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Abstract

Recently, finger vein based biometric authentication has attracted considerable attention due to

its high e�ciency and high security. However, most existing finger vein representation meth-

ods focus on vein traits while ignoring background cues, although background cues also convey

identity information specific to each individual. In this paper, we leverage background intensity

variations in finger vein images as new features to enrich discriminative representation, and ac-

cordingly propose a new descriptor named Intensity Orientation Vector (IOV). IOV, scaleable to

reflect characteristics of finger tissues, o↵ers additional informative cues for finger vein represen-

tation. Furthermore, we propose a new learning scheme named Semantic Similarity Preserved

Discrete Binary Feature Learning (SSP-DBFL) for finger vein recognition. Unlike the most

bimodal binary feature representation methods, SSP-DBFL preserves high-level semantic simi-

larity in a common Hamming space to exploit the consensus between vein traits and background

cues. Specifically, given a finger vein image, we first extract the direction di↵erence vectors

(DDV) as the main vein traits and the IOV as the auxiliary background cues . Subsequently, we

jointly learn projection functions from these two types of features in a supervised manner, con-

verting the two features into discriminative binary codes with their semantic similarity preserved.

Finally, the binary codes are pooled into histogram-based vectors for finger vein representation.

Extensive experiments are conducted on five widely used finger vein databases and demonstrate

the e↵ectiveness of our proposed IOV and SSP-DBFL.

Keywords: Finger vein recognition, vein trait, background cue, intensity orientation vector,

binary feature learning
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1. Introduction

Reliable identification of an individual is the essence of personal authentication, which has

been widely applied to electronic payment and access control systems. Owning to high e�ciency,

biometric authentication techniques have gained great attention in the past decade, using various

types of traits including face [1], palmprint [2], and finger vein [3]. As an emerging trait, finger

vein refers to the blood vessels beneath the finger skin. The finger vein trait meets the growing

need for high security in modern society, since it is inside the body.

Since Kono et al. [4] introduced the idea of finger vein authentication in 2000, this technique

has attracted much attention [5]. Di↵erent from extrinsic traits, such as face and fingerprint,

finger veins are invisible under RGB cameras while can only be captured by NIR cameras with

a living person. Therefore, finger vein traits have high security against forgery. There is no

doubt that the vein patterns or features provide unique identity information for authentication.

However, due to the scattering and absorption of NIR light in di↵erent finger skin layers, such as

epidermis and stratum basale, the captured finger vein images always contain blurred vein regions

and background intensity variations. Unlike mainstream biometrics (e.g., face and fingerprint),

finger veins make up only a small part of the finger vein image, not to mention blurred vein

regions. With limited available vein information, most existing methods focus on the extraction

of vein patterns but fail to obtain reliable features in some blurred regions. The work [6] inspires

us that the practical optical properties of fingers vary from person to person. This means that

the large background in finger vein images also contains some discriminative cues, which are

usually neglected or represented ine↵ectively by most methods.

To surmount the above limitations, we propose a new descriptor named Intensity Orienta-

tion Vector (IOV) to reflect the discriminative background cues in a finger vein image. IOV is

scaleable to describe the background variations precisely, o↵ering auxiliary informative cues for

representation and recognition. Then in order to make full use of both vein traits and background

cues in finger vein images, we further propose a new binary feature learning scheme named

Semantic Similarity Preserved Discriminative Binary Feature Learning (SSP-DBFL), to jointly

learn projection functions from vein traits and background cues simultaneously. As the first fea-

ture learning method explicitly considering both vein traits and background cues, SSP-DBFL
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leverages the consensus and complementarity of these two types of features, by preserving their

semantic similarity in the common Hamming space. Specifically, given a finger vein image, we

first extract the direction di↵erence vectors (DDV) as the main vein traits and the IOV as the

auxiliary background cues. Then, SSP-DBFL jointly learn a series of hash functions from these

two types of features to convert them simultaneously into discriminative binary codes. Finally,

the histogram-based descriptors are constructed for finger vein recognition. Furthermore, SSP-

DBFL adopts discrete optimization to reduce quantification errors, which is also often ignored

by other methods. We conduct extensive experiments of finger vein recognition and the results

clearly demonstrate the e↵ectiveness of our proposed descriptor (IOV) and method (SSP-DBFL).

This paper presents two main technical novelties and contributions:

• Di↵erent from previous finger vein recognition methods which only focused on vein traits,

we leverage the background variations as a new auxiliary feature. This o↵ers a novel

perspective to represent finger vein images for recognition. Accordingly, we propose a new

descriptor named IOV to deliver auxiliary discriminative power by thoroughly reflecting

the background intensity variations in finger vein images.

• We propose a new supervised binary-feature learning scheme named SSP-DBFL, to jointly

learn compact binary codes for finger vein representation simultaneously from vein traits

and background cues. SSP-DBFL e↵ectively preserves semantic similarity between IOV

and DDV to exploit the consensus between them. What is more, the objective function of

our SSP-DBFL is optimized in a discrete manner, which reduces the quantification error.

The rest of this paper is organized as follows. In Section 2, we briefly review some topics

related to our work. The core idea of the proposed descriptor IOV is detailed in Section 3.

In Section 4, we present the SSP-DBFL approach and its discrete optimization formulation.

Extensive experimental results and some discussions are provided in Section 5. Finally, Section 6

concludes this paper.

2. Related Work

2.1. Finger Vein Recognition

Recently, many e↵ective methods have been proposed for finger vein recognition [5]. These

methods can be grouped into four major categories: structure based, local feature based, deep
3



learning based, and subspace learning based.

Structure-based methods aim to extract vein structures or vein minutiae. As the oxyhe-

moglobin in veins absorbs more NIR light than other tissues, the vein areas appear darker than the

surroundings in the finger vein images. Based on this phenomenon, Miura et al. proposed Local

Maximum Curvature (LMC) [7] to extract vein patterns. Since LMC is not robust to illumination

variations, Syarif et al. [8] proposed Enhanced Maximum Curvature (EMC) by integrating the

Hessian enhancement and Histogram of Oriented Gradients (HOG) to improve the performance.

Further, Spatial Curve Filters (SCFs) [9] were designed to extract vein networks with the help

of curve length estimation. Yang et al. [10] used a vein orientation map to guide the curvature

image to extract reliable vein networks and its backbone. Apart from the extraction of whole

vein networks, vein minutiae were extracted in [11, 12] to deal with vein deformations. How-

ever, compared with those of fingerprints, the minutiae of finger veins are less. Typical minutiae

of finger veins are ending points of veins or tribranshes [12].

