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a b s t r a c t

Background: Many different brain atlases exist that subdivide the human cortex into dozens

or hundreds of regions-of-interest (ROIs). Inconsistency across studies using one or

another cortical atlas may contribute to the replication crisis across the neurosciences.

Methods: Here, we provide a quantitative comparison between seven popular cortical

atlases (Yeo, Desikan-Killiany, Destrieux, Jülich-Brain, Gordon, Glasser, Schaefer) and

vertex-wise measures (thickness, surface area, and volume), to determine which parcel-

lation retains the most information in the analysis of behavioural traits (incl. age, sex, body

mass index, and cognitive ability) in the UK Biobank sample (N~40,000). We use linear

mixed models to compare whole-brain morphometricity; the proportion of trait variance

accounted for when using a given atlas.

Results: Commonly-used atlases resulted in a considerable loss of information compared to

vertex-wise representations of cortical structure. Morphometricity increased linearly as a

function of the log-number of ROIs included in an atlas, indicating atlas-based analyses

miss many true associations and yield limited prediction accuracy. Likelihood ratio tests

revealed that low-dimensional atlases accounted for unique trait variance rather than

variance common between atlases, suggesting that previous studies likely returned atlas-

specific findings. Finally, we found that the commonly-used atlases yielded brain-

behaviour associations on par with those obtained with random parcellations, where

specific region boundaries were randomly generated.

Discussion: Our findings motivate future structural neuroimaging studies to favour vertex-

wise cortical representations over coarser atlases, or to consider repeating analyses across
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Sex
Alcohol consumption

Age

Cigarette smoking
multiple atlases, should the use of low-dimensional atlases be necessary. The insights

uncovered here imply that cortical atlas choices likely contribute to the lack of reproduc-

ibility in ROI-based studies.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

To better understand neuronal correlates of human behav-

iour, studies typically investigate the association between

brain structural measurements in regions-of-interest (ROI)

and behavioural traits. Recent efforts to collect large-scale

neuroimaging data enable unprecedented opportunities for

powerful statistical analyses. One of the most used software

for structural brain analysis is FreeSurfer (Fischl et al., 2002)

which is used to determine regional brain measures from a

participant's brain image. Briefly summarised, FreeSurfer

models the cortex in a two-dimensional mesh, with an arbi-

trary resolution of ~150,000 vertices per hemisphere (known

as “fsaverage standard space”). Measurements are extracted

at each vertex, and include cortical thickness, surface area

and volume. With reference to a cortical atlas (Fig. 1), the

software can subdivide the cortical mesh into ROIs and cal-

culates their structural characteristics, such that the surface

areador grey-matter volume or cortical thickness.

Cortical atlases aim to outline structurally homogeneous

and meaningful regions that reflect the organisation of the

cortex, but there is no ground-truth parcellation. Different

organisational characteristics are inferred based on distinct

brain modalities, including anatomical landmarks, cytoarchi-

tecture, and patterns of functional coactivation. Here, we

consider seven available atlases: Desikan-Killiany (DK;

Desikan et al., 2006), Destrieux (Destrieux, Fischl, Dale, &

Halgren, 2010), Glasser (Glasser et al., 2016), Gordon (Gordon

et al., 2014), Schaefer (Schaefer et al., 2017), Yeo (Yeo et al.,

2011), Jülich-Brain (Amunts, Mohlberg, Bludau, & Zilles, 2020).

Atlases differ in their anatomical boundaries and number of

ROIs and were generated using different methods and

samples.

Desikan-Killiany (68 ROIs) and Destrieux (148 ROIs) are

landmark-based atlases, which means that the cortex is

divided in a manner consistent with the macroscopic anat-

omy of gyri and sulci. ROIs in Desikan-Killiany were manually

labelled on structural MRI scans from a sample of 40 partici-

pants between 19 and 87 years (mean age 55.95 years; Desikan

et al., 2006), who had been originally recruited with a range of

atrophy levels by the Washington University Alzheimer's
Disease Research Center (Fotenos, Snyder, Girton, Morris, &

Buckner, 2005). The Destrieux atlas follows what the authors

described as “widely accepted anatomical conventions” (page

2; Destrieux et al., 2010) and was derived from 12 healthy

participants between 18 and 33 years (mean age 21.67).

Yeo (34 ROIs), Gordon (333 ROIs) and Schaefer (500 ROIs)

were derived from resting-state functional MRI data. Gordon

et al. (2014) quantify gradients of functional activation

across the cortex and use abrupt changes in these gradients as

indicators of regional borders. Gordon's atlas was derived
from 120 healthy community-dwelling participants between

the ages of 19e32 years (mean age 25). Schaefer et al. (2017)

integrates this approach by maximising uniformity within

regions while neighbouring voxels are only assigned to the

same area if abrupt gradient changes do not separate them.

Schaefer et al. used images of 1,489 brains from the Genomics

Superstruct Project (participants aged between 18 and 35

years). Yeo et al. (2011) outline 17 macroscopic network con-

figurations that were stably estimated using clustered func-

tional connectivity data from 1,000 healthy participants

(mean age 21.3 years).

Glasser et al. (2016, 360 ROIs) parcellate regions using a

semi-automated approach where regional boundaries were

defined from multiple indicators including cortical architec-

ture, function, and connectivity measures. It was outlined

from 200 participants between 22 and 35 years in the Human

Connectome Project cohort. Finally, Amunts et al. (2020) pre-

sent the ‘Jülich-Brain’, a microstructural parcellation of 137

cortical areas in each hemisphere, reflecting cytoarchitecture

across the cortex, which was derived based on 23 post-

mortem brains (version 2.9). The mean age of this sample

was 64 years (range 30e86).

Different atlases outline different regional boundaries

with spatial discrepancies (Alexander-Bloch et al., 2018;

Bohland, Bokil, Allen, & Mitra, 2009), which likely influences

study results. A recent study showed that atlas choice affects

estimates of network topology and functional brain connec-

tivity (Revell et al., 2022). In another study, different atlases

either induced or masked associations between ROIs and age,

meaning that comparable regions were associated with age

in one atlas but not in another (Yaakub et al., 2020). The fact

that many different atlases are frequently used introduces

uncertainty when comparing and attempting to reproduce

study results; probably exacerbating the existing lack of

consensus about associations between the brain and behav-

iour across neuroimaging studies (Kharabian Masouleh,

Eickhoff, Hoffstaedter, Genon, & Alzheimer's Disease

Neuroimaging Initiative, 2019; Marek et al., 2022). The

optimal atlas may differ for any given study, and to our

knowledge, there is no data-driven guideline about which

atlas maximises brain-trait association and prediction of

specific behavioural traits.

