 𝐛1,𝑖 sin 𝛾𝐵𝑗(𝑡). (14) 

 𝐳 =  (15) 
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Substitute Eq. (12) into Eq. (11) and left multiplying the equations by 𝐓−1, we obtain 

where 𝐌𝑇 = 𝐓−1𝐌𝐓 , 𝐂𝑇 = 2𝐓−1𝐌𝐓̇ + 𝐓−1𝐂𝐓 , 𝐊𝑇 = 𝐓−1𝐌𝐓̈ + 𝐓−1𝐂𝐓̇ +

𝐓−1𝐊𝐓, 𝐅𝑇 = 𝐓−1𝐅𝑚. The transformed mass, damping and stiffness matrices 𝐌𝑇, 𝐂𝑇 

and 𝐊𝑇 are time-invariant. As a result, the linearised model described by Eq. (11) is 

transformed into a time-invariant model described by Eq. (16), allowing further modal 

reduction.  

 

3.3 State space model and modal reduction 

The system matrices in Eq. (16) are asymmetric due to the MBC transformation and 

the asymmetry of the aerodynamic damping matrix, but complex eigenvalue analysis 

can still be carried out using these matrices to obtain a CMM. It is more convenient to 

do this after formulating the equations in state space as described in Eq. (17): 

where 

𝐱 = [
𝐳̇
𝐳
], 

𝐀 = [
𝟎 𝐌𝑇

𝐌𝑇 𝐂𝑇
], 

𝐁 = [
−𝐌𝑇 𝟎

𝟎 𝐊𝑇
], 

𝐟 = [
𝟎
𝐅𝑇

]. 

The vibration modes of dynamic system described by Eq. (17) are complex. For the 

𝑘𝑡ℎ mode, the complex eigenvalue 𝜆𝑘 and eigenvector (or mode shape vector) 𝛟𝑘 

are related to 𝐀 and 𝐁 by: 

where 𝑘 = 1, 2, 3, … ,𝑁𝑑𝑜𝑓, and 𝑁𝑑𝑜𝑓 is the total number of DOFs for the system de-

scribed by Eq. (1). The eigenvalue 𝜆𝑘 can be related to a complex pair calculated from 

the eigenfrequency 𝜔𝑛,𝑘 and the damping factor 𝜁𝑘 by 

[𝐮1
𝑇𝑟 , 𝐮2

𝑇𝑟 , … , 𝐮𝑁𝑡
𝑇𝑟 , 𝐚0,1, 𝐚0,2, … , 𝐚0,𝑁𝑏 , 𝐚1,1, 𝐚1,2, … , 𝐚1,𝑁𝑏, 𝐛1,1, 𝐛1,2, … , 𝐛1,𝑁𝑏  ]

T. 

 𝐌𝑇𝐳̈ + 𝐂𝑇𝐳̇ + 𝐊𝑇𝐳 = 𝐅𝑇 , (16) 

 𝐀𝐱̇ + 𝐁𝐱 = 𝐟, (17) 

 (𝜆𝑘𝐀 + 𝐁)𝛟𝑘 = 0 (18) 

 
𝜆𝑘 = −𝜁𝑘𝜔𝑛,𝑘 ± i𝜔𝑛,𝑘√1 − 𝜁𝑘

2 (19) 

                  



 

15 

 
 

where i2 = −1. Let the complex mode shape matrix 𝚽 collect all the mode shape 

vectors as columns. The size of 𝚽  is  2𝑁𝑑𝑜𝑓 × 2𝑁𝑑𝑜𝑓 . The eigenfrequencies and 

mode shapes mentioned here are eigen properties of the MBC transformed system with 

constant coefficients, but not strictly speaking of the original time-varying system. 

However, in previous studies relevant to wind turbine modal dynamics, the eigenfre-

quencies and modes of the transformed system have been regarded as the modal prop-

erties of an operating wind turbine for simplicity [18, 33]. To be clear, the eigenfre-

quencies, mode shapes and damping ratios are referred to the eigen properties of the 

MBC transformed wind turbine system throughout this study. 

 

Implementing the transformation defined by 𝐱 = 𝚽𝛂 and multiplying Eq. (17) by 

𝚽H, the CMM of the wind turbine system can be expressed by 

or in a simplified form 

where 𝐀̅ = 𝚽H𝐀𝚽, 𝐁̅ = 𝚽H𝐁𝚽, 𝐟̅ = 𝚽H𝐟, 𝛂 is the general complex modal coordi-

nate. [ ]H denotes the complex conjugate (Hermitian) transpose of a matrix/vector. It 

should be noted that the terms in 𝐀̅, 𝐁̅ and 𝐟 ̅ are in general complex. The CMM is 

time-invariant and includes the aerodynamic damping effect explicitly. As 𝐂 in Eq. 

(11) is asymmetric, 𝐂𝑇 and 𝐀 are both asymmetric. As a result, the equations of mo-

tion in Eq. (17) cannot in general be transformed into a system of uncoupled equations 

because the off-diagonal terms in 𝐀̅ and 𝐁̅ are non-zero. These off-diagonal terms 

represent coupling between different modes. 