Local feature based approaches aim to extract features that reflect local variations or patterns

in a small region of finger vein images. Local Binary Pattern (LBP) [13] and its variants E�cient

Local Binary Pattern (ELBP) [14] were successfully applied in finger vein representation. In

addition, Local Direction Coding (LDC) [15], Local Line Binary Pattern (LLBP) [16, 17] and

Gabor filters based method [18] aimed to extract the direction information of each pixel in finger

vein images.

Since deep learning shows great potential in various computer vision tasks, various researchers

introduced it into finger vein representation and recognition. As a successful attempt, Hong et

al. [19] employed a pretrained VGG-16 model to extract finger vein features for recognition. FV-

Net [20] was proposed to make the representation more robust to translations, which altered the

output of the Convolutional Neural Networks (CNN). Autoencoder was exploited in [21], with

the output of the encoder as the finger vein representation. Moreover, Siamese structure based

network [22] and Generative Adversarial Network (GAN) [23] were also exploited to finger

vein representation to make the representation more discriminative. Recently, Huang et al. [24]

and Liu et al. [25] integrated attention mechanisms into networks to boost the recognition per-

formance. By replacing Euclidean distance with cosine distance, arccosine center loss [26] is

proposed to make vein features more discriminative. Wang et al. [27] proposed MRFBCNN, in-

tegrating bilinear pooling to obtain higher-order features. FVT [28] first introduced Transformer
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to finger vein authentication, achieving satisfactory results.

Unlike the above types of methods, subspace learning based methods try to map original

features into a low dimensional subspace, which maintains some ideal properties and removes

noise during the projection. The representative Principal Component Analysis (PCA) based

method [29] aimed to find a subspace with maximum variance. Mei et al. proposed a weighted

sparse representation (WSRC) [30] algorithm for finger vein recognition, which weighted each

training sample according to its sparse coe�cients. Beyond that, some methods that convert

the original features into Hamming subspace to learn binary features attracted much attention

due to the potential for biometric authentication [31, 32]. For example, Liu et al. [33] proposed

a Personalized Binary Codes (PBC) learning method, which incorporated the idea of Linear

Discriminant Analysis (LDA) and the constraints of within-class sparsity. Partial Least Squares

Discriminant Analysis (PLS-DA) is combined with the joint Bayesian model [34] for compact

finger vein feature extraction and recognition. Additionally, a discriminant and sparse feature

descriptor [3] is developed for finger vein representation by considering the relationship between

di↵erent features. To obtain more robust features, Yang et al. [35] proposed sparse reconstruction

error constrained low-rank representation (SRLRR), integrating low-rank constraint and sparse

representation.

2.2. Finger vein representation

A discriminative feature representation can dramatically boost the recognition performance [2].

The intuitive finger vein representation is to extract binary vein patterns from raw images [36,

7, 8]. Such methods are plagued by translation and rotation of the captured finger. Hence, to

handle these deformations, Chen et al. [37] used Scale Invariant Feature Transform (SIFT) to

represent a finger vein image. Apart from SIFT, vein minutiae-based representation methods

first located ending points or tribranches of vessels, then extracted the minutia features to repre-

sent finger veins. What is more, some conventional descriptors such as LBP [13], LLBP [16],

Gabor [38, 18] were utilized to represent finger veins from di↵erent perspectives. In addition,

learning-based methods have emerged in recent years, including manifold learning [39], sub-

space learning[40, 41, 29, 33], deep learning [20, 22, 42], which gradually become a hotspot in

the community. Liu et al. [39] gave a framework for finger vein representation based on man-

ifold learning for the first time. PCA [40, 41] and its variant [29] were also adopted in finger

vein representation. However, the unsupervised approaches can not learn from discriminative
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label information, which leads to unsatisfactory results. Di↵erent from PCA, PBC [33] bor-

rowed from LDA and imposed the sparse constraint on the objective function, resulting in more

discriminative and compact binary codes. Since deep learning-based methods show a powerful

ability for face representation [43], many researchers proposed various models for finger vein

representation. Hu et al. [20] utilized a vanilla CNN to extract finger vein features and proposed

a template-like matching strategy to handle translations and rotations in the imaging process. A

two-stream convolutional network [22] took raw images and mini-ROIs as inputs for better finger

vein representation, which jointly exploited local features and global features in one model. Qin

et al. [42] proposed a neural network for finger vein recovery and representation by introducing

prior knowledge into the training stage. However, the insu�cient samples limit the further im-

provement of deep learning-based models. Di↵erent from the approaches which focus only on

the vein traits, our SSP-DBFL exploits discriminative finger vein representation originating from

both vein traits and background cues.

2.3. Binary Feature Learning

In recent years, a variety of binary feature learning methods [44, 31, 2, 45] have been

proposed for biometric authentication. Di↵erent from the hand-crafted binary features (e.g.,

LBP [13], LLBP [16] and ELBP [14]), the learned binary codes can be more compact and less

redundant with a carefully designed objective function [45, 2]. Lu et al. [31] pointed out that

quantized binary codes are able to eliminate small variations and noise, thus improving the ro-

bustness of the features. On top of that, the high computational and storage e�ciency of binary

features are also attractive to researchers. For instance, Compact Binary Feature Descriptor

(CBFD) [45] was proposed to learn a compact binary feature in an unsupervised manner. CA-

LBFL [1] exploited the contextual information of face images by imposing the constraint of

the number of 0-1 shifts in binary codes. Fei et al. [2] introduced DDBPD methods to learn a

compact and discriminative binary code for palmprint recognition. LCMFC [46] learns a joint

representation from direction features and texture features of a palmprint images, automatically

determining the importance of each type of features. Additionally, the binary feature learning

was also used in multimodal biometric authentication approach [47], aiming to seek a common

discriminative Hamming subspace for better representation. Compared with the above binary

learning approaches, our SSP-DBFL jointly learns compact binary codes from both vein traits

and background cues for finger vein representation, with the aim of exploiting the consensus and
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complementarity between these two types of features for more discriminative and comprehensive

representation.

2.4. Multi-type Features of Images

Researchers designed various methods to extract di↵erent cues in images, such as texture [48]

and direction [18]. CNNs [49] rely on various learned filters (i.e., kernels) to gain di↵erent cues.

However, it is di�cult to distinguish the types of features extracted by the learned filters. Gabor

filters are designed to extract the features with specific frequency and direction [18]. LBP [13]

and its variants exploit the texture information. Pixel Di↵erence Vector (PDV) [45] calculates

the di↵erence between the center point and neighboring pixels to describe texture information

in a local region. However, the above feature descriptors neglect the background variations

in finger vein images that can also provide discriminative cues. Therefore, we propose a new

scaleable descriptor named IOV, in order to extract the informative background cues from finger

vein images.

