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Abstract

We use co-homogeneity one symmetries to construct new families of instantons over Rie-

mannian manifolds with special holonomy groups and asymptotically conical geometry.

In doing so, we give a complete description of the behaviour of Calabi-Yau instantons and

monopoles with an SU(2)2-symmetry, by considering gauge theory on the smoothing and

small resolution of the conifold, and on the canonical bundle of CP1 × CP1, with their

known asymptotically conical co-homogeneity one Calabi-Yau metrics.

Furthermore, we classify SU(2)3-invariant G2-instantons on the spinor bundle of the

3-sphere, equipped with the asymptotically conical co-homogeneity one G2-metrics of

Bryant-Salamon, and show that if any non-invariant instanton shares the same asymp-

totic behaviour, its deformation theory must be obstructed.
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Introduction

Inspired by the conjectural picture outlined by Donaldson-Thomas in [DT98], later ex-

panded upon in [DS11], also [Wal17], significant progress has been made in generalising

the classical study of gauge theory in dimensions three and four to higher dimensions.

One goal of this programme is to mimic the construction found in [DK90] of invariants

for smooth 4-manifolds using moduli-spaces of anti-self-dual instantons: solutions to a

first-order system of partial differential equations implying the Yang-Mills instanton equa-

tions. The Yang-Mills equations, which are discussed in detail in §1.1, can be defined on

a bundle over any oriented Riemannian manifold: in higher dimensions, finding solutions

to these equations via a first-order system requires the presence of additional geometric

structure.

In particular, instanton moduli-spaces over Riemannian manifolds with special holon-

omy groups possess many of the desirable features found in the four-dimensional case,

see e.g. [DS11, §2.2]. In this thesis, we will focus on two kinds of manifolds admitting

special-holonomy metrics: Calabi-Yau 3-folds in (real) dimension six, and G2-manifolds

in dimension seven. These geometries are discussed in §1.2, §1.3 respectively.

Obtaining an analytic description of the moduli-space of these instantons in higher di-

mensions presents a significant challenge to the Donaldson-Thomas programme, stemming

from issues of compactness: in general, bubbling phenomena are expected to occur along

calibrated currents with Hausdorff co-dimension four [Tia00]. We wish to find examples

clarifying the relationship between compactifications of the moduli-space, and the cali-

brated geometry of special-holonomy metrics. This is particularly difficult in the G2-case,

where we cannot rely on the input from algebraic geometry.

In this thesis, we will exploit symmetries, both of the bundle data and of the underlying

Riemannian manifolds, to construct new examples of instantons on metrics with holonomy

G2 and SU(3). Restricting to this setting, and structure groups of rank one, we will be

able to give explicit descriptions of the moduli-space of these symmetric solutions in §2,

§3, and §4.

Since metrics with holonomy contained in SU(3) and G2 are Ricci-flat, outside of flat

metrics, the maximal symmetries we could hope to exploit are co-homogeneity one, i.e. we

have a Lie group of isometries acting on the Riemannian manifold with generic orbits of co-

dimension one. For this reason, co-homogeneity one symmetries have played a historically

significant role in the study of special holonomy, and we will discuss these symmetries in

detail in §1.1, as well as recalling explicit examples in §1.1, §1.2, and §1.3.

Moreover, if an irreducible Riemannian manifold has holonomy equal to G2 or SU(3)

as the case may be, it must be non-compact to admit any continuous symmetry at all. For-

4



tunately, there are non-compact G2-metrics admitting S1-symmetries recently constructed

by Foscolo-Haskins-Nordström [FHN21a] occurring in families of arbitrarily large dimen-

sion [FHN21a, Corollary 9.5], and infinitely many one-parameter families of examples with

a co-homogeneity one symmetry of SU(2)2 × U(1) by the same authors [FHN21b]. Thus,

studying their gauge theory has the potential to provide examples of G2-instantons on a

large class of geometries: carrying out this project motivated many of the results contained

in this thesis.

To explain in more detail, we note that the co-homogeneity one manifolds of [FHN21b]

come in one-parameter families with asymptotically locally conical (ALC) geometry at

infinity, i.e. outside of a compact subset, these G2-metrics converge to a circle fibration

over a Calabi-Yau cone, with fibres of some length ` > 0. In the limit as ` → 0, these

G2-manifolds collapse to a Calabi-Yau 3-fold with asymptotically conical (AC) geometry

at infinity, i.e. the Calabi-Yau is diffeomorphic to a cone outside of a compact subset,

with a Riemannian metric converging to the corresponding metric cone.

The AC Calabi-Yau metrics arising in this limit all admit a co-homogeneity one ac-

tion of SU(2)2, and share the same asymptotic cone, up to double-cover: the conifold,

the SU(2)2-invariant Calabi-Yau cone metric on the ordinary double-point singularity

{(z1, z2, z3, z4) ∈ C4 |
∑

i z
2
i = 0}. The first of these SU(2)2-invariant Calabi-Yau metrics,

defined on the small resolution O(−1) ⊕ O(−1) of the ordinary double point, is unique

up to overall scale, as is the second on the smoothing T ∗S3. These examples were first

described in [CdlO90], with the second discovered independently in [Ste93]. Finally, the

canonical bundle KCP1×CP1 of CP1×CP1 has a one-parameter family of SU(2)2-invariant

AC Calabi-Yau metrics, up to scale, which arise by varying the relative volume of each

copy of CP1. These are described in [PZT01], generalising earlier work of [Cal79] when

these two volumes are equal.

We investigate SU(2)2-invariant gauge theory on these AC Calabi-Yau 3-folds in §2,

§3: as well as instantons, we also consider Calabi-Yau monopoles, which are a slight

generalisation of instantons on non-compact Calabi-Yau 3-folds cf. (2.1). These Calabi-

Yau monopoles model the asymptotic behaviour of instantons on ALC G2-manifolds, and

are analogous to Bogomol’yni monopoles found in dimension three: see also §1.1, (1.3).

We expect that the instantons constructed in §2 can be used to construct G2-instantons

on the co-homogeneity one ALC G2-metrics of [FHN21b] near the collapsed limit.

Furthermore, in §3.3, we prove that the relevant bubbling and compactness theorems

hold for the instantons constructed in §2, §3 in terms of anti-self-dual instantons along

complex curves in the AC Calabi-Yau, in line with the general picture laid out in [DT98],

[DS11] for the compact case.

Far from the collapsed limit, the families of co-homogeneity oneG2-metrics in [FHN21b]

have AC geometry when `→∞, see [LO18] for partial results comparing invariant instan-

tons on G2-metrics with ALC and AC asymptotics. Two of these families, referred to as

the B7 and D7 families in the physics literature [CGLP02], share the same limiting AC G2

metric: the metric constructed by Bryant-Salamon [BS89] on the spinor bundle S(S3) of

the 3-sphere S3, which admits a co-homogeneity one action of SU(2)3. In §4.2, we settle

a question posed in [LO18], by classifying SU(2)3-invariant instantons over S(S3) and

constructing a new family of examples. Moreover, in §4.3, using the deformation theory of
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instantons on AC G2 metrics carried out in [Dri20], we show that the symmetric solutions

from §4.2 are the only solutions with unobstructed deformations in the moduli-space of

instantons sharing the same asymptotic behaviour.

A slightly more speculative suggestion is that, via a gluing procedure, we may be able

to use the instantons on S(S3) to construct instantons on the ALC metrics of the B7,

D7 families for ` sufficiently large, by considering instantons on some of the incomplete

conically-singular (CS) co-homogeneity one G2-metrics constructed in [FHN21b]. These

metrics have a complete ALC end at infinity modelled on a circle-fibration over the coni-

fold, and an incomplete end with a conical singularity modelled on the asymptotic cone of

S(S3). It is suggested in [FHN21b], adapting earlier arguments of [Kar09], that the B7, D7

families may be viewed as de-singularisations of these CS metrics by gluing in a rescaled

copy of S(S3), and one may be able to produce instantons on these families by following

a similar procedure.

Plan of Thesis

Chapter 1: We introduce the study of gauge theory using co-homogeneity one sym-

metries in §1.1, drawing on the more familiar setting of instantons in dimension four for

examples. This is partly as a warm-up for the slightly more complicated analysis in higher

dimensions, but also because these 4-dimensional instantons will appear as bubbling limits

for these higher-dimensional instantons in §3.3.

Throughout the following, if a manifold M has a co-homogeneity one action by Lie

group K, with exactly one exceptional isotropy subgroup H ′, and generic isotropy sub-

group H, we will denote the sequence H ⊂ H ′ ⊆ K as the group diagram of M . We will

refer to the generic K-orbit K/H as the principal orbit, the exceptional orbit K/H ′ as

the singular orbit, and the union of generic K-orbits as the space of principal orbits.

In order to fix conventions, we give a preliminary introduction to the geometry of

co-homogeneity one Calabi Yau metrics in §1.2, in the case K = SU(2)2, and H is either

the diagonal subgroup 4U(1) or 4U(1)× Z2, i.e. we describe the Calabi-Yau metrics on

O(−1) ⊕ O(−1), T ∗S3, and O(−2,−2). We will also give a preliminary introduction to

the geometry of co-homogeneity one G2-metrics in §1.3, in the case K = SU(2)3, and H

is the diagonal subgroup 4SU(2) in all three factors, i.e. we describe the G2 metrics on

S(S3).

Chapter 2: We proceed with the main aims of this thesis in §2. We will begin this

chapter with an overview of the results proved in §3: namely, classifying SU(2)2-invariant

solutions to the Calabi-Yau monopole equations. We consider the space of principal SU(2)-

bundles and connections over O(−1) ⊕ O(−1), T ∗S3, and O(−2,−2) that are invariant

under the SU(2)2-action, and we describe the gauge theory on the complement of the

singular orbit by pulling back bundles over the principal orbit in §2.3. Invariant bundles

over the principal orbit are classified by an integer, but only one of these bundles, denoted

P1, admits irreducible connections. We write down the Calabi-Yau monopole equations

for this bundle explicitly in Proposition 2.3.3, as an non-autonomous, non-linear ODE

system in four variables. We also briefly mention reducible solutions to these equations in

§2.4, which are explicit.
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Chapter 3: We cannot generically expect to find explicit solutions in the irreducible

case, but by imposing that the bundle data extends to the singular orbit, we can describe

the space of solutions to the ODEs near the singular orbit using a power-series. In §3.1,

we will find that these local solutions to the monopole equations are always in a two-

parameter family for each extension of the bundle P1 to the singular orbit, and we can

obtain a local one-parameter family of instantons by setting one of these two parameters

to zero.

The remaining sections of this chapter are dedicated to finding a qualitative description

of the behaviour of the local solutions in §3.1 as we move away from the singular orbit.