 

Considering only a limited number of dominant modes can generate wind turbine dy-

namic responses with sufficient accuracy, so the number of DOFs in the simplified sys-

tem is lower than that in the fully coupled model. The reduced CMM with only 𝑁𝑚𝑜𝑑 

modes considered can be expressed by: 

where 𝐀̅𝑟, 𝐁̅𝑟, 𝐟𝑟̅ and are obtained by truncating 𝐀̅, 𝐁̅ and 𝐟 ̅ considering the terms 

relevant to the first 𝑁𝑚𝑜𝑑 modes only. It can be shown that if there is no coupling 

between modes (off-diagonal terms are all zero), Eq. (22) consists of a set of uncoupled 

equations and the solution of each equation should be the same no matter how many 

 𝚽H𝐀𝚽𝛂̇ + 𝚽H𝐁𝚽𝛂 = 𝚽H𝐟, (20) 

 𝐀̅𝛂̇ + 𝐁̅𝛂 = 𝐟,̅ (21) 

 𝐀̅𝑟𝛂̇𝑟 + 𝐁̅𝑟𝛂𝑟 = 𝐟𝑟̅ , (22) 
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modes are considered. However, the solution of Eq. (22) depends on the number of 

modes considered due to the coupling between modes, and it can be implied that with 

the increase of modes this solution slowly converges. The wind turbine model is line-

arised from the fully coupled model, where nonlinear rotor aerodynamics and geomet-

rical nonlinear effects in structural members cannot be considered. However, in this 

study we will show that for steady operating conditions, this linear model is able to 

capture the main dynamic characteristics of wind turbines and generate close dynamic 

responses compared to those from the fully coupled reference model. 

 

3.4 Modal superposition 

Simulating the dynamic responses of the wind turbine system using the simplified 

CMM first requires the complex-valued differential equations in Eq. (22) to be solved 

to obtain the truncated modal coordinate 𝛂𝑟. The Matlab routine “ode45” was used to 

solve the complex-valued differential equations. 𝐱 and 𝐳 can then be calculated using 

the complex modal superposition method defined by 𝐱 ≈ 𝚽𝑟𝛂𝑟. To obtain the dis-

placement vector 𝐮 in the physical coordinate system, the transformation denoted by 

𝐮 = 𝐓𝐳 is finally used. The relationship between 𝐮 and 𝛂 can be written by 

where 𝚽𝑑𝑖𝑠𝑝,𝑟 is the reduced 𝑁𝑑𝑜𝑓 × 𝑁𝑚𝑜𝑑 mode shape matrix obtained by truncat-

ing 𝚽 to only include terms related to displacement and the first 𝑁𝑚𝑜𝑑  modes. It 

should be noted that 𝚽𝑑𝑖𝑠𝑝,𝑟 is the truncated mode shape matrix of the time invariant 

system described by Eq. (17), in which the blade motions are described in the MBC 

transformed coordinate system. As a result, it is difficult to represent 𝚽𝑑𝑖𝑠𝑝,𝑟 graph-

ically. Alternatively, a periodic mode shape matrix defined by 𝚿𝑟 = 𝐓𝚽𝑑𝑖𝑠𝑝,𝑟 can be 

used to illustrate the mode shapes in the physical coordinate system. Combining Eqs. 

(14) and (23), for the displacement vector 𝐮𝑖
𝐵𝑗

 of the 𝑖𝑡ℎ node in the 𝐵𝑗𝑡ℎ blade, the 

following expression can be obtained 

 𝐮 ≈ 𝐓𝚽𝑑𝑖𝑠𝑝,𝑟𝛂𝑟 (23) 

 

𝐮𝑖
𝐵𝑗

≈ ∑ 𝛟𝑘,𝑖,𝑎0
𝛼𝑘(𝑡)

𝑁𝑚𝑜𝑑

𝑘=1

+ ∑ 𝛟𝑘,𝑖,𝑎1

𝑁𝑚𝑜𝑑

𝑘=1

cos 𝛾𝐵𝑗(𝑡) 𝛼𝑘(𝑡)

+ ∑ 𝛟𝑘,𝑖,𝑏1
sin 𝛾𝐵𝑗(𝑡) 𝛼𝑘(𝑡)

𝑁𝑚𝑜𝑑

𝑗=1

. 

(24) 
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where 𝛟𝑘,𝑖,𝑎0
, 𝛟𝑘,𝑖,𝑎1

 and 𝛟𝑘,𝑖,𝑎1
 are the three truncated mode shape vectors related 

to 𝐚0,𝑖, 𝐚1,𝑖 and 𝐛1,𝑖 respectively for the 𝑘𝑡ℎ mode and 𝑖𝑡ℎ node, and 𝛼𝑘(𝑡) is the 

general coordinate for the 𝑘𝑡ℎ mode. This means that the blade motion can be split 

into three components, i.e., one symmetric component (𝐚0,𝑖) where all the blades deflect 

simultaneously, two asymmetric components (𝐚1,𝑖 and 𝐛1,𝑖) where the blades deflect 

with a phase shift caused by changing azimuthal positions [34]. The latter two asym-

metric motions are also referred as backward/forward whirling [16]. As a result, flap-

wise blade motions correspond to the rotor coning, tilt, and yaw respectively, while 

edgewise blade motions correspond to the rotor collective lag, progressive lag and re-