3. Leveraging Both Background Cues and Finger Vein Traits

3.1. Motivation

Since the amount of oxyhemoglobin (HbO) in the venous blood is more significant than in

other tissues, finger veins can be captured by NIR rays with a wavelength within 780-900nm.

The higher absorption of the 780-900nm NIR rays by the HbO leads to vein regions being darker

than other regions in finger vein images. Hence for finger vein recognition, most existing studies

focused on the extraction of vein features such as lines and directions [18]. However, it was

revealed that the tissues or skin layers such as epidermis and stratum basale inside the finger also

absorb NIR rays [6], which varies from person to person. Moreover, Kang et al. [50] pointed out

that the knuckle region in the finger vein image looks brighter because the synovial fluid absorbs

fewer NIR rays, which is also distinct between individuals. That is, these non-vein areas also

contain some identity information that can help the finger vein based biometrics. However, unlike

HbO which is distributed only in the veins, these tissues or layers are continuously and unevenly

distributed in the whole finger, and hence their identity information is reflected in the background

intensity variation of the finger vein image. In other words, the large areas neglected by previous
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researches, i.e., the background regions, also convey discriminative identity information specific

to each individual.

Motivated by this, for the first time, we propose to leverage the background intensity variation

in the finger vein image as a new auxiliary feature and introduce a new descriptor called IOV

to extract informative background cues for more discriminative and comprehensive finger vein

representation.

3.2. Intensity Orientation Vector (IOV)
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Figure 1: An illustration of the construction of IOV with M = 8, S cale = 2. Firstly, Gaussian smoothing is applied on

the finger vein image I and obtain Ĩ. Secondly, the convolved responses in M orientations are divided by the value of

center pixel and concatenated to form IOV. The upper row details the procedure of extracting IOV. The lower row shows

the IOV maps in the M orientations.

To reflect the background intensity distribution, we define a new feature descriptor called

Intensity Orientation Vector (IOV). As veins and noise may disturb the extraction of IOV, we

first apply Gaussian smoothing [50] on raw finger vein image I to obtain approximated intensity

map Ĩ:

Ĩ(x, y) = I(x, y) ⇤ G(x, y,�G), (1)

where ⇤ denotes the convolution operation, and G(x, y,�G) is the Gaussian kernel

G(x, y,�G) =
1

2⇡�2
G

e
�(x

2+y
2)/2�2

G . (2)

In our work, �G is set to 9. Then, we form M filters for M orientations, each with scale R,

to thoroughly describe intensity variations in Ĩ. The mth filter calculates the sum of intensity
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di↵erences between the center pixel and the pixels within scale R in the (m�1)⇡/M orientation, as

illustrated in Fig. 1. We convolve finger vein images with these filters and arrange the convolved

results into a vector that expresses the intensity di↵erences between the center pixel and its

neighboring pixels in the M orientations. Next, the stimulus of the intensity di↵erence in each

orientation to the intensity value of the center pixel is calculated, which can be written as

opc,di
=
↵
✓P

p j2}R

di
(pc)[p j] � |}R

di

(pc) | ⇥ [pc]
◆

[pc] + �
, (3)

where ↵ controls the strength of the intensity di↵erences, which equals to 1 in this paper; � is a

small value to avoid the denominator being zero; pc is the position of the center pixel; [·] denotes

the pixel intensity in the corresponding position; }R

di

(pc) represents the set of pixels which are

located within scale R in the di orientation from the center pixel; and |}R

di

(pc) | gives the number

of pixels in the pixel set }R

di

(pc). Finally, we generate the IOV by concatenating the stimulus in

each orientation as

IOVpc =
h
opc,d1 , opc,d2 , . . . , opc,dM

i
. (4)

Fig. 1 illustrates the construction of IOV and its resulting maps in M orientations. By eliminating

the interference of the finger vein, our IOV depicts the intensity variations of the background

thoroughly. That is, IOV can be used to reflect some individual properties of finger tissues and

skin layers, which enriches the discriminative representation of finger vein images.

3.3. Direction Di↵erence Vector (DDV)

The vein traits are important for finger vein representation, but they are blurred by Gaussian

smoothing during the construction of IOV, Hence in order to e↵ectively extract the vein traits,

we adopt the direction di↵erence vector (DDV) in the following way.

Direction feature is widely used in finger vein representation and recognition [18]. To obtain

discriminative direction features of finger veins, DDV, which was used as a palmprint descrip-

tor [2], is constructed to extract the vein direction information. Specifically, Gabor filter banks

with the direction of ✓i = (i � 1)⇡/N✓ (i = 1, . . . ,N✓) are adopted here to obtain N✓ direction

responses. The convolutional result between the ith Gabor filter and a finger vein image I can

be formulated as

ri(x, y) = Gi ⇤ I(x, y), (5)
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Figure 2: An illustration of DDV with N✓ = 8. The upper row shows the procedure of DDV construction. The lower row

demonstrates the DDV maps in the N✓ orientations.

where ri(x, y) represents the direction response in the direction of (i�1)⇡/N✓ at the location (x, y);

Gi is the Gabor filters with the format of

G (x, y, ✓i) =
1

2⇡�2 exp

8>><
>>:�

1
2

0
BBBBB@

x
2
✓i
+ ⇣y2

✓i

�2

1
CCCCCA

9>>=
>>; cos

�
2⇡ f0x✓i

�
, (6)

where

2
666666664

x✓i

y✓i

3
777777775 =

2
666666664

cos ✓i sin ✓i

� sin ✓i cos ✓i

3
777777775

2
666666664

x

y

3
777777775; � denotes the scale of a Gabor filter; ⇣ represents the

aspect ratio of the elliptical Gaussian envelope; and f0 is the central frequency. Then, the DDV

is formed as the concatenation of the response di↵erences between all adjacent directions as

DDV = [(r1 � rN✓ ), (r2 � r1), . . . , (rN✓ � rN✓�1)]. (7)

In our work, we use Gabor filters with 12 directions, i.e., N✓ = 12. The construction of the DDV

is illustrated in Fig. 2 (with N✓ = 8 for better visual comparison with the IOV maps in Fig. 1). A

DDV indicates changes of direction responses and preserves the significant direction.