In §3.2, using the existence of invariant sets for these ODE systems, we determine the

asymptotic behaviour of the local instanton solutions to obtain new one-parameter families

of instantons with curvature decaying exactly quadratically at infinity: two families on

O(−1)⊕O(−1), one on T ∗S3, and countably many on O(−2,−2).

We also prove that the families of instantons on O(−2,−2) admit a natural compact-

ifications by instantons with faster than quadratic curvature decay: these fast-decaying

instantons can also be found via a result of [Ban93]. To prove their existence in the invari-

ant setting, we employ a rescaling argument along the fibres of O(−2,−2), and we prove

that these fast-decaying instantons are unique on a fixed bundle via some comparison re-

sults allowing us to compare different members of each one-parameter family of solutions

as they move away from the singular orbit.

We continue discussing rescaling arguments in §3.3. To show the relevant bubbling

result, we can consider an adiabatic limit in which we shrink the metric on O(−1)⊕O(−1)

along the fibre. We prove that, if we rescale one of the families of instantons on this metric,

in the limit the size of fibre shrinks to zero, this family converges to the standard anti-self-

dual instanton on C2. We use this to prove the compactification result: that if we do not

rescale, this family converges on compact subsets of O(−1)⊕O(−1) \CP1 to an (abelian)

instanton in the other family.

Although ultimately unnecessary for proving the results contained in chapters §2, §3,

we also show a bubbling phenomena for the families of instantons on O(−2,−2). We

consider a limit in which the metric is close to the simplest (non-trivial) example of an

asymptotically locally Euclidean (ALE) fibration: a copy of the Eguchi-Hansion metric on

the total space of the co-tangent bundle of CP1, fibred over the standard metric on CP1.

As one might expect, in this limit, we find that the families of instantons on O(−2,−2),

suitably rescaled, are close to corresponding families of anti-self-dual connections for the

Eguchi-Hanson metric constructed by Nakajima in [Nak90], which are described explicitly

in §1.1.

Finally, in §3.4, we analyse the behaviour of the full system of the monopole equations

away from the singular orbit to prove the non-existence of invariant monopoles on O(−1)⊕
O(−1) and O(−2,−2). We show that, aside from the one-parameter family of invariant

monopoles on T ∗S3 found previously in [Oli16] and the instantons described in the previous

sections, any other member of the local two-parameter families of solutions to the monopole

equation from §3.1 cannot have quadratically decaying curvature. This corrects a gap in

the proof of [Oli16] for the uniqueness of the family of monopoles on T ∗S3.

Chapter 4: The last chapter of this thesis is based on a joint work with Matthew
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Turner. In this chapter, we discuss SU(2)3-invariant instantons on the metrics of Bryant-

Salamon on S(S3), mostly following [LO18]: there is only one bundle admitting irreducible

invariant connections over the principal orbits, and we re-write the ODE system in [LO18]

corresponding to the SU(2)3-invariant instanton equations in Proposition 4.2.1.

As shown in [LO18], there are two ways of extending this bundle to the singular orbit,

and each gives a local one-parameter family of solutions to the instanton ODEs, which

are given in Proposition 4.2.3. One family has an closed-form expression (4.11), which

describes the one-parameter family of instantons on S(S3) found previously in [Cla14]. As

shown in [LO18], this one-parameter family converges on compact subsets of S(S3) \ S3

to an explicit member (4.12) in the other family of local solutions, which is defined on all

of S(S3).

However, these authors were unable to determine the behaviour of the other members

of this one-parameter family of local solutions moving away from the singular orbit. We

do so in §4.2, using the existence of invariant sets for this ODE system, and the work of

[Mar56] on non-autonomous ODE systems with autonomous large-time limits. In doing so,

we obtain a new one-parameter family of (non-explicit) solutions, containing the explicit

solution (4.12) of [LO18].

All these invariant examples on S(S3) share the same asymptotic behaviour: they

converge to the SU(2)3-invariant nearly-Kähler instanton, cf. (4.4), studied in [CH16] on

the homogeneous space SU(2)3 → SU(2)3/4SU(2). In §4.3, we use a computation in

[Dri20] to show that if an instanton on S(S3) has these asymptotics, and its deformation

theory is unobstructed, then the instanton is necessarily SU(2)3-invariant. Thus, by the

results of the previous section, it must lie in one of the two families given in §4.2, up to

gauge.

Appendix A: We must impose boundary conditions for the invariant Calabi-Yau

structures on the space of principal orbits found in §1.2 to extend smoothly over the

singular orbit. Likewise, we must impose boundary conditions for the invariant bundle

data on the space of principal orbits in §2, §3 to extend to the singular orbit. These

discussions are relegated to Appendices A.1 and A.2 respectively: using the analysis of

Eschenburg-Wang [EW00] on invariant tensors, which can be adapted to (adjoint-valued)

forms, these are representation-theoretic computations.

Appendix B: To aid the flow of the exposition in §3, most of the explicit computa-

tions for parametrizing local solutions to the ODEs in §3.1 are consigned to this appendix.
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Chapter 1

Background

In this chapter, we will give an introductory exposition of the necessary background ma-

terial used in the later chapters, mostly following standard references.

In §1.1, we will use the familiar setting of instantons in dimension four to introduce

the study of gauge theory using co-homogeneity one symmetries. Although much of the

material in this section is well-known, Example 1.1.3 recovers the anti-self-dual instantons

on T ∗CP1 constructed in [BJCC80a] in the co-homogeneity one set-up.

We give an introduction to the geometry of co-homogeneity one Calabi-Yau metrics

in §1.2. In order to fix conventions for the Calabi-Yau gauge theory in §2, §3, we will

briefly describe the general theory of Calabi-Yau metrics foliated by parallel hyper-surfaces,

and explicitly construct the SU(2)2-invariant co-homogeneity one Calabi-Yau metrics on

O(−1) ⊕ O(−1), T ∗S3, and O(−2,−2) following [FH17]. The only new material in this

section is the co-homogeneity one description of the family of metrics found by [PZT01]

on O(−2,−2).

The final section §1.3 has a similar structure to §1.2: to fix conventions for the G2-

gauge theory in §4, we will briefly describe the general theory of G2-metrics foliated by

parallel hyper-surfaces, and explicitly construct the SU(2)3-invariant co-homogeneity one

G2-metrics of [BS89] on S(S3), following [LO18].

1.1 Gauge Theory in Four Dimensions

Let
(
M4, g

)
be an oriented Riemannian manifold, and fix a principal G-bundle P → M

with a compact, semi-simple Lie group G. We will denote the adjoint bundle associated to

P by adP . There is a natural gauge-invariant energy functional on the space of connections

on P , referred to as the Yang-Mills energy YM(A) :=
∫
M |FA|

2, where FA ∈ Ω2 (adP ) is

the curvature of a connection A on P , and we take point-wise norms with respect to some

ad-invariant metric on the Lie algebra of G.

A connection on P is referred to as being Yang-Mills if it satisfies the Euler-Lagrange

equations for YM(A):

d∗AFA = 0 (1.1)

where d∗A is the formal adjoint of the induced exterior covariant derivative dA : Ω1 (adP )→
Ω2 (adP ).
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In dimension four, connections minimising YM(A) can be found by solving the (anti-

)self-dual instanton equations:

∗FA = ±FA (1.2)

where ∗ denotes the Hodge star with respect to the Riemannian metric g and the chosen

orientation. In this section, we shall be concerned with anti-self-dual instantons, i.e.

solutions to (1.2) with ∗FA = −FA1, admitting continuous symmetries.

Example 1.1.1. Take a non-compact oriented Riemannian 3-manifold (N, g) equipped

with a principal bundle P → N and a Bogomol’nyi monopole: a pair (A,Φ), for some

connection A on P and Φ ∈ Ω0 (adP ) satisfying:

FA = ± ∗ dAΦ (1.3)

Pulling back (A,Φ) to the product g + dθ2 of g with the flat metric dθ2 on the circle S1,

gives an S1-invariant solution A = A+ Φdθ to (1.2) on the pull-back of P to N ×S1. We

will see in §2, §4.3 that the Bogomol’nyi monopole equations (1.3) have higher-dimensional

analogues.

As it will be useful to us later, let us write down (1.2) in co-ordinates near a hyper-

surface: if we suppose that N is an oriented hyper-surface in M , then a tubular neighbour-

hood of N ⊂M can be identified with N × I for some interval I ⊆ R via the exponential

map. In these coordinates, the metric on M appears as g = dt2 + gt for some t-dependent

metric gt on N .

In this neighbourhood, we may always write P as the pull-back of some bundle on N .

Similarly, if P is equipped with a connection form A, then we may write A = At + γtdt,

where At is a one-parameter family of connections over N , and γt ∈ Ω0 (adP ) is a one-

parameter family of sections of the adjoint bundle.

Via a gauge transformation, we can always choose to set γt = 0: for each t ∈ I, take

gt ∈ G such that γt + g−1
t (∂tgt) = 0. We will refer to this choice of gauge as the temporal

gauge, and the curvature of A = At in this gauge is given by FA = FAt − ∂tAt ∧ dt.
Moreover, given some t-dependent orthonormal co-frame (σ1, σ2, σ3)t∈I for gt

2, we can

write an orthonormal basis ω±i = dt ∧ σi ± σj ∧ σk of (anti-)self-dual two-forms on M ,

where (ijk) are cyclic permutations of (123), so that (1.2) appears in these coordinates as:

FAt ∧ σi ∓ ∂tAt ∧ σj ∧ σk = 0 (1.4)

using the temporal gauge, for (ijk) cyclic permutations of (123).

A natural context where such a family of parallel hyper-surfaces occur is when N is

the orbit of a Lie group of isometries acting on M :

Definition 1.1.1. A compact Lie group K of isometries acts with co-homogeneity one on

a connected Riemannian manifold (M, g) if there is a co-dimension one K-orbit in M .

1note, however, we can identify anti-self-dual instantons with self-dual instantons, i.e. with solutions of
∗FA = FA, by changing the orientation on M .

2note that this always exists, since every oriented 3-manifold is parallelisable.
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It is not difficult to show that the K-orbits of a co-homogeneity one action foliate a

dense open subset of M into parallel hyper-surfaces, and that these parallel hyper-surfaces

can be written as a homogeneous space K/H, where H denotes the generic isotropy

subgroup of the K-action [AA93]. Moreover, the complete co-homogeneity one manifolds

we will encounter in this thesis will have a unique singular isotropy subgroup3 H ′ ⊂ K,

and in this case, M can be equivariantly identified with the total space of a vector-bundle

K ×H′ V → K/H ′ for some orthogonal H ′-representation V , with H ⊂ H ′ realised as the

stabiliser subgroup of some non-zero v ∈ V .