gressive lag respectively ([16, 35]). From Eq. (24), it can be seen that for the 𝑘𝑡ℎ 

mode, 𝐮𝑖
𝐵𝑗

 does not only contain the frequency components from the 𝑘𝑡ℎ eigenfre-

quency 𝜔𝑛,𝑘  introduced by 𝛼𝑘(𝑡), but also from the shifted frequencies 𝜔𝑛,𝑘 − Ω 

and 𝜔𝑛,𝑘 + Ω introduced by 𝛼𝑘(𝑡) cos 𝛾𝐵𝑗(𝑡) and 𝛼𝑘(𝑡) sin 𝛾𝐵𝑗(𝑡) [18]. Ω is the 

rotor rotational frequency and Ω = 1/𝑇. Therefore, 𝐮𝑖
𝐵𝑗

 can contain many frequency 

components not only due to the multiples of the well-known rotor rotational frequencies 

(1P, 2P, 3P, …) but also the unshifted/shifted eigenfrequencies. 

 

Following the steps described, a reduced complex modal model is obtained considering 

an arbitrary number of modes. To include the effect of the control system, a relationship 

between mean wind speed, pitch angle and rotor rotation speed [25] is used to represent 

the normal operational states of wind turbines, as shown in Fig. 3. This relationship is 

used for all cases throughout this study.  

  
Fig. 3. Relationship between the rotor speed (dashed), pitch angle (solid) and inflow 

mean wind speed, based on [25]. 
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4 Wind turbine modal analysis 

4.1 Eigen properties for a single mean wind speed 

This section presents the eigen properties of the CMM developed in Section 3. The 

eigenfrequencies 𝜔𝑛,𝑘 and damping factors 𝜁𝑘 for the first 8 modes are listed in Ta-

ble 2 for a mean wind speed of 20 m/s as an example. To obtain the vibration charac-

teristics of a wind turbine, it is essential to include the basic vibration modes of the 

tower and blades, including low-order FA/SS tower vibration modes and flap-

wise/edgewise blade vibration modes with different vibration frequencies.The repre-

sentative mode shapes (real part) of the operating wind turbine for the first 8 modes are 

shown in Fig. 4 in blue. Corresponding parked mode shapes are shown in red in each 

subplot for comparison and will be commented on later. The mode shapes shown in 

Fig. 4 are periodic in the original physical coordinate system. Here, one blade is always 

kept upward for illustration, and the fluctuation in mode shapes cannot be observed 

graphically. 

 

Table 2. Eigenfrequencies, damping factors, and frequency differences for the first 

8 modes; turbine parked or in operation; mean wind speed 20 m/s.  

Mode 

Number 

Operating Parked  

Frequency 

(Hz) 

Damping Ratio 

(%) 

Frequency 

(Hz) 

Damping Ratio 

(%) 

Frequency 

Difference 

(%) 

1 0.33 1.3 0.33 1.0 2.5 

2 0.35 8.6 0.34 1.0 -4.0 

3 0.52 76.8 0.64 0.6 23.8 

4 0.69 58.0 0.67 0.5 -3.1 

5 0.84 47.8 0.70 0.5 -16.5 

6 0.89 2.2 1.00 0.9 13.1 

7 1.00 2.0 1.09 0.5 9.7 

8 1.29 1.5 1.11 0.5 -13.7 

 

The first mode at 0.33 Hz mainly corresponds to the first tower bending mode in the SS 

direction with a relatively low damping ratio of 1.3%. The second mode (0.35 Hz) can 

be identified as the first tower bending mode in the FA direction with a larger damping 
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ratio of 8.6%. This is consistent with the findings in literature that the tower is more 

highly damped in the FA direction when a wind turbine is in operation [27]. This mode 

is not a pure tower mode, as its mode shape includes significant blade flexure (com-

bined rotor coning, tilt, and yaw). The tower also bends in the SS direction, though with 

much smaller amplitude. The 3rd and higher modes are dominated by rotor modes [36]. 

For example, the 3rd and 5th modes mainly contain rotor tilt and yaw modes, while the 

4th mode is dominated by a rotor coning mode. The damping ratios for these three 

modes are very high (up to 76.8%), consistent with results reported in literature [33, 

37] and probably due to the aerodynamic damping significantly reducing the flapwise 

blade vibration. On the other hand, the 6th to 8th modes are mainly rotor lag modes, with 

damping ratios from 1.5% to 2.2%. The 7th mode mainly corresponds to the rotor col-

lective lag mode, while the 6th and 8th modes are dominated by rotor progressive/re-

gressive motions. In all these modes the vibrations of the tower and three blades con-

tribute to different extents, which makes the dynamic response of the operating wind 

turbine system complex. 

 

Table 2 and Fig. 4 compare the eigenfrequencies and mode shapes of the parked wind 

turbine with those from the operating wind turbine, showing the influence of the aero-

dynamic damping on the eigen properties. The eigenfrequencies of the parked wind 

turbine can be regarded as the original resonance frequencies of the wind turbine sys-

tem. To obtain the eigenfrequencies and mode shapes of the parked wind turbine, an 

eigenvalue analysis was conducted for the CMM with zero rotor rotation speed (making 

the MBC transformation inoperative), zero wind speed, and the initial blade positions, 

without aerodynamic damping. A standard eigenfrequency calculation method was 

used to verify this method, in which the original system matrices without aerodynamic 

damping were directly written in state space and then eigenfrequencies were calculated. 

