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Abstract:

The Regression Discontinuity Design (RDD) is a quasi-experimental 
design that estimates the causal effect of a treatment when its 
assignment is defined by a threshold value for a continuous assignment 
variable. The RDD assumes that subjects with measurements within a 
bandwidth around the threshold belong to a common population, so that 
the threshold can be seen as a randomising device assigning treatment 
to those falling just above the threshold and withholding it from those 
who fall just below. 

Bandwidth selection represents a compelling decision for the RDD 
analysis as the results may be highly sensitive to its choice. A few 
methods to select the optimal bandwidth, mainly originating from the 
econometric literature, have been proposed. However, their use in 
practice is limited. 

We propose a methodology that, tackling the problem from an applied 
point of view, considers units' exchangeability, i.e., their similarity with 
respect to measured covariates, as the main criteria to select subjects 
for the analysis, irrespectively of their distance from the threshold. We 
carry out clustering on the sample using a Dirichlet process mixture 
model to identify balanced and homogeneous clusters. Our proposal 
exploits the posterior similarity matrix, which contains the pairwise 
probabilities that two observations are allocated to the same cluster in 
the MCMC sample. Thus we include in the RDD analysis only those 
clusters for which we have stronger evidence of exchangeability. 

We illustrate the validity of our methodology with both a simulated 
experiment and a motivating example on the effect of statins on 
cholesterol levels.
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Abstract

The Regression Discontinuity Design (RDD) is a quasi-experimental design that

estimates the causal effect of a treatment when its assignment is defined by a

threshold value for a continuous assignment variable. The RDD assumes that subjects

with measurements within a bandwidth around the threshold belong to a common

population, so that the threshold can be seen as a randomising device assigning

treatment to those falling just above the threshold and withholding it from those who

fall just below.

Bandwidth selection represents a compelling decision for the RDD analysis as the

results may be highly sensitive to its choice. A few methods to select the optimal

bandwidth, mainly originating from the econometric literature, have been proposed.

However, their use in practice is limited.

We propose a methodology that, tackling the problem from an applied point of

view, considers units’ exchangeability, i.e., their similarity with respect to measured

covariates, as the main criteria to select subjects for the analysis, irrespectively of their

distance from the threshold. We carry out clustering on the sample using a Dirichlet

process mixture model to identify balanced and homogeneous clusters. Our proposal

exploits the posterior similarity matrix, which contains the pairwise probabilities that

two observations are allocated to the same cluster in the MCMC sample. Thus we

include in the RDD analysis only those clusters for which we have stronger evidence

of exchangeability.

We illustrate the validity of our methodology with both a simulated experiment and

a motivating example on the effect of statins on cholesterol levels.

Prepared using sagej.cls

Page 2 of 30

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Keywords

Regression Discontinuity Design; Dirichlet Process Mixture Models; Causal Inference;

Bayesian Inference

1 Introduction

The Regression Discontinuity Design (RDD) is a quasi-experimental design that

estimates the causal effects of a treatment by exploiting the presence of a pre-

determined treatment rule (either naturally occurring or regulated by on-going

policies). The first publication on RDD was an application in education by

Thistlethwaite and Campbell(1). Since then this framework has proved to be

effective in a wide range of applications in other disciplines, including economics(2)

and politics(3). More recently there has been some interest in the RDD for

epidemiology (4; 5; 6) and health and primary care applications(7; 8; 9; 10).

The RDD can be applied in any context in which a particular treatment

or intervention is administered according to a pre-specified rule linked to a

continuous variable, referred to as the ‘assignment’ or ‘forcing’ variable: the

treatment is then administered if the units’ value for the assignment variable

(X) lies above or below a certain threshold (x0), depending on the nature of the

treatment. If thresholds are strictly adhered to when assigning treatment, the

design is termed sharp, while when this is not the case it is termed fuzzy.

The regression discontinuity design has become of particular interest in the

definition of public health policies as it enables the use of routinely collected

electronic medical records to evaluate the effects of drugs when these are

prescribed according to well-defined decision rules. This is useful as government

agencies such as the Food and Drug Administration (FDA) in the USA and

the National Institute for Health and Care Excellence (NICE) in the UK are

increasingly relying on guidelines for drug prescription in primary care. In fact

we will use prescription of statins in the UK as our motivating example, but
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there is a wide range of potential applications including the prescription of anti-

hypertensive drugs when systolic blood pressure exceeds 140mmHg or initiating

antiretroviral therapy in patients with HIV-1 when their CD4 count has fallen to

350 cells/mm3 or below.

The RDD can mimic a randomised experiment around the threshold and the

treatment effect at the threshold can be obtained averaging the outcomes in ‘small’

bins in its proximity. The choice of the ‘bandwidth’ is an important decision for

an RDD analysis. because the results are highly sensitive to its choice, especially

in all those cases in which the relationship between the assignment variable and

the outcome, on both sides of the threshold, deviates from linearity.

In many applied studies(9; 11; 12), a standard strategy adopted to address the

bandwidth issue is to produce local linear regression estimates obtained using data

within a limited number of bandwidths (often not more than 3 or 4, sometimes

defined with the guidance of experts in the field of study). Alternatively, more

complex approaches can be adopted.