Returning now to the gauge theory: suppose the connection At in (1.4) is invariant

under some lift of a co-homogeneity one action to the total space of the bundle, then we

can reduce (1.4) to a system of ordinary differential equations in a single variable. In order

to make sense of this, we introduce the following definition:

Definition 1.1.2. Let K be a compact Lie group acting on a smooth manifold M , and

P → M be a principal G-bundle for some Lie group G. P is said to be K-invariant if

there is a lift of the K-action to the total space of P . Furthermore, if K acts transitively

on M , then P is called K-homogeneous.

Homogeneous bundles have been studied in detail in [Wan58]: K-homogeneous bundles

over the homogeneous space K/H can be equivariantly identified with K ×H G, where

H acts on G via some group homomorphism λ : H → G. Moreover, this homomorphism

classifies homogeneous bundles up to equivariant isomorphism.

If K/H is the principal orbit of a co-homogeneity one manifold M with diagram

H ⊂ H ′ ⊆ K, a homogeneous bundle over the principal orbit can be extended over to

an invariant bundle over M by extending the group homomorphism H → G to a group

homomorphism H ⊂ H ′ → G. The bundle defined by this extension is just the pull-back

via the projection M → K/H ′ of a homogeneous bundle over K/H ′.

The advantage of using homogenous bundles for gauge theory is that K-invariant con-

nection forms can be identified with linear maps on the tangent space at a single point: if

we write h ⊂ k, g for the Lie algebras of H ⊂ K, G respectively, then by [Wan58, Thm.A],

any K-invariant connection one-form can be written as a linear map A : k→ g, such that

A intertwines the H-representations k and g, and A|h = dλ. In other words, on h, A is

the image of the canonical connection on K → K/H under λ, and since K is compact, we

have the H-invariant splitting k = h⊕m for some m ⊂ k. Thus the connection is uniquely

determined by the H-equivariant map A|m : m→ g.

If we work outside of the singular orbit, using the temporal gauge, we can use this

description to view any invariant connection on a co-homogeneity one manifold as a one-

parameter family of linear maps At : k → g, so that (1.4) becomes a finite-dimensional

ODE system.

Before seeing some explicit examples, which all have a co-homogeneity one action of

SU(2), we will fix the following piece of notation- throughout this thesis, we will denote

3in particular, this will always be the case when the metric is complete, irreducible and Ricci-flat.
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E1, E2, E3 a basis for the Lie algebra su(2) given by the matrices:

E1 :=

(
i 0

0 −i

)
E2 :=

(
0 1

−1 0

)
E3 :=

(
0 i

i 0

)

so that [Ei, Ej ] = 2Ek for cyclic permutations of (123), and the action of U(1) on SU(2)

is generated by E1. Clearly, we can identify the span of E2, E3 under the adjoint action of

U(1) with C2, where Cn denotes nth tensor power of the standard representation of U(1)

on C. We will denote the one-forms dual to E1, E2, E3 as e1, e2, e3.

Example 1.1.2. (C2, BPST) C2 is equipped with a co-homogeneity one action of SU(2)

via the standard representation, with diagram {1} ⊂ SU(2) ⊆ SU(2). We can define an

SU(2)-invariant SU(2)-bundle over C2 by the homomorphism Id : SU(2) → SU(2), i.e.

the singular isotropy group SU(2) acts via the identity homomorphism on the fibre SU(2).

Outside of the singular SU(2)-orbit at the origin in C2, this bundle is equivariantly

trivial, and can be pulled back from the trivial bundle over the principal orbit S3 ⊂ C2.

So, up to the adjoint action of SU(2) on su(2) by equivariant gauge transformations, we

can always put any SU(2)-invariant connection A on this bundle into the diagonal form

A =
∑

i αiEi⊗ei, for some αi(t) depending on the radial distance t ∈ R≥0 from the origin.

Furthermore, we require that αi(0) = 1, so that this connection extends smoothly over

the origin as the Maurer-Cartan connection, the unique SU(2)-invariant connection on

the restriction of this bundle to the origin.

Now, since C2 has an additional (right) co-homogeneity one action of SU(2), we will

focus on the case that the connection shares this symmetry, i.e. α := α1 = α2 = α3. Using

the standard basis of self-dual forms for the flat metric, we can then write the SU(2)2-

invariant anti-self-dual equations as the ODE tα̇ = 2α (α− 1). This has the explicit

solution α =
(
1 + κt2

)−1
for any κ ∈ R, extending smoothly over the singular orbit at

t = 0.

Clearly, this exists for all t ≥ 0 if and only if κ ≥ 0, and κ = 0 defines a flat connection.

If κ > 0, we can always fix the solution to have κ = 1 by an overall rescaling of the metric,

giving the classical Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton: the absolute

minimum of the Yang-Mills energy over C2 with charge one.

Example 1.1.3. (T ∗CP1, BCC): T ∗CP1 admits a co-homogeneity one action of SU(2)

with diagram Z2 ⊂ U(1) ⊂ SU(2), by viewing T ∗CP1 as the co-tangent bundle of the

homogeneous space CP1 = SU(2)/U(1). Here, T ∗CP1 is equipped with the SU(2)×U(1)-

invariant metric of Eguchi-Hanson [EGH80], which can be written, up to scale, as:

g = dt2 + ϕ2
(
(1− ϕ−4)e2

1 + e2
2 + e2

3

)
(1.5)

on the space of principal orbits T ∗CP1 \ CP1 = R>0 × SU(2)/Z2, where t ≥ 0 is the

radial geodesic arc-length extending over CP1 at t = 0, and ϕ(t) is the unique solution to

ϕ̇2 = 1− ϕ−4 on [0,∞) with ϕ(0) = 1, ϕ̈(0) = 2.

This metric is complete, with a unique asymptotically locally Euclidean (ALE) end

modelled on the flat orbifold C2/Z2. Outside of the origin, we can identify C2/Z2 with the

space of principal orbits as smooth manifolds, and |g− gC2/Z2
| = O(t−4) as t→∞, where
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gC2/Z2
denotes the flat metric, and we take norms with respect to the Eguchi-Hanson

metric g.

We can define a family of SU(2)-invariant SU(2)-bundles on T ∗CP1 by the homo-

morphism λl : U(1) → SU(2) given by taking l’th power of the diagonal embedding

λ : U(1) ↪→ SU(2) for some l ∈ Z>0. Outside of the singular orbit, these bundles can be

pulled back from bundles over the principal orbit SU(2)/Z2
∼= SO(3): either the trivial

bundle SU(2) × SO(3) when l is even, or the non-trivial bundle SO(4) → SO(3) when l

is odd.

In either case, using the action of SU(2) on su(2) by equivariant gauge-transformations,

any SU(2)-invariant connection on the space of principal orbits can be written in the

diagonal form A =
∑

i αiEi ⊗ ei for some αi(t), smooth functions of t ∈ R>0. This con-

nection extends smoothly over the singular orbit at t = 0 if and only if α1, t1−l (α2 + α3),

t−l−1 (α2 − α3) are smooth, even functions near t = 0, and α1(0) = l, cf. Proposition

A.3.1 in appendix A.

As in the previous example, since the Eguchi-Hanson metric admits an additional

U(1)-symmetry, we will assume the connection shares this symmetry, i.e. α2 = α3. The

corresponding SU(2)× U(1)-invariant anti-self-dual equations, up to gauge, are:

α̇1 = 2 ϕ̇ϕ
(
α2

2 − α1

)
α̇2 = 2 1

ϕ̇ϕα2 (α1 − 1) (1.6)

The anti-self-dual equations (1.6) have a one-parameter family of solutions for each l ∈
Z>0. This family can be written down explicitly as:

α1 =
l

ϕ2

1 + ζ lκ(ϕ)

1− ζ lκ(ϕ)
α2 =

2l

1− ζ lκ(ϕ)

√
ζ lκ(ϕ)

ϕ4 − 1
(1.7)

where ζ lκ(ϕ) := κ
(
ϕ2−1
ϕ2+1

)l
, and parameter κ lies in the interval 0 ≤ κ ≤ 1.

These invariant one-parameter families were found previously by Boutaleb-Joutei,

Chakrabarti, and Comtet (BCC) in [BJCC80a], see also [BJCC80b]. For each fixed l,

the solution (1.7) with κ = 0 is a unique abelian solution to (1.6) extending over the

singular orbit, and the solutions with 0 ≤ κ < 1 are asymptotic to the flat connection

(α1, α2) = (0, 0). At κ = 1, there is a transition in asymptotic behaviour: the solution

(1.7) with κ = 1 is asymptotic to the flat connection (α1, α2) = (1, 1). When l = 1, the

solution with κ = 1 is just the flat connection (α1, α2) = (1, 1) for all time, but these

solutions are irreducible otherwise.

For each of these families, we can explain the limit κ→ 1 as a bubbling phenomenon

at infinity, see [Nak90, Theorem 5.2]. In terms of solutions (1.7), in the limit κ → 1, the

smooth trajectories {(α1, α2) (t) | t ≥ 0} ⊂ R2 of the solutions for 0 ≤ κ < 1 converge

to a piece-wise smooth trajectory consisting of two components. The first component,

traversed in some sufficiently large time T (κ) → ∞ as κ → 1, is the trajectory of the

solution (1.7) with κ = 1. The second component, which is only traversed after time T (κ),

is the trajectory of the anti-self-dual instanton α1 = α2 = 1
1+t2

on C2/Z2 descending from

the BPST instanton on C2 from Example 1.1.2.

As is computed in [BFRM96, §6.1], in the special case l = 1, the invariant one-

parameter family (1.7) with l = 1 gives all the solutions of the anti-self-duality equations
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(1.2) on this bundle, up to gauge-equivalence. This observation can also be understood

in terms of the framed moduli-space of anti-self-dual connections for the Eguchi-Hanson

metric constructed in [Nak90], which considers the moduli-space of anti-self-dual con-

nections up to gauge transformations asymptotic to the identity. This framed moduli-

space, equipped with a natural metric, is isometric to the underlying Eguchi-Hanson

space [Nak90, Theorem 0.3], see also [BFRM96, §7]. We can recover the description

of this moduli-space in our invariant set-up, at least as a co-homogeneity one manifold, by

considering the orbit of the family (1.7) under constant (t-independent) SU(2)-invariant

gauge-transformations. Here, the parameter κ corresponds to a parametrisation of the

radial parameter t in (1.5) such that κ(0) = 0, κ(∞) = 1, and the gauge orbits correspond

to the orbits of the co-homogeneity one action of SU(2) on T ∗CP1.

With these two examples in place, we will now move on to the higher-dimensional

setting. For this purpose, and in order to fix conventions for the gauge theory, we will

introduce two kinds of manifolds admitting Riemannian metrics with special holonomy

groups in the following sections: Calabi-Yau 3-folds in (real) dimension six, and G2-

manifolds in dimension seven.