4. Semantic Similarity Preserved Discrete Binary Feature Learning (SSP-DBFL)

This section first details the formulation and optimization algorithm of the proposed learning

scheme SSP-DBFL, and then introduces how to use SSP-DBFL for finger vein recognition. The

flowchart of SSP-DBFL is illustrated in Fig. 3.
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Figure 3: The flowchart of our proposed learning scheme SSP-DBFL. SSP-DBFL aims to jointly learn both vein traits and

background cues from finger vein images to exploit their consensus and complementarity. First, we extract the Direction

Di↵erence Vector (DDV) for vein traits and the Intensity Orientation Vector (IOV) for background cues from the training

samples. Then, we jointly learn projection functions that convert these two features into compact discriminative binary

codes. Next, for a test finger vein image, DDV and IOV are extracted and jointly encoded into binary codes. Finally, the

histogram-based vectors are constructed for finger vein representation and recognition.
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4.1. Notation

We use lowercase letter to represent a scalar (e.g., x). Vector and matrix are indicated by

lowercase boldface letter (e.g., x) and uppercase boldface letter (e.g., X), respectively. The k·kF
represents the Frobenius norm of a matrix, defined as kXkF =

qP
i

P
j X

2
i j
=
p

tr(X>X). The

l2-norm of a vector is calculated as kxk2 =
qP

i x
2
i
. The transposed matrix and inverse matrix

denote as X> and X�1, respectively. The trace of a square matrix appears as tr(·), which is the

sum of elements on the main diagonal.

4.2. Formulation of SSP-DBFL

Previous research has demonstrated that the binary features are robust to local noise and

changes, and it is performance-friendly to biometric authentication [45, 1, 2, 46]. Hence, in this

section, we propose our discrete binary learning method called SSP-DBFL that can exploit the

consensus and complementarity between finger vein traits and background cues in a common

Hamming space.

As aforementioned, DDVs and IOVs of all pixels for each training image are extracted

first. Then, DDVs and IOVs of a training image are concatenated into their respective global

training matrix. Let X1 =
h
x1

1, x
1
2, . . . , x

1
N

i
2 R

d1⇥N represent the global DDV matrix and

X2 =
h
x2

1, x
2
2, . . . , x

2
N

i
2 R

d2⇥N be the global IOV matrix, where N is the number of total pix-

els in the training set. SSP-DBFL is designed to jointly learn K hash functions to convert and

quantize each xv

n
into a binary vector bv

n
=
h
b

v

n1, b
v

n2, . . . , b
v

nK

i
for DDV (v = 1) and DDV (v = 2),

respectively. In our paper, the kth binary code of the vth feature space b
v

nk
of xv

n
can be obtained

by the nonlinear sign function sgn(·) as

b
v

nk
= sgn(wv

k

>xv

n
), (8)

where wv

k
2 R

dv is the projection vector of the kth hash function for the vth feature space. As

shown in Section 3, d1 = N✓ = 12 and d2 = M = 8, respectively. The sign function sgn(h) equals

to 1 if h � 0 and �1 otherwise.

Consider the basic assumption discussed in [51]: two types of features originating from the

same position should share common underlying structure. In addition, in the common Hamming

space, semantic correlation within one modality should be similar to that of the other modality,

which contributes to good hash codes [52]. Inspired by above observations, we preserve semantic
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similarity of di↵erent types of features in the common Hamming space to exploit the consensus

and the shared underlying structure between them. Therefore, to make the learned binary features

discriminative and comprehensive, we impose three criteria for the learned binary codes to meet:

1. Preserve semantic similarity of two types of features in the common Hamming space.

2. Maximize the inter-class distance and minimize the intra-class distance of binary codes.

3. Minimize the information loss between the learned binary codes and the original features.

Following these three criteria, we formulate our objective function as follows:

min
wv

k
,bv

k
|2,K
v=1,k=1

J = J1 + �1J2 + �2J3

=

NX

i=1

8>>><
>>>:

NX

j=1

kb1
i

>b1
j
� b2

i

>b2
j
k2

��1

2X

v=1

0
BBBBBBB@
X

x j2�(xi)

kbv

i
�bv

j
k2�
X

x j2⇤(xi)

kbv

i
�bv

j
k2
1
CCCCCCCA

+
�2

2

2X

v=1

kbv

ik
� wv

k

>xv

i
k2
9>>=
>>; ,

(9)

where �(xi) is the subset whose samples come from the class di↵erent from that of xi; ⇤(xi) is

the subset whose samples come from the same class with xi; and �1 and �2 are two parameters

to balance terms. Following the first criterion, in the first term J1, we calculate the di↵erence

between the two types of features in their high-level semantic correlations. As aforementioned,

by minimizing J1, we encourage di↵erent types of features to have similar semantic similarity in

the common Hamming space, so as to exploit the consensus and underlying structure between

them. Following the second criterion, we use J2 to introduces supervised information into the

objective function, so as to reduce the distances between same-class samples while increasing

the distances between di↵erent-class samples for more discriminative representation. Following

the third criterion, J3 is adopted to reduce the information loss and thus can retain more energy

from the original features.

Let Wv = [wv

1,w
v

2, . . . ,w
v

K
] 2 R

dv⇥K denote the projection matrix. The elements of binary

code matrix Bv = [bv

1,b
v

2, . . . ,b
v

N
] 2 {�1, 1}K⇥N are obtained as

bv

n
= sgn(Wv>xv

n
). (10)
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It follows that Eq. (9) can be re-written in a matrix form as

min
Wv,Bv |2

v=1

J = J1 + �1J2 + �2J3

= kB1>B1 � B2>B2k2
F

� �1

2X

v=1

tr(BvSBv>)

+
�2

2

2X

v=1

kBv �Wv>Xvk2
F

s.t. Wv>Wv = Idv⇥dv
, Bv1 = 0,

(11)

where Idv⇥dv
represents the identity matrix with size dv ⇥ dv; Si, j equals 1 if xi and x j share

the same label in the same position across di↵erent samples, equals �1 if xi and x j come from

di↵erent classes in the same position, and equals 0 otherwise. We further add two constraints.

The first orthogonal constraint Wv>Wv = Idv⇥dv
ensures that di↵erent projection functions are

independent to each other, such that no redundant information is remained between di↵erent

projections. The second constraint Bv1 = 0 makes sure that the occurrence times of 1 and �1 are

equal in each bit, i.e., the variance of each feature bit is maximized. In other words, the second

constraint is the pursuit of maximizing the information conveyed by each feature bit.