Historically, these methods find their roots in the econometric literature and

have close connection with the non-parametric estimation of the effect for

RDD. Their common rationale is that the ‘optimal’ bandwidth must be selected

according to some criteria aimed to minimise an error term. The first proposal,

by Ludwig and Miller(13), was based on a leave-one-out cross validation (CV)

strategy in order to find the estimator minimising the mean integrated square

error. Later, Imbens and Kalyanaraman(14) and Calonico et al.(15) demonstrated

that the CV method was a potential source of bias and that it was not reliable

in any case when the design is fuzzy, and hence devised two slightly different

minimisation methods based on the asymptotic mean square error. Lee and

Lemieux(16) give an overview of these approaches.

More recently, Local Randomization (LR) has been proposed by Cattaneo et

al.(17) and used since in several applied papers(12; 18; 19) in an attempt to select a

window around the threshold where the units can be seen as part of a randomised

experiment. This approach, although motivated by a different intuition, shares a

common trait with the other approaches outlined above (and further described in

Section 3): they all aim at finding one bandwidth, having optimal properties under

certain criteria and then use it within the RDD framework. As a consequence, they

rely on what we named ‘all-or-nothing’ selection mechanism: all units within the

bandwidth are considered for the RDD analysis, but none of those outside.
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In this paper, we propose an alternative approach to select the units to be

included in a RDD analysis. Similarly to the LR method, our approach originates

from a pragmatic and applied point of view, focusing on units’ exchangeability, an

attribute rooted in the unconfoundness assumption that guarantees that a RDD

mimics a randomised control trial thanks to the similarity of the units above and

below the threshold. However, our proposal has a more ambitious goal: not only

do we aim at including units for the RDD analysis based on their mutual similarity

and not on their proximity to the threshold, but we also want to overcome the

need of an ‘all-or-nothing’ approach shared by all other methods existing in the

literature.

Our novel proposal is motivated by the idea that that units can be grouped

in an unknown yet finite number of clusters in which the available covariates are

balanced among units above and below the threshold. Using a Dirichlet process

mixture model (DPMM), we cluster the units using continuous and categorical

covariates to account for potential sources of confounding. By quantifying the

internal similarity of the clusters obtained, only units belonging to the most

homogeneous clusters are then used in the RDD analysis, irrespective of their

distance from the threshold. Our proposal aims to a more effective sample

selection, as it searches for ‘signal’ in the data in farther regions from the threshold

generally overlooked by the currently available bandwidth selection approaches

and discards the ‘noise’ from data points closer to the cut-off.

The paper is organised as follows. Section 2 introduces the RDD and gives

details about the Bayesian modelling framework we adopt for the analysis. Section

3 gives an overview of the current literature on bandwidth selection for regression

discontinuity designs. Section 4 presents the methodological core of the paper,

where we discuss the use of clustering based on Dirichlet Process Mixture Models

(DPMM) within the RDD framework and Section 5 addresses the issue on

cluster selection for the subsequent RDD analysis. Results on both a simulated

experiment and a real dataset on the effect of statins on cholesterol level are given

in Section 6. Finally a closing discussion is presented in Section 7.

2 Bayesian Inference for the Regression Discontinuity Design

In this section we introduce the basic framework and notation for the RDD.

Our work is motivated by an application of the regression discontinuity design
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to statin prescription in primary care. In the past years other works from our

broader research group have originated from the same practical application and

data, every time exploring a different aspect of the RDD (8; 9; 20). In the UK,

according to guidelines given by the National Institution for Health and Care

Excellence (NICE), statins must be prescribed to patients whose 10-year risk

score of developing a cardiovascular disease, predicted using a logistic regression

model with a number of clinical and lifestyle indicators as independent variables,

exceeds 20%(21). This threshold has been revised in 2014, lowering it to 10%, but

we used pre-2014 data in this work and hence we applied the old cut-off value.

Using the risk score as our forcing variable X ∈ {0, 1}, a RDD analysis can

assess whether binary statins treatment (T ∈ {0, 1}) can cause a reduction in

Low-Density Lipoprotein (LDL) cholesterol (our outcome, Y ), evaluated at the

threshold set to x0 = 0.20. To complete the basic notation, let Xc = (X − x0)

be the centred assignment variable and Z be the binary threshold indicator such

that Z = 1 if the forcing variable X ≥ x0 and Z = 0 otherwise. Note that Z

coincides with the treatment assignment variable T when the design is sharp, but

when RDD is applied to health and medical data it is reasonable to expect the

design to be fuzzy, and hence the two variables not to coincide. In our motivating

example this can be due both to GPs not adhering to NICE guidelines and to

patients failing to take statins although prescribed to do so.

It is widely known that the threshold indicator Z is a special case of binary

Instrumental Variable (IV)(22). For this reason, in order for the RDD analysis to

be performed, a set of assumptions which can be derived from the IV literature

must hold(9; 23).

While further theoretical and technical aspects of the RDD would add very

little to the scope of this paper, being extensively covered(24; 25), we make

use of the next subsection to provide a more detailed overview of the Bayesian

modelling framework we aim to use for the the estimation of the causal effect at

the threshold.

2.1 The causal effect

Motivated by our example, where GPs’ prescribing behaviour may not adhere

to NICE guideline, our primary focus is on fuzzy designs, hence the effect we

are interested in is the Local Average Treatment Effect (LATE) at the threshold,
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defined as

LATE =
E(Y |Z = 1)− E(Y |Z = 0)

E(T |Z = 1)− E(T |Z = 0)
.