While variance captured by ROIs is reduced compared with

vertex-wise measures, the main advantage of employing

cortical atlases is to reduce dimensionality which facilitates

interpretation. Recently, a novel statistical framework was

presented (Sabuncu et al., 2016), allowing consideration of all

brain vertices simultaneously to estimate whole-brain asso-

ciations with behavioural traits. This approach accounts for

correlations between vertices and negates the need to sum-

marise vertex measures across ROIs. Using mixed linear

models, this method quantifies the proportion of trait
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Fig. 1 e The surface-based cortical representations considered in this Registered Report (right hemisphere view). The first

six commonly-used atlases were visualised with the ggseg package in R (Mowinckel & Vidal-Pi~neiro, 2020). Note that the

Yeo atlas annotation files dictate 17 networks in each hemisphere, resulting in 34 ROIs. Vertices were visualised based on

150,000 randomly simulated points. Some colours were generated with the circulize package in R (Gu, Gu, Eils, Schlesner, &

Brors, 2014). The Julich-Brain atlas and the random parcellations were visualised from 3D coordinates using the rgl package

in R (https://dmurdoch.github.io/rgl/). In random atlases, vertices with larger radius indicate the seeds from which random

ROIs were grown.We also analysed a random atlas with 50,000 ROIs (i.e., 5 times the number of regions as displayed for the

10,000 ROIs), which is not shown in the figure.
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variance (R2) that can be attributed to brain morphology, or

morphometricity. Conceptually, morphometricity is equivalent

to heritability in genetics, which indicates the proportion of

trait variance explained by many small polygenic effects.

A recent study estimated morphometricity for hundreds of

traits, demonstrating that vertex-wise brain measures

explained substantial proportions of trait variance (Couvy-

Duchesne et al., 2020). In a supplementary analysis, DK ROI-

summarised brain measures seemed to explain considerably

less variance than the vertex-wise measures, though no sta-

tistical significance tests were performed to test this
difference. This effect was most pronounced for age, for

which the proportion of variance explained by vertex-wise

cortical measures was R2~65%, but only R2~25% when

derived from DK measures. This suggests that averaging

across ROIs masks informative inter-individual variance

which is retained in vertex-wise cortical representations.

Vertex-wise morphometricity has been shown to be robust

across samples, and it explained considerably more variance

in traits such as fluid intelligence (R2~13.2%) compared with

recent predictions models using different methods to maxi-

mise brain-based predictive ability (R2~7%) of behavioural

https://dmurdoch.github.io/rgl/
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traits (Gong, Beckmann, & Smith, 2021). This illustrates that

morphometricity estimates could be promising indicators for

how well different representations of the brain (vertices or

different atlases) can account for individual differences. This

could help formulate a recommendation for which brain

representation is most promising to capture structural brain

associations with behavioural traits.

This Registered Report (https://osf.io/dkw9t/) is the first

study to compare commonly-used cortical atlases of varying

dimensionality by quantifying and contrasting morphome-

tricity estimates of behavioural variables. We hypothesised

that more fine-grained cortical representations would yield

larger morphometricity estimates compared with coarser

atlases, because explanatory variance is lost when averaging

across ROIs. We expected at least a two-fold increase in

morphometricity between the coarsest and most fine-grained

atlas, which was formulated based on preliminary results in

Couvy-Duchesne et al. (2020). It is reasonable to expect that

some atlases may be detailed enough to capture maximal

morphometric variance. Such an atlas should outperform

randomly-generated ROIs and vertex-wise representations, as

it summarises anatomically coherent ROIs that should be

unaffected by registration imprecision and anatomical vari-

ability. We expect to find trait-dependent optimal levels of

atlas dimensionality, as per recent work assessing atlas per-

formances based on functional MRI data (Dadi et al., 2020).

There, the highest performing predictions in an age variable

were achieved by ~150 ROIs, while ~300 ROIs were optimal for

intelligence.

The UK Biobank study currently provides FreeSurfer data

from which we extracted cortical vertex-wise measurements,

as well as ROI-summarised cortical representations in seven

commonly-used atlases: Yeo (34 ROIs), Desikan-Killiany (68

ROIs), Destrieux (148 ROIs), Jülich-Brain (274 ROIs), Gordon

(333 ROIs), Glasser (360 ROIs), and Schaefer (500 ROIs). To

better assess a relationship between morphometricity and

dimensionality of the atlas, we randomly generated atlases

with 1,000; 5,000; 10,000; and 50,000 ROIs. Morphometricity

estimates based on surface area, grey-matter volume, and

cortical thickness are reported for seven non-brain traits that

are well-measured in UKB and known to be morphometric,

that is, robustly associated with grey-matter structure: age

(Cole et al., 2018), sex (Ritchie et al., 2018), cognitive abilities

(Cox, Ritchie, Fawns-Ritchie, Tucker-Drob, & Deary, 2019),

body mass index (Couvy-Duchesne et al., 2020), education

(Sabuncu et al., 2016), cigarette smoking, and alcohol con-

sumption (Couvy-Duchesne et al., 2020). We fitted mixed

linear models to estimate the morphometricity (i.e. total as-

sociation) between behavioural traits as dependent variables

and either vertex-wise or ROIs measurements as independent

variables. We tested for significant differences in morpho-

metricity using likelihood ratio tests.
2. Materials and methods

2.1. UKB neuroimaging data

The UK Biobank (UKB) study is a population-based cohort for

health-related information from ~500,000 individuals across
the United Kingdom (Sudlow et al., 2015). Among baseline

characteristics, physical, and cognitive assessments, it pro-

vides pre-processed MRI data from around 40,000 participants

(Littlejohns et al., 2020). The Research Ethics Committee

ethically approved the UKB study and participants signed

informed consent.

Researchers have access to the FreeSurfer outputs (UKB

field ID 20263; https://biobank.ndph.ox.ac.uk/showcase/field.

cgi?id¼20263) from the first neuroimaging visit that have

been pre-processed and quality controlled on behalf of UKB

(Alfaro-Almagro et al., 2018). Detailed documentation on T1-

weighted þ T2 FLAIR processing using FreeSurfer 6.0 can be

found online (Smith, Alfaro-Almagro, & Miller, 2020).

Combining two structural images in processing is considered

more precise and associated with improved cortical segmen-

tation (Lindroth et al., 2019) compared to processing T1w im-

ages only. The Freesurfer outputs already contained

individual-level data with reference to Desikan-Killiany

(Desikan et al., 2006), Destrieux, and unsmoothed vertex-

wise data. The vertex-wise measurements considered here

correspond to the “fsaverage” cortical mesh representation

(~300,000 vertices both hemispheres). We derived individual-

level cortical measurements with reference to Yeo et al.

