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ABSTRACT: The bacterial cytochromes P450 BM3 (CYP450 BM3) catalyzes reactions of industrial importance.  Despite many 
successful biotransformations, robust re(design) for novel applications remains challenging.  Rational design and evolution-
ary approaches are not always successful highlighting a lack of complete understanding of the mechanisms of electron trans-
fer (ET) modulations.  Thus, the full potential of CYP450 reactions remains under-exploited.  In this work, we report the first 
MD-based explicit prediction of BM3 ET parameters (reorganization energies; λ and ET free energies; ΔG°), and log ET rates 
(log kET) using Marcus theory.  Overall, the calculated ET rates for the BM3 wild-type (WT), mutants (F393 and L86), ligand-
bound state, and ion concentrations agree well with experimental data.  In ligand-free (LF) BM3, mutations modulate kET via 
ET ΔG°.  Simulations show that the experimental ET rate enhancement is due to increased driving force (more negative ΔG°) 
upon ligation.  This increase is related to the protein reorganization required to accommodate the ligand in the binding pocket, 
rather than binding interaction with the ligand.  Our methodology (CYPWare 1.0) automates all the stages of MD simulation 
step-up, energy calculations, and estimation of ET parameters.  CYPWare 1.0 and this work, thus represent an important 
advancement in the CYP450 ET rate predictions which has the potential to guide the redesign of ET enzymes.  This program 
and a web tool are available on GitHub for academic research. 

INTRODUCTION 

The cytochromes P450 (CYP450) are important enzymes 
in biosystems and are found in almost all forms of life.1–10  
They are involved in biodegradation pathways of, for in-
stance, xenobiotics in the human liver, but also take part in 
essential biosynthesis reactions of natural products, such as 
hormones.11–13  In biotechnology, not surprisingly, the 
CYP450s have emerged as important greener alternatives 
for performing many biochemical transformations of indus-
trial importance.  Examples include the biosynthesis of hy-
drocarbons from fatty acids to generate biofuels.14–17  In ad-
dition, a cytochrome P450 from Bacillus megaterium 
(namely CYP450 BM3) has been developed as a tool for per-
forming selected reactions giving access to chiral chemicals, 
drug metabolites, and intermediates.1,7,18  Large libraries of 
CYP450 mutants have been developed and designed for 
performing unusual aliphatic and aromatic hydroxylation 
reactions, as well as carbene insertion reactions.  Although 
site-directed mutagenesis and directed evolution have been 

successful in many chemical and drug intermediate synthe-
ses, demand-based timely delivery of mutants with desired 
activities and selectivities remains challenging and only 
partially successful.  Moreover, only retrospective analysis 
of experimental stereo and regioselectivity and substrate 
specificities are put forward using crystal structure analysis 
which mostly focuses on the active site interactions and 
complementarity.4  Such retrospective analysis mostly at-
tempts to explain observed selectivity based on close con-
tacts (favourable or unfavourable) between the ligands 
(substrates) and the CYP450 active sites.   

Kanoh et al., have recently developed an experimental 
mutant screening criterion based on existing methodolo-
gies that focus on 1) typical ligand binding, followed by 2) 
Type I spectral change, 3) rapid coupled oxidation (nature 
of coupling is not mentioned explicitly), and 4) conversion 
to a limited number of products.5  At each step false posi-
tives from the previous steps are identified and filtered out.  

https://github.com/Dixit-s-lab/CYPWare-1.0
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Although this methodology and selection criteria did iden-
tify a few exemplary substrates, it requires multiple incuba-
tions with different CYP450 enzyme systems and strong an-
alytical method development, validation expertise, and sup-
port, thus making it resource and fund-intensive.  Applica-
tions of this screening methodology in a real-time search for 
CYP450 mutants with novel reactivity need to be further 
demonstrated and tested.   

Although the natural substrates (ligands) for CYP450 
BM3 are long-chain (C12-C20) saturated fatty acids, evolved 
mutants can accept low molecular weight fatty acids, al-
kanes, ethyl diazocarboxylate for cyclopropanation, amina-
tion of C-H bonds in addition to stereoselective C-H hydrox-
ylations (Figure 1).6,7  Natural substrates undergo stereose-
lective terminal ω-1, 2 or 3 hydroxylations with the wild 
type BM3.8  Unsaturated fatty acids are hydroxylated with 
higher (almost exclusive) regioselectivity compared to sat-
urated analogues (Table 1 of reference 8).  The reduced con-
formational freedom associated with the fixed configura-
tions around double bonds might partially explain these ob-
servations.  MD simulations and QM/MM calculations and 
analysis of the potential energy diagram for Compound I 
(Cpd I) catalyzed reactions have been used by Shaik et al., to 
explain the regio and stereoselectivity in BM3 hydroxyla-
tions starting from the crystal structure (1JPZ).9  Such ret-
rospective analysis is not feasible for most of the mutants 
and protein-ligand pairs for which a crystal structure is not 
yet available.  Moreover, as recognized in the BM3 litera-
ture, a larger active site and flexibility of this enzyme (ex-
pectedly) makes it difficult to objectively rationalize subtle 
changes in substrate selectivities observed with changes in 
and around the active site.10  Molecular docking can be used 
to find potential substrates, and potential sites of metabo-
lism (SOM) in substrates, and get insights into the mecha-
nisms of CYP450 inhibition.11–13  Nonetheless, limitations of 
docking methodologies in consistently ranking potential lig-
ands from structurally diverse datasets for a larger subset 
of protein targets are well recognized in the literature.19  
Thus docking protocols usually require extensive validation 
for conformational sampling and scoring functions which 
often require tailoring for specific protein classes.  Docking 
often produces 2-3 degenerate poses (≤ 1 kcal/mol) with 
very different molecular orientations within the active sites.  
Thus, in a computational analysis, choosing only one pro-
tein or ligand crystal structure or a docked pose where ex-
perimental SOM is within a cut-off distance from Heme-Fe 
(typically < 6.0 Å), can be considered an oversimplified, bi-
ased, or incomplete treatment of the problem.  An unbiased 
analysis ideally requires ensemble docking20 or should in-
clude at least the top 2-3 poses.  Alternatively, all the top 
poses within two standard deviations of the scores among 
all the legitimate poses produced (i.e., representing the 
Boltzmann distribution) can be considered.  Although this 
might be computationally expensive forcing trade-offs be-
tween accuracy and speed. 