The eigenfrequencies of the parked wind turbine calculated by these two methods are 

identical. As shown in Table 2, the eigenfrequencies for the first 2 modes are very sim-

ilar for the parked and operating wind turbines, but significant differences can be found 

for other modes, especially for the 3rd and 5th modes with percentage differences larger 

than 15%. The differences in eigenfrequencies of the operating and parked wind tur-

bines here are due to aerodynamics, as stiffening effects caused by rotor rotation are 

not considered in this study. Due to the aerodynamic damping of the operating turbine, 

the damping ratios of the parked wind turbine are lower, especially for the 2nd to 5th 
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modes. The normalized mode shapes for the parked wind turbine (red) are compared to 

the operating wind turbine (blue), as shown in Fig. 4. The first two mode shapes of the 

parked wind turbine show less combination of tower and blade vibration modes in dif-

ferent directions. For example, for the 1st mode, the tower only bends in the SS direction 

for the parked wind turbine, but the tower also bends in the FA direction for the trans-

formed model of the operating wind turbine. In general, mode shapes of the parked and 

operating wind turbines are similar in terms of pattern. The mode shapes of the operat-

ing wind turbine for the rotor modes (the 3rd to 8th modes) also show some combination 

of flapwise and edgewise vibrations of blades. Results confirmed that the introduction 

of aerodynamic damping has a significant impact on all modes by increasing the cou-

pling and motions between the different directions, so that it becomes difficult to iden-

tify the dominant mode shape component. Most higher mode shapes for the parked and 

operating wind turbines also follow the above trend.  
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Fig. 4. Mode shapes of the first 8 modes for the operating (blue) and parked (red) 

wind turbines at mean wind speed 20 m/s, compared to the original position (black), 

with side (second column) and front views (third column). 

 

4.2 Influence of mean wind speed on eigen properties 

  

(a) (b) 

Fig. 5. Damping ratios of the CMM for mean wind speeds from 3 m/s to 25 m/s. 
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Experimental studies have reported that the identified eigenfrequencies and damping 

ratios of a wind turbine system can vary with different wind speeds [38]. For the CMM, 

the aerodynamic damping varies with mean wind speed. Given different mean wind 

speeds and the corresponding rotation speeds and pitch angles (Fig. 1), the aerodynamic 

damping matrices were calculated, and subsequent reduced modal models were ob-

tained. It was found that the eigenfrequencies are not significantly influenced by the 

mean wind speed, with an average percentage difference of 4% and a maximum per-

centage difference of 15% for the 3rd mode with respect to the rated wind speed (Table 

2). In Fig. 5(a), the damping ratios of the CMM are plotted against the mean wind 

speeds for the 1st, 2nd, 6th, 7th, and 8th modes. The damping ratio for the 1st mode varies 

slightly between 1.1% and 1.4%. For the 2nd mode, the damping ratio increases from 

6.1% to around 8.4% until the rated wind speed of 12 m/s (the blade starts to pitch) and 

then becomes stable around 8.5%. The relationship between the FA/SS damping ratio 

and mean wind speed is consistent with that reported in [9, 37, 39]. The damping ratios 

of the 6th to 8th modes increase from the mean wind speed of 3 m/s to the rated wind 

speed and then slowly increase from 14 m/s wind speed after a drop. As the damping 

ratios for the 3rd to 5th modes are much higher, they are shown separately in Fig. 5(b). 

A similar sharp drop can be observed for the damping ratios of these three modes when 

the mean wind speed increases from 3 m/s to 10 m/s, followed by a fluctuation of damp-

ing ratio values around 74%, 54% and 45% for the 3rd to 5th modes, respectively.  

 

The eigenfrequencies of the operating wind turbine only vary slightly for different wind 

speeds or compared to the parked wind turbine. The differences in damping ratios due 

to the aerodynamic damping are much more noticeable, especially for the tower FA 

mode and flapwise rotor modes. The inclusion of aerodynamic damping causes a dif-

ference in the mode shapes for the first two modes, but much smaller mode shape dif-

ferences for other modes.  

 

5 Dynamic response comparison 

5.1 Time domain simulations 

This section shows results from the time domain analysis obtained from the CMM, 

compared to the fully coupled model. The case with a mean wind speed of 20 m/s is 

again taken as an example to show the performance of the proposed model in generating 
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dynamic response time series, considering the first 5, 8, and 21 modes respectively. The 

eigenfrequencies, damping ratios for the 9th to 21st modes are shown in Appendix B, in 

addition to the eigen properties for the first 8 modes. The tower top responses in the FA 

and SS directions from the fully coupled model and the CMMs are compared in Fig. 

6(a, b). Compared to the fully coupled model, 5, 8, and 21 modes capture the vibration 

phase and fluctuation in the tower FA displacement with good accuracy. However, for 

5 and 8 modes an offset in the overall mean FA displacements can be observed. The 

TRAC values for the three models are 0.9877, 0.9871 and 0.9991 respectively, showing 

that considering the first 21 modes improves the accuracy in the tower FA response 

generation. For the tower SS displacement, considering either the first 8 (TRAC value: 

0.9817) or 21 modes (TRAC value: 0.9888) results in close responses compared to the 

fully coupled model. The CMM with 5 modes is less accurate, as the blade edgewise 

vibrations and the tower SS vibration occur in the same plane and are closely connected. 