The LATE numerator is equal to the Average Treatment Effect (ATE). The

denominator, obtained as the difference in the expected treatment probabilities

above and below the threshold, scales the ATE to account for the fuzziness of

the design. In our motivating example, the LATE quantifies the change in LDL

cholesterol at the 10-year risk threshold of 20%.

More details about the assumptions that allow the identification of the above

effect under a fuzzy observational regime can be found in Constantinou and

O’Keeffe(26).

Models for the ATE Let the index l ∈ {a, b} specify whether a unit’s forcing

variable value lies above or below the threshold. We decided to model the outcome,

i.e., LDL cholesterol, separately for l = a and l = b as

yil ∼ N(µil, σ
2);

µil = β0l + β1lx
c
il,

where xc
il is the centred distance of variable X from the threshold x0 for the i-th

individual belonging to l.

In our examples in Section 6, both for the simulated scenarios and for the real

data analysis, the relatively large sample size reduces the impact on posterior

inference of distributional assumptions, especially for σ which is likely dominated

by information from observed data. With smaller samples or to ensure further

robustness to prior on σ, other models are obviously possible, e.g., by considering

an Half-Cauchy distribution(27).

For the regression parameters, their prior distributions are chosen to reflect

plausible LDL cholesterol levels for the observed range of risk scores. Prior

specifications are defined as follows
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β0a = β0b + λ;

β0b ∼ N(3.7;σ2
0b = 0.25);

β1l ∼ N(0;σ2
1l = 2);

σ ∼ Uniform(0, 5).

To encode in the model some available information from the literature(28) about

the effect of statins in lowering cholesterol levels, we specify the prior distribution

of λ in order to be moderately informative, i.e.,

λ ∼ N(−2, 1).

Finally the ATE is calculated as ∆β = β0a − β0b.

Models for the denominator of the LATE The total number of subjects treated on

each side of the threshold is modelled, again separately for l ∈ {a, b} as

nl∑
i=1

til ∼ Binomial(nl, πl),

where nl is the number of units either above or below the threshold.

Depending on the desired prior structure for (πb, πa), we specify two models

which, analogously to those in Geneletti et al.(9), have been named unconstrained

and flexible difference model.

This means that for the unconstrained model we use vague Beta distributions

πl ∼ Beta(1, 1),

with l ∈ (a, b).

For the flexible difference model, we impose a mild prior structure

acknowledging an actual difference between the treatment probabilities above and

below the threshold, defining

logit(πa) ∼ N(2, 1) and logit(πb) ∼ N(−2, 1).
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These distributions keep the bulk on the prior probability of treatment

distributions, above and below the threshold, reasonably separate from one

another, limiting the possibility that they result to be similar, while not

constraining them to have a fixed difference.

The denominator for the LATE is then given by the difference

∆π = πa − πb.

* * *

Depending on the chosen model for the denominator we get two different effects,

i.e.,

LATEunct =
∆β

∆unct
π

and LATEflex =
∆β

∆flex
π

for the unconstrained and flexible difference model respectively.

3 A concise review of bandwidth selection methods

In recent years there has been a surge in the interest of researchers for the

choice of the bandwidth, as accounted by Cattaneo and Vazquez-Bare(29) in

their comprehensive review on the topic. In fact the definition of the bandwidth

represents a fundamental decision for the RDD as there is both a clear link between

the size of the bandwidth and the assumption of exchangeability and a trade-

off with the precision of the estimates. If the bandwidth is small, units can be

reasonably considered more similar to one another. If the bandwidth is too large,

the converse is true, i.e., units could no longer be considered homogeneous.

In this section, we give an overview of the most prominent methods for

neighbourhood selection in the literature.

3.1 Cross Validation based approach

The first approach found in the literature is based on a Cross Validation

procedure as proposed by Ludwig and Miller(13)∗, also discussed by Imbens and

∗This is a working paper, later published as peer-reviewed article in a shortened version (30)
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Lemieux(24). Let

m̂h(Xi) =

αa + βaX
c
i , if Xi ≥ x0,

αb + βbX
c
i , if Xi < x0

be the predicted value, using a bandwidth equal to h, of the outcome Y regressed

on the centred assignment variable Xc
i when the i-th unit is left out from the

calculation. The Cross Validation criterion is defined as:

CVY,δ(h) =
1

N

N∑
i:qX,δ,b≤Xi≤qX,1−δ,a

(Yi − m̂h(Xi))
2
. (1)

Here m̂h(Xi) is estimated using only observations on one side of Xi to mimic the

fact that RDD estimates are based on regression estimates at the boundary. As a

result, equation (1) is an average of boundary prediction errors. Furthermore qX,δ,b

and qX,1−δ,a are the δ-th and (1− δ)-th quantiles of the empirical distribution of

X for the sub-samples ‘below’ and ‘above’ the threshold, respectively. Ludwig and

Miller(30) suggest δ = 0.95 to be appropriate, while other works(16; 24) state that

δ = 0.5 represents a reasonable value, but the choice of an appropriate value varies

according to the problem at hand and should be evaluated with care. The choice

for the bandwidth given by this CV method is then represented by

hopt
CV = argmin

h
CVY,δ(h).