Modulations of CYP450 activities do not necessarily re-
quire mutations within the active site7 and in many cases, 
mutations in the protein sequence are not essential.  For 

example, buffer ion concentrations used in in-vitro systems 
have been demonstrated to influence electron transfer (ET) 
rates in CYP450 BM3.  Gilardi et al., have observed bell-
shaped relationship between the ionic strength of the buffer 
solution and CYP450 BM3 reduction rates.14  Similarly 
Gemzik et al., have reported the modulation of rat CYP450 
activities by buffer ionic strengths and pH.15  Earlier we per-
formed an analysis of CYP450cam crystal structures for the 
presence of buffer ions in close proximity to the catalytic 
center.16  Fifty-two structures contain a potassium ion that 
interacts via the ligand and protein backbone atoms with 
the Heme center (Fe to K+ distance < 14 Å).  Thus, the influ-
ence of these close buffer ions interactions with truncated 
Heme models was studied to estimate the ET free energy 
(ΔG°), often called the driving force, using DFT calcula-
tions.16  Single monovalent alkali metal ions within 14 Å of 
the Heme consistently stabilized the reduced (Ferrous) 
state thus increasing the ΔG° for the ET, whereas two such 
ions caused overstabilization and brought the Heme com-
plex into the inverted-Marcus regime thus reducing the ET 
rates.  Divalent alkaline earth metal ions also over-stabi-
lized the reduced state and entered the inverted-Marcus re-
gime and reduced the ET rates.  This suggests that the total 
charge within an interacting distance of the catalytic center 
can have a strong influence on reactivity.  In that work, pro-
tein, and solvent reorganization energies (λprot, and λsolv) 
were considered constant (0.76 eV) while studying the in-
fluence of the alkali metal ions.  Although this is a reasona-
ble approximation for studying the influence of small lig-
ands or buffer ions, mutations and varying active site inter-
actions often alter the λprot and λsolv values in a different way 
and consequently can influence the ET rates.21–24  Thus ex-
plicit calculation of these ET terms is essential for a reason-
ably accurate estimation of ET rates in BM3 in different en-
vironments, with mutations and different ligands.  Such a 
reliable estimation of CYP450 ET rates, activities, and selec-
tivities can significantly minimize the time required for the 
evolution of CYP450 mutants with desired properties.   

Recently MD simulations of the resting state have been 
used for retrospective analysis of the influence of ligand 
binding on co-factor distance and interactions with the re-
dox partner.  Shaik et al. have performed MD simulations on 
the crystal structure of BM3 (1BVY) in which the Heme do-
main of BM3 called BMP is expected to be fused with the re-
dox partner (FMN containing reductase often called BMR).25  
The cofactors (FMN and Heme) moved even closer (mini-
mum distance of 12 and 8.8 Å) during the MD and QM/MM 
optimization.  Earlier Verma et al., have performed MD sim-
ulations and employed Pathways program in VMD26 to esti-
mate the ET rates (kET) in WT BM3 using the same protein 
structure (1BVY).27  These authors also did not build the 
missing linker (see reference 27) and used approximate val-
ues for the ET ΔG° and λ for kET calculations.  Although the 
potential ET pathways were analysed for every 10 ns, no at-
tempts were made to explicitly calculate ET parameters, 
and objectively and/or retrospectively identify pathways 
that allow ET rate predictions in mutants or upon ligand 
binding. 
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In recent years, empirical or semi-empirical Marcus the-
ory coupled with molecular dynamics (MD) simulations has 
been utilized for a reasonably accurate estimation of ET 
rates in multi-Heme bacterial cytochromes28–31 and Hemo-
globins.32  Details of the underlying theory and approach are 
given in the Methods section.  Nonetheless, explicit estima-
tion of λprot, and λsolv, reorganization energies in CYP450s us-
ing MD simulations have not been undertaken thus far and 
thus insights into these crucial ET parameters for a biotech-
nologically important protein remain missing in the litera-
ture.  Similarly, extensive investigations and analysis of 
Marcus electron transfer (ET) free energies and rates for the 
CYP450 isoforms (bacterial or human) are also missing.  
Only two papers discussed above utilized Dutton’s empiri-
cal25 and Pathway27 model for approximate estimation of ET 
rate in WT BM3. 

In this manuscript, we report the first MD-based calcula-
tions of ET reorganization energies (λprot, and λsolv), free en-
ergies, and ET log rates for the CYP450 BM3 catalyzed reac-
tions.  We address the following questions to get insights 
into the biochemistry of CYP450 BM3 reactions, 1) What are 
ET parameters; reorganization energies λprot, and λsolv, and 
free energies (ΔG°) for the ligand-free (LF) BM3? 2) How 
does ligand binding influence ET parameters. 3) Can MD 
simulation-based estimation of ET parameters and semi-
classical Marcus theory predict experimental ET rates for 
CYP450 BM3 WT and ligand-bound complexes?  4) Can MD 
simulations model the dependence of ET λs and rates on 
ionic strength?  5) How do mutations in the CYP450 BM3 
influence the ET parameters and rates? 

METHODS 

Computational details 

The ET reaction between two cofactors can be modelled 
with a simple reaction shown in Equation 1.  