   

(a) (b) 
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(c) (d) 

Fig. 6. Tower top FA (a) and SS (b), and blade tip flapwise (c) and edgewise (d) dis-

placement responses from the fully coupled model and the CMM including up to 21 

modes for a mean wind speed of 20 m/s. 

 

The blade tip responses of one blade from the fully coupled model and CMMs are com-

pared in Fig. 6(c, d), showing displacements in the local rotating coordinate system of 

the blade. The flapwise displacements for 5, 8, and 21 modes all agree very well with 

those from the fully coupled model, with TRAC values around 0.9915. Differences in 

the edgewise responses are also small when considering enough modes, as reflected in 

the corresponding TRAC values of 0.9717 and 0.9737 for 8, and 21 modes, respec-

tively. Overall, the CMM with 5 modes fails to capture the high-frequency oscillations 

in the edgewise blade response, as the dominant edgewise modes (6th to 8th) are not 

included. The CMMs with 8 and 21 modes successfully capture the vibration fluctua-

tion but possibly underestimate the vibration amplitude. 

 

 

Fig. 7. TRAC values of tower FA and SS, blade tip flapwise and edgewise displace-

ments relative to the considered mode numbers for a mean wind speed of 20 m/s. 

  

The TRAC values for the four displacements are shown in Fig. 7, using different num-

bers of modes. When at least 5 modes are considered, the TRAC values for the tower 

FA/SS displacements and the blade tip flapwise displacement are all above 0.95, but 

for the blade tip flapwise displacement the TRAC value is only 0.6153. Considering 

more modes leads to more accurate predictions of the dynamic responses, especially 
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for the blade tip edgewise vibration. The TRAC value for all displacements is above 

0.97 when the mode number is larger than 8. The dynamic responses from the fully 

coupled model were also compared to those from the full-size FE model with linearised 

aerodynamic damping. Almost identical differences in blade tip edgewise responses 

were obtained, showing that the slightly less accurate blade edgewise response is due 

to the linearised aerodynamic damping, which could overestimate the aerodynamic 

damping in blade edgewise vibration.  

 

5.2 Frequency domain comparison 

   

(a)  (b)  

     

 (c)  (d)   

Fig. 8. Tower top FA (a) and SS (b), and blade tip flapwise (c) and edgewise (d) dis-

placement PSDs for a mean wind speed of 20 m/s and various reduced models. 
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The dynamic responses generated by the CMM were also analysed in the frequency 

domain. The power spectral densities (PSDs) of the obtained dynamic time responses 

were calculated using the Matlab function “pwelch” and compared in Fig. 8 for the 

tower top FA and SS displacements and the blade tip flapwise and edgewise displace-

ments. M1-8 label the frequencies of the first 8 modes, and 1P~6P represent the multi-

ples of the rotor rotation frequency 0.2 Hz corresponding to a rotation speed of 12.1 

rpm. Fig. 8(a, b) shows that the modes with frequencies close to the 1st and 2nd eigen-

frequency dominate the tower top SS and FA displacement responses. In the frequency 

range up to 1.8 Hz, the FA tower motion for the CMMs with all levels of modal reduc-

tion results in close PSDs compared to that from the fully coupled model. However, the 

5 mode model cannot capture the peaks above 0.8 Hz for the SS tower motion. In Fig. 

8(b), the PSDs from the CMMs with more than 5 modes have similar peaks at eigen-

frequencies for the 6th to 8th mode but with lower amplitudes compared to those from 

the fully coupled model. The amplitude difference could be due to the aerodynamic 

decoupling that overestimates the aerodynamic damping. Fig. 8(c) shows that the blade 

tip flapwise vibration is dominated by the peaks near 1P and 2P, which is well captured 

by the CMMs with 5 or more modes. The eigenfrequencies of the 3rd to 5th modes dom-

inated by the flapwise blade vibration are between 0.5 and 0.85 Hz. The very high 

damping ratios of these modes can account for the fact that their peaks are not clearly 

visible in Fig. 8(c). The peaks near 1P and 2P are not caused by the inherent system 

modes, but by the harmonics in the external aerodynamic forces due to rotor rotation. 

Fig. 8(d) shows that the blade tip edgewise displacements are dominated by two peaks, 

one at the 1P frequency and one at frequency M8-Ω. The latter peak is a combination 

resonance between the 8th eigenfrequency and the rotor rotation which arises from prod-

uct terms such as 𝛼𝑘(𝑡) sin 𝛾𝐵𝑗(𝑡) in Eq. (24). Other peaks also appear distinctly, such 

as peaks at the 2P frequency and the 1st eigenfrequency. Therefore, only considering 

the first 5 modes cannot capture the peaks above 0.8 Hz.  

 

Time and frequency domain results are consistent, with increased accuracy of the dy-

namic responses when a higher number of modes is considered. Considering 8 or more 

modes, all relevant resonances in the frequency domain are identified, but some differ-

ences remain for the tower FA and blade edgewise displacements. Considering 21 
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modes (from 380 for the full model) increases the model accuracy, especially for the 

tower FA motion. 