This criterion leads to the bandwidth choice that minimises an approximation of

the Mean Integrated Square Error (MISE):

MISE(h) = E

[∫
x

(m̂h(x)−m(x)) f(x)dx

]
where m(x) = E[Yi|Xi = x] and f(x) is the density of the forcing variable.

In the case of a fuzzy RDD, Imbens and Lemieux(24) suggest to use the smallest

bandwidth selected by two CV criteria applied separately to the outcome and to

the treatment:

hopt
CV = min

(
argmin

h
CVY,δ(h), argmin

h
CVT,δ(h)

)
,
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where T denotes the treatment received and the formulation for CVT,δ(h) is similar

to that in (1).

3.2 MSE expansion bandwidth selection

Both Imbens and Kalyanaraman(14) and Calonico et al.(15) criticise the CV

based approach, stating that this criterion relies on fitting the entire regression

line between the δ-quantile for the observation on the left and the (1− δ)-quantile

for those on the right, so that the result is not optimal for the problem at hand,

being the aim of a RDD to estimate the effect at the threshold.

Let τ̂ be the estimated effect at the threshold for the RDD, the proposal of

Imbens and Kalyanaraman is based on minimising its asymptotic Mean Squared

Error (MSE), i.e., (τ̂ − τ)2. Hence the MSE is defined as:

MSE(h) = E[(τ̂ − τ)2] = E[((µ̂a − µa)− (µ̂b − µb))
2]

where µ̂b = limx↑x0
m̂h(x) and µ̂a = limx↓x0

m̂h(x), i.e, the two regression

estimators for the ‘true’ models on the two sides of the threshold, i.e., µb =

limx↑x0
m(x) and µa = limx↓x0

m(x).

To overcome some issues arising when trying to minimise the MSE(h) directly,

the authors use a first-order approximation around h = 0 of the above quantity,

which they term Asymptotic Mean Squared Error or AMSE(h). The optimal

bandwidth is therefore:

hIK = argmin
h

AMSE(h) = CK

(
σ2
a(x0) + σ2

b (x0)

f(x0)(m′′
a(x0) +m′′

b (x0))2

)1/5

N−1/5

where CK is a constant value depending on the choice of the kernel function

K(·); σ2
b (x0) and σ2

a(x0) are the left and right limit at the threshold of the

variance σ2(x) = V ar(Yi|Xi = x); f(x) is the density of the forcing variable;

m′′
a(x0) and m′′

b (x0) are the right and left limits of the second derivative of

m(x) = E[Yi|Xi = x]. The authors propose a data-dependent method to estimate

hIK in three steps.

Calonico et al.(15) considered that both previous methods produce bandwidths

that are too wide, leading to confidence intervals with poor asymptotic coverage.

The authors prove that correct asymptotic coverage is reached only if the

bandwidth can satisfy the bias condition nh5
n → 0, a requirement that none of

Prepared using sagej.cls

Page 11 of 30

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Ricciardi, Liverani, Baio 11

the above mentioned methods can guarantee, leading to a first order bias in the

distributional approximation. As a result, the conventional confidence intervals

may substantially over-reject the null hypothesis of no treatment effect.

The authors propose a bias correction to address this problem that is able to

improve the performance in finite samples. The final result is a generalisation of

hIK , which we term hCCT , which allows for higher order polynomial to be used

for the inference and provides more robust confidence interval estimators.

3.3 Local Randomization

The Local Randomization (LR) approach selects a window around the cutoff in

which the randomization assumption is likely to hold(17; 31; 32; 33).

The rationale behind LR is that, because treatment assignment is assumed

to be randomised by the threshold inside the window, the distribution of pre-

intervention covariates should be the same for treated and untreated units. This

observation is directly related to the non-testable unconfoundness assumption

needed for the RDD to infer valid causal estimators. For the RDD framework

to be useful, the distribution of these covariates for treated and untreated units

should be unaffected by the treatment T within the bandwidth h but should be

affected by the treatment outside the window.

To find such desired bandwidth an iterative selection method is implemented.

Starting from a arbitrary ‘small’ bandwidth h1, for each one of the covariates,

multiple tests of the null hypothesis of no effect of the treatment on the covariates

is conducted and the minimum p-value taken.

If the minimum p-value obtained, p1, is less than some pre-specified level the

initial window was too large, hence one should decrease the initial window and

start over. Otherwise, if p1 is greater than the selected significance level, choose

a larger window h2 ⊇ h1, and go back to calculate a second iteration minimum

p-value, p2. The process continues until the minimum p-value is smaller than the

desired level and a final bandwidth hLR is defined.

* * *

The limited literature available and the lack of an unequivocal methodology for

the bandwidth selection motivates our work: in the following we develop a more

general RDD framework in which the choice of the bandwidth is not required,

with positive effect on our results.
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4 Dirichlet Process Mixture Models

In this paper, we propose a Dirichlet process mixture model to identify units

that are similar (and so will be treated as exchangeable), above and below the

threshold. We propose to identify these units by exploiting the characteristics of

the clusters obtained with a Dirichlet process mixture model.