𝑅𝑂 (𝑎) → 𝑂𝑅 (𝑏) 

Equation 1 

Where R and O represent the reduced (electron donor) 
and oxidized (electron acceptor) states of the cofactors in 
the redox proteins.  For CYP450 BM3, the R and O are fused 
by the linker and represent reductase (FMN: BMR) and 
CYP450 (Heme: BMP) domains involved in ET and ligand 
recognition.  The RO and OR states are often referred to 
simply as states a and b respectively.  The energies of dia-
batic electronic states are Ea(RN) and Eb(RN), where RN is the 
3D configurational vector for a system with N atoms.  These 
energies are two of the elements of the electronic Hamilto-
nian matrix of this system, whereas Hab represents elec-
tronic coupling between the cofactors (equation 2 in refer-
ence 33).  The difference between Ea(RN) and Eb(RN), is the 
vertical energy gap which is used as a reaction coordinate 
to simulate ET free energy curves (see reference 33).  In the 
semi-classical Marcus ET theory, which combines concepts 
from the transition state theory of chemical reactions and 
Landau–Zener electronic transition theory,34 the free 

energy of the system is defined by the difference in energy 
of the two diabatic states i.e., energy gap (ΔE).  When ΔE is 
negative, ET is favored from the RO(a) to the OR(b) state.  
The thermal fluctuations in these states allow the electron 
to tunnel (jump) between the cofactors.  The thermal aver-
age of vertical energy gaps for the two states (ΔEa and ΔEb) 
gives the free energy difference (ΔG°) or the driving force 
for the ET, whereas the half of difference in vertical energy 
gaps is the reorganization energy (see Equation 2).  The 
point at which the two diabatic free energy curves (RO and 
OR) meet represents the classical barrier for the ET (Equa-
tion 2).  Application of the semi-classical Marcus theory 
then allows the prediction of ET rates using Equation 3. 

𝜆 =
(ΔE𝑎−ΔE𝑏)

2
, Δ𝐺° =  

(ΔE𝑎+ΔE𝑏)

2
, Δ𝐺‡  =  

(𝜆+Δ𝐺°)2 

4∗ 𝜆
, 

Where, ∆𝐸 =  𝐸𝑏 −  𝐸𝑎 

Equation 2 

𝑘𝐸𝑇 =
2𝜋

ℏ
∗  |𝐻𝑎𝑏|2 ∗ (4𝜋𝜆𝑘𝐵𝑇)−1/2 ∗ 𝑒

(
−(𝜆+ Δ𝐺°)2

4𝜆𝑘𝐵𝑇
)
 

Equation 3 

where Hab is the electronic coupling matrix between the 
cofactor estimated from distance dependence reported ear-
lier,28,32 kB is the Boltzmann constant, T temperature in Kel-
vin and ℏ is the reduced Planck’s constant. 

Protein preparation 

CYP450 BM3 crystal structure (1BVY) was downloaded 
from PDB website.35  As mentioned above, this structure 
lacks the coordinates for the linker connecting the Heme 
(BMP) and Flavin (BMR) domains of the BM3.  Our attempts 
to model the linker with Modeller 10.2 did not give good 
quality structures (see Figure S1),36,37  Thus the linker was 
modelled as a linear peptide sequence (generated with 
tleap) and was inserted manually between BMP and BMR 
chains of 1BVY structure (see supporting information).  The 
protein chain protonation states were determined by the 
H++ 3.0 webserver (pH = 7.4).38,39  Heme cofactor was pa-
rameterized using the MCBP.py tool40 where charges and 
force constants were calculated using Gaussian09 at 
B3LYP/6-31G(d) level.41  The procedure for parameteriza-
tion is like that reported earlier for the Hemoglobin32 and 
the penta mutant CYP450 example reported on Amber tuto-
rial website.42  The reduced and oxidized forms of both the 
cofactors were modelled by choosing the correct spin state 
and charges (Heme Ferric/oxidized state: charge = -2 and 
doublet multiplicity whereas for the Ferrous/reduced state: 
charge = -3 and quintet multiplicity.8  The FMN cofactor was 
modelled as a semiquinone undergoing one-electron oxida-
tion and was parameterized with antechamber program of 
AmberTools20.  The protein structure thus prepared was 
subsequently minimized and equilibrated for MD studies 
using AmberTool20 and Amber20.43  Ligands were also pa-
rameterized with antechamber program.   
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Molecular docking with AutoDock Vina 

The typical BM3 substrates, Arachidonic (ACD), Lauric 
(LAU), Palmitic (PAL), and Myristic (MYR) acids, were 
docked into the active site of the Heme domain (BMP).  For 
this, the ligand structures were prepared as follows.  Two 
dimensional SDF files were downloaded from PubChem CID 
(Arachidonic acid: 444899, Lauric acid: 3893, Palmitic acid: 
985 and Myristic acid, 11005).  Openbabel was used to con-
vert these into 3D mol2 files with Gasteiger charges and fi-
nally converted into PDBQT format.44  The protein structure 
prepared in AmberTools20 was saved in the PQR format 
and converted into PDBQT format using an in-house shell 
script.  Molecular docking was performed using AutoDock 
Vina.45  The grid center was defined as a point 6 Å above the 
Heme plane, with a grid size of 25 * 25 *25 and exhaustive-
ness = 8. 

Molecular dynamics (MD) simulations 

Explicit MD simulations on both redox states were run in 
triplicate (starting from the equilibrated protein structure) 
for each ligand-free (LF) and ligand-bound (LB) BM3 fol-
lowed by estimation of vertical energy gaps (ΔE).32,33  Top 3 
docked poses were considered for running 20 ns MD simu-
lations and ET parameter calculations.  Thus, a total of 360 
ns long simulations were run for each substrate-bound 
complex.  An in-house program (CYPWare 1.0) was devel-
oped to integrate and automate various steps required to 
perform GPU-enabled MD simulations in Amber20.  These 
include 1) parameterization of the ligand with antecham-
ber, 2) preparation of ligand-BM3 complexes for a user-
specified pose, 3) generation of input files for tleap, pmemd, 
sander calculations, 4) creation of parameter, topology files 
for MD simulations, 5) minimization, heating, and equilibra-
tion with AmberMDPrep,46 6) running GPU enabled MD sim-
ulations, trajectory analysis, extracting Amber force field-
based single-point energies, and co-factor distances and 7) 
calculation of vertical energy gaps (ΔE), ET free energy 
(ΔG), protein and solvent reorganization energies (λprot, 
and λsolv).  The procedure used in step 7 remains similar to 
that reported earlier for the Hemoglobin32 variants and it 
has been automated during the development and imple-
mentation of CYPWare 1.0.  Briefly, the average Amber FF 
energies during the MD production runs were calculated us-
ing the parameters for both the redox states (Ea and Eb) for 

MD trajectories of the two redox states.  The difference in 
these energies is the vertical energy gap, ΔE = Ea – Eb.  The 
reorganization energies (λ) and the ET ΔG° are calculated 
using Equation 2.  The ET ΔG for the wild-type (WT) BM3 
was shifted to the experimental driving force for the LF 
state (0.039 eV, see the next section).  The ET ΔG for the 
BM3 complexes (LB WT BM3, mutant BM3, LB mutant BM3, 
and different ion concentrations) were estimated by adding 
the WT ET ΔG to the difference in Amber FF based ΔG for 
the wild-type BM3 and complexes (see Equation 4).  The λ 
values were scaled by a factor of 1/1.6 to account for the 
missing electronic polarizability in the force field used.33  
These parameters were then fed into the semi-classical 
Marcus equation (Equation 3) to calculate the ET rates (kET) 
and log ET rates with respect to the WT BM3. 