(2011), Destrieux et al., (2010), Desikan et al. (2006), Glasser

et al. (2016), Gordon et al. (2014), Schaefer et al. (2017), and

Jülich-Brain (Amunts et al., 2020). Most fsaverage atlas anno-

tation files were obtained from MultiAtlasTT (https://github.

com/faskowit/multiAtlasTT. Click or tap if you trust this

link.">https://github.com/faskowit/multiAtlasTT), which

were in .gcs format and were easily mapped using FreeSurfer

6.0 commands (mris_ca_label &mris_anatomical_stats). From

this resource, Schaefer atlas annotation files were only avail-

able for a maximum of 500 ROIs. Annotation files for Yeo et al.

(2011) were downloaded as part of the FreeSurfer 6.0 software.

Jülich-Brain atlas (Amunts et al., 2020) annotation files (v2.9)

were obtained from Mangin, Rivi�ere, and Amunts (2021).

Mapping atlases from .annot files required a purpose-built

pipeline, which we share on GitHub (https://annafurtjes.

github.io/Comparing_atlases/). Surface area and volume

ROIs are summarised as the sum of vertices, and cortical

thickness is an average measure.

2.2. Random parcellations

We generated contiguous random parcellations by randomly

selecting and summarising across vertices in the cortical

mesh. The number of parcellations matched the number of

ROIs contained in the commonly-used atlases (Fig. 1). We also

generated an additional four, more fine-grained parcellations

with 1,000; 5,000; 10,000 and 50,000 random ROIs. To ensure

that parcellations resulted in contiguous ROIs, random seeds

were selected fromwhich we grew random ROIs. We used the

vcgKDtree R clustering algorithm (Rvcg package) to iteratively

grow the ROIs, adding at each iteration six spatially proximal

vertices (when possible). This yielded ROIs of roughly the

same size. We hypothesised that if random atlases yielded

larger morphometricity compared with commonly-used

atlases, it would indicate that morphometricity depends on

dimensionality and not the exact ROI-specific boundaries

outlined in atlases. In this manuscript, we refer to the

https://osf.io/dkw9t/
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20263
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20263
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commonly-used and random brain parcellations as well as

vertex-wise measures using the notion atlases that are

composed of ROIs.

2.3. UKB traits of interest

Morphometricitywas estimated fornon-brain traits toquantify

the proportion of variance accounted for when using cortical

measures represented by ROIs from a given atlas. We selected

the following dependent variables, because they are highly

morphometric, and well-phenotyped in the UKB sample. We

considered age (field ID 21003), sex (field ID 31) and body mass

index (field ID 21001). We used measures of cognitive ability to

construct a “g” factor of general cognitive ability using the

lavaan package in R (Rosseel, 2012). We used a confirmatory

factor analysiswithone factor, basedonthe followingcognitive

ability tests:VerbalNumerical Reasoning (field ID20016, 20191),

Trail Making e B (field ID 6350, 20157), Matrix Pattern Comple-

tion (field ID 6373), Tower Rearranging (field ID 21004), Symbol

Digit Substitution (field ID 23324 & 20159), Pairs Matching (field

ID399), andReactionTime (field ID200032). The testshavebeen

described in detail elsewhere, and as in previous work, we

considered the firstmeasured occasion for each participant (de

la Fuente, Davies, Grotzinger, Tucker-Drob, & Deary, 2021).

Compared with standard reference tests, the cognitive assess-

ments exhibit good concurrent validity (r ¼ .83) and test-retest

reliability (mean Pearson r¼ .55) (Fawns-Ritchie&Deary, 2020).

Usually, this general cognitive ability factor explains about 40%

of the total variance in the included cognitive tests (Deary,

Penke, & Johnson, 2010); here it accounts for 34%. According

to commonly used heuristics (Hu & Bentler, 1998), the factor

demonstrated good model fit (CFI ¼ .97, RMSEA ¼ .05; SFig. 1).

Additionally, we estimated morphometricity for educa-

tional qualification (field ID 6138), number of cigarettes

smoked daily (field ID 2887) and frequency of drinking alcohol

(field ID 20414; excluding former drinkers field ID 20406).

Outliers that fall beyond 4 standard deviations from the mean

were removed from the sample. This criterion was only

applied to non-brain traits, as this criterion applied to brain

measures created too many missing data entries for LMMs to

reliably converge. Covariates included in all models consisted

of UKB acquisition site (field ID 54), and head positioning in the

MRI scanner (X, Y, Z coordinates, field IDs 25756, 25757, 25758).

2.4. Statistical analyses

Morphometricity. Morphometricity quantifies the proportion

of inter-individual differences in a non-brain trait (dependent

variable) accounted for by cortical measurements (indepen-

dent variables). The dependent variables in this study are listed

above and include age, sex, body mass index, and cognitive

ability. Independent variables include the following ROI mea-

sures within cortical atlases: either ~300,000 vertex-wise mea-

sures, or atlas-wide brain ROIs, which include different

amounts of ROIs depending on the atlas. Additionally, we

considered four covariates (outlined above in UKB traits of

interest).

To estimate morphometricity, we fitted linear mixed

models (LMMs, Fig. 2). This approach recognises the
correlation structure between many independent variables,

and was presented and validated elsewhere, using vertex-

wise data (Couvy-Duchesne et al., 2020). Briefly, the LMM fits

all cortical measurements as a vector of random effects that is

constrained to a normal distribution and a structure of

variance-covariance derived from the brain relatedness ma-

trix (BRM, B). The BRM quantifies how similar participants are

to one another based on cortical measures. We excluded 4

participants with outlying covariance (±8SD frommean brain-

relatedness) from the analyses as this indicated oddly similar

or dissimilar brains and could bias the LMM results. More

detailed model definitions are outlined in the Supplementary

Material. All covariates held constant, we used Restricted

Maximum Likelihood (REML) implemented in the OSCA soft-

ware (OmicS-data-based Complex trait Analysis; Zhang et al.,

2019) to estimate the variance of the brain random effect (sb
2).

sb
2 quantifies the total trait variance captured by all vertex-

wise measurements, while se
2 quantifies the residual vari-

ance accounted for by the error term. Morphometricity will be

determined as follows (Couvy-Duchesne et al., 2020; Sabuncu

et al., 2016):

R2 ¼ s2
b

� �
s2
b þs2

e

�

As this is a Registered Report, we had introduced the

detection of above-zero morphometricity as a “positive con-

trol”, to test whether the proposed analyses allow for a fair

test of the stated hypothesis. All morphometricity estimates

presented in the results were significantly larger than zero,

which confirms that there was enough systematic variance in

the data to detect differences in atlas performance, should

they exist. Though not pre-registered, we report in the Results

that log-linear models described the relationship between

morphometricity and atlas dimensionality well (it became

obvious when plotting the data that there was a logarithmic

relationship).
Comparison of atlases. To compare and test differences in

morphometricity between two atlases (i.e., quantify the mor-

phometricity specific to each atlas or shared between atlases),

we extended the previous model by fitting two nested LMMs:

the null model fits one variance component for all ROIs within

one cortical atlas as random effects (non-brain trait ~

intercept þ covariates þ atlas1), and the alternative model in-

cludes an additional variance component for all ROIs within a

second atlas (non-brain trait ~ intercept þ covariates

þ atlas1 þ atlas2). Likelihood ratio tests (LRT) allowed exami-

nation of whether morphometricity estimates (R2) significantly

differed between two commonly-used atlases (i.e., not the

random atlases). The c2 distributed LRT statistic contrasts the

improvement of fit from the null to the alternative model

against the loss in degrees of freedom. To adjust for multiple

testing, we considered Bonferroni corrected p-values below .05/

(588)¼ 8.5� 10�5 as significant. Refer to Fig. 2 for an illustration.