1.2 Calabi-Yau structures

We first recall the following definition:

Definition 1.2.1. An SU(3)-structure on a 6-manifold M is a pair (ω,Ω), for some non-

degenerate 2-form ω, and complex volume form Ω = ReΩ + iImΩ, satisfying:

ω ∧ ReΩ = 0 1
6ω

3 = 1
4ReΩ ∧ ImΩ (1.8)

Moreover, it is enough to specify the pair of real forms (ω,ReΩ) to determine the

SU(3)-structure [Hit00, §2].

Definition 1.2.2. A Calabi-Yau structure on a 6-manifold M is an SU(3)-structure (ω,Ω)

that is torsion-free, i.e. dω = dΩ = 0. A Calabi-Yau 3-fold (M,ω,Ω) is a (real) 6-manifold

M , together with a Calabi-Yau structure (ω,Ω).

We will see some concrete examples of Calabi-Yau structures in the co-homogeneity

one setting later in this section. In order to understand their construction, it will be useful

to recall some generalities on Calabi-Yau geometry in co-dimension one, following [CS07]:

We start by noting that if ι : N ↪→M is an oriented immersion of a real 5-dimensional

manifold N into a 6-manifold M , then an SU(3)-structure on M naturally equips N with

an SU(2)-structure i.e. an SU(2)-reduction of the frame bundle. To be more explicit, by

[CS07, Proposition 1], an SU(2)-reduction is equivalent to the following:

Definition 1.2.3. An SU(2)-structure on a 5-manifold N is a triple of 2-forms (ω1, ω2, ω3)

and a nowhere-vanishing 1-form η, satisfying:

1. ωi ∧ ωj = δijv, with v a fixed 4-form such that v ∧ η is nowhere-vanishing: i.e. v is

a volume form on the distribution H := ker η.
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2. Xyω1 = Y yω2 ⇒ ω3(X,Y ) ≥ 0, i.e. (ω1, ω2, ω3) is an oriented orthonormal basis

of self-dual two-forms on H, with respect to the volume form v, and a Riemannian

metric g on H defined via g(X,Y )v = ω1 ∧ (Xyω2) ∧ (Y yω3) for X,Y ∈ H.

So, given some 6-manifold M with an SU(3)-structure (ω,Ω), and an oriented immer-

sion ι : N ↪→M , an SU(2)-structure on N arises as follows:

η = ι∗ (n̂yω) ω1 = ι∗ω ω2 = ι∗ (n̂yReΩ) ω3 = ι∗ (n̂yImΩ) (1.9)

where n̂ the canonical unit normal to ι(N) ⊂ M , defined by the chosen orientation and

the Riemannian metric g induced by (ω,Ω).

If ι is an embedding, then we can view N ⊂ M as an oriented hyper-surface, and a

tubular neighbourhood N ⊂ M can be identified with N × I for some interval I ⊆ R
using the exponential map. In these coordinates, the metric on M appears as g = dt2 + gt

for some t-dependent metric gt on N , and (1.9) gives rise to a family of SU(2)-structures

(η, ωi)t∈I on N inducing gt. In this neighbourhood, the SU(3)-structure (ω,Ω) on M takes

the form:

ω = dt ∧ η + ω1 Ω = (dt+ iη) ∧ (ω2 + iω3) (1.10)

and if (ω,Ω) is Calabi-Yau, i.e. ω, Ω are closed, then (η, ωi)t∈I satisfy the following

structure equations on N :

dω1 = 0 d(ω3 ∧ η) = 0 d(ω2 ∧ η) = 0 (1.11)

along with the evolution equations for t ∈ I:

dη = ∂tω1 dω2 = −∂t(ω3 ∧ η) dω3 = ∂t(ω2 ∧ η) (1.12)

Observe that (1.11) is preserved under (1.12). This allows us to interpret a Calabi-Yau

structure (at least locally) as a flow by (1.12) in the space of SU(2)-structures satisfying

(1.11) on some fixed 5-manifold. This motivates the following definition:

Definition 1.2.4. A hypo-structure on a 5-manifold N is an SU(2)-structure satisfying

(1.11). We refer to (1.12) as the hypo-evolution equations.

Putting aside completeness of the resulting metrics for a moment, the Riemannian

cone is an important class of examples for this construction of Calabi-Yau metrics:

Example 1.2.1. (Calabi-Yau cone) Let N be a 5-manifold equipped with a fixed hypo-

structure (ηse, ωsei ) satisfying the following structure equations:

dηse = 2ωse1 dωse2 = −3ωse3 ∧ ηse dωse3 = 3ωse2 ∧ ηse (1.13)

Then the following 1-parameter family (η, ωi)t∈R>0
of SU(2)-structures:

η = tηse ωi = t2ωsei (1.14)
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satisfy (1.11), (1.12) iff (ηse, ωsei ) satisfies (1.13). As in (1.10), this family defines the

conical SU(3)-structure (ωC ,ΩC) on R>0 ×N :

ωC = tdt ∧ ηse + t2ωse1 ΩC = t2 (ωse2 + iωse3 ) ∧ (dt+ itηse) (1.15)

which is Calabi-Yau iff (ηse, ωsei ) satisfies the structure equations (1.13). We refer to an

SU(2)-structure (ηse, ωsei ) satisfying (1.13) as being Sasaki-Einstein: one can show that

such an SU(2)-structure induces a Sasaki-Einstein metric gse on N , or in other words, the

Calabi-Yau metric gC induced by (ωC ,ΩC) on R>0 ×N is a metric cone gC = dt2 + t2gse

over gse. Sasaki-Einstein metrics exist in abundance, see e.g. [Spa11], so this construction

yields many (incomplete) examples of Calabi-Yau metrics.

Another class of examples of Calabi-Yau metrics that can be constructed using solu-

tions to (1.11), (1.12) are in the co-homogeneity one setting: concretely, there are four

known examples of complete co-homogeneity one Calabi-Yau 3-folds in the literature.

Three of these share a symmetry group4 SU(2)2, and can be written the form M =

SU(2)2 ×H′ V for some singular isotropy subgroup H ′ ⊂ SU(2)2, and H ′-representation

V :

Example 1.2.2. O(−1) ⊕ O(−1) over CP1, with a metric obtained by Candelas and

de la Ossa in [CdlO90], also known as the small resolution of the conifold. The metric

is unique up to rescaling by a constant factor, and as a co-homogeneity one manifold

we have the diagram 4U(1) ⊂ U(1) × SU(2) ⊂ SU(2)2, where 4U(1) is the diagonal

U(1) subgroup. The U(1) × SU(2) representation is given by the following: viewing

v ∈ V ∼= C2 as a quaternion, and q ∈ SU(2) as a unit quaternion, then (eiθ, q).v = qve−iθ.

By applying the outer automorphism exchanging the factors of SU(2) ⊂ SU(2)2, we can

get another co-homogeneity one metric from the small resolution, with singular isotropy

group U(1)×SU(2) ⊂ SU(2)2, but this metric is distinct only up to equivariant isometries.

Example 1.2.3. T ∗S3 over S3, with a metric also considered in [CdlO90] and found

independently by Stenzel in [Ste93]. This is also referred to as the smoothing of the conifold

and again, this metric is unique up to overall scale. The group diagram is 4U(1) ⊂
4SU(2) ⊂ SU(2)2, and we have as a 4SU(2) representation V ∼= su(2), i.e. SU(2) acts

via the adjoint representation. As a smooth manifold, it is diffeomorphic to R3 × S3, the

only rank 3 vector-bundle over S3 up to diffeomorphism.

Example 1.2.4. O(−2,−2), the total space of the canonical bundle over CP1 × CP1,

with a metric found by Calabi in [Cal79] (unique up to overall scaling), which was later

generalised to a one-parameter family of metrics by Pando-Zayas and Tseytlin in [PZT01].

This parameter represents the relative volume of each CP1 as the zero-section ofO(−2,−2),

and Calabi’s construction considers the case when these two volumes are equal. The group

diagram is K2,−2 ⊂ U(1)2 ⊂ SU(2)2, where K2,−2 is the kernel of the map U(1)2 → U(1)

given by (eiθ1 , eiθ2) 7→ e2iθ1−2iθ2 , and as a U(1)2-representation we have V ∼= C2,−2, i.e.

for complex number V 3 v, (eiθ1 , eiθ2).v = e2i(θ1−θ2)v. Note that there is a (non-unique)

4the construction of Calabi [Cal79] on the canonical bundle O(−3) → CP2 has co-homogeneity one
symmetry group SU(3), but the asymptotic geometry is less relevant to our considerations. We also thank
Udhav Fowdar for pointing out that O(−3) cannot admit irreducible invariant instantons for the rank-one
gauge groups considered in this thesis.
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isomorphism K2,−2
∼= 4U(1)× Z2 ⊂ U(1)2, where we define 4U(1)× Z2 ⊂ U(1)2 as the

(internal) direct product of the diagonal subgroup 4U(1) and the Z2-subgroup generated

by (e2iπ, eiπ), by sending K2,−2 3 (eiθ1 , eiθ2) 7→ (eiθ1 , eiθ1).(e2iπ, ei(θ2−θ1)) ∈ 4U(1)× Z2.

The asymptotic model for the geometry of these spaces (up to Z2-cover) is the unique

co-homogeneity one Calabi-Yau metric cone over SU(2)2/4U(1) ∼= S2 × S3, referred to

as the conifold in [CdlO90]. In the co-homogeneity one setting, there is an obvious diffeo-

morphism identifying the space of principal orbits with the smooth manifold underlying

the conifold, and pulling back any of these asymptotically conical metrics to a metric on

the conifold via this diffeomorphism, by [CdlO90], [PZT01], we have |i∗g − gC | → 0 as

t → ∞, where t denotes the radial parameter on the cone, i∗g denotes the pulled-back

metric, and we take norms with respect to the conical metric gC .

To have a uniform set-up for the gauge theory in later sections, we will describe the

construction of these examples in detail. This will involve finding solutions to the evolution

equations (1.12) in the space of invariant hypo-structures on the principal orbit S2×S3 =

SU(2)2/4U(1), and extending to the singular orbits in the complete cases.

We will use the basis E1, E2, E3 for su(2) such that [Ei, Ej ] = 2Ek for cyclic permuta-

tions of (123), and fix a basis for left-invariant vector fields on SU(2)2:

U1 := (E1, 0) V 1 := (E2, 0) W 1 := (E3, 0)

U2 := (0, E1) V 2 := (0, E2) W 2 := (0, E3)
(1.16)

with respective dual one-forms u1, v1, w1, u2, v2, w2. Denote U± := U1 ± U2, V ± :=

V 1 ± V 2, W± := W 1 ±W 2 with respective dual one-forms u±, v±, w±. Here, the vector

field U+ generates the diagonal subgroup 4U(1).

We let m ⊂ su(2) ⊕ su(2) be the 4U(1)-invariant complement of the span of U+.