∆𝐺° (𝐵𝑀3 𝑐𝑜𝑚𝑝) = 0.039 + (∆𝐺𝐹𝐹−𝐵𝑀3 𝑐𝑜𝑚𝑝
° − ∆𝐺𝐹𝐹−𝑊𝑇 𝐿𝐹

° ) 

Equation 4 

Where ΔGFF-WT LF is the Amber force field (FF) based ET 
free energy (Equation 2) for the WT ligand-free (LF) state, 
ΔGFF-BM3 complex is the FF based ET free energy for the BM3 
complexes. 

RESULTS AND DISCUSSION 

Validation of docking protocol: Pose and Affinity predic-
tion.  

Validation of a docking protocol usually includes repro-
ducing crystal structure pose and correctly ranking a series 
of ligands with respect to binding affinities.47,48  Among the 
most typical BM3 substrates, only two crystal structures for 
natural BM3 substrate (i.e., Palmitic acid) are known in the 
PDB database (4ZFB and 2UWH).  The structure 2UWH con-
tains mutation (A82F) where Phe82 is in the proximity of 
the hydrophobic tail of the bound ligand.  The 4ZFB struc-
ture is an unstable pentamutant.  Both structures retain an 
H-bonding interaction between the carboxylate and phe-
nolic hydroxyl of the Y51 residue.  Since the 4ZFB repre-
sents an unstable mutant, 2UWH was chosen for assessing 
the ability of the docking protocol to find native binding 
mode. 
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Figure 1.  Structures of CYP450 BM3 substrate palmitic acid (PAL), its metabolites, and CYP450 BM3 complex, and docked poses 
of PAL in the active site.  A) The structure of PAL and its omega-1,2 and 3-hydroxy metabolites.  B) Heme and FMN are shown in 
yellow colour, while the sites of mutations studied in this work are shown in green.  Also, top 3 docked poses (magenta) compared 
with the crystal structure pose (green) for Palmitic acid (2UWH) are shown in C, D, and E panels.  C) The First pose shows an 
alternative placement of the fatty acid which brings SOM within similar contacts with Heme.  D) The Second pose shows the 
placement of the carboxylate and side-chain comparable to the crystal structure pose.  E) Third pose also brings SOM atoms like 
the positions seen in 2UWH.  Thus, these Top 3 poses were considered for MD simulations, ET parameter and rate predictions. 
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Table 1.  Vina docking scores of the top three poses and dissociation constants (Kd, experimental and predicted), for typical BM3 substrates. 

Ligand Pose Number Vina Score (kcal/mol) Kd (uM)a Kd (predicted)b 

Arachidonic acid (ACD) 
1 -6.9 

3 13 2 -6.7 
3 -6.5 

Lauric acid (LAU) 
1 -5.2 

240 203 2 -5.1 
3 -4.9 

Palmitic acid (PAL) 
1 -5.8 

10 63 2 -5.8 
3 -5.7 

Myristic acid (MYR) 
1 -5.4 

78 137 2 -5.1 
3 -5.1 

N-palmitoyl glycine (NPG) 
1 -6.2 

0.082c 38 2 -6.1 
3 -5.9 

a Kd values are from Table 2 of reference 8 

b Kd values predicted from average Vina score for top 3 poses and ignores the entropy and desolvation factors, where 
ΔG° = RT ln (Kd). 
c Kd value taken from reference 49 

Figure 1 shows the top three docked poses for Palmitic acid 
(PAL) generated by AutoDock Vina.  All the top 3 poses 
show the reported SOMs (omega-1, 2 and 3 carbons) in po-
sitions similar to crystal structure poses and also within 10 
Å of the Heme Fe.8  Considering a large number of rotatable 
bonds (n = 14) in PAL and active site volume for BM3, these 
can be considered a good agreement with the experimental 
data (Table 1).  These SOMs move about 2 Å away from the 
Heme ring during the MD simulations (see Figures S3 and 
S4).  This drift in ligand position is considered essential for 
the subsequent step in the catalytic cycle namely dioxygen 
binding.  For Arachidonic acid (ACD) the SOM-Fe distances 
are larger than 10 Å in the top 3 poses and remain so during 
the MD simulations of redox states.  The Vina score-based 
calculations of the dissociation constant (Kd) for these sub-
strates are within an order of magnitude of the experi-
mental data reported in the literature (except for NPG, see 
Table 1 above, Figure S5, and Table 2 in reference 8).  NPG is 
a relatively polar ligand and entropic, and desolvation ef-
fects are expected to drive the binding thus standard dock-
ing protocol is unable to correctly predict binding affinity 
but nonetheless places the ligand in an orientation very sim-
ilar to the crystal structure pose (1JPZ, see Figure S2).  
These findings validate our docking protocol in terms of 
both pose and approximate affinity predictions for typical 
BM3 ligands.  Thus, the top 3 docked poses were selected 
for further MD simulations and ET parameter analysis.  The 
influence of using the crystal structure coordinates vs dock-
ing pose on calculated ET parameters is discussed later in 
the manuscript. 
 