In practice, we performed 588 pair-wise comparisons between

commonly-used atlases across all measurement types and

traits (7 non-brain traits x 3 measurement types x 28 pairs of

atlases). Each comparison contrasted morphometricity within

each trait-brain measurement type configuration.

In each LRT, the loss in degrees of freedom equals one,

because we model one variance component per atlas. This

https://doi.org/10.1016/j.cortex.2022.11.001
https://doi.org/10.1016/j.cortex.2022.11.001


Fig. 2 e Step-by-step illustration of the statistical analyses described in this Registered Report. The linear mixed model

equation in step 1 is shown to illustrate the variables considered. This equation will not be solved per se, instead wewill use

Restricted Maximum Likelihood on the basis of model assumptions outlined in the methods to obtain variance components

(step 2), that allow calculation of the morphometricity estimate (step 3). Likelihood ratio tests will only compare commonly-

used atlases and vertex-wise measures against one another, but not random parcellations. 1Desikan et al. (2006); 2Destrieux

et al. (2010); 3Glasser et al. (2016); 4Gordon et al. (2014); 5Schaefer et al. (2017); 6Yeo et al. (2011); 7Amunts et al. (2020).
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means that testing does not depend on the numbers of cortical

measurements contained in the different atlases, allowing a

fair LRT comparison. To illustrate this lack of estimate infla-

tion with more predictors, consider genome-wide complex

trait analysis heritability estimates in which millions of ge-

netic components are fit to a trait as randomeffects (Yang, Lee,

Goddard,&Visscher, 2011). This is awell-established approach

using LMMs equivalent to the one used here to estimate

morphometricity. It is known that the heritability estimates do

not alter when the number of genetic predictors considered in

the analysis are increased or reduced, if they remain genome-

wide representative. Refer to the supplementary material for

pre-registered power calculations.

Best fittingmodel. In addition to the LRT, we calculated the

Bayesian Information Criterion (BIC) (Schwarz, 1978) to

compare and rank themodels based on their penalised fit. The

BIC is a well-established measure of fit that was calculated as

the difference between model complexity (log(Nparticipants)*p;

with p the number of parameters estimated in the model) and

model fit (2*LogLikelihood), meaning that smaller values indi-

cate better model fit.

Morphometricity of random parcellations. To understand

whether commonly-used atlases explained more variance

than expected using random atlas boundaries, we estimated

the distributions of morphometricity estimates from 100

randomly generated atlases with the same number of ROIs as

are included in the commonly-used atlases. For example, for

comparison with Desikan-Killiany, we generated atlases with
68 random ROIs (across both hemispheres) and repeated the

analysis 100 times, to obtain a distribution ofmorphometricity

under random parcellations. We reported the percentage out

of 147 estimates from commonly-used atlases (7 atlases x 7

traits x 3 measurement types) that were larger than 0%, 50%,

and 99% of the 100 estimates from random parcellations.

2.5. Sensitivity analyses

Penalised regression. To test the robustness of the main re-

sults, we estimated how well grey-matter structure measures

predicted non-brain traits by using LASSO models. LASSO is a

“least absolute shrinkage and selection operator” (Tibshirani,

1996), that maximises predictive ability and can handle

more predictors than observations. We estimated LASSO pa-

rameters on a training subset (random 80% sample subset,

~30,400 participants depending on number of total partici-

pants surviving data cleaning) with the big_spLinReg function

in the bigstatsr package (Priv�e, Aschard, Ziyatdinov, & Blum,

2018). Using ten-fold cross-validation, the function separates

the training set in ten folds, employs a Cross-Model Selection

and Averaging procedure and outputs an averaged vector of

coefficients.

We evaluated the prediction accuracy of the LASSOmodels

in a validation sample (20%, ~7,600 participants) and report

the prediction accuracy (i.e., R2 between observed and pre-

dicted values), and mean absolute errors (i.e. mean absolute

difference between observed and predicted measures of a

https://doi.org/10.1016/j.cortex.2022.11.001
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Fig. 3 e Descriptive statistics for each non-brain trait. Note the distribution for the education phenotype which is not

representative of the general population but expected in the UKB sample (Fry et al., 2017).
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non-brain trait). To statistically compare absolute errors be-

tween atlases, we contrasted the absolute errors obtained in

models with different atlases using Wilcoxon's signed rank

tests. To adjust for multiple testing, we considered Bonferroni

corrected p-values below .05/(588) ¼ 8.5 � 10�5 as significant.
3. Results

3.1. Descriptive statistics

Overall, we processed structural neuroimaging data for 42,957

participants (4 exclusions based on ±8SD BRM criterion). Par-

ticipants who withdrew consent and those without T2-FLAIR

measurements were removed from the phenotype data

(nremoved ¼ 1,377). Depending on data availability, differing

numbers of participants were included in the morphome-

tricity analysis of the seven non-brain traits. Final descriptive

statistics are displayed by non-brain trait in Fig. 3.

3.2. Morphometricity estimates

First, we estimated the total association between each atlas

and trait of interest, to assess if more complex atlases tend to

retain more information. Morphometricity estimated from
the commonly-used atlases (Yeo, Desikan-Killiany, Des-

trieux, Glasser, Gordon, Jülich-Brain, Schaefer), random par-

cellations with 1,000, 5,000, 10,000 and 50,000 ROIs, as well as

from vertex-wise measurements are displayed in Fig. 4. All

traits were morphometric as indicated by significant LRTs

examining whether the estimate was larger than zero

(STable 1). Estimates differed between non-brain traits,

atlases, and brain measurement types, as did the BIC quan-

tifying model performances (SFig. 2). Overall, age and sex

yielded the highest morphometricity out of the seven non-

brain traits.