In previous binary feature learning methods [2, 45, 1], they did not directly optimize the

binary code matrix B, but chose to optimize the projection matrix W with relaxing B to its sign

magnitude W>X. However, this relaxation leads to unignorable quantization errors [53], which

degrades the discriminative capability of the representation. In our work, we handle this issue

by optimizing in a discrete manner. For easy optimization, we introduce auxiliary variables

Qv 2 Rdv⇥N to substitute the counterpart binary matrix Bv, with a penalty term added to keep

their consistency. As a consequence, the objective function can be formulated as follows:

min
Wv,Bv,Qv |2

v=1

kB1>Q1 � B2>Q2k2
F
� �1

2X

v=1

tr(BvSBv>)

+
�2

2

2X

v=1

kBv �Wv>Xvk2
F
+ �

2X

v=1

kBv �Qvk2
F

s.t. Wv>Wv = Idv⇥dv
, Bv1 = 0.

(12)
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4.3. Optimization Algorithm of SSP-DBFL

The objective function Eq. (12) is not convex due to the sign function sgn(·), resulting in an

NP-hard problem. To solve such problems and avoid quantization errors accumulated during the

optimization, we derive a discrete optimization algorithm to solve SSP-DBFL as follows.

Step 1: Update Wv with other variables fixed. The objective function with respect to Wv

can be rewritten as
J(Wv) =

�2

2
kBv �Wv>Xk2

F

=
�2

2
tr(�2Bv>Wv>Xv + Xv>WvWv>Xv)

+ const

s.t. Wv>Wv = Idv⇥dv
,

(13)

where the constant term const is independent of the variable to be optimized. The curvilinear

search algorithm [54] is used to solve Wv with the orthogonal constraint.

Step 2: Update Qv with other variables fixed. Since there are two types of features involved

in our method (i.e., DDV and IOV), we denote one of them by the superscript v, and the other by

v̄. Thus, we need to minimize the following formula:

J(Qv) =kBv>Qv � Bv̄>Qv̄k2
F
+
�

2
kBv �Qvk2

F

= tr(Qv>BvBv>Qv � �Bv>Qv +
�

2
Qv>Qv)

� 2tr(Qv>BvBv̄>Qv̄) + const.

(14)

The closed-form solution of Qv can be obtained by letting the derivative of J(Qv) with respect to

Qv to zero:
@J(Qv)
@Qv

= 2Bv(Bv>Qv � Bv̄>Qv̄) + �(Qv � Bv) = 0. (15)

As a result, we can derive the close-form solution of Qv as

Qv = (2BvBv> + �I)�1(2BvBv̄>Qv̄ + �Bv). (16)

Step 3: Update Bv with other variables fixed. The optimization formula with respect to Bv

can be derived as
J(Bv) = kBv>Qv � Bv̄>Qv̄k2

F
� �1tr(Bv>SBv)

+
�2

2
kBv �Wv>Xvk2

F
+
�

2
kBv �Qvk2

F

s.t. Bv1 = 0.

(17)
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Eq. (17) is equivalent to

J(Bv) = tr(Bv>PvBv + µBv>Bv1̂ + Bv>Hv), (18)

where Pv = QvQv> � �1S and 1̂ = 11>; Hv = �2QvQv̄>Bv̄ � �2WvXv � �Qv. To obtain the

closed-form solution of Bv, a binary variable Dv 2 {�1, 1}dv⇥N is introduced to substitute one of

the Bv in quadratic terms with the constraint Dv = Bv. In this case, we can reformulate Eq. (18)

into the following equation [53]:

J(Bv) = tr(Bv>PvDv + µBv>Dv1̂ + Bv>Hv)

+
⇢

2
kBv � Dv +

Gv

⇢
k2

F
,

(19)

where Gv 2 Rdv⇥N measures the di↵erence between Bv and Dv. As a consequence, we can obtain

the closed-form solution of Bv in a discrete manner, which is calculated as

Bv = �sgn(PvDv + µDv1̂ +Hv � ⇢Dv +Gv). (20)

Step 4: Update Dv with other variables fixed. The optimization formula with respect to Dv

can be derived as

J(Dv) = tr((Bv>Pv + µ1̂Bv> + ⇢Bv +Gv)Dv). (21)

Similar to Step 3, the closed form solution of Dv can be obtained as

Dv = �sgn(Bv>Pv + µ1̂Bv> + ⇢Bv +Gv). (22)

Step 5: Update Gv and ⇢ with other variables fixed. The optimization rules of Gv and ⇢

are

Gv = Gv + ⇢(Bv � Zv), ⇢ = ⌘⇢. (23)

The above optimization procedures are iteratively repeated until convergence. We summarize

the main optimization steps of our SSP-DBFL in Algorithm 1.

4.4. Usage of SSP-DBFL for Finger Vein Recognition

To deal with translations and misalignments in finger vein images, we compress the learned

binary feature map of each non-overlapping region into a local histogram-based descriptor and

then concatenate them as the final representation. Specifically, after obtaining the projection

matrices Wv through SSP-DBFL, the DDV and IOV of each finger vein image are first converted
16



Algorithm 1 Major Steps of Semantic Similarity Preserved Discrete Binary Feature Learning.

Input: Training sets Xv = [xv

1, x
v

2, . . . , x
v

N
] |2

v=1; Balance parameters �1 and �2; Penalty parame-

ters � and µ; Maximum iterations T .

Output: Projection matrix Wv.

1: Initialize: Random initialize Qv, Dv; Wv is initialized by calculating the K eigenvectors

according to the top K eigenvalues of Xv>Xv; Bv =Wv>Xv; ⇢ = 10�3; ⌘ = 2.

2: repeat

3: Update Wv via Eq. (13).

4: Update Qv via Eq. (16).

5: Update Bv via Eq. (20).

6: Update Dv via Eq. (22).

7: Update Gv and ⇢ via Eq. (23).

8: until reach T iterations

9: return Wv.

into binary feature maps, respectively. Then, we divide each binary feature map into several non-

overlapped blocks with size 16 ⇥ 16. For each block, K-means are applied on the training set to

learn block-based codebooks [45], and the learned binary feature map of this block is pooled as

a local histogram-based descriptor. Finally, we concatenate them to form the final representation

f for finger vein recognition.

For two SSP-DBFL-based finger vein descriptors, the similarity can be measured by the Chi-

square distance [55]. Let fi and f j denote the SSP-DBFL-based descriptors of gallery sample and

probe sample, respectively. The Chi-square distance between them is calculated as

d(fi, f j) =
NbX

l=1

(fil � f jl)2

fil + f jl

, (24)

where the subscript l denotes the lth bin in the corresponding feature descriptor; Nb is the number

of bins in fi and f j. The smaller the distance, the more likely it is that the two images are from the

same category. Fig. 4 illustrates the flowchart of the SSP-DBFL-based finger vein representation

and matching.
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Figure 4: An illustration of SSP-DBFL-based finger vein recognition.