ET parameters for the ligand-free (LF) BM3 and F393, 
L86E mutants  

Experimental redox potentials for the BM3 wild-type, 
FMN domain of the reductase, and selected BM3 mutants 
are known in the literature.8,50,51  These give a reasonable 
estimate for the electron transfer free energy (G) i.e., the 
driving force in the semi-classical Marcus equation (Equa-
tion 3).  For the ligand-free (LF) WT BMP (Heme) and the 

BMR (FMN) domains the experimental redox potentials (E) 
are -0.427 V and -0.388 V.50,51  The ET G for the reduction 
of BM3 Heme by FMN calculated from these values is 0.039 
eV.  These should be considered an approximation since 
such E are mostly measured for the isolated Heme and 
FMN domains and interactions with redox partners can 
modulate these values.   

As mentioned in the introduction, Shaik et al. used crystal 
structure (1BVY) to empirically model ET rates using cofac-
tor distance from MD simulations.25  The CYP450 BM3 
(BMP) is expected to be fused with the redox partner con-
taining the FMN cofactor (BMR).  But as mentioned by the 
authors of the original crystal structure (1BVY) the linker 
peptide fusing the BMP and BMR domains gets proteolyzed 
during protein purification.  Thus the crystal structure 
1BVY (http://doi.org/10.2210/pdb1BVY/pdb) lacks this 
linker.52  The methodology section and supporting infor-
mation of Shaik’s paper do not mention building/modeling 
the missing linker, rather they have overlayed the BMP do-
main of 1JPZ with that of the 1BVY to insert the ligand (N-
palmitoylglycine: NPG) into the Heme active site of 1BVY 
structure.  The Heme and FMN cofactors moved closer (min 
12, max 20 Å) during the MD simulation in the ligand-bound 
(LB) Ferric high spin state compared to the ligand-free (LF) 
state (min 12, max 24 Å, see Figure 1 in reference 25).  The 
cofactors moved even closer (8.8 Å) during the QM/MM op-
timization of the most populated structure.  This closest ap-
proach may be an artifact of the missing linker as this seems 
to have allowed an artificially closer approach between the 
two domains not observed experimentally.  Additionally, 
the protein and solvent reorganization were not estimated 
explicitly but a constant value for the total ET λ = 0.76 eV 
was assigned. 

http://doi.org/10.2210/pdb1BVY/pdb
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Table 2.  Average cofactor minimum distance (Heme to FMN), electron transfer (ET) reorganization energies (, eV), protein and solvent contributions to  (prot and solv), free energy (G, eV) for the reduction 
of BM3 Heme by FMN, calculated and experimental relative logarithmic ET rates for the LF BM3 variants (wild type, F393A and F393W mutants). 

Sr. 
No. 

BM3 mutant Avg cofactor min distance (Å) ET   prot solv ET G * Cal. log kET Exp. log kET 

1 WT 14.57 ± 1.33 1.15 ± 0.05 0.56 ± 0.10 0.59 ± 0.15 0.039 1.24 0.70 

2 F393A 14.46 ± 1.33 1.18 ± 0.02 0.42 ± 0.12 0.76 ± 0.15 0.094 ± 0.01 0.57 0.49 

3 F393W 14.34 ± 1.19 1.15 ± 0.02 0.56 ± 0.10 0.59 ± 0.12 0.082 ± 0.01 1.28 1.04 

4 L86E 14.32 ± 1.31 1.12 ± 0.02 0.58 ± 0.09 0.54 ± 0.12 0.000 ± 0.01 1.96 2.01 

* ET G for mutants are scaled to the experimental data for WT BM3.  
† Experimental relative kET from reference 8 and references cited therein.  The calculated and experimental relative log kET values are w.r.t. the WT BM3. (See supporting information Table S4)

 

 
Table 3.  Average cofactor minimum distance (Heme to FMN), electron transfer (ET) reorganization energies (, eV), protein and solvent contributions to , free energy (G, eV), calculated and experimental 
relative logarithmic ET rates for the BM3 variants (WT, F393A and F393W mutants).  Values are the average of 3 MD runs for the top 3 docked poses. 

Sr. No. BM3 WT/Mutant ligand pair Cofactor dis. (Å) prot solv ET   ET G * Cal. log kET Exp. log kET 

1 WT-ACD 14.58 ± 1.14 0.77 ± 0.07 0.26 ± 0.06 1.03 ± 0.02 -0.114 ± 0.01 2.91 2.40 

2 WT-LAU 14.74 ± 1.13 0.56 ± 0.04 0.53 ± 0.06 1.08 ± 0.01 -0.248 ± 0.01 3.62 2.14 

3 WT-PAL 14.52 ± 1.14 0.65 ± 0.05 0.42 ± 0.05 1.06 ± 0.02 -0.121 ± 0.02 3.15 2.35 

4 WT-PAL (2UWH coordinates) 14.43 ± 1.18 0.42 ± 0.05 0.64 ± 0.06 1.07 ± 0.02 -0.281 ± 0.01 3.76 2.35 

5 WT-MYR 14.28 ± 1.19 0.58 ± 0.05 0.52 ± 0.06 1.09 ± 0.01 -0.214 ± 0.01 3.54 2.35 

6 F393A-ACD 14.12 ± 1.05 0.79 ± 0.09 0.30 ± 0.05 1.09 ± 0.01 -0.033 ± 0.01 2.29 2.38 

7 F393W-ACD 14.55 ± 1.11 0.54 ± 0.10 0.58 ± 0.04 1.12 ± 0.02 -0.140 ± 0.02 3.09 1.46 

8 L86E-ACD 14.43 ± 1.16 0.65 ± 0.11 0.42 ± 0.02 1.07 ± 0.01 -0.162 ± 0.00 3.42 2.33 

9 WT-NPG 14.33 ± 1.13 0.60 ± 0. 04 0.54 ± 0.05 1.14 ± 0.02 -0.167 ± 0.01 3.41 NA 

* ET G for mutants are scaled to the experimental data for WT BM3. 
†Experimental relative kET are w. r. t. the WT BM3 and calculated from kET data in reference 8 and references cited therein.  NA – data not available in the literature. The calculated and experimental relative log 
kET values are w.r.t. the WT BM3 in Table 2. (See supporting information Table S4) 

Table 4.  Dependence of the ET reorganization energies  (protein, solvent contributions; prot, solv), free energies (G), cofactor distance (Å) and relative logarithmic ET rates on the square root of the ionic 
strength (√I). 