The Dirichlet process mixture model is a Bayesian nonparametric method

for (unsupervised) clustering and applied in a variety of areas, such as

retail analysis(34), language processing and classification(35; 36; 37), medical

imaging(38; 39), epidemiology(40; 41; 42; 43; 44; 45; 46) and genetics(47). The

Dirichlet process was first introduced by Ferguson(48) and is defined as a

probability distribution over random probability measures. The distribution of

a Dirichlet process is (almost surely) discrete, in that a random sample drawn

from a Dirichlet process has a non zero probability that multiple draws will have

identical values. It is this discreteness property which makes the Dirichlet process

ideal for clustering, as it avoids the need to determine the number of clusters a

priori (49). The basic Dirichlet process mixture model is formulated as follows:

wi|θi ∼ p(wi|θi)

θi|G ∼ G

G ∼ DP (α,G0).

The Dirichlet process models the distribution from which data w1, . . . , wn

are drawn as a mixture of distributions, p(wi|θi), where each parameter θi is

drawn from a mixing distribution G(49). G0 is the base distribution, that is

the prior expectation of G, i.e., E[G] = G0, and the concentration parameter

α acts as an inverse variance where larger values of α result in smaller

variances. Posterior inference from a DPMM utilises Markov chain Monte Carlo

(MCMC) posterior simulation and our implementation uses the slice sampling

procedure(50). Moreover, due to the nature of the stick-breaking construction of

the Dirichlet process(51), label-switching moves are also implemented, to prevent

the slice sampler from getting stuck in local modes(52).

In this paper, the DPMM is implemented to model both continuous and discrete

data using a mixture of Gaussian and categorical random variables . Let Si be

the latent allocation variable so that if Si = c then individual i is in cluster
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c ∈ {1, C}, then conditional on each cluster c, the likelihood for observable data

Di = (D1
i ,D

2
i ) is

p(Di|Si = c,Θc) = p(D1
i |µDP

c ,Σc)p(D
2
i |Φc)

where D1
i = (D1

i,1, ..., D
1
i,J1

) is the subset of the J1 continuous random variables

in Di and D2
i = (D2

i,1, ..., D
2
i,J2

) is the subset of the J2 categorical random

variables in Di. Note that we are assuming independence between continuous

and categorical data conditional on the cluster allocations. The cluster specific

parameters are given by Θc = (µDP
c ,Σc,Φc), which are defined in detail below.

For the continuous random variables, we have

p(D1
i |µDP

c ,Σc) = (2π)−
J1
2 |Σc|−

1
2 exp

{
−1

2
(D1

i − µDP
c )⊤Σ−1

c (D1
i − µDP

c )

}
and we choose µDP

c ∼ Normal(µDP
0 ,Σ0) and Σc ∼ InvWishart(R0, κ0) (for each

c) for our prior model to obtain a conjugate model, permitting Gibbs updates for

the parameters µDP and Σ.

For the discrete random variables, we have

p(D2
i |Φc) =

J2∏
j=1

ϕSi,j,Xi,j
.

For each individual i, D2
i = (D2

1, . . . , D
2
J2
) is a vector of J2 locally independent

discrete categorical random variables, where the number of categories for

covariate j = 1, 2, . . . , J2 is Rj . Then we can write Φc = (Φc,1, . . . ,Φc,J2
)

with Φc,j = (ϕc,j,1, ϕc,j,2, . . . , ϕc,j,Rj
). Letting a = (a1,a2, . . . ,aJ2), where aj =

(aj,1, . . . , aj,Rj
) and adopting conjugate Dirichlet priors Φc,j ∼ Dirichlet(aj), each

Φc,j can be updated directly using Gibbs iterations.

As each iteration of the MCMC Gibbs sampler provides an estimate of the

cluster labels, Partitioning Around Medoids (PAM) was used to obtain an overall

estimate of the optimal number of clusters(53). As the number of clusters varies

between iterations, the proposed method uses the posterior similarity matrix P.

The best clustering is selected by maximising an associated clustering score(54).

The Dirichlet process mixture model described above is available in the R package

PReMiuM(55).
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5 Cluster Ranking and Selection

Once we have identified units that are similar to one another using a Dirichlet

process mixture model, above and below the threshold, we must identify the most

suitable clusters for the RDD analysis. We propose to identify clusters that are

balanced and homogeneous. These concepts have been extensively exploited in

several branches of statistics, most notably by the Propensity Score Weighting

literature(56; 57), where overlap in covariates between treatment groups is a

desired feature to estimate average treatment effects for sub-populations defined

according to the propensity score.

A cluster is balanced when it has enough units on both sides of the threshold.

As many small clusters are usually fully above, or below, the threshold, it is

important to ensure that we consider balanced clusters for the RDD analysis.

We call πZ
c the proportion of units in cluster c with Zi = 1, i.e., for which the

assignment variable is greater than the threshold x0. We then empirically set a

constant value ζ , deeming a cluster balanced if the proportion πZ
c falls within an

acceptable range, i.e.,
1

ζ
≤ πZ

c ≤ ζ − 1

ζ
. Finally, we discard unbalanced clusters,

leaving us with C ′ ≤ C clusters. For c′ = 1, . . . , C ′ let K′ = {K1, . . . ,KC′} with

Kc′ ⊆ V be the clustering set where the unbalanced clusters have been removed

so that nc′ = |Kc′ | is the number of units in cluster c′.