5. Experiments

In this section, we conduct extensive experiments to evaluate the e↵ectiveness of our pro-

posed IOV and SSP-DBFL.

5.1. Databases

Five popular finger vein databases were adopted in our experiments.

THU-FVFDT2 [56]: 1,220 finger vein images from 610 di↵erent fingers. Each volunteer

was asked to provide the index and middle fingers of both hands, and two images were captured

of each finger. The whole collection was divided into two sessions, whose duration is from three

days to one week. ROI images with size 200 ⇥ 100 are also accessible.

SDUMLA [57]: 3,816 images from 106 subjects. For each subject, finger vein images were

captured from the index, middle, and ring fingers of both hands. Every volunteer contributed six

finger vein images for each finger. Hence, there are 636 classes in this database with six images

in each class. The size of raw finger vein images is 320 ⇥ 240, and ROI images are not provided

o�cially.

POLY [18]: 2,520 finger vein images collected in two sessions. There were 105 volunteers

participating in two-session collections. All of them were asked to provide the index and middle

fingers of both hands and contributed six finger vein images for one finger in each session. The
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average duration of two sessions is about 66.8 days. The resolution of raw finger vein images is

513 ⇥ 256. No ROI images are provided.

USM [58]: 5,904 finger vein images from 123 volunteers. The index and middle fingers of

both hands were used in two sessions about two weeks apart. In each session, each finger was

captured six times, resulting in six raw finger vein images with size 640 ⇥ 480. ROI images are

provided.

MMCBNU6000 [59]: 6,000 finger vein images from 100 volunteers. For each volunteer,

the index, middle and ring fingers of the left and right hands were provided. Each finger was

captured ten times. As a consequence, this database has 600 classes with ten samples per class.

The authors released raw finger vein images with size 640 ⇥ 480 and ROI images with size

128 ⇥ 60.

We summarize the basic information of these five databases in Table 1. In the following

experiments, we extract ROIs for SDUMLA and POLY databases according to [18]. All ROIs

are resized into 144 ⇥ 64.

Table 1: Basic information about THU-FVFDT2, SDUMLA, POLY, USM, MMCBNU6000 databases

Database
#Total

Images
#Fingers

#Samples

per finger
#Sessions

THU-FVFDT2 1,260 610 2 2

SDUMLA 3,816 636 6 1

POLY 2,520 210 12 2

USM 5,904 492 12 2

MMCBNU6000 6,000 600 10 1

5.2. Ablation Studies

In this section, we evaluate the e↵ectiveness of the proposed IOV. LCMFC [46] is imple-

mented for comparison, because it also extracts bifeatures for biometric representation. Since

direction information is important for finger vein recognition, we fix one feature as DDV, and

replace the other feature with IOV, PDV, or Texture Feature Vector (TFV). PDV was first pro-

posed by Lu et al. [45], as the sum of the di↵erences between a pixel and its neighbors within

RPDV (RPDV = 3 in this work). TFV [46] was used to extract texture features. Specifically,
19



LCMFC aims to jointly learn a projection matrix P and two coe�cients ↵1 and ↵2 from bifea-

tures. The learned coe�cients ↵1 and ↵2 represent the relative contributions of the two features

to the final representation, respectively. The experiments were conducted on SDUMLA, POLY,

and MMCBNU6000, and the resulting recognition performances are listed in Table 2.

Table 2: The identification performance (%) of LCMFC and SSP-DBFL with di↵erent auxiliary features.

Methods Features SDUMLA POLY MMCBNU6000

LCMFC
TFV 96.16 91.03 99.17

IOV 98.53 98.68 99.77

SSP-DBFL
PDV 97.81 99.40 99.35

IOV 99.07 99.67 99.83

From the results, we can observe the clear improvement of accuracy when PDV or TFV are

replaced by IOV, for both LCMFC and SSP-DBFL on various databases, which demonstrates the

e↵ectiveness of IOV. Moreover, we can report that the coe�cient (↵2) learned for IOV is always

larger than that learned for TFV (while in both case ↵1 denotes the importance of DDV). This

suggests that IOV provides more discriminative information than TFV.

5.3. Comparison with State-of-the-arts

5.3.1. Finger Vein Identification

In this section, we conduct experiments to verify the e↵ectiveness of our methods for finger

vein identification. Finger vein identification aims to classify a query finger vein image to a

category with a specific label in the training set. The Accuracy Rate (ARR) is used as the measure

to evaluate the identification performance.

For the proposed SSP-DBFL method, we first learn the projection matrices W1 and W2 for

DDV and IOV, respectively. Then both descriptors DDV and IOV are projected and encoded

into K-bit binary codes for finger vein representation. In addition, we also test our SSP-DBFL

with di↵erent scales of IOV (set to 2 and 4) to verify the impact of the scale on identification

performance. The nearest neighbor classifier is adopted to assign labels to the probe finger vein

images based on the Chi-square distance metric.

To comprehensively evaluate the e↵ectiveness of our SSP-DBFL, we compare it with various

methods including structure based method (LMC [7]), local feature based methods (Gabor [18],
20



Table 3: The average identification performance (accuracy rate±standard errors) of di↵erent methods on five databases.

The best is in bold; the second best is underlined; the third best is in italics.

Methods THU-FVFDT2 SDUMLA POLY USM MMCBNU6000

LMC [7] 96.56±0.0000 97.22±0.0703 97.30±0.0000 97.19±0.0000 87.17±1.2866

Gabor [18] 94.92±0.0000 94.50±0.1764 96.75±0.0000 96.61±0.0000 97.83±0.0491

LDC [15] 87.05±0.0000 99.21±0.0289 98.33±0.0000 98.81±0.0000 99.10±0.0131

PWBDC [60] 97.87±0.0000 92.82±0.2083 94.44±0.0000 95.39±0.0000 99.07±0.0192

Hong et al. [19] 64.13±2.0623 74.35±1.8288 88.26±2.0088 87.94±1.0662 96.77±0.7131