Sr. No. Buffer conc. √𝐼 Cofactor -distance prot solv ET   ET G Cal. log kET Exp. log kET 

1 50 mM 0.22 14.66 ± 1.27 0.49 ± 0.06 0.63 ± 0.06 1.13 ± 0.02 0.029 ± 0.01 1.37 1.40 

2 250 mM 0.50 14.22 ± 1.19 0.48 ± 0.05 0.62 ± 0.04 1.09 ± 0.02 0.017 ± 0.03 1.94 1.65 

3 400 mM 0.63 14.31 ± 1.09 0.60 ± 0.05 0.52 ± 0.08 1.12 ± 0.01 -0.049 ± 0.00 2.18 1.48 

The calculated and experimental relative log kET values are w.r.t. the WT BM3 in Table 2. (See supporting information Table S4) 
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Figure 2.  An overview of the electron transfer (ET) total reorganization energies (ET λ), corresponding protein (ET λprot) and solvent (ET λsolv) 
contributions, calculated and experimental relative log ET rates; log(kET) for BM3 wild type (WT), mutants, ligand-bound (WT and mutants), 
and under three different ion concentrations ([K+] = 50, 250 and 400 mM).  ACD; arachidonic acid, LAU; lauric acid, PAL; Palmitic acid, MYR; 
myristic acid, NPG; N-palmitoyl glycine. 

de Beer et al., have calculated the free energy associated 
with the BM3 catalyzed hydroxylation of alpha-ionone de-
rivatives using thermodynamic integration.53  They invoked 
Marcus theory to give a qualitative explanation for the cor-
respondence between the reaction-free energy change and 
the relative rate of product formation.  However, this is an 
oversimplification since Marcus theory applies to only the 
two outer-sphere ET steps of the CYP450 catalytic cycle and 
the situation may be more complex as the reaction involves 
many steps including oxygen binding, two protonations, 
radical formation, rebound, and product release steps.  
Thus, free energies (G) for the first ET step in the CYP450 
catalytic cycle have not been measured directly or calcu-
lated to date.  Although the reorganization energies () for 
Heme model compounds have been studied in the litera-
ture,54 the s for BM3 or any other CYP450s are not known 
from experiments or calculations (to the best of our 
knowledge).  In the absence of such experimental data, mo-
lecular dynamics (MD) simulations have been used for 
other ET proteins to get reasonably accurate estimates for 
these important ET parameters.21,28,29,33,55,56  Such calcula-
tions of ET parameters are essential for the estimation of ET 
rates and have the potential to revolutionize the CYP450 
(re)design for various applications mentioned in the intro-
duction.  Thus, MD simulations were performed for the LF 
and LB redox states for the BM3 wild-type and mutants. 

Table 2 shows these ET parameters calculated from a 
triplicate set of MD simulations (see Methods section) 
namely the average of the minimum distance between 
Heme and FMN cofactor, ET reorganization energies (), 
free energies (G), calculated and experimental ET rate ra-
tios.  Considering the typical uncertainties associated with 
ET rates, it is recommended to compare log ET rates.  This 
is a common practice in physical organic chemistry where 

instead of trying to make accurate predictions of reaction 
rates, activation free energies (ΔG‡) or log rates are com-
pared among competing reactions.57,58  Considering the ac-
curacy of experimental methods for reaction and activation 
free energy measurements, calculations within a couple of 
kcal/mol are considered a good agreement with experi-
ments.59  Whenever it is necessary to estimate reaction 
rates it is recommended to report log rates (even for ET pro-
teins),60 since a difference of only 1.36 kcal/mol in activa-
tion free energies leads to a 10-fold difference in calculated 
rates.  Thus, an agreement within one log unit is considered 
reasonably good.  Thus, in this work, log ET rate (log kET) 
was calculated and compared to the WT BM3. 

The ET  for the WT BM3 and the three F393 and L86 vari-
ants are very similar (see Table 2).  The F393A mutation 
lowers the co-factor distance but increases the ET G°.  The 

total ET , was decomposed into the respective protein and 
solvent contributions (prot, solv) using a procedure re-
ported in the methods section and earlier.32  The conserva-
tive nature of the Phe to Trp substitution leads to very sim-
ilar prot, solv values.  Whereas the non-conservative substi-
tution of Phe with Ala leads to lower and higher protein and 
solvent s respectively.  For the F393A variant, the varia-
tions in these parameters cancel out giving a similar total  
for both proteins (see Figure 2).  The conservative mutation 
(F393W) does not affect the prot, and solv significantly but 
it increases the ET G° and lowers the co-factor distance.  
The ET rates for this variant have been reported to be mod-
erately higher than the WT and the F393A variant.  The cal-
culated log kET for the non-conservative mutant (F393A) is 
lower than the F393W variant in agreement with the exper-
imental data.8,50  For the non-conservative mutation L86E, 
the total and individual  contributions remain very similar 
to WT, but the calculated ET G is zero.  This seemed 
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counterintuitive since the additional negative charge intro-
duced by this mutation should decrease the stability of the 
ferrous state.  An analysis of MD trajectories showed the 
presence of bridging water molecules between the Heme 
and Glu residue in approximately half of the snapshots 
(1054) thus rationalizing the stabilization of the reduced 
Ferrous state despite the presence of negatively charged 
Glu residue near the Heme centre.  This in combination with 
smaller cofactor distance increases the calculated log kET 
values in agreement with experimental trends.  These log 
kET values are in correspondence with the experimental 

data for the ligand-free (LF) proteins (see Table 2).  Thus, 
the current methodology predicts the trends in ET rates in 
LF BM3 variants and was used for the prediction of the in-
fluence of ligand binding on the WT protein and corre-
sponding variants (discussed in the next section). 