Observe that the adjoint action of the isotropy subgroup 4U(1) on m is given by m =

〈U−, V 1,W 1, V 2,W 2〉 ∼= R⊕C2 ⊕C2, where U− spans a trivial representation of 4U(1),

and {V i,W i}i=1,2 each span a complex one-dimensional representation with weight two.

Note that if Z2 ⊂ SU(2)2 is a subgroup of the flow generated by the vector field

U−, then the adjoint action of Z2 on m is trivial. Hence, without loss of generality, we

will always assume the principal isotropy subgroup of the SU(2)2-action is 4U(1) in this

section.

With this in place, let us define the standard invariant Sasaki-Einstein structure

(ηse, ωsei ) on SU(2)2/4U(1) as:

ηse := 4
3u
− ωse1 := −2

3(v1 ∧ w1 − v2 ∧ w2)

ωse2 := 2
3(v1 ∧ v2 + w1 ∧ w2) ωse3 := 2

3(v1 ∧ w2 − w1 ∧ v2)
(1.17)

It is easy to check that (ηse, ωsei ) satisfies the Sasaki-Einstein structure equations (1.13).

The corresponding Calabi-Yau cone over SU(2)2/4U(1) has the conical SU(3)-structure

(ωC ,ΩC), as in (1.15), and we refer to this cone as the conifold5.

5note that any invariant Sasaki-Einstein structure on SU(2)2/4U(1) can be obtained from (1.17) by
rotating the plane spanned by (ωse2 , ω

se
3 ). However, since any of two of these structures induce the same

Sasaki-Einstein metric gse, we will make this particular choice without loss of generality.
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Furthermore, it is not hard to show that the space of invariant two-forms on SU(2)2/4U(1)

is four-dimensional, and spanned by ωse0 , ω
se
1 , ω

se
2 , ω

se
3 , where we define:

ωse0 := 2
3(v1 ∧ w1 + v2 ∧ w2) (1.18)

By using this basis of invariant two-forms and the invariant one-form ηse, we have the

following description of the space of hypo-structures:

Proposition 1.2.1 ([FH17]). Up to transformations by isometries with respect to the

induced metric, any invariant non-degenerate family of hypo-structures (η, ω1, ω2, ω3)t∈I
on SU(2)2/4U(1) can be written:

η = ληse ω1 = u0ω
se
0 + u1ω

se
1 ω2 = µωse2 ω3 = v0ω

se
0 + v3ω

se
3 (1.19)

for some λ(t), u0(t), u1(t), v0(t), v3(t) such that µ2 := −u2
0 + u2

1 = −v2
0 + v2

3 > 0, λ > 0,

and v0u0 = 0.

At least one of v0 or u0 must vanish: if v0 vanishes, we will refer to this family as a

hypo-structure of type I, while if u0 vanishes, we will refer to this family as a hypo-structure

of type II. We will write these two situations explicitly below, along with corresponding

hypo-evolution equations (1.12):

1. Type I:

η = ληse ω1 = u0ω
se
0 + u1ω

se
1 ω2 = µωse2 ω3 = µωse3 (1.20)

The corresponding hypo-evolution equations are:

∂tu0 = 0 ∂tu1 = 2λ ∂t(λµ) = 3µ (1.21)

2. Type II:

η = ληse ω1 = µωse1 ω2 = µωse2 ω3 = v0ω
se
0 + v3ω

se
3 (1.22)

The corresponding hypo-evolution equations are:

∂tµ = 2λ ∂t(µλ) = 3v3 ∂t(λv3) = 3µ ∂t(λv0) = 0 (1.23)

The constants u0, −λv0 appearing in (1.21), (1.23) are fixed by topological data: they are

the coefficients of co-homology classes [ω] , [ReΩ] on R>0 × S2 × S3 with respect to the

generators [ωse0 ], [ωse0 ∧ ηse]. If both these constants vanish, then u1 = v3 = µ, and clearly

λ = t, µ = t2 is a solution to the resulting evolution equations:

∂tµ = 2λ ∂t(µλ) = 3µ

giving rise to the conical Calabi-Yau structure (ωC ,ΩC) of the conifold.

For each of the families, one can write down the corresponding invariant Calabi-Yau

metric g = dt2 + gt explicitly on the space of principal orbits, cf. [FH17, Prop.2.16]:
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1. Type I:

g = dt2 + λ2(ηse)2 + 2
3(u1 − u0)

(
(v1)2 + (w1)2

)
+ 2

3(u1 + u0)
(
(v2)2 + (w2)2

)
(1.24)

2. Type II:

g = dt2 + λ2(ηse)2 + 4
3(v3 − v0)

(
(v−)2 + (w−)2

)
+ 4

3(v3 + v0)
(
(v+)2 + (w+)2

)
(1.25)

With this description in hand, the problem of finding invariant Calabi-Yau metrics

on the space of principal orbits is reduced to finding solutions to the evolution equations

(1.21) or (1.23). We can write the complete Calabi-Yau metrics as solutions extending to

the singular orbits at t = 0:

Lemma 1.2.2 ([PZT01],[CdlO90]). Up to transformations by isometries with respect to

the induced metric, the space of SU(2)2-invariant Calabi-Yau structures (ω,Ω) on M can

be identified with:

(i) For M = O(−1)⊕O(−1), the ray {(U0, U1) ∈ R2 | U1 = −U0 < 0}.

(ii) For M = O(−2,−2), the open convex cone {(U0, U1) ∈ R2 | U1 > |U0| ≥ 0}.

These invariant Calabi-Yau structures induce a hypo-structure of type I on the principal

orbits, with (U0, U1) := (u0(0), u1(0)), and:

µ2 = u2
1 − U2

0 λ2 =
u3

1 − 3U2
0u1 + U1(3U2

0 − U2
1 )

u2
1 − U2

0

(1.26)

The proof of part (i) in the co-homogeneity one set-up can be found in [FH17, Thm.2.27],

part (ii) is similar, and verifying that these Calabi-Yau structures extend to the singular

orbits is left to the appendix A.1.

We will comment on the parameters (U0, U1) appearing in Lemma 1.2.2: clearly

{(U0, U1) ∈ R2 | U1 > |U0| ≥ 0} can be identified with the Kähler cone of O(−2,−2)

generated by the Kähler classes of the two copies of CP1 ⊂ O(−2,−2). It is not hard to

see that multiplicative rescalings of the cone are equivalent to constant rescalings of the

metric, and the point U0 = U1 = 0 is identified with the conifold u1 = µ = t2, λ = t.

Furthermore, the diffeomorphism arising from exchanging the two copies of CP1 acts on

this cone via reflection U0 → −U0, and the Calabi construction in [Cal79] produces exactly

the metrics in the subset fixed by this action.

Calabi-Yau structures on the cone boundary U1 = ±U0 (excluding the origin) are

not quite the same as those found on the boundary of the Kähler cone of O (−2,−2)

however, which generically have Z2-quotient singularities. Rather, they are a (smooth)

branched double-covering6: up to exchanging the factors of CP1, this boundary gives the

Calabi-Yau structure on O(−1) ⊕ O(−1) over CP1 = SU(2)2/U(1) × SU(2). In the rest

6these quotient singularities do not appear in our set-up, as we only define λ, µ, u0, u1 at the identity
coset on the principal orbit.
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of this thesis, for ease of notation, we will fix the scaling convention for this metric to be

(U0, U1) = (−1, 1).

Finally, for the Calabi-Yau structure on T ∗S3, we give the explicit solutions to (1.23)

extending to the singular orbit S3 cf. [FH17, Thm.2.27]:

Lemma 1.2.3 ([Ste93]). Up to scale, and transformations by isometries with respect to

the induced metric, there is a unique SU(2)2-invariant Calabi-Yau structure on T ∗S3. It

induces a hypo-structure of type II on the principal orbits, with:

λ =

(
2

3

) 1
3 sinh 3s

(sinh 3s cosh 3s− 3s)
1
3

µ =

(
2

3

) 2
3

(sinh 3s cosh 3s− 3s)
1
3

v0 = −
(

2

3

) 2
3 (sinh 3s cosh 3s− 3s)

1
3

sinh 3s
v3 =

(
2

3

) 2
3 (sinh 3s cosh 3s− 3s)

1
3

tanh 3s

(1.27)

for s ∈ [0,∞), where s(t) :=
∫ t

0 λ
−1(t̂)dt̂

1.3 G2 structures

Recall that a G2-structure on a 7-manifold M is a reduction of the frame bundle to the

exceptional Lie group G2. This is equivalent to existence of a non-degenerate 3-form

ϕ ∈ Ω3(M) which is fixed by the point-wise action of G2 ⊂ SO(7) in some framing of the

tangent space at every point. Furthermore, this data determines a Riemannian metric,

volume-form, and orientation on M .

Existence of such a structure on some oriented 7-manifold is purely topological: it

is equivalent to the existence of a spin structure [Joy07, Ch.11]. On the other hand,

constructing torsion-free G2-structures is much more difficult:

Definition 1.3.1. A G2-manifold (M,ϕ) is a 7-manifold equipped with a torsion-free

G2-structure, i.e. dϕ = d∗ϕ = 0.

Although their existence was first suggested by the work of Berger [Ber55], the first ex-

amples of complete, irreducible G2-manifolds were only constructed much later in [BS89],

by exploiting co-homogeneity one symmetries. Subsequently, another co-homogeneity one

example was found in [BGGG01], which was later generalised to a one-parameter fam-

ily in [Bog13], and a partial proof of existence for a second one-parameter family was

given in [BB13]. More recently, infinitely many families of complete, co-homogeneity one

G2-metrics have been found in [FHN21b], confirming earlier predictions in the physics

literature [CGLP02]. In order to understand these constructions, it will be useful to recall

some definitions regarding G2 geometry in co-dimension one:

If ι : N ↪→M is an oriented immersion of a 6-manifold N into M , then a G2-structure

ϕ on M naturally equips N with an SU(3)-structure:

ω = ι∗ (n̂yϕ) ReΩ = ι∗ϕ ImΩ = ι∗ (−n̂y ∗ ϕ) (1.28)

where n̂ the canonical unit normal to ι(N) ⊂ M , defined by the chosen orientation and

the Riemannian metric induced by ϕ.
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If ι is an embedding, then we can view N ⊂ M as an oriented hyper-surface, and a

tubular neighbourhood of N ⊂ M can be identified with N × I for some interval I ⊆ R
using the exponential map. In these coordinates, the metric on M appears as g = dt2 + gt

for some t-dependent metric gt on N , and (1.28) gives rise to a family of SU(3)-structures

(ω,Ω)t∈I inducing gt. Meanwhile, the G2-structure on M appears as:

ϕ = dt ∧ ω + ReΩ ∗ϕ = −dt ∧ ImΩ + 1
2ω

2 (1.29)

and if this G2-structure is torsion-free, then (ω,Ω)t∈I satisfy the following structure equa-

tions on N :

dω ∧ ω = 0 dReΩ = 0 (1.30)

subject to the evolution equations:

dω = ∂tReΩ dImΩ = −1
2∂t
(
ω2
)

(1.31)

Observe that (1.30) is preserved under (1.31). This allows us to interpret a torsion-free

G2-structure (at least locally) as a flow by (1.30) in the space SU(3)-structures satisfying

(1.30) on some fixed 6-manifold, cf. [Hit01]. This motivates the following definition:

Definition 1.3.2. A half-flat structure on a 6-manifold N is an SU(3)-structure (ω,Ω)

on N satisfying (1.30). We refer to (1.31) as the half-flat evolution equations.