FVCAE [21] 76.89±4.8792 93.23±1.0367 95.48±1.0456 90.36±2.3421 96.07±0.3078

ResNet18 [49] 70.90±3.0364 89.87±1.3526 82.60±0.0039 90.86±2.0123 99.44±0.0009

ResNet50 [49] 71.67±2.0371 90.46±1.7245 87.69±0.0021 86.17±1.0268 98.64±0.4122

MRFBCNN [27] 97.92±0.0161 98.16±0.2713 96.93±0.3107 98.05±0.2172 99.13±0.0007

ArcVein [26] 82.68±0.0099 98.85±0.0029 96.61±0.0314 95.02±0.0075 99.23±0.0024

WSRC [30] 98.36±0.0000 79.92±0.2491 74.37±0.0000 89.33±0.0000 98.27±0.1745

ESRC [61] 98.36±0.0000 80.41±0.2127 76.11±0.0000 89.57±0.0000 98.43±0.2084

CA-LBFL [1] 99.18±0.0443 97.46±0.5394 99.14±0.0091 99.02±0.0937 99.64±0.0213

DDBPD [2] 96.07±0.0983 96.00±0.7607 95.71±0.9167 93.17±1.0671 97.80±0.1291

LCMFC [46] 93.47±0.5956 96.16±0.6217 91.03±0.8983 99.40±0.0978 99.17±0.0678

SSP-DBFLScale=2 99.53±0.0072 98.31±0.4948 99.39±0.0311 99.40±0.0676 99.83±0.0039

SSP-DBFLScale=4 99.84±0.0006 99.07±0.1421 99.67±0.0037 99.70±0.0095 99.83±0.0024

LDC [15], PWBDC [60]), representative deep learning based methods (Hong et al. [19], FV-

CAE [21], ResNet18/50 [49], ArcVein [26], MRFBCNN [27]), and subspace learning based

methods (WSRC [30], ESRC [61], CA-LBFL [1], DDBPD [2], LCMFC [46]). Since our SSP-

DBFL follows the same framework and PDV is not a face-specific descriptor, the works (i.e.,

LCMFC, CA-LBFL, DDBPD) and PDV can be directly applied to finger vein recognition for

comparison. The block size of LCMFC, CA-LBFL, and DDBPD were all set to [16, 16]. The

parameters of these three methods were carefully tuned to achieve the best performance. For

FVCAE, we trained it from scratch and tuned it with the learning rate 0.001 and batch size 256.

For Hong et al. and ResNet18/50, we first pretrained them on ImageNet ILSVRC [62] and then

finetuned them on each database. The cosine similarity is adopted to measure the similarity be-

tween two features for Hong et al., ResNet18/50, ArcVein and MRFBCNN. As with FVCAE,
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PolySVM is used for classification, and the feature is the output of FV-encoder. In addition, we

set the optimal parameters for each database according to Section 5.4.3.

All the methods were repeated 10 times to calculate average ARRs and standard errors. Ta-

ble 3 lists the experimental results for all methods on the five public finger vein databases. Note

that, since all images in the SDUMLA and MMCBNU6000 databases are captured in one ses-

sion, the training and test samples are randomly selected among all samples with no overlap,

while the training samples in other databases are the images from session 1 and the test samples

are from session 2.

It can be seen from the results that the performance of most deep learning based methods has

a big drop on the THU-FVFDT2 database due to insu�cient labeled samples in the training set.

Among deep learning based methods, MRFBCNN and ArcVein obtain superior results to others.

In addition, compared with the state-of-the-art binary feature learning methods (i.e., DDBPD,

CA-LBFL), which only consider a single-type feature of finger vein images, our SSP-DBFL

o↵ers superior identification performance to them. LCMFC learns a projection function from

two-type features (i.e., direction feature and texture feature). However, the texture features do

not provide su�cient discriminative information for finger vein representation (as illustrated in

Section 5.2), leading LCMFC to inferior results to our SSP-DBFL. In addition, the identification

performance of SSP-DBFL becomes better when the scale of IOV is larger so that an IOV ele-

ment can incorporate more background cues. In short, the experimental results demonstrate the

superiority of SSP-DBFL over the state-of-the-arts for finger vein identification.

5.3.2. Finger Vein Verification

In this section, we evaluate the e↵ectiveness of our SSP-DBFL for finger vein verification.

Finger vein verification intends to compare probe samples and gallery samples one by one. There

are two types of matches in the verification protocol, genuine and imposter. Genuine match

means that the two compared finger vein images come from the same finger, and imposter match

means that they come from di↵erent fingers. The settings of all the methods involved here are

the same as those in Section 5.3.1. We calculate the False Acceptance Rate (FAR) and the False

Reject Rate (FRR) and then plot the Receiver Operating Characteristic (ROC) curves (FRR vs

FAR) of di↵erent methods on the five databases in Fig. 5. From Fig. 5, an observation is that

SSP-DBFL consistently obtains the lowest EER, which demonstrates the e↵ectiveness of our

methods.
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(a) THU-FVFDT2 (b) SDUMLA

(c) POLY (d) USM

(e) MMCBNU6000

Figure 5: ROC (FRR vs FAR) curves of di↵erent methods on the five databases.
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5.4. Further Experiments and Discussion

5.4.1. Performance of IOV under Rotation, Scaling and Translation (RST)

In this subsection, we further investigate whether IOV is RST invariant.

Database Construction: As IOV is designed for the extraction of background cues in fin-

ger vein images, we construct an experiment database based on THU-FVFDT2. Overexposure

and underexposure finger vein images are removed first. Then, we manually select 200 images

with clear and rich veins from the remaining images. This operation ensures that the processed

images (i.e., after rotation, translation, and scaling) are di↵erent from the original images, even

under small translations. To obtain probe images with rotation, translation, and scaling, the three

operations are applied to the original images separately, and then we crop all processed image

at the center with size [64, 64]. This avoids setting too many pixels outside the processed image

to a constant (such as 0 or 255). Similarly, the original images are also cropped into patches of

the same size at the center, serving as the gallery set. Some gallery images and probe images are

shown in Fig. 6.

Figure 6: Illustration of gallery images and probe images with rotation, translation, and scaling. Gallery images are in

the first row. Translation, rotation, and scaling images are in the second, third, and fourth rows, respectively, as probe

images.

Experiments: To represent a finger vein image with IOV, we calculate the histogram of each

direction and concatenate them to form the final representation. The nearest neighbor classifier is

adopted for classification based on the Euclidean distance. For comparison, LBP is also applied

in the same context. For clear demonstration, the classification accuracy under di↵erent rotation

angles, translation distances (#pixels), and scale factors is plotted in Fig. 7.
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Figure 7: Classification accuracy under rotation, translation, and scaling.

From Fig. 7a, one can see that using IOV has only a slight performance loss when the rotation

angle ✓ is less than 10�. However, the performance degrades dramatically when ✓ is larger than

10�. The IOV and LBP obtain similar results when ✓ = 40�. When ✓ > 40�, IOV does not

perform as well as LBP and gradually loses the discriminative ability. In addition, we can also

find that the IOV scale does not have a significant e↵ect on results. Fig. 7b indicates that IOV is

robust to translation to some extent, and the robustness becomes better with increased IOV scale.