As hypothesised, we observed that atlases with more ROIs

produced larger morphometricity across all seven traits and all

brain measurement types. This was more pronounced for sur-

face area than cortical thickness measures. The largest esti-

mates were always yielded by vertex-wise measures. More

generally, we observed substantial increases in morphome-

tricity from high-dimensional compared to low-dimensional

atlases (Fig. 4; STable 1). We found a median 3.41-fold increase

in morphometricity (range increase ¼ 1.49-folde15.17-fold) ob-

tained from vertex-wise measures (300,000 ROIs) compared

with the Yeo atlas (34 ROIs). For example, we found 25% mor-

phometricity estimated for sex from surface area measures

represented by the Yeo atlas, compared with 88% morphome-

tricity by vertex-wise measures (all raw estimates in STable 2).

https://doi.org/10.1016/j.cortex.2022.11.001
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Fig. 4 eMorphometricity for seven behavioural traits estimated using different brainmeasurement types: GrayVol¼ cortical

gray-matter volume, SurfArea ¼ cortical surface area, ThickAvg ¼ average cortical thickness.
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3.3. Relationship between morphometricity and atlas
dimensions

We observed strong linear-log relationships between mor-

phometricity estimates and (logarithmically transformed)

atlas dimensionality (SFig. 3), with R2 estimates ranging
between 56% and 98% (mean ¼ 84.58%, SD ¼ 11.89%). Table 1

reports intercepts (ɑ) and coefficients (b) characterising this

relationship for non-brain traits and brain measurement

types separately. Based on information contained in Table 1,

the expectedmorphometricity estimate (in %)may be inferred

for each trait, as follows:

https://doi.org/10.1016/j.cortex.2022.11.001
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EðmorphometricityÞ¼b� logðnumber of ROIsÞ þ ɑ

With this formula, we can infer, for example, that the ex-

pected morphometricity for age using 200,000 surface area

measurements is around 67% (4:5� logð200;000Þ þ 12). Table 1

shows that models of cortical thickness tended to yield

smaller coefficients b than models of surface area, suggesting

thickness-based morphometricity is less influenced by atlas

dimensionality than surface area-based analyses.

3.4. Outlying estimates by Schaefer atlas

Morphometricity from the Schaefer atlas measures were

unexpectedly large, they yielded worse model fit compared

with other atlases (SFig. 2) and broke the continuity of

increased estimates with larger atlas dimensionality (mainly

associations with age and sex). According to our formula

above, we expected the following morphometricity for an

atlas with 500 ROIs: agesurface area ¼ 39.97%, agevolume ¼
34.75%, sexsurface area ¼ 43.45%, sexvolume¼ 40.73%. Instead, we

found substantially larger estimates: agesurface area ¼ 55.01%,

agevolume ¼ 46.90%, sexsurface area ¼ 72.30%, sexvolume ¼ 53.24%.

Suspecting the Schaefer atlas measures may not be normally

distributed, we re-estimated morphometricity using normal-

ised Schaefer atlas data (Rank-based Inverse Normal Trans-

formation) and obtained estimates as predicted by the

formula: agesurface area ¼ 38.99% [35e42%], agevolume ¼ 36.46%

[33e40%], sexsurface area ¼ 48.32% [45e52%], sexvolume ¼ 44.46%

[41e48%]. Normalisation descriptively reduced morphome-

tricity for all other traits too, but confidence intervals from

adjusted and unadjusted estimates overlapped.
Table 1 e Linear regression results describing the relationship be
dimensionality.

Non-brain trait Brain measurement type ɑ

Age SurfArea 12

GrayVol 13

ThickAvg 21

Alcohol consumption SurfArea �3.4

GrayVol �2.5

ThickAvg .14

Body Mass Index SurfArea �9.9

GrayVol �8.7

ThickAvg 4.3

Cigarette consumption SurfArea �6.8

GrayVol �3.4

ThickAvg .019

Education SurfArea �5.1

GrayVol �2.6

ThickAvg .028

General cognitive ability SurfArea �3.9

GrayVol �1.1

ThickAvg 4.5

Sex SurfArea 13

GrayVol 14

ThickAvg 24

GrayVol ¼ cortical gray-matter volume, SurfArea ¼ cortical surface area

lationships between morphometricity and atlas dimensionality which

transformed atlas dimensionality. ɑ is the intercept and b is the regressio

as follows: EðmorphometricityÞ ¼ b� logðnumber of ROIsÞ þ ɑ
3.5. Atlases with random region boundaries

To understand whether commonly-used atlases explained

more variance than expected using random atlas boundaries,

we estimated the distributions of morphometricity estimates

from 100 randomly generated atlases with the same number

of ROIs as included in the commonly-used atlases. The dis-

tributions of estimates from random atlases are visualised in

Fig. 5 alongside morphometricity estimated from the respec-

tive commonly-used atlas (red colours). In most cases, confi-

dence intervals around the point morphometricity estimates

from commonly-used atlases mapped well onto the spread in

estimates from atlases with random parcellation (Fig. 5),

suggesting that commonly-used atlases yielded estimates as

expected (on average) by random parcellations. 69% of point

estimates from commonly-used atlases (total of 147 estimates

across seven atlases, seven traits and three brain measure-

ment types) yielded morphometricity smaller than at least

50% of the point estimates from random atlases. 5% of

commonly-used atlas estimates were larger than 99% of the

null estimates, and 13% of the commonly-used estimates

were smaller than any of the null estimates (mostly involving

surface area; STable 4.1). The latter indicates that in some

cases less variance is explained when using one of the

established atlases (Desikan-Killiany, Destrieux, Gordon,

Glasser, Schaefer) compared to using random parcellations

whenmapping surface areameasures onto behavioural traits.

3.6. Atlas comparisons

We performed cross-atlas LRTs to quantify whether a more

fine-grained atlas added explanatory variance in addition to
tweenmorphometricity and logarithmic transformed atlas

b b Standard error p-value R2 (%)

4.5 1 .0013 66

3.5 .8 .0014 65

1.2 .17 2.8e-05 84

1 .1 2.4e-06 90

.86 .081 8.8e-07 92

.56 .054 1.1e-06 92

3.7 .27 8.5e-08 95

3.4 .26 1.3e-07 94

1.3 .11 2.3e-07 94

1.7 .3 .00022 76

1 .12 7.7e-06 88

.38 .018 1.3e-09 98

1.6 .18 2.9e-06 90

1.1 .09 3.6e-07 93

.64 .048 1e-07 95

2.6 .46 .00019 77

1.6 .28 .00019 77

.6 .085 3.4e-05 83

4.9 1.4 .0054 56

4.3 .8 .00032 74

2.1 .11 3.9e-09 97

, ThickAvg ¼ average cortical thickness. We observed linear-log re-

we describe through a linear regression analysis of logarithmically

n coefficient. Expected morphometricity estimates may be calculated
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the variance already explained by a coarser atlas. For example,

first, wemodelledmorphometricity using Desikan-Killiany (68

ROIs) and Destrieux (148 ROIs) brain measures in one model.