 

5.3 Stress response prediction 

 
  

(a) (b) 

 
 

(c) (d) 

Fig. 9. Tower bottom FA (a) and SS (b), and blade root flapwise (c) and edgewise (d) 

longitudinal stresses from the fully coupled model and the CMM with 21 modes for a 

mean wind speed of 20 m/s. 

 

One of the possible applications of the reduced CMM is to conduct efficient fatigue 

analyses, requiring accurate stress hotspot responses. The internal forces and stresses 

in the tower and blade sections can be obtained from finite element displacement out-

put. The Euler-Bernoulli bending strains are the product of the local curvatures and the 
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distance from the neutral axis in each direction [24]. The curvatures can be obtained by 

differentiating the elemental shape functions twice. Therefore, the longitudinal stress 

𝜎𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) at time 𝑡 , position (𝑥 , 𝑦) within the cross-section and 𝑧  along the 

tower or blade, is the linear superposition of the two strains multiplied by Young's mod-

ulus 𝐸: 

where 𝐍𝑒′′(𝑧) is the second order derivative of the elemental shape function vector, 

𝐮𝑥
𝑒(𝑡) and 𝐮𝑦

𝑒 (𝑡) are the nodal displacement vectors in the 𝑥 and 𝑦 directions. 

 

With the displacement responses generated by the CMM with 21 modes, the maximum 

tower bottom stresses in the FA and SS directions and blade root stresses in the flapwise 

and edgewise directions can be calculated using Eq. (25). The calculated stresses are 

found to be close to those obtained from the fully coupled model, as shown in Fig. 9, 

with TRAC values larger than 0.97 for all four stress time series. Although the tower 

bottom SS stresses are slightly underestimated using 21 modes, it can be concluded that 

generally accurate stress responses for the tower and blades with significantly reduced 

DOFs can be generated for fatigue damage analysis. 

 

5.4 Computation speed comparison 

Crucially, the modal reduction results in significant computational savings, as shown 

in   

 𝜎𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡) = −𝐸(𝐍𝑒′′(𝑧)𝐮𝑥
𝑒(𝑡)𝑥 + 𝐍𝑒′′(𝑧)𝐮𝑦

𝑒 (𝑡)𝑦) , (25) 
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Table 3 comparing the computation time needed for the fully coupled model in Matlab, 

the FAST model, and the CMM with different number of modes considered. The set-

tings for the FAST model are as described in Section 2.3. These three models are based 

on different principles. The tower and blades are modelled by beam elements in the 

fully coupled model in Matlab, but they are modelled by modal superposition in FAST. 

However, the CMM is formulated by applying complex modal reduction to an aerody-

namically decoupled finite element model. 
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Table 3. Computation time comparison for 60 s of simulation time. 

 Fully coupled 

model 

FAST 

model 

Complex modal model 

5 modes 8 modes 21 modes 

Computa-

tion time (s) 
21 10 0.07 0.07 0.63 

 

For 60 s of simulation time, the fully coupled model requires 21 s of computation time 

and the FAST model takes 10 s, as the FAST model only considers two tower bending 

modes and two blade bending modes. However, the required computation time for the 

CMMs with 5 modes and 8 modes is only 0.07 s. The CMM with 21 modes is more 

accurate as discussed above and still requires only a very short computation time of 

0.63 s for this simulation. The computation time comparison here is not like-for-like, 

as different integration algorithms were used. However, it can be concluded that the 

CMM is much more efficient than the fully coupled model and the quasi-mode based 

FAST model due to aerodynamic decoupling and significant reduction of DOFs. There-

fore, with an appropriate number of modes considered, the CMM has the potential to 

conduct efficient fatigue analysis requiring large number of calculations. 

6 Conclusions 

This study proposes a novel methodology to efficiently model wind turbines by comb-

ing aerodynamic linearisation, MBC transformation, and modal reduction, resulting in 

a complex-valued modal model that considers the vibrations of both the tower and 

blades. Three steps are required to form the CMM: 

1. Aerodynamic linearisation is first conducted to capture the aerodynamic forces ap-

plied to blade elements with 2×2 aerodynamic damping matrices.  

2. The fully coupled model is then converted to a time-invariant state-space model 

using the MBC transformation.  

3. Modal decomposition is implemented to obtain a reduced CMM with limited modes 

considered.  

This model explicitly includes aerodynamic damping caused by wind-rotor interaction 

and considers blade flexibility. It allows standard modal analysis and investigation of 

the eigen properties of the system, showing that the modes of the operating wind turbine 

exhibit a combination of tower and blade vibration. It is found that the aerodynamic 

damping ratios vary with the mean wind speed and follow similar trends and amplitudes 
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compared to literature, while the eigenfrequencies do not change significantly with the 

mean wind speed.  

 

The complex equations of motion were solved by a time integration technique and 

modal superposition is employed to obtain the dynamic responses of the whole wind 

turbine with a varying number of modes included. The dynamic responses from the 

CMM were compared to those from the fully coupled model in the time and frequency 

domains. The conclusions are:  

1. Accurate dynamic time responses for displacements and hotspot stresses can be ob-

tained when the first 21 modes are included (TRAC values above 0.97).  