Furthermore, by [Bry10, Thm.17.4], every real-analytic half-flat structure arises this

way, i.e. is induced by an embedding into a G2-manifold.

Example 1.3.1. (G2 cone) Let N be a 6-manifold equipped with a fixed SU(3)-structure(
ωnK ,ΩnK

)
satisfying the following structure equations:

dωnK = 3ReΩnK dImΩnK = −2
(
ωnK

)2
(1.32)

Then the following 1-parameter family (ω,Ω)t∈R>0
of SU(3)-structures:

ω = t2ωnK Ω = t3ΩnK (1.33)

satisfy (1.30), (1.31) iff
(
ωnK ,ΩnK

)
satisfies (1.32). As in (1.29), this family defines the

conical G2-structure ϕC on R>0 ×N :

ϕC = t2dt ∧ ωnK + t3ReΩnK ∗ϕC = −t3dt ∧ ImΩnK + 1
2 t

4
(
ωnK

)2
(1.34)

which is torsion-free iff
(
ωnK ,ΩnK

)
satisfies the structure equations (1.32). We refer to

an SU(3)-structure
(
ωnK ,ΩnK

)
satisfying (1.32) as being nearly-Kähler : one can show

that such an SU(3)-structure induces a nearly-Kähler metric gnK on N , or in other words,

the G2-metric gC induced by ϕC on R>0 × N is a metric cone gC = dt2 + t2gnK . The

handful of known nearly-Kähler metrics, either those with homogeneous [WG68] or co-

homogeneity one [FH17] symmetries, provide (incomplete) examples of G2-metrics using

this construction.
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Example 1.3.2. (Locally-conical G2) Take a 5-manifold N ′ equipped with a Sasaki-

Einstein structure (ηse, ωsei ), and a principal S1-bundle S1 ↪→ N → N ′ equipped with a

connection 1-form θ such that the curvature dθ satisfies dθ ∧ ωsei = 0, i.e. dθ is an anti-

self-dual 2-form for the induced metric on H = ker ηse, cf. [FHN21a, Lemma 3.5]. Then,

for some constant ` > 0, the family of SU(3)-structures (ω,Ω)t∈R>0
on N :

ω = `tηse ∧ θ + t2ωse2 Ω = t2 (`θ − itηse) ∧
(
ωse1 − i

(
ωse3 − `

2tdθ
))

(1.35)

satisfies (1.30), (1.31). If we define the locally conical G2-structure ϕLC using this family

as in (1.29), then metric gLC induced by ϕLC satisfies gLC = dt2 + t2gse + `2θ2 + O(t−1)

as t→∞, where gse is the Sasaki-Einstein metric on N ′ induced by (ηse, ωsei ).

Moreover, if we denote ξ as the unit vector-field with respect to gLC associated to

the infinitesimal S1-action on N , then we can recover an asymptotically conical SU(3)-

structure (ω′,Ω′) on N ′ × R>0 by defining:

ω′ := ξyϕLC ReΩ′ := ϕLC |ker θ ImΩ′ := −ξy ∗ ϕLC (1.36)

The torsion of this SU(3)-structure (1.36) vanishes as ` → 0 and we recover the conical

Calabi-Yau-structure (1.15) from (1.36) in this limit.

Another class of examples of G2-metrics that can be constructed from solutions to

(1.30), (1.31) are the co-homogeneity one setting:

Example 1.3.3. The spinor bundle S(S3) of the 3-sphere admits a one-parameter family

of co-homogeneity one G2-metrics described by Bryant-Salamon in [BS89]. This parameter

represents the volume of the zero-section S3 ⊂ S(S3), or alternatively, the coefficient of

the co-homology class [ϕ] of S(S3).

The total space of the spinor bundle can be written as S(S3) = SU(2)2×∆SU(2)H where

∆SU(2) acts on the right diagonally, and admits co-homogeneity one action of SU(2)3,

viewed here as acting on the left. The corresponding group diagram is 41,2,3SU(2) ⊂
41,2SU(2) × SU(2) ⊂ SU(2)3. Here, 41,2SU(2),41,2,3SU(2) ⊂ SU(2)3 denotes the

diagonal SU(2)-subgroup in the first two factors of SU(2)3, and the diagonal subgroup in

all three factors respectively.

As a smooth manifold, S(S3) is diffeomorphic to S3 × R4. This diffeomorphism can

be written SU(2)3-equivariantly as a map S(S3)→ SU(2)×H descending from the map

SU(2)2 × H → SU(2) × H given by (p1, p2, v) 7→ (p1p̄2, vp̄1). Here, we identify S3 × R4

with SU(2)×H, equipped with the SU(2)3-action

(q1, q2, q3) · (p, v) 7→ (q1pq̄2, q3vq̄1) (1.37)

The asymptotic model for the geometry of these metrics, up to overall scale, is the

co-homogeneity one G2-cone over the nearly-Kähler S3 × S3 = SU(2)3/41,2,3SU(2).

Note that the group of outer-automorphisms permuting the factors of SU(2)3 yield non-

equivalent isometric actions of SU(2)3 on S(S3) in general, although these induce equiv-

alent actions on the cone. In particular, the subgroup of cyclic permutations gives three

non-equivariantly isometric realisations of S(S3).
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Example 1.3.4. S3 × R4 admits another co-homogeneity one G2-metric, first described

in [BGGG01], and later generalised to a one-parameter family by [Bog13], referred to as

B7 family. Here, the group acting is SU(2)2 × U(1) ⊂ SU(2)3 via (1.37). These metrics

have asymptotically locally conical geometry, with end modelled on a circle bundle fibred

over the conifold, pulled back from SU(2)2 fibred over the link SU(2)2/4U(1). This

bundle is equipped with a connection one-form coming from the canonical connection on

SU(2)2 → SU(2)2/4U(1), and the freedom to rescale the length of the circle fibre by some

constant, with fixed overall scale, gives rise to the one-parameter family of B7 metrics.

It can be shown that, as the length ` of this asymptotic circle fibre collapses to zero in

this one-parameter family, the G2-metric degenerates to an SU(2)2-invariant Calabi-Yau

metric on the U(1)-quotient of S3×R4: this collapsed limit is precisely the co-homogeneity

one Calabi-Yau metric on the smoothing T ∗S3.

Example 1.3.5. S3 × R4, admits yet another distinct family of co-homogeneity one G2-

metrics, referred to as the D7 family in [CGLP02], with a rigorous proof of existence found

later in [FHN21b]. Again, the group acting is SU(2)2 × U(1), but with SU(2)2 × U(1) ⊂
SU(2)3 acting as (1.37) with a cyclic permutation7 (123) ∈ S3. These have the same

asymptotically locally conical geometry as the B7-family, with ends modelled on a circle

bundle fibred over the conifold, pulled back from SU(2)2 fibred over the link.

It can be shown that, as the length ` of this asymptotic circle fibre collapses to zero in

this one-parameter family, the G2-metric degenerates to an SU(2)2-invariant Calabi-Yau

metric on the U(1)-quotient of S3×R4: this collapsed limit is precisely the co-homogeneity

one Calabi-Yau metric on the small resolution O(−1)⊕O(−1).

For the remainder of this section, we will describe Example 1.3.3 on the spinor bundle

S(S3) in further detail, following [LO18]. To align with the notation in §1.2, we will

SU(2)3-equivariantly identify the principal orbit SU(2)3/41,2,3SU(2) with SU(2)2 via

the inclusion map SU(2)2 × {1} ↪→ SU(2)3, where we view SU(2)2 × {1} acting on the

left of SU(2)2 in the obvious way, and {1} × {1} × SU(2) acting diagonally on the right.

Since {1} × {1} × SU(2) acts trivially on the singular orbit, we can identify the singular

orbit SU(2)3/41,2SU(2)× SU(2) with SU(2)2/41,2SU(2) in the same way.

Using basis U+, V +, W+, U−, V −, W− of left-invariant vector-fields on SU(2)2 as in

(1.16), we can then write the tangent space of SU(2)2 as:

〈U+, V +,W+〉 ⊕ 〈U−, V −,W−〉 ∼= su+(2)⊕ su−(2) (1.38)

i.e. 4SU(2) acts as two copies of the adjoint representation.

As is shown in [MS13], up to isometries with respect to the induced metric, the space

of SU(2)3-invariant half-flat structures on S3×S3 is at most two-dimensional. Up to these

isometries, any non-degenerate family of SU(2)3-invariant half-flat structures (ω,Ω)t∈R>0

7taking the inverse permutation yields another non-equivariantly isometric copy of the D7 family.
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appears as:

ReΩ = +8β3u− ∧ v− ∧ w− − 8α2β
∑

(uvw)

u+ ∧ v+ ∧ w−

ImΩ = −8α3u+ ∧ v+ ∧ w+ + 8αβ2
∑

(uvw)

u− ∧ v− ∧ w+

ω = 4αβ
(
u− ∧ u+ + v− ∧ v+ + w− ∧ w+

)
(1.39)

for some α > 0, β > 0 real-valued functions of t, where
∑

(uvw) denotes the sum over cyclic

permutations of (uvw). The induced metric dt2 + gt on R>0 × S3 × S3 is given by:

g = dt2 + 4α2
((
u+
)2

+ (v+)2 + (w+)2
)

+ 4β2
(
(u−)2 + (v−)2 + (w−)2

)
(1.40)

This metric has holonomy contained in G2 iff (ω,Ω)t∈R>0
solve the evolution equations

(1.31), i.e. α, β are solutions to:

α̇ =
1

2

(
1− α2

β2

)
β̇ =

α

β
(1.41)

Clearly, taking α = 1
3 t, β =

√
3

3 t is a solution to (1.41): this corresponds to taking the

conical G2-structure (1.34) over the unique (up to isometries) SU(2)3-invariant nearly-

Kähler SU(3)-structure
(
ωnK ,ΩnK

)
on S3 × S3, given by setting α = 1

3 , β =
√

3
3 in

(1.39). It is straightforward to verify that the SU(3)-structure defined this way satisfies

the nearly-Kähler structure equations (1.39).