A cluster is homogeneous (or compact) when the observations within it are

very similar to one another. However, modelling with a mixture model does not

always result in clusters of similar observations. For example, a Gaussian mixture

model with a fully flexible covariance matrix may incur in large within-cluster

dissimilarities compared to a model in which covariance matrices are assumed to

be equal or spherical: observations that are modelled well by a common probability

distribution are not necessarily close. For example, in the case of a 2-dimensional

Gaussian distribution with a high correlation, the maximum distance between

the further observations can be significant. Generally, the mixture model does

not come with implicit conditions that ensure the separation of clusters(58).

Therefore, we employ the Dirichlet process mixture model to exploit its flexibility,

but we must take a close look to the homogeneity of each cluster.

We propose to rank clusters based on their homogeneity. The concept of

homogeneity is widely explored in the clustering literature(59) and relies on

the idea that if properly identified, units in a cluster must have a cohesive
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structure. The most straightforward way to formalise that all objects within a

cluster should be similar to each other is the average within-cluster distance, a

commonly used index for cluster internal validation(60). We employ a version

of this within-cluster index based on the posterior similarity matrix P obtained

post-processing the output of the Dirichlet process mixture model. The values in

P are the pairwise probabilities that two observations are allocated to the same

clusters in the MCMC sample. As such, adapting the definition of dissimilarity

from Henning(60), we can define a similarity function s : V2 7−→ R+
0 so that

s(v1, v2) = s(v2, v1) ≥ 0 and s(v1, v1) = 1, where v1 and v2 are elements from V,
the space of observations that we are clustering. This similarity function can be

used to compute the within-cluster homogeneity.

Let pl,v be the elements of the similarity matrix P. For each cluster this within-

cluster homogeneity index can be calculated as:

Ic′ =
2

nc′(nc′ − 1)

nc′∑
l=1

nc′∑
v≤l

pl,v.

A lower within-cluster index is an indicator of a more homogeneous cluster, with 0

being the minimum value for Ic′ . We exploit this measure of homogeneity to rank

the clusters from the least homogeneous to the most homogeneous. We relabel

the index as I(c′) for c
′ = 1, . . . , C ′ such that I(1) < I(2) < . . . < I(C′).

Among the balanced clusters, we propose to use homogeneity to select the

clusters to include in our model. We propose the following four criteria.

1. We include clusters until the relative difference between the homogeneity

for the c′-th and (c′ + 1)-th ordered clusters is within a 10% margin, that

is, all ordered clusters from 1 to c′ such that

I(c′+1) − I(c′)

I(c′)
< 0.10

for c′ = 1, . . . , C ′. We refer to this criteria as inc10.

2. We include the first quartile of the balanced clusters, that is, all clusters c′

with

I(⌈h⌉) such that h ≤ C ′/4.

We refer to this method as c25.
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3. We include clusters starting from the most homogeneous until the sample

includes at least half of the units from the entire cohort, that is, all clusters

c′ with c′ = 1, . . . , C ′ such that

C′−1∑
c′=1

n(c′) < N/2 and
C′∑

c′=1

n(c′) ≥ N/2

where n(c′) is the cardinality of the c′-th cluster, ordered according to the

homogeneity index I(s). We refer to this criteria as n50.

4. We named to this final criteria as n25 as it is similar to n50, but only

considering one quarter of the units from the entire cohort, that is, all

clusters c′ with c′ = 1, . . . , C ′ such that

C′−1∑
c′=1

n(c′) < N/4 and
C′∑

c′=1

n(c′) ≥ N/4.

The four strategies detailed above define four (possibly) different sub-samples of

the partition obtained applying a Dirichlet process mixture model as in Section

4. RDD analysis, as detailed in Section 2, is hence performed for each of the

sub-samples of units irrespective of their distance from the threshold (x0).

6 Applications and results

We make use of our methodology for an application to primary care prescription:

according to the guidelines given by the National Institute for Health and

Care Excellence (NICE) between 2008 and 2014, statins should have been

prescribed in the UK to patients with 10-year cardiovascular disease (CVD)

risk scores, calculated via the so called Framingham Risk Score(61), in excess

of 20%. To illustrate our methodology and check its performance, we use

statins prescriptions data from The Health Improvement Network (THIN -

www.the-health-improvement-network.com) a large primary care database that

provides anonymised longitudinal general practice data on patients’ diagnostic

and prescribing records from more than 500 general practices across the UK. The

database is broadly representative of the UK population(62).

In the following Sections we will present results obtained using our methodology

both on a realistically simulated dataset (Section 6.1) and on a subset of data
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from THIN patients (Section 6.2). The simulated experiment makes a formal

comparison between different methods (i.e., our DPMM clustering based approach

and other relevant bandwidth selection criteria), while the real-data application

showcases how our methodology can be useful in practice. In both cases, the

values of three key covariates are used to cluster units with our DPMM: age,

systolic blood pressure and high-density lipoprotein (HDL) cholesterol. With the

same data, we have obtained results of RDD analyses using established bandwidth

selection methods: those based on MSE (i.e., methods originating from Imbens and

Kalyanaraman(14) and Calonico et al.(15), IK and CCT for short, respectively)

and Local Randomization (LR) as detailed in Sections 3.2 and 3.3 as well as

two arbitrarily selected windows, i.e., bandwidth of width 0.05 and 0.1 on each

side of the threshold. Appropriate functions from R packages rdd, rdrobust and

rdlocrand are used to estimate hIK , hCCT and hLR respectively.