Influence of ligand binding on ET parameters and rates  

As mentioned earlier natural substrates (ligands) of BM3, 
free fatty acids (ACD, PAL, LAU, and MYR), have been stud-
ied extensively and kET for these ligand-BM3 complexes are 
known in the literature.  However, a molecular-level under-
standing of these rates in terms of ET parameters is missing.  
Table 3 shows the calculated ET parameters and log ET 
rates for the LB WT BM3 and variants considered in this 
study.  Ligand binding reduces the ET G (driving force) 
required for the ET and the total ET  for most of the com-
plexes by 0.07-0.29 V and ~0.1 eV respectively, thus giving 
enhanced ET upon binding.  The finding that mutations have 
a smaller influence on the ET G, and  compared to lig-
ands is in excellent agreement with literature reports on dif-
ferent mutants and ligand studies.8  The differences in the 
interactions between the ligands and BM3 are manifested in 
their respective ET G, and protein, and solvent reorgani-
zation energies (prot, solv) which also modulate the log kET 
(see Figure 2 and Table 3).  ACD binding lowers ET G by 
0.153 V in excellent agreement with the experimental data 

0.129 V.8  The solv is also lowered (by ACD binding) which 
compensates for a higher prot and cofactor distance thus in-
creased log kET are predicted in concordance with the exper-
iments.  For PAL binding the reduction in the ET G is also 
in close agreement with experimental data (0.160 V).  Using 
the PAL crystal structure coordinates (2UWH) for ET pa-
rameter and rate calculations gives a lower co-factor dis-
tance (0.1 Å), higher ET G, and compensatory changes in 
prot, solv leading to log kET within 1 log unit of that estimated 
with the docking pose.  This further validates our method-
ology for ET parameter and rate calculations.  MYR and PAL 
bring the two cofactors closer compared to LAU, thus exhib-
iting an increase in log kET despite higher solv.  LAU has a 
larger influence on all these parameters giving a higher log 
kET than LF BM3.  The difference in the calculated and exper-
imental log kET for LAU-bound WT BM3 is more than one log 
unit.  Since, the experimental ET G and the co-factor dis-
tance (crystal structure) for this ligand are unknown, both 
these factors might contribute to this discrepancy.  Thus 
overall, our methodology for ET parameter and log kET cal-
culations reproduces the order in agreement with experi-
mental trends compared to the WT BM3.  N-palmitoyl gly-
cine (NPG) is a known substrate of BM3, but the rate for the 
first ET between Heme and FMN domains is not reported in 
the literature.  Shaikh et al., have predicted a range of ET 
rates (6 to 235 s-1) based on co-factor distances derived 
from MD simulation.25  This gives a wide range for the log 
kET between 1 to 2.37.  As mentioned in the introduction 
they did not explicitly calculate the ET λ or ΔG values but 
instead used Dutton’s empirical model.60  In our calcula-
tions, NPG induces a reduction in ET ΔG comparable to 
other ligands and shows marginally higher (prot, solv) 
which are compensated by marginally smaller co-factor dis-
tance.  This gives an estimate of relative log kET rate compa-
rable to other ligands and in accord with literature under-
standing on the effect of ligands.   

 
Figure 3.  The number of Heme cofactor and K+ ion native and non-native contacts (blue and red) and minimum distance (orange) in the 
Heme reduced (Fe2) and FMN oxidized (FMN-ox) state during the 20 ns MD simulation.  For the simulations with A) 50 mM, B) 250 mM and 
C) 400 mM ion concentration. 

Considering the interest in the BM3 mutants for biotechno-
logical applications, we decided to test our methodology for 
the variants with known kET for ACD-bound complexes.  The 
F393A mutation gives a smaller reduction in ET ΔG° (0.07 

V) and marginally affects the prot, solv, and total , but the 
smaller cofactor distance compensates for higher reorgani-
zation energies and thus has a log kET = 2.29.  This is similar 
to the experimental log kET = 2.38.  The ACD binding to the 
F393W mutant recovers the lowering of ET ΔG° (driving 

force) and shows prot, and solv like the WT BM3.  This 

compensates for a marginally larger cofactor distance lead-
ing to an increase in the log kET to 3.09.  This value is higher 
than the experimental log kET, and can be traced to the 
higher total  and ET ΔG°.  Nonetheless, the influence of lig-
and binding and experiment trend (important for protein 
engineers) compared to the WT LF BM3 is captured.  The 
ACD binding to the L86E variant also recovers the ET ΔG°.  

It shows a considerably lower solv and marginally lower co-
factor distance, thus giving a log kET = 3.42 in correspond-
ence with the experimental trend compared to the WT LF 
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BM3 and is within one log unit with respect to the WT LB 
BM3.  Thus overall our predictions agree with the experi-
mental trends in log kET (see Table 3 and Figure 2) and es-
tablish the predictive value of our methodology for analyz-
ing the relative influence of mutations and ligands on the ET 
parameters and rates for WT BM3. 

Influence of ionic strength on ET parameters and rates 

The relationship between the ionic strength and ET rates 
(kET) in redox proteins is complex and depends on the na-
ture of interactions with ET partners.  The dominant bind-
ing mechanism between the two proteins can be electro-
static or mixed electrostatic/H-bonding/hydrophobic.61–64  
Nonetheless, often the reported kET values show a bell-
shaped (or inverted bell-shaped) dependence against the 
ionic strength for CYP450s.14,61  Gillardi et al., found that ET 
between FMN and Heme domains of BM3 show bell-shaped 
dependence on the ionic strength of the solution.14  ET rates 
increased marginally from a value of 25 s-1 at 50 mM to 45 
s-1 at 250 mM but then decreased back to 30 s-1 at 400 mM 
(see reference 14).  Since these variations in kET are small, it 
serves as a challenging case for the proposed methodology 
to model the influence of ionic strength on ET parameters 
and rates in BM3.  SLTCAP method was used to calculate the 
number of K+ and counter ions required in the MD simula-
tion box to achieve the desired ion concentration (see Table 
4 and Table S2).65   

Table 4 shows the dependence of cofactor distance, ET 
parameters, and log ET rates on the square root of the ionic 
strength (√I).  At moderate ionic strength (ion concentra-
tion = 250 mM), the total  decreases marginally (1.09 eV).  
This agrees with older findings for other ET proteins e.g., 
Ru-65-CytB5 system.64  The higher ionic strength has a 
larger influence on the individual λprot and λsolv contribu-
tions.  The cofactor distance is marginally lower at the inter-
mediate ionic strength (entry 2 Table 4).  An increase in the 
ionic concentration predicts an increasing ET ΔG°.  This cou-
pled with a smaller cofactor distance for intermediate ionic 
strength (250 mM) leads to an increase in the log kET.  The 
log kET for higher ionic strength is in close agreement with 
the experimental data but still is slightly off for the expected 
trend when compared with lower ionic strength experi-
mental data (Table 4).  The use of a non-polarizable force 
field and ion parameters could cause less than perfect 
agreement with experimental results which have smaller 
variations compared to the influence of mutations and lig-
and binding.66,67  Thus, considering the uncertainty in the 
experimental ET rates, these results can be considered pre-
liminary and should be confirmed in the future with addi-
tional experiments and simulations.  Overall, the calculated 
log kET and experimental log kET across mutants, ligand 
bound-states, and with ions show a good correlation (r2 = 
0.68, see Figure S6). 