There is also a one-parameter family of complete solutions to (1.41) extending to the

singular orbit S3 = SU(2)2/41,2SU(2), representing the volume of this orbit with respect

to the induced metric. However, without loss of generality, we will fix this volume by the

following transformation:

Lemma 1.3.1. (α, β) 7→ (αδ, βδ) is a symmetry of (1.41), where αδ(t) := α(δt)
δ , βδ(t) :=

β(δt)
δ for some δ > 0.

Up to overall rescaling of the metric on S(S3), this transformation describes pulling

back the metric by the diffeomorphism rescaling the fibres of S(S3) by a constant δ. Up

to this rescaling, we can uniquely solve (1.41) extending to the singular orbit by change

of variable r(t) =
√

3β(t), r ∈ [1,∞), so that the solution to (1.41) appears as:

α = r
3

√
1− r−3 β = r√

3
(1.42)

As previously mentioned, the asymptotic model for this geometry is the cone over the

SU(2)3-invariant nearly-Kähler SU(3)-structure
(
ωnK ,ΩnK

)
on S3 × S3. Outside of the

singular orbit, we can identify S(S3) with the smooth manifold R>0×S3×S3 underlying

the cone, so that the complete G2-metric g as in (1.40) with (α, β) defined by (1.42)

satisfies |g − gC | = O(t−3) as t → ∞, where t denotes the radial parameter on the cone,

and we take norms with respect to the conical metric gC , see [BS89].
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Chapter 2

Calabi-Yau Gauge Theory: Set-up

and Results

In the next two chapters, we will give a complete description of the behaviour of Calabi-

Yau instantons and monopoles with an SU(2)2-symmetry, on Calabi-Yau 3-folds with

asymptotically conical geometry and SU(2)2 acting with co-homogeneity one.

We consider gauge theory on the smoothing and small resolution of the conifold,

and on the canonical bundle of CP1 × CP1, with their known asymptotically conical

co-homogeneity one Calabi-Yau metrics, and find new one-parameter families of invari-

ant instantons. We also entirely classify the relevant moduli-spaces of instantons and

monopoles satisfying a natural curvature decay condition, and show that the expected

bubbling phenomena occur in these families.

Before carrying this out, in §2.1 we will give an overview of the Calabi-Yau monopole

and instanton equations, and of the results of the analysis contained in Chapter §3.

Once this is done, in §2.3 Proposition 2.8, we will write the SU(2)2-invariant monopole

equation on the smoothing, small resolution, and the canonical bundle of CP1 × CP1 as

a system of ODEs. Before analysing the full system in the next chapter §3, in §2.4, we

briefly mention explicit solutions to these ODEs corresponding to reducible connections.

2.1 Overview

Let
(
M6, ω,Ω

)
be a Calabi-Yau 3-fold as in Definition 1.2.2, where ω denotes the Kähler

form, and Ω = ReΩ + iImΩ denotes the holomorphic volume form on M such that 1
6ω

3 =
1
4ReΩ∧ ImΩ, and fix a principal G-bundle P →M with a compact semi-simple Lie group

G. The pair (A,Φ), for some connection A on P and non-trivial Φ ∈ Ω0 (adP ), is called

a (Calabi-Yau) monopole if it satisfies the Calabi-Yau monopole equations:

FA ∧ ω2 = 0 FA ∧ ReΩ = ∗dAΦ (2.1)

where ∗ is the Hodge star of the Riemannian metric defined by (ω,Ω), FA ∈ Ω2 (adP ) is

the curvature of A, and dA : Ω0 (adP )→ Ω1 (adP ) is the induced covariant derivative. We

refer to the section Φ as the Higgs field for this monopole.

We obtain the Calabi-Yau instanton equations for a connection A on P by setting
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Φ = 0 in (2.1):

FA ∧ ω2 = 0 FA ∧ ReΩ = 0 (2.2)

Note that if a monopole (A,Φ) has dAΦ = 0, then A is also a (Calabi-Yau) instanton, i.e.

a solution of (2.2), but the existence of a non-trivial parallel section Φ implies that the

connection A must be reducible in this case.

In terms of the complex geometry, the first condition of (2.2) says that FA is a primitive

Lie algebra-valued two-form, while the second condition says it is of type (1, 1). Further-

more, it is not hard to prove that instantons minimize the Yang-Mills energy functional

YM(A) :=
∫
M |FA|

2 on the space of connections on P , where we take point-wise norms

with respect to some ad-invariant metric on the Lie algebra of G. Hence, on the special

unitary frame bundle SU(E) of some hermitian vector bundle E over M with trivial de-

terminant bundle, a Calabi-Yau instanton is also referred to as a Hermitian Yang-Mills

(HYM) connection in the literature.

When G is abelian, (2.1) and (2.2) are linear equations, and the moduli-space of their

solutions are well-understood: if G = U(1) for example, any two-form on M which is an

instanton in the sense of (2.2) is harmonic, with the converse holding when (M,ω,Ω) is

compact with full holonomy SU(3). Even when M is non-compact, every U(1)-bundle

carries a unique Calabi-Yau instanton with decaying curvature when (ω,Ω) is asymptot-

ically conical with full holonomy SU(3) by [FHN21a, Theorem 5.12]. For non-abelian

gauge groups, one usually seeks a description of the gauge theory starting with the next

simplest case of rank one groups: in particular, without loss of generality1, we will always

take the gauge group to be SU(2) in this chapter.

We will study the Calabi-Yau monopole equations (2.1) with the assumption of SU(2)2-

symmetry for both the Calabi-Yau structure and the bundle data: the Calabi-Yau monopole

equations were first studied in this setting by [Oli16], for the asymptotically conical met-

ric of Stenzel [Ste93] on the cotangent bundle of S3. There is a one-parameter family of

invariant monopoles for this metric, with a single explicit instanton [Oli16, Theorem 2]

appearing at the boundary of this family when the Higgs field vanishes. In this thesis, we

will independently verify this claim using new proofs, as well as proving that the explicit

instanton actually lies in a one-parameter family of invariant instantons for this metric.

We also describe the invariant gauge theory for all the other known examples of SU(2)2-

invariant AC Calabi-Yau metrics, namely the metric of Candelas and de la Ossa [CdlO90]

on the small resolution of the conifold O(−1)⊕O(−1) over CP1, and the metric of Calabi

[Cal79], later generalised to a one-parameter family by Pando-Zayas and Tseytlin [PZT01],

on the canonical bundle O(−2,−2) of CP1 × CP1.

To understand the various components of these gauge-theoretic moduli-spaces, we

must first discuss fixing the asymptotic behaviour of solutions. A natural condition on a

solution of (2.1) on an asymptotically conical metric is that it converges at the conical

end to some model solution (A∞,Φ∞) on the cone, pulled back from the link. Concretely,

up to double-cover, the metrics on T ∗S3, O(−1) ⊕ O(−1), and O(−2,−2) all share the

same asymptotic cone with link S2 × S3, and we have the following potential invariant

1gauge group SO(3) always lifts to SU(2) in our invariant setting, see Proposition A.2.2 of the appendix.
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model solutions: either we have a flat connection with a trivial Higgs field, or we have the

unique non-flat invariant instanton pulled back from S2×S3, which we denote Acan, with

a possibly non-trivial parallel Higgs field2.

On these asymptotically conical metrics, we find four distinct possibilities for any

invariant irreducible solution (A,Φ) to the monopole equations: (i) the curvature does not

decay quadratically, i.e. t2|FA| is unbounded as t → ∞, where t is the radial parameter

of the cone, and we take norms with respect to the cone metric, (ii) (A,Φ) is an invariant

monopole which is asymptotic to Acan with a non-trivial Higgs field as t→∞, (iii) Φ = 0,

A is an invariant instanton which is asymptotic to Acan as t → ∞, (iv) Φ = 0, A is an

invariant instanton which is asymptotic to a flat connection as t→∞3.

We shall restrict to cases (ii)-(iv) by only considering invariant solutions with quadratic

curvature decay. In general, this is a natural assumption to make for solutions on asymp-

totically conical metrics, since solutions on the cone converging to some model solution

have curvature decaying (at least) as a two-form on the link of the cone. As far as the

author is aware, this thesis is the first situation for which we have a complete description

of this moduli-space for the invariant co-homogeneity one gauge theory. Also, although

we were unable to prove this in full generality, cf. Remarks 3.3.3, 3.3.6, 3.4.13, we conjec-

ture that situation (i) does not actually arise, i.e. any invariant solution to the monopole

equations on T ∗S3, O(−1) ⊕ O(−1), and O(−2,−2) without quadratic curvature decay

must blow up in finite time.

We now summarise the main results of chapters §2, §3. For the metric of Stenzel, there

is a single SU(2)-bundle admitting irreducible invariant connections, which we denote

PId, and we find a one-parameter family of instantons, and a one-parameter family of

monopoles:

Theorem A. In a neighbourhood of S3 ⊂ T ∗S3, up to gauge, invariant solutions to the

monopole equations are in a two-parameter family (S,Φ)ξ,χ, ξ, χ ∈ (−∞,∞), containing

a one-parameter family of invariant instantons with χ = 0. Moreover (S,Φ)ξ,χ extends

over all of T ∗S3 when:

(i) ξ ∈ (−1, 1) , χ = 0, as an irreducible instanton asymptotic to Acan at infinity,

(ii) ξ = ±1, χ = 0, as a flat connection,

(iii) ξ = 0, χ ∈ (0,∞), as an irreducible monopole asymptotic to Acan with a non-trivial

parallel Higgs field at infinity.

Otherwise, (S,Φ)ξ,χ cannot extend over T ∗S3 with quadratically decaying curvature.

See Proposition 3.1.3 for a proof of the local statement, Theorem 3.2.1 for parts (i), (ii),

and Proposition 3.4.6 for (iii). The existence of the one-parameter family of monopoles

(S,Φ)χ := (S,Φ)0,χ, χ ∈ (0,∞), and the instanton S0 := (S,Φ)0,0 was already established

in [Oli16], which considered only local solutions (S,Φ)ξ,χ with ξ = 0: we fix a gap in the

2these monopoles (Acan,Φm) pulled back from the link actually come in a one-parameter family,
parametrised by the mass m = |Φm| > 0. This is explained in more detail in [Oli16].

3one can also show that for (ii), (iii), solutions have exactly quadratic curvature decay, while for (iv),
solutions have curvature decaying faster than quadratically, and moreover, have curvature bounded in
L2-norm.
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proof of [Oli16, Theorem 1] by showing these are all the invariant monopoles with quadratic

curvature decay. We also note here that there is a (non-equivariant) isometric involution of

T ∗S3, arising from the map exchanging the factors of SU(2) in each SU(2)2-orbit, which

sends (S,Φ)ξ,χ 7→ (S,Φ)−ξ,χ.