Second, we dropped Destrieux from the model and recalcu-

lated morphometricity for Desikan-Killiany alone, which

allowed quantification of the percentage of variance explained

by Destrieux in addition to the variance already explained by

Desikan-Killiany. The LRT quantifies whether the explanatory

variance added by the higher dimensional atlas (i.e., Destrieux

in this example) is larger than zero. To summarise the results,

we display an index of the relative improvement made to the

model by adding the higher dimensional atlas, which is

calculated as the sumof the variance explained by both atlases

together, divided by the morphometricity of the lower

dimensional atlas alone (Fig. 6, SFig. 5). A ratio of 1 indicates no

increase inmorphometricity, anda ratio larger than1 indicates

the proportional increase gained by adding the higher dimen-

sional atlas. None of the indices are below 1 because the

combined morphometricity from two atlases cannot be

smaller than the estimate yielded by one atlas alone.

A total of 576 LRTs (out of 588) were significant, and we

found an average ratio of 2.73 for surface area, 2.70 for cortical

volume, and 1.67 for cortical thickness (STable 5), indicating

that the morphometricity roughly doubled when adding a

second atlas to the equation. Vertex-wise measures added

considerable explanatory variance in addition to all other

atlases, but the greatest model improvements were gained

when adding vertex-wise measures to low-dimensional

atlases. Across the board, commonly-used atlases accounted

for unique trait variance rather than variance shared between

atlases suggesting they captured atlas-specific trait variance.

Surprisingly, some low-dimensional pairs of atlases sur-

passed vertex-wise estimates, for example, average thickness

estimates for age were 29% [21e35%] for Desikan-Killiany

alone, and 30% [25e36%] for Destrieux alone, but together

Desikan-Killiany and Destrieux accounted for 63% [58e68%]

whichwas substantially larger than the vertex-wise estimates

of 37% [36e39%].We re-calculatedmorphometricity and joint-

atlas effects using simple linear regression (LM) (which was

not pre-registered) to test whether these LMM estimates were

biased, potentially due to the violation of LMM assumptions.

The rationale was that LMMs enforce a normal distribution

on the ROI effects, which may be problematic for low-

dimensional atlases with individual ROIs dominating and

driving brain-wide effects. LM does not impose assumptions

on the distribution of effects which we suggest allows to test

for a violation of LMM assumptions (though LM will more

likely produce inflated estimates, the more predictors are

included). LM estimates are displayed in SFig. 7, confirming

that LMMs are likely overestimating joint atlas effects by low-

dimensional atlases. Overall, LMs validate most of the LMM

results, but are likely overestimating effects by high-

dimensional atlases.

Only twelve tests were not statistically significant (p > .05/

588), all involving brain measures of surface area and alcohol

and cigarette consumption. In these cases, adding the higher

dimensional atlas to the equation did not significantly in-

crease morphometricity. The low morphometricity estimates

of the traits (<4%), probably resulted in a lower statistical

power, which may, in part, explain these results.
3.7. Sensitivity analysis: LASSO-based prediction

We trained LASSO models to investigate whether primary

association results aligned with results from a machine

learning approach. In other words, we sought to investigate if

a larger morphometricity also led to a larger prediction accu-

racy. Indeed, we found that prediction accuracy improved

with atlas dimensionality (and morphometricity), with the

vertex-wise representation yielding the best prediction accu-

racy (i.e., R2 between observed and LASSO-predicted values).

Likemorphometricity, prediction accuracywas substantial for

most traits, but low for education, alcohol, and cigarette

consumption (SFig. 6). We observed a gain in prediction ac-

curacy by 1.95-fold (range 1.12-folde9.46-fold) between the

coarsest (34 ROIs, Yeo) and the most fine-grained cortical

representations (vertices; prediction accuracies in STable 6).

For example, predicted values of cognitive ability by volu-

metric Yeomeasures explained 7% of the variance in observed

values, and vertex-wise predictions explained 13% of

observed cognitive ability values.

Wilcoxon Signed-Rank tests were used to test for statistical

differences in absolute errors between two atlases. Out of 588

comparisons, only 3 reached a significance level of .05/588

(STable 6). Effects sizeswere overall very small suggesting that

we have no evidence to conclude that one atlas yielded

smaller median prediction errors than another atlas. The

three significant improvements in prediction were found be-

tween the Destrieux and Glasser measurements of ThickAvg

in sex (p¼ 1.62� 10�5; r¼ .049;Nevaluation¼ 7701), Destrieux and

Schaefer measurements of ThickAvg in sex (p ¼ 6.51 � 10�7;

r ¼ .057; Nevaluation ¼ 7701), and Desikan-Killiany and Yeo

measures of GrayVol in alcohol consumption (p ¼ 1.53 � 10�5;

r ¼ .056; Nevaluation ¼ 5203).
4. Discussion

In this Registered Report, we provide a quantitative compari-

son of the information retained by commonly-used cortical

atlases of varying dimensionality (i.e., number of considered

ROIs) through reporting morphometricity estimates across

seven behavioural traits. We calculated whole-brain mor-

phometricity using linear mixed models (LMMs) and

compared percentages of variance accounted for by cortical

atlases using likelihood ratio tests (LRTs). As hypothesised, we

found that using more fine-grained atlases to describe the

cortical grey-matter structure resulted in larger morphome-

tricity. This is consistent with our pre-registered hypothesis

that lower dimensional cortical representations (i.e., fewer

ROIs) tend to mask inter-individual variance, and that this

variance can be retained when representing the brain using

~300,000 vertex-wise measures. We found, across all traits

and types of measurements, that morphometricity increased

linearly as a function of the log-atlas dimension. Therewas no

evidence for a “tipping point” of atlas dimensionality beyond

which morphometricity ceased to improve, nor was there

evidence for trait-dependent optimal levels of atlas

dimensionality.

Our findings should give studies of cortical structure

reason to favour finer-grained cortical representations over
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Fig. 5 e Distributions of morphometricity estimates from random parcellations. Each distribution was generated based on

morphometricity estimates of random parcellations with matched numbers of ROIs. Red crosses indicate the corresponding

estimate yielded by the commonly-used atlas; red lines indicate 95% confidence intervals around the point estimate.