2. The model performs well with at least 8 modes included, in terms of effectively 

capturing the peaks most relevant to rotor rotation frequencies and eigenfrequen-

cies.  

3. The computation time is significantly reduced. The computation time required for 

the CMM with 8 modes is only around 0.3% of that for the finite-element-based 

fully coupled model in Matlab and 0.7% of that for the FAST model.  

Hence, the CMM can be very useful when large numbers of simulations are required, 

such as fatigue prediction, structural optimisation, and reliability analysis. Furthermore, 

the model could be used as an identification target as it explicitly includes aerodynamic 

damping effects and has advantageous complex eigen properties that enable the overall 

dynamic characteristics to be captured with a limited number of modes.  
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Appendix A 

Derivation for partial derivatives used in Section 3 

This appendix gives the expressions necessary to calculate the partial derivatives defin-

ing the aerodynamic damping matrix in terms of known aerodynamic quantities such 

as inflow wind speed, blade profile, fluid properties and operational conditions. All 

notations used here are from the classic steady BEM theory [1]. These partial deriva-

tives are 
𝜕(𝑑𝑇)

𝜕𝑉𝑥
, 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
, 

𝜕(𝑑𝑆)

𝜕𝑉𝑥
 and 

𝜕(𝑑𝑆)

𝜕𝑉𝑟
. The derivation based on the variables 𝑉0 and 

𝑉𝑟 is given. According to BEM theory, the thrust on an element at radius 𝑟 can be 

written as    

where 𝜌 is the air density, 𝑎 and 𝑎′ are the axial and tangential induction factors 

respectively, 𝑐 is the chord length, 𝐶𝑛 is the normal force coefficient and 𝑑𝑟 is the 

increment length of the element. The tangential force can be expressed by 

where 𝐶𝑡 is the tangential force coefficient. Assuming 𝑑𝑇 and 𝑑𝑆 are functions of 

𝑉0 and 𝑉𝑟 , other intermediate variables such as 𝑎, 𝑎′ , 𝐶𝑛 , 𝐶𝑡  and 𝜙 can also be 

treated as functions with regard to 𝑉0 and 𝑉𝑟. 𝜙 is the sum of the attack angle, pitch 

and twist angles. According to classic BEM theory, the relationships between these 

variables are 

where 𝜎 indicates the solidity, 

and 

and  

where 𝐶𝑙 and 𝐶𝑑 is the lift and drag coefficients respectively,  

and  

 
𝑑𝑇 =

1

2
𝜌[𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2]𝐶𝑛𝑐𝑑𝑟, (A. 1) 

 
𝑑𝑆 =

1

2
𝜌[𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2]𝐶𝑡𝑐𝑑𝑟, (A. 2) 

 
𝑎 =

1

4 𝑠𝑖𝑛2 𝜙
𝜎𝐶𝑛

+ 1
, 

(A. 3) 

 
𝑎′ =

1

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1
; 

( A. 4) 

 𝐶𝑛 = 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙, ( A. 5) 

 𝐶𝑡 = 𝐶𝑙𝑠𝑖𝑛𝜙 − 𝐶𝑑𝑐𝑜𝑠𝜙; ( A. 6) 
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Firstly, from Equation (A. 1), 
𝜕(𝑑𝑇)

𝜕𝑉0
 can be written as 

where 𝑉𝑅𝑒𝑙
2 = 𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2; 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
 can be written as 

Similarly, from Equation (A. 2), 

and 

The expression for the terms in Equations ( A. 8) to ( A. 11) can be expressed as follows: 

where 
𝜕𝑎

𝜕𝑉0
=

𝑑𝑎

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉0
 and 

𝜕𝑎′

𝜕𝑉0
=

𝑑𝑎′

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉0
; 

Then 

where 
𝜕𝑎

𝜕𝑉𝑟
=

𝑑𝑎

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉𝑟
 and 

𝜕𝑎′

𝜕𝑉𝑟
=

𝑑𝑎′

𝑑𝜙
∙

𝜕𝜙

𝜕𝑉𝑟
. 

𝑑𝑎

𝑑𝜙
 and 

𝑑𝑎′

𝑑𝜙
 can be determined from Equations (A. 3) and ( A. 4): 

and 

 
𝑡𝑎𝑛𝜙 =

𝑉0(1 − 𝑎)

𝑉𝑟(1 + 𝑎′)
 𝑜𝑟 𝑐𝑜𝑡𝜙 =

𝑉𝑟(1 + 𝑎′)

𝑉0(1 − 𝑎)
. ( A. 7) 

 𝜕(𝑑𝑇)

𝜕𝑉0
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛

𝜕𝑉0
], ( A. 8) 

 𝜕(𝑑𝑇)

𝜕𝑉𝑟
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛

𝜕𝑉𝑟
]. ( A. 9) 

 𝜕(𝑑𝑆)

𝜕𝑉0
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡

𝜕𝑉0
] ; ( A. 10) 

 𝜕(𝑑𝑆)

𝜕𝑉𝑟
=

1

2
𝜌𝑐 ∙ 𝑑𝑟 ∙ [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡

𝜕𝑉𝑟
]. ( A. 11) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
= 2𝑉0(1 − 𝑎)2 − 𝑉0