6.1 Simulated example

For this example we followed the same approach as Geneletti et al.(9) and

used simulated data originated from the THIN database (details about the

simulation algorithm can be found on the supplementary material of that paper).

In particular data are obtained under a simulation scenario in which the risk score

is a strong instrument for the treatment, the treatment effect size is equal to -2

and there is low level confounding. Both statins treatment status and the LDL

cholesterol outcome are simulated to mimic realistic values.

We have simulated 100 datasets and for each of them, separately, we clustered

the units using the DPMM approach. Then we selected the most homogeneous

clusters based on the four criteria detailed in Section 5. The range for acceptable

assignment probability for each cluster is 1
10 ≤ πZ

c ≤ 9
10 , i.e., ζ = 9. These

boundaries are set in order to account for the fact that in most of the clusters the

assignment probabilities are not very well balanced between observations below

and above the threshold. Our aim is thus to define a reasonable way to discard

extreme, ineligible clusters while, at the same time, preventing a too drastic

exclusion of most of them. Finally we performed RDD Bayesian analysis and

combined the results to obtain LATEunct and LATEflex.

Figure 1 gives a visual representation of how units are selected according to

different bandwidth methods compared with the our DPMM framework combined

with the c25 criteria: solid red dots and blue diamonds represent the selected units
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Figure 1. Scatterplot of 10-year CVD risk score vs. LDL cholesterol for one of the
realistically simulated datasets, highlighting the units selected for the RDD analysis using
the ‘c25’ strategy (treated (blue) and untreated (red)), compared with other bandwidth
selection methods (LR bandwidths are not depicted as they are too close to the threshold
line).

out of the whole initial sample, represented using void grey markers. Vertical lines

show the bandwidths selected with some of the methods described in Section 3.

Note that LR bandwidths are not shown to avoid confusion, as they are too close

to the threshold.

Table 1 and Figure 2 show the results of these scenarios. It is worth noticing

that flexible and unconstrained estimators give very similar results. Among the

four cluster selection strategies we propose, c25, n50 and n25 all show a reduced

bias than those obtained using other established methods - i.e., CCT, IK, LR

and arbitrarily-selected fixed-width bandwidths - while results for strategy inc10

are considerably less reliable. Precision of all estimators is comparable for all

strategies but inc10, which shows wider credible intervals.

Prepared using sagej.cls

Page 19 of 30

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Ricciardi, Liverani, Baio 19

Table 1. Results for the simulated example.

method Median Mean Lower Upper

LATEflex
inc10 -2.16 -2.19 -3.10 -1.47

LATEunct -2.26 -2.42 -3.55 -1.41

LATEflex
c25 -1.96 -1.97 -2.28 -1.66

LATEunct -1.97 -1.97 -2.28 -1.67

LATEflex
n50 -2.03 -2.03 -2.18 -1.89

LATEunct -2.03 -2.03 -2.18 -1.89

LATEflex
n25 -1.96 -1.96 -2.16 -1.77

LATEunct -1.96 -1.96 -2.16 -1.77

LATEflex
LR -1.44 -1.46 -2.79 -0.27

LATEunct -1.54 -1.62 -3.52 -0.27

LATEflex
CCT -2.05 -2.05 -2.21 -1.90

LATEunct -2.05 -2.05 -2.21 -1.90

LATEflex
IK -2.08 -2.08 -2.24 -1.93

LATEunct -2.08 -2.09 -2.24 -1.93

LATEflex
h = 0.10 -2.10 -2.10 -2.25 -1.94

LATEunct -2.10 -2.10 -2.25 -1.95

LATEflex
h = 0.05 -2.10 -2.10 -2.27 -1.93

LATEunct -2.10 -2.10 -2.27 -1.93

6.2 Real data - Statins prescription in the UK.

In this second example, we considered a subset of patients from THIN: male

individuals aged from 50 to 70 who had not previously received a statin

prescription nor suffered from a CVD event and for whom the Framingham

risk score was recorded by the GP during the time between 1 January 2007

and 31 December 2008. We further restricted the analysis to non-diabetic and

non-smoking patients, so that the total number of units is 1386.

Figure 3 shows why we believe a RDD is appropriate for the data at hand,

clearly highlighting a discontinuity at the threshold for both the LDL level and

the probability of statins prescription. Also we can appreciate the substantial

fuzziness of the data, so that the LATE estimators are appropriate in this setting.

For the clustering selection process, the range for acceptable assignment

probability for each cluster is set to 1
10 ≤ πZ

c ≤ 9
10 , i.e., ζ = 9. Table 2 and Figure
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Figure 2. Comparison of results for the simulated example.

Figure 3. The left-hand plot shows 10-year CVD risk score vs. LDL cholesterol for treated
(blue) and untreated (red), and the mean cholesterol lever within some equally spaced bins
(black); the right-hand side plot shows risk score vs. the estimated probability of treatment,
within the same bins. The dashed line indicates the threshold of 0.2.
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Figure 4. Scatterplot of 10-year CVD risk score vs. LDL cholesterol for Real case,
highlighting the units selected for the RDD analysis using the ‘c25’ strategy (treated (blue)
and untreated (red)), compared with other bandwidth selection methods.