Random parcellations of 34 ROIs were compared to Yeo, 68 ROIs were compared to Desikan-Killiany, 148 ROIs were
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coarser ones, which should enable better brain-behaviour

mapping and prediction accuracy of behaviours from

cortical measurements. We suggest that available neuro-

imaging samples (such as the UKB) and computational re-

sources are now large enough to accurately estimate

associations between vertices and behavioural variables,

promising future studies that more systematically account for

brain-wide associations than can be obtained from ROI-

behaviour associations (Smith & Nichols, 2018).

Should the use of lower-dimensional atlases be necessary

in a study mapping interindividual differences in structural

cortical measures onto behavioural traits, we would advise

researchers, based on the findings presented here, to repeat

analyses across multiple commonly-used atlases, or to iterate

over multiple atlases with random region boundaries. This

may complicate the interpretation of findings but promises

more replicable brain-behaviour associations. While statisti-

cal power of these multidimensional approaches is limited by

multiple testing correction, techniques to overcome this lim-

itation have been derived. For example, onemay group vertex-

wise measures based on atlas ROIs and fit each set of vertices

as a random effect, which permits to perform a single asso-

ciation test per ROI, while still modelling the fine-grained

cortical structure (Couvy-Duchesne et al., 2020).

4.1. Greater atlas dimensionality yields substantially
greater morphometricity estimates

Differences in morphometricity between the coarsest (Yeo, 34

ROIs) and the most fine-grained atlas (vertices, 300,000 ROIs)

were considerable (median increase of 3.41-fold). One previ-

ous functional MRI study reported a doubling in prediction

accuracy of cognitive ability between estimates represented

by the Glasser atlas (360 ROIs) compared with vertex-wise

representations (Feilong, Guntupalli, & Haxby, 2021). Though

using structural neuroimaging data and an association

framework, our results were comparable, showing 1.83-fold

(thickness), 2.81-fold (volume) and 2.90-fold (surface area)

improvements in morphometricity when using vertex-wise

measurements relative to the Glasser atlas. Findings re-

ported here are consistent with previous studies and together

this indicates that selecting fine-grained cortical atlases sub-

stantially improves variance overlap between brain and

behaviour. Future studies are needed to understand whether

this applies to functional neuroimaging and diffusion

tractography.

4.2. Commonly-used atlases yield the same
morphometricity as expected from random parcellations

To assess whether the commonly-used atlases included here

were superior to random parcellations, we generated 100

atlases with random ROI boundaries and, for better compa-

rability, the same number of ROIs as in commonly-used

atlases. Random parcellations were mapped onto partici-

pants’ brain images and used to estimate morphometricity.
compared to Destrieux, 274 ROIs to Jülich-Brain, 334 to Gordon,

were calculated based on Rank-based Inverse Normal Transform

displayed in Fig. 4. GrayVol ¼ gray matter volume, SurfArea ¼
We observed that the morphometricity from commonly-used

atlases was on par with the average morphometricity from

random parcellations, which suggests commonly-used

atlases do not maximise their potential in capturing specific

trait variance. That random atlases yielded similar estimates

as commonly-used atlases is in line with a recent study

demonstrating that using random parcellations in predicting

structureefunction correlations resulted in similar power

(Revell et al., 2022).

Surface area-based associations involving Desikan-

Killiany, Destrieux et al. (2010), Gordon et al. (2014), Glasser

et al. (2016) and Schaefer et al. (2017) produced estimates

below any of the 100 random parcellations. This suggests for

surface area-based associations that most random atlases

would outperform the commonly-used ones. We suggest

future studies should consider iterating over random parcel-

lations to establish more robust association results. Note that

this is referring to Schaefer morphometricity estimates that

were corrected for non-normal distributions, and future

studies should account for non-normal distributions when

using Schaefer in FreeSurfer processing.

4.3. Morphometricity differs between surface area,
cortical thickness, and volume

Morphometricity estimated from surface area measures were

most affected by atlas dimensionality (largest linear-log

regression coefficients; Table 1), which suggests that choosing

fine-grained atlases will benefit studies of surface area most,

compared with thickness measures, for example. The obser-

vation that atlas dimensionality has differential impact on es-

timates from different measurement types may fit with

evidence that surface area and thickness measures have low

phenotypic and genetic correlations (Panizzon et al., 2009;

Wierenga, Langen, Oranje, & Durston, 2014; Winkler et al.,

2010). Here, we did not specifically test for this, and future

work is needed to understand whether different brain mea-

surement types represent common or unique information.

Morphometricity analyses in Couvy-Duchesne et al. (2020)

suggested that surface area and thickness measures capture

some common trait variance, but that they are mostly unique.

4.4. Low-dimensional atlases capture unique rather
than common trait variance

We used LRTs to examine whether one of a pair of atlases

outperformed the other in its overlap with behavioural traits.

We found that most comparisons between atlases were sig-

nificant, and that the variance accounted for was roughly

doubled when jointly considering two low-dimensional

atlases. This considerable improvement indicates that

atlases explain unique, rather than shared trait variance. By

selecting one coarse atlas to parcellate participants’ brain

images, researchers likely restrict their analyses to a specific

dimension of variance that only partly overlaps with behav-

ioural traits.
360 to Glasser, and 500 to Schaefer. Estimates for Schaefer

ed data and are therefore not the same estimates as

surface area, ThickAvg ¼ average thickness.
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Fig. 6 e Atlas comparisons calculated from likelihood ratio tests for age, sex, cognitive ability, and body mass index. Find

the equivalent visualisation for education, cigarette, and alcohol consumption in SFig. 5. Percentages displayed on the

diagonal are morphometricity estimates for individual atlases, as indicated in Fig. 4. Indices on the off-diagonal show the

relative improvement made to the model by adding the higher dimensional atlas, which we calculated as the sum of the
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Alongside small sample sizes and large sampling variation

(Genon, Eickhoff, & Kharabian, 2022; Marek et al., 2022), this is

likely a contributor to highly heterogenous reports of brain-

behaviour correlates and the lack of reproducibility across

ROI-based studies. We demonstrate that two atlases can

capture non-overlapping trait variance, which implies that

results between two ROI-based studies cannot be translated if

different atlaseswere used. Future studies by researchers who

still wish to use low-dimensional atlases may yield more

replicable results when repeating their analyses across mul-

tiple atlases, which may recover variance hidden by one, but

not another low-dimensional atlas. This should yield more

robust results but may complicate their interpretation. Future

studies may parse the likely sources of brain-based signal

using atlases derived from different principles (macro-

anatomy, resting-state networks etc.).

4.5. LASSO-based predictions confirm morphometricity
estimates

The general trend that atlas dimensionality was positively

associated with increasing morphometricity was confirmed

by LASSO-based predictions. This is in line with previous

demonstrations that association and prediction results are

related (Couvy-Duchesne et al., 2020). If unbiased and accu-

rate, morphometricity estimated from LMMs represents the

total linear association, that, in theory, LASSO-based pre-

dictions may reach if the algorithm was trained in an infinite

sample allowing accurate estimates of predictor weights.