For the small resolution O(−1) ⊕ O(−1), there are two SU(2)-bundles admitting in-

variant irreducible connections, denoted P0,Id and P1,0, and these are equivariantly iso-

morphic over the complement O(−1)⊕O(−1) \ CP1. We find that each bundle carries a

one-parameter family of instantons Rε, R
′
ε′ , respectively, and the family R′ε′ contains an

invariant abelian instanton R′0:

Theorem B. In a neighbourhood of CP1 ⊂ O(−1)⊕O(−1), invariant instantons are in

two one-parameter families Rε, ε ∈ (−∞,∞) and R′ε′, ε
′ ∈ [0,∞), up to gauge. Moreover

Rε, R
′
ε′ extends over all of O(−1)⊕O(−1) when:

(i) ε ∈ (0,∞), as an irreducible instanton asymptotic to Acan at infinity,

(ii) ε′ ∈ [0, 1), as an instanton asymptotic to Acan at infinity, which is abelian if ε′ = 0

and irreducible otherwise,

(iii) ε = 0 or ε′ = 1, as a flat connection.

Otherwise, Rε, R
′
ε′ cannot extend over O(−1)⊕O(−1) with quadratically decaying curva-

ture.

See Propositions 3.1.5, 3.1.6 for a proof of the local statement, Theorems 3.2.6, 3.2.7

for parts (i)-(iii).

We can also show that, as the curvature of the invariant family Rε blows up on the

calibrated co-dimension four CP1 in the limit ε → ∞, we get the expected bubbling and

removable-singularity phenomena:

Theorem C. Let Rε be the one-parameter family of invariant instantons and R′0 the

invariant abelian instanton extending over O(−1)⊕O(−1). Then, in the limit ε→∞:

(i) Up to an appropriate rescaling, Rε bubbles off a family of anti-self-dual connections

along CP1 ⊂ O(−1)⊕O(−1).

(ii) Without this rescaling, Rε converges uniformly to R′0 on compact subsets of O(−1)⊕
O(−1) \ CP1.

See Theorem 3.3.2 for proofs and a more precise statement of these results. The proof

of Theorem C is more involved than for a similar co-homogeneity one bubbling theorem

for instantons found in [LO18, Theorem 2]: everything was explicit in that case, whereas

we must genuinely prove (i) here to obtain the relevant compactification result (ii).

There are countably many bundles over O(−2,−2) admitting irreducible invariant

connections, which we denote P1−l,l for l ∈ Z. The number l ∈ Z can be understood

topologically by associating a rank two complex vector bundle to P1−l,l via the standard

representation: this associated bundle splits into a direct sum of line bundles pulled back

from O(±(1− l),±l)→ CP1 ×CP1. Each bundle P1−l,l carries a one-parameter family of

instantons Qlαl similar to the family R′ε′ of Theorem B: Ql0 is abelian, Qlαl is asymptotic
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to Acan at infinity when the parameter αl ≥ 0 is less than some finite critical value αcrit
l ,

and the asymptotic behaviour of this family jumps to a flat connection at the critical

value. However, there is a new phenomenon on O(−2,−2), as the instantons Ql
αcrit
l

are

not themselves flat when l 6= 0, 1, and they are rigid in the moduli-space of invariant,

irreducible instantons with this asymptotic behaviour.

Theorem D. In a neighbourhood of CP1×CP1 ⊂ O(−2,−2), invariant instantons are in

countably many one-parameter families Qlαl, l ∈ Z, αl ∈ [0,∞), up to gauge. Moreover,

Qlαl extends over all of O(−2,−2) when:

(i) αl ∈
[
0, αcrit

l

)
for some αcrit

l ∈ (0,∞), as an instanton asymptotic to Acan at infinity,

which is abelian if αl = 0 and irreducible otherwise,

(ii) l = 0, 1, αl = αcrit
l as a flat connection,

(iii) l 6= 0, 1, αl = αcrit
l as an irreducible instanton asymptotic to a flat connection at

infinity.

Otherwise, Qlαl cannot extend over O(−2,−2) with quadratically decaying curvature.

See Proposition 3.1.1 for a proof of the local statement, and Theorems 3.2.8, 3.2.9

for parts (i)-(iii). See also the end of §3.3 for a further discussion of the behaviour of

instantons on O(−2,−2).

The existence and uniqueness of these fast-decaying instantons on O(−2,−2) verifies

the results of [Ban93] in the SU(2)2-invariant Calabi-Yau 3-fold setting: if we fix the

holomorphic structure on the rank two complex vector-bundle pulled back from the direct

sum of O(±(1 − l),±l) → CP1 × CP1, then there is a unique Hermitian-Yang-Mills con-

nection that is asymptotic to the flat connection at infinity, which is compatible with this

holomorphic structure.

In the final result, the proof of which can be found in Proposition 3.4.1, we show that

Theorems A - D fully describe the moduli-space of the SU(2)2-invariant Calabi-Yau gauge

theory:

Theorem E. There are no irreducible, invariant monopoles on O(−2,−2) or O(−1) ⊕
O(−1) with quadratically decaying curvature.

Remark 2.1.1. One may be able to replace the assumption of invariance in Theorem E

with the assumption of finite intermediate energy EI(A,Φ) :=
∫
M |FA ∧ ReΩ|2 + |dAΦ|2,

by adapting the techniques found in [FNO20] for G2-monopoles.

2.2 Monopole and Instanton Equations

Consider again the monopole equations (2.1), for a connection A and Φ ∈ Ω0 (AdP ) on

some principal bundle P over a Calabi-Yau 3-fold (M,ω,Ω). As it is more convenient for

our purposes, we can rewrite (2.1) as:

FA ∧ ω2 = 0 (2.3a)

FA ∧ ImΩ = −1

2
dAΦ ∧ ω2 (2.3b)
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Let us assume we are in the general set-up of §1.2: we let N ⊂M be a (real) hyper-surface,

and we suppose that N foliates M into parallel hyper-surfaces, up to working on a tubular

neighbourhood N × I ⊆ M for some I ⊆ R. As in (1.10), we can write the Calabi-Yau

structure (ω,Ω) on M in terms of a one-parameter family of hypo-structures (η, ωi)t on

N .

Moreover, in this neighbourhood, we may always write P → M as the pull-back of

some bundle on N , and we can view any Φ ∈ Ω0 (AdP ) as a one-parameter family of

sections Φt over N . So, using the Calabi-Yau structure (1.10), and the temporal gauge on

a tubular neighbourhood of N , (2.3) takes the form:

FAt ∧ ω2 ∧ η +
1

2
dAtΦ ∧ ω2

1 = 0 (2.4a)

FAt ∧ ω1 ∧ η +
1

2
∂tAt ∧ ω2

1 = 0 (2.4b)

FAt ∧ ω3 + ∂tAt ∧ ω2 ∧ η = dAtΦ ∧ ω1 ∧ η −
1

2
∂tΦω

2
1 (2.4c)

We refer to the equation (2.4a) as the static monopole equation, and (2.4b), (2.4c), as

the monopole evolution equations, where (2.4b) is just the condition (2.3a), and the other

two arise from (2.3b). Furthermore, it is not difficult to compute that the static equation

(2.4a) is preserved by the evolution equations. Similarly, in the case Φ = 0, we will refer

to the respective equations as the static and dynamic instanton equations.

Remark 2.2.1. The instanton equations are equivalent to the gradient flow

∗ (FAt ∧ ω1) = −∂tAt

of a Chern-Simons functional CSω1 : A × I → R on the space of connections A on P

pulled back to N :

CSω1(A0 + a, t) :=
1

2

∫
N

tr

(
a ∧

(
2FA0 + dA0a+

2

3
a ∧ a

))
∧ ω1(t)

with initial conditions At=t0 satisfying (2.4a).

2.3 Invariant Monopole and Instanton ODEs

Away from the singular orbit, the general set-up of (2.4) clearly applies to the co-homogeneity

one metrics on O (−2,−2), T ∗S3, and O (−1) ⊕ O (−1). We will also suppose that the

bundle, connection, and Higgs field are invariant under the SU(2)2-action, so that (2.4) is

a system of ODEs for the invariant connection and Higgs field on SU(2)2/H, where the

relevant principal isotropy subgroup H is given by H = K2,−2 or H = 4U(1).

Recall §1.1: by [Wan58], we can write such invariant bundles as SU(2)2 ×H G →
SU(2)2/H for some compact gauge group G and homomorphism λ : H → G. These

bundles are referred to as SU(2)2-homogeneous. Recall also that an invariant connection

on this bundle can be written as an H-equivariant linear map A : su(2)⊕ su(2)→ g, such

that A|h = dλ. Here, g, h ∼= u(1) denotes the Lie algebra of G, H ⊂ SU(2)2, and dλ is

the image of the canonical connection on SU(2)2 → SU(2)2/H under λ.
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If H = K2,−2, G = SU(2) then the defining homomorphism K2,−2 → SU(2) of the

homogeneous bundle is classified by a pair (n, j) ∈ Z×Z2. Using the isomorphism K2,−2
∼=

4U(1)× Z2 ⊂ U(1)2, we can write these as:

(eiθ, eiθ).(e2iπ, eiπ) 7→

(
−1 0

0 −1

)j (
einθ 0

0 e−inθ

)
(2.5)

for some (n, j) ∈ Z × Z2, and similarly (with j = 0) for every homomorphism 4U(1) →
SU(2). We will denote the corresponding homogeneous SU(2)-bundles over SU(2)2/H as

Pn,j , Pn respectively, although since the action of Z2 in (2.5) is trivial on the Lie algebra

of the gauge group SU(2), for the following section, it will suffice just to consider Pn.

The canonical connection on Pn appears as nE1 ⊗ u+, and the space of invariant

connections can be identified as an affine space for intertwiners of 4U(1)-representations

given by left-invariant one-forms on SU(2)2/4U(1) and the composition of (2.5) with

the adjoint action on su(2). We summarise the results in the following proposition, and

compute curvatures:

Proposition 2.3.1. SU(2)2-invariant connections A on Pn, and corresponding curvatures

FA, are of the following form:

(i) If n = 0, then for some a1, a2, a3 ∈ R,

A = a1E1 ⊗ u− + a2E2 ⊗ u− + a3E3 ⊗ u− FA = 3
2(a1E1 + a2E2 + a3E3)⊗ ωse1

(2.6)

(ii) Otherwise, for some a0, a1, a2, b1, b2 ∈ R, where a1 = a2 = b1 = b2 = 0 if n 6= 1:

A = a1(E2 ⊗ v1 + E3 ⊗ w1) + b1(E3 ⊗ v1 − E2 ⊗ w1)

+ a2(E2 ⊗ v2 + E3 ⊗ w2) + b2(E3 ⊗ v2 − E2 ⊗ w2) + a0E1 ⊗ u− + nE1 ⊗ u+

FA = 3(a