QM calculations on model systems have shown earlier 
that the reduced (Ferrous) state stabilization by monova-
lent alkali metal ions is effective up to 10 Å.16  Thus the MD 
trajectories for these ion concentrations were analyzed for 

Heme-K contacts.  Figure 3 shows the number of K+ ions in 
close contact (< 10 Å) with the Heme cofactor and the mini-
mum distance at which these ions approach the Heme.  At 
lower ionic strengths (see panel A of Figure 3), the K+ ions 
move between 15-25 Å from the Heme, rarely approaching 
any closer, thus the number of contacts within 10 Å remains 
zero.  Similarly at much higher ionic strength, [K+] = 400 
mM, the minimum distance barely approaches 10 Å and the 
number of contacts remains relatively spare (see panel C of 
Figure 3).  In contrast, at intermediate ion strength, [K+] = 
250 mM, the minimum distance between the ion and the 
Heme cofactor is substantially smaller and remains be-
tween 5-10 Å for most of the time during the 20 ns MD sim-
ulation.  As a result, the number of contacts between the 
Heme atoms and K+ ion is substantially higher (see panel B 
of Figure 3).  These observations also agree with the num-
ber of contacts between K+ and protein residues at different 
concentrations analyzed by the nativecontacts command in 
cpptraj.68  At 50 mM, an average of 5.3 ± 3.1 K+ ions come 
within 3.0 Å of BMP (Heme domain) residues (see Table S3).  
At intermediate concentrations (250 mM) the average num-
ber of contacts between K+ and BMP residues increases to 
10.7 ± 1.2.  Whereas at 400 mM this value decreases back to 
5.0 ± 2.0.  This taken together with observations in Figure 3, 
shows that at moderate K+ ion concentrations (250 mM) 
larger number of K+ ions come in close contact with the pro-
tein atoms, thus contributing to the stabilization of extra 
electronic charge transferred from the BMR (FMN).  This 
coupled with our earlier work on model systems,16 provides 
convincing evidence for the mechanism for the modulation 
of the ET rates by the positively charged K+ ions (namely the 
stabilization of the reduced Ferrous state of BM3).   

CONCLUSIONS 

An MD simulation-based methodology (called CYPWare 
1.0) was developed to calculate the electron transfer (ET) 
parameters and rates for the CYP450 BM3 wild type (WT) 
and mutants.  CYPWare 1.0, automates all the MD simula-
tions on docked poses for ET parameter extraction and 
analysis steps.  Initially, vina docking correctly placed the 
sites of metabolism (SOMs) of typical fatty acid substrates 
in close vicinity of the Heme Fe and the predicted binding 
affinities followed experimental trends.  MD simulations of 
two redox states facilitate calculations of the vertical energy 
gaps (ΔEa,b) and ET reorganization and free energies ( and 
G) for the BM3 WT which are similar to those reported 
earlier for other Heme redox proteins.  The average cofactor 
distances measured in MD simulations for the ligand-free 
(LF) states are smaller than the earlier reports for the Heme 
oxidized state alone.25  Nonetheless, our ET rate calculations 
using semi-classical Marcus theory are in good agreement 
with the experimental data.  This suggests that the varia-
tions in the cofactor (FMN to Heme) distance upon ligand 
binding are smaller than predicted earlier.  Thus, we estab-
lished that the BM3 ET G, calculated explicitly for the first 
time, plays an important role in determining the BM3 ET 
rates.  Decomposition of the total ET  into the protein and 
solvent contributions (prot, solv) combined with ET ΔG° ex-
plains the influence of mutation on ET rates.  Ligand binding 
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does not affect the total ET s, rather it influences relative 
prot, solv contributions, and ET ΔG°.  Ligands (ACD, PAL, 

MYR), that lower the solv, and increase the ET driving force 
(lowering the ET ΔG°) lead to ET rate enhancements.   

BM3 mutations with increased ET rates in the LF state 
mostly act by lowering the cofactor distances and increas-
ing the ET driving force (lowering ΔG°).  For LB BM3 mu-

tants (F393A), a lowering of both the solv contributions, ET 
ΔG°, and average cofactor distances contribute to ET rate 
enhancements.  Whereas LB mutants (F393W) that do not 
reduce the ET parameters ( and cofactor distance) display 
lower ET rate enhancements upon ligand binding despite 
lowering the ET ΔG°.  Our methodology also captures the ef-
fect of low and moderate ionic strength (concentrations) on 
ET parameters and rates.  At moderate ionic strength (√I = 
0.50) the cofactor distance and ET ΔG° are lowered and a 
larger number of K+ ions approach the Heme domain lead-
ing to moderate enhancements in ET rates. 

In summary, our MD simulation-based methodology ef-
fectively captures the major influences of mutations, ligand 
binding, and changes in ionic strength on the ET parameters 
and rates in BM3 and its variants.  This methodology is di-
rectly applicable to all CYP450 redox systems with only one 
requirement of a known experimental ET driving force for 
at least one variant or WT protein complex.  For other redox 
enzymes an additional initial step involving parameteriza-
tion for associated co-factors with MCBP.py tool will be nec-
essary.  All the MD simulations (360 ns/variant), energy cal-
culations, and analysis require 6 hours on GPU enabled HPC.  
CYPWare 1.0, script and the web tool used to define input 
variables are available on GitHub.  The methodology is be-
ing integrated with standard directed evolution modeling 
methods to identify ET rate-enhancing mutations and will 
be communicated soon elsewhere. 
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