Here, LASSO prediction accuracy is indeed smaller than LMMs

in almost all cases. We observed few exceptions where

cortical thickness-based predictions using LASSO surpassed

LMM-based morphometricity (e.g., vertex-wise thickness-age:

LASSO out-of-sample prediction ¼ 59%; LMM

association ¼ 37%). This may suggest that the cortical thick-

ness LMM estimates are downward biased, maybe due to

violation of a normal distribution in effect sizes for traits like

age and sex. It is known, for example, that different areas of

the brain age unevenly across the life-span (Raz, Ghisletta,

Rodrigue, Kennedy, & Lindenberger, 2010), which may intro-

duce a skewed distribution of effect sizes.

4.6. Parallels between multi-dimensional neuroimaging
and genetic analyses

The notion that morphometricity marks the maximum trait

variance that surface-based structural brain measures could

account for is analogous to narrow-range heritability. Both

morphometricity and heritability have the same statistical

definition. In parallel with the ‘First Law’ in behavioural ge-

netics stating that all traits are heritable (Turkheimer, 2000),

we found that all traits considered here were morphometric.

Note that not all traits were morphometric in Couvy-

Duchesne et al. (2020), but they used a considerably smaller
variance explained by two atlases together, divided by the morp

(jointmorphometricity/individualmorphometricity). Squares are coloured

raw sum of variance explained is printed in brackets below the

n.s.
sample (N~9,000). Using statistical genetics techniques to

analyse neuroimaging data promises exciting avenues for

future research that could generate innovative insights using

statistical techniques that have already been derived and

thoroughly tested using genetic data (Couvy-Duchesne et al.,

2022).

We found exceptions in the analogy with heritability,

where the morphometricity estimated by vertex-wise mea-

sures was surpassed by two joint low-dimensional atlases

(prediction of age and sex by cortical thickness). Post-hoc

analyses suggested that model assumptions imposed by

LMMs were violated by low-dimensional atlases including

individual ROIs with large effects. We suggest that the parallel

between heritability and morphometricity is most consistent

when considering vertex-wise data, as opposed to coarse

cortical atlases, however, results must be interpreted in their

specific genetic or neuroimaging context (e.g., geneticmarkers

are stable across the lifespan, while brain structure changes in

response to environments and behaviours).

4.7. Limitations

We emphasise that LMMs employed here fit all predictor

variables as a single random effect, no matter how many

predictor variables are included by an atlas. This makes the

variance accounted for comparable between atlases, and it

does not automatically increase with the number of pre-

dictors, as it would, for example, in a simple regression

model. However, reported estimates are likely confounded

(for example by disease or environmental influences), but

this should be constant across atlases and should not impede

a fair comparison between atlases. Some LMMs of joint

morphometricity by low-dimensional atlases are likely

overestimated due to individual ROIs driving brain-wide ef-

fects, but we demonstrate that we can test LMM assumptions

using linear regression in this low-dimensional space.

Furthermore, some categorical behavioural variables used in

this study may be suboptimal. Cigarette and alcohol con-

sumption categories were based on arbitrary cut-offs, and

the education phenotype was dominated by the category

capturing university education. Low levels of trait morpho-

metricity may reflect these caveats and may require re-

evaluation in other samples.

It is unknown whether our results are directly translat-

able to analyses using different software and pipelines. For

reproducibility, we make all our analysis code available on-

line (https://annafurtjes.github.io/Comparing_atlases/).

Study results would likely differ across FreeSurfer versions

(Gronenschild et al., 2012; we used v6.0.0), and between

processing software, especially compared with other ap-

proaches than surface-based analyses (e.g., volumetric ana-

lyses in Statistical Parametric Mapping, SPM, or FMRIB

Software Library, FSL). Future studies are needed to test

whether results would replicate in functional MRI data, and
hometricity estimate of the lower dimensional atlas alone

according to this ratio, i.e., larger ratio, darker colour. The

respective index. Non-significant results are marked with

https://annafurtjes.github.io/Comparing_atlases/
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whether more elaborate means of summarising vertex-wise

measures across ROIs could provide better cortical repre-

sentation (e.g., taking the maximum thickness within an

ROI).
5. Conclusions

This Registered Report demonstrates the importance of

appropriate cortical atlas choices across neuroimaging

studies by demonstrating that using commonly-used cortical

atlases resulted in considerable loss of information

compared to vertex-wise representations of cortical struc-

ture. These atlases included Yeo et al. (2011), Desikan-

Killiany (Desikan et al., 2006), Destrieux et al. (2010), Jülich-

Brain (Amunts et al., 2020), Gordon et al. (2014), Glasser et al.

(2016), and Schaefer et al. (2017), which all accounted for

magnitudes of variance on par with random parcellations

across seven behavioural traits using cortical thickness,

volume, and surface area measures. In the interest of more

replicable results, our findings should give researchers

reason to leverage large-scale samples (like the UKB) to

conduct association and prediction analyses using vertex-

wise brain data which promises more systematic and local-

ised accounts of the relationships between behaviours and

structural measures of the cortex.

We further demonstrate that studies using one coarse atlas

only (for example, Yeo, Desikan-Killiany, or Destrieux) tend to

capture atlas-specific trait variance, implying that study results

often cannot be translated betweenatlases. Hence, atlas choice

is likely a contributor to the lack in reproducibility in the neu-

roimaging literature.We suggest that studies forwhich the use

of coarse atlases is necessary, should either repeat analyses

acrossmultiplecommonly-usedatlases, or iterateover random

atlases to produce more robust results.

5.1. Statement of transparency for secondary analyses

AEF is the lead analysist on this project and has been granted

access to the UKB data through UKB application 40933, of

which JHC is the principal investigator. AEF previouslyworked

with pre-processed Desikan-Killiany IDPs through another

UKB application, but has not seen or workedwith the bulkMRI

data used in this project, or any of the behavioural traits. She

therefore is naı̈ve to any potential associations between var-

iables considered in this study. The UKB application used here

is unrelated to the one used in Couvy-Duchesne et al. (2020).

An application to download the required data was sub-

mitted to UKB on the 28th of March 2021. It has been

approved on the 11th of May, neuroimaging data download

occurred successively between November 2021 and January

2022 (our pipeline downloaded individual-by-individual,

processed, and deleted data to keep cluster storage on

King's College London's high performance computer Rosalind

at a minimum). AEF had not downloaded or investigated any

of the data until in-principle acceptance had been granted in

November 2021. The analysis plan pre-registered as a

Registered Report (https://osf.io/dkw9t), and analysis code

wasmade available on GitHub (https://annafurtjes.github.io/

Comparing_atlases/).
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