2 ∙ 2(1 − 𝑎)
𝜕𝑎

𝜕𝑉0
+ 𝑉𝑟

2 ∙ 2(1 + 𝑎′)
𝜕𝑎′

𝜕𝑉0
 ( A. 12) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
= −𝑉0

2 ∙ 2(1 − 𝑎)
𝜕𝑎

𝜕𝑉𝑟
+ 2𝑉𝑟(1 + 𝑎′)2 + 𝑉𝑟

2 ∙ 2(1 + 𝑎′)
𝜕𝑎′

𝜕𝑉𝑟
 ( A. 13) 

 
𝑑𝑎

𝑑𝜙
=

−4(𝑠𝑖𝑛2𝜙𝐶𝑛 −
𝑑𝐶𝑛

𝑑𝜙
𝑠𝑖𝑛2𝜙)

𝜎𝐶𝑛
2 (

4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1)
2   , ( A. 14) 

 
𝑑𝑎′

𝑑𝜙
=

−4(𝑐𝑜𝑠2𝜙𝐶𝑡 −
𝑑𝐶𝑡

𝑑𝜙
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙)

𝜎𝐶𝑡
2 (

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1)
2 . ( A. 15) 
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The expressions for 
𝜕𝜙

𝜕𝑉0
 and 

𝜕𝜙

𝜕𝑉𝑟
 can be found from Equation ( A. 7) using the follow-

ing two equations: 

and 

where 
𝑑(

1+𝑎′

1−𝑎
)

𝑑𝜙
=

𝑑𝑎′

𝑑𝜙
(1−𝑎)+

𝑑𝑎

𝑑𝜙
(1+𝑎′)

(1−𝑎)2
 and 

𝑑(
1−𝑎

1+𝑎′)

𝑑𝜙
=

−
𝑑𝑎

𝑑𝜙
(1+𝑎′)−

𝑑𝑎′

𝑑𝜙
(1−𝑎)

(1+𝑎′)2
. 

For 
𝜕𝐶𝑛

𝜕𝑉0
 , 

𝜕𝐶𝑛

𝜕𝑉𝑟
, 

𝜕𝐶𝑡

𝜕𝑉0
 and 

𝜕𝐶𝑡

𝜕𝑉𝑟
, the following four equations can be used: 

 

 

 

𝑑𝐶𝑛

𝑑𝜙
 and 

𝑑𝐶𝑡

𝑑𝜙
 can be simply derived from Equations( A. 5) and ( A. 6): 

and 

This provides all the terms required to determine damping derivatives. 

  

 
𝜕𝜙

𝜕𝑉0
[
𝑑 (

1 + 𝑎′

1 − 𝑎
)

𝑑𝜙
𝑡𝑎𝑛𝜙 +

1

𝑐𝑜𝑠2 𝜙
∙
1 + 𝑎′

1 − 𝑎
] =

1

𝑉𝑟
 ( A. 16) 

 
𝜕𝜙

𝜕𝑉𝑟
[
𝑑 (

1 − 𝑎
1 + 𝑎′)

𝑑𝜙
𝑐𝑜𝑡𝜙 −

1

𝑠𝑖𝑛2 𝜙
∙
1 − 𝑎

1 + 𝑎′
] =

1

𝑉0
. ( A. 17) 

 𝜕𝐶𝑛

𝜕𝑉0
=

𝑑𝐶𝑛

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
; ( A. 18) 

 𝜕𝐶𝑛

𝜕𝑉𝑟
=

𝑑𝐶𝑛

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
; ( A. 19) 

 𝜕𝐶𝑡

𝜕𝑉0
=

𝑑𝐶𝑡

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
; ( A. 20) 

 𝜕𝐶𝑡

𝜕𝑉𝑟
=

𝑑𝐶𝑡

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
. ( A. 21) 

 𝑑𝐶𝑛

𝑑𝜙
=

𝜕𝐶𝑙

𝜕𝜙
𝑐𝑜𝑠𝜙 +

𝜕𝐶𝑑

𝜕𝜙
𝑠𝑖𝑛𝜙 + 𝐶𝑑𝑐𝑜𝑠𝜙 − 𝐶𝑙𝑠𝑖𝑛𝜙, ( A. 22) 

 𝑑𝐶𝑡

𝑑𝜙
=

𝜕𝐶𝑙

𝜕𝜙
𝑠𝑖𝑛𝜙 −

𝜕𝐶𝑑

𝜕𝜙
𝑐𝑜𝑠𝜙 + 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙. ( A. 23) 
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Appendix B 

For the 9th to 21st modes, the eigenfrequencies, damping ratios are listed in Table B.1.  

 

Table B.1. Eigenfrequencies and damping factors the 9th to 21st modes; turbine in 

operation; mean wind speed 20 m/s.  

Mode Number Frequency 

(Hz) 

Damping Ratio 

(%) 

Mode Number Frequency 

(Hz) 

Damping Ratio 

(%) 

9 1.63 18.7 16 4.02 5.2 

10 1.98 15.4 17 4.17 2.7 

11 2.03 15.0 18 4.52 8.5 

12 2.97 6.9 19 4.56 8.6 

13 3.11 9.1 20 7.08 10.1 

14 3.76 2.8 21 7.84 9.7 

15 3.99 9.9    

 

                  