Obviously, IOV performs better than LBP under translation. From Fig. 7c, we can find that IOV

does not have the scale-invariant property. When the scale factor is less than 1, neither IOV nor

LBP can work e↵ectively. However, However, IOV performs better than LBP when the scale

factor is larger than 1, and the performance benefits from a large IOV scale.
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5.4.2. Convergence Analysis

In this section, we experimentally analyze the convergence of our proposed SSP-DBFL. We

calculate the objective function in Eq. (12) and plot its value versus the number of iterations

on the five databases in Fig. 8. From Fig. 8, we can observe that the objective function value

decreases dramatically after the first few iterations and then tends to be steady. In general, SSP-

DBFL can converge after about 10 iterations. Hence, to ensure the best recognition performance

of our method, the iteration numbers are set to 20 for all databases.

5.4.3. Parameter Analysis

There are four hyper-parameters (�1, �2, � and µ) in the SSP-DBFL objective function to bal-

ance terms. As usual, the optimal parameters vary with di↵erent databases, so do their sensitiv-

ities. Hence, in this section, to analyze their e↵ects, we evaluate the performance of SSP-DBFL

with di↵erent parameters on the five databases. To balance the performance and running time,

the scale of IOV is set to 2 for parameter analysis. All the parameters vary within a discrete set

[10�6, 106] with common ratio 10. The variability of identification accuracy of SSP-DBFL with

di↵erent parameters on each database is shown in Fig. 9.

Firstly, to analyze the influence of µ, we set �1 = �2 = 0.1 and � = 1 to evaluate the accuracy

versus µ. The e↵ect of di↵erent µ is shown in the left-hand column of Fig. 9. We can see that the

performance of SSP-DBFL on all databases is relatively stable and satisfactory when µ is within

the range of
h
10�6, 1

i
, while it decreases in most cases when µ is larger than 102.

Secondly, we study the sensitivities of �1 and �2 by observing the accuracy versus di↵erent

combinations of �1 and �2 with optimal µ and � = 1. The results are shown in the middle

column of Fig. 9. From the results, one can see that a too small �2 or a too large �1 will degrade

the identification performance. We also find that the influence of �2 on SSP-DBFL varies with

databases. For example, the suitable range of �2 is [103, 106] for THU-FVFDT2 database, but for

other databases, �2 varying within [10�2, 106] leads to only slightly change in the performance.

In addition, the reasonable range of �1 is located in [10�5, 10] for stable performance.

Lastly, the optimal �1, �2 and µ were fixed to observe the e↵ect of �. We plot the results

in the right-hand column of Fig. 9. One observation is that a small � poses bad impact on

the performance across five databases. But the tolerance for small � is di↵erent for di↵erent

databases. For example, the performance on MMCBNU6000 is relatively stable until � becomes

smaller than 0.1, while the performance on THU-FVFDT2 decreases dramatically when � < 103.
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Figure 8: Objective function value of SSP-DBFL vs the number of iterations on the five databases.
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In addition, the � that is too large can also impair the performance. Hence, a suitable choice of �

is around 103 for our SSP-DBFL to obtain good results on all databases.

Furthermore, SSP-DBFL aims to learn binary codes with K bits from the two features. To

test the e↵ect of the code length, we perform SSP-DBFL on the five databases with di↵erent

values of K. The relations between accuracy and K are shown in Fig. 10. It can be observed that

the accuracy increases with an increase of K, the reason of which is that the binary codes convey

less discriminative information with a small K. Since K is smaller than the dimensions of IOV

and DDV, we use the largest value of K (8) in this work.

5.4.4. Running Time Analysis

In this section, we evaluate the running time of our SSP-DBFL and other finger vein recog-

nition algorithms. Since SSP-DBFL can be pretrained o✏ine like other learning based methods,

the running time of feature extraction and feature matching process is computed. We choose

some conventional methods and some deep learning based methods for a comparison on the

SDUMLA and POLY databases. The average running time of feature extraction and matching

is reported in Table 4. From the results, we can see that the structure based methods like LMC

take longer in the matching stage, because these algorithms need to generate more templates to

reduce the interference of translations and rotations. In addition, the deep learning based meth-

ods such as FVCAE and ResNet 50 spend more time on the inference process than the subspace

learning based methods. Our methods take about 84.70ms and 62.71ms for feature extraction on

SDUMLA and POLY, respectively. The time consumption of feature extraction of SSP-DBFL

is more than that of other subspace learning based methods, because our methods extract two

types of features before mapping. However, more importantly, our method has the fastest feature

matching speed on the SDUMLA database and ranks second on the POLY database.

6. Conclusion

In this paper, we leverage the background information of finger vein images and propose a

new descriptor named IOV to describe the background intensity variations for the first time. The

scaleable descriptor IOV can thoroughly describe intensity variations and make the finger vein

representation more informative and comprehensive. In addition, we propose a discrete binary

feature learning method named SSP-DBFL for finger vein recognition, which jointly maps DDV
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Figure 9: Finger vein identification accuracy (ARR (%)) vs parameters �1, �2, µ, and �, respectively, on the five databases.
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Figure 10: The accuracy of SSP-DBFL vs code length K on the five databases.

Table 4: Running time (ms) of feature extraction and matching for each method on the SDUMLA, POLY databases.

Methods

SDUMLA POLY

Feature extraction Matching Feature extraction Matching

LMC 232.75 898.13 204.39 562.08

Gabor 58.70 347.11 54.18 341.59

LDC 114.98 68.93 121.03 71.26

PWDBC 85.58 55.14 85.07 55.56

Hong et al. 47.57 3.59 51.30 1.74

FVCAE 214.83 178.04 205.22 135.71

ResNet50 146.53 3.09 97.82 1.84

CA-LBFL 67.86 1.70 37.93 2.48

DDBPD 33.57 4.50 37.39 4.17

LCMFC 79.50 1.47 50.63 1.45

SSP-DBFL 84.70 1.14 62.71 1.74
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for vein traits and IOV for background cues to compact and discriminative codes. To exploit

the consensus between these two types of features in the same region, SSP-DBFL preserves the

high-level semantic similarity of the two features in the common Hamming space. Extensive

experimental results demonstrate the e↵ectiveness of the IOV descriptor and the SSP-DBFL

method. Compared with other finger vein recognition methods, our approach obtains better or

competitive recognition performance on five widely used finger vein databases. However, the

limitation of our system is that the extraction of DDV and IOV slows down the feature extraction

process. In future work, we will focus on developing a new descriptor that contains both direction

information and background cues with a fast feature extraction process and exploit our system

for wider applications in other biometric authentications.
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