5 show the results. Obviously there is no real value to compare the results of

the estimators with, but there are a few aspects of interest nonetheless. All our

DPMM estimators, including inc10, produce similar results, irrespective of which

cluster selection method is used, with n50 and n25 strategies both producing more

precise estimates. It is also interesting to note how, in this case, the LR method

produces very wide credible intervals for both LATEunct and LATEflex, as this

method is not able to pick a large enough subset of similar unit, being constrained

to limit the search within nested windows. Results from both MSE based and

arbitrary-selected bandwidths appear substantially different: CCT estimators are

less precise that the DPMM based ones, and only h = 0.10 produces results

similar, in median, to those obtained applying our DPMM and cluster selection.
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Table 2. Results for example based on real data.

method Median Mean Lower Upper

LATEflex
inc10 -1.01 -1.03 -1.58 -0.57

LATEunct -1.10 -1.10 -1.74 -0.49

LATEflex
c25 -1.02 -1.04 -1.59 -0.55

LATEunct -1.09 -1.09 -1.67 -0.49

LATEflex
n50 -0.95 -0.96 -1.32 -0.67

LATEunct -0.97 -0.97 -1.30 -0.68

LATEflex
n25 -1.12 -1.12 -1.49 -0.76

LATEunct -1.14 -1.14 -1.56 -0.71

LATEflex
LR -2.07 0.53 -21.36 26.04

LATEunct -1.79 3.52 -28.67 57.38

LATEflex
CCT -1.53 -1.56 -2.21 -0.95

LATEunct -1.55 -1.58 -2.44 -0.94

LATEflex
IK -1.17 -1.18 -1.63 -0.82

LATEunct -1.19 -1.19 -1.61 -0.83

LATEflex
h = 0.10 -1.04 -1.05 -1.40 -0.74

LATEunct -1.09 -1.09 -1.42 -0.72

LATEflex
h = 0.05 -1.39 -1.40 -1.98 -0.94

LATEunct -1.42 -1.43 -2.00 -0.99

7 Conclusions

We have proposed a novel, data-driven approach to deal with the bandwidth

selection issue for the regression discontinuity design from a different perspective

than those adopted in the available literature. Our approach originates from

the idea that what matters the most in a regression discontinuity design is

the exchangeability of the units included in the analysis, i.e., their homogeneity

with respect to know observable characteristics. Following this rationale, it is

reasonable to believe that subgroups of units might share common characteristics

irrespective of their distance from the threshold. This, we believe, represents

the most appealing aspect of this framework: instead of relying on the ‘all-or-

nothing’ approach, which is implicit with any of the currently available bandwidth

selection methodologies, we propose a tool that is capable of using all the
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Figure 5. Comparison of results for the Real Case.

available information from all the individuals showing homogeneous covariates

and balanced forcing variable.

Furthermore, when compared with the Local Randomization method which is

similar in principle to ours, our DPMM clustering approach has the merit of

tackling exchangeability more directly: while the former tests the null hypothesis

of no effect of the treatment on each observed confounder separately in a univariate

way, the latter, relying on clustering methods, evaluates the homogeneity of the

considered covariates in a joint, more comprehensive approach.

The results of the RDD analysis using our DPMM clustering framework,

especially in combination with c25 cluster selection strategy, compared favourably

in terms of bias with those obtained following other bandwidth selection

approaches, i.e., CCT and IK (methods that are specifically designed to minimise

the bias of the causal estimator), LR and with the arbitrarily-selected fixed-width

bandwidths.

We are aware of the limitations to our approach. In particular we acknowledge

the issue that, due to the complexity of the DPMM which involves the estimation
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of a latent clustering structure, our analysis is more time consuming than those

based on other bandwidth selection methods, an issue that is amplified as the

number of clustering covariates increases. Due to label switching and the lack of a

specific parameter to target, it is also hard to assess Bayesian DPMM convergence

with the usual MCMC diagnostics. We remain convinced that these limitations

are a reasonable price to pay in order to be able to overcome the ‘all-or-nothing’

bandwidth approach. A further limitation is the fact that our method relies on

the availability of observed data or known confounders, although this issue is not

exclusive of our approach as it is shared with Local Randomization method as

well.

As a final remark, we think it is useful to note that we are not advocating

the indiscriminate use of our methodology in any given RDD analysis. Expert

assessment of any application and a proper evaluation of the plausibility of the

RDD assumptions must always constitute the ground for subsequent analyses.

Also, availability of covariates data and their role as potential confounders must

be assessed beforehand. A certain degree of subjectivity remains in the choice of

value ζ, for which an assessment of the balance of the forcing variable has been

proposed as a way to deal with clusters with unbalanced representation on both

sides of the threshold, but the magnitude of the reasonably allowed unbalance

represents an application-specific feature and it is left for the practitioner to be

determined.

Rather than being a ‘one-size-fits-all’ tool, our proposal offers an alternative

approach to identify the units to be included in the RDD analysis in a

more targeted way than the bandwidth selection methods currently available.

Thoughtful use of our proposed DPMM clustering framework can prove valuable

in all those RDD applications where exchangeability is regarded as a key feature

and where traditional methods do not offer viable solutions to tackle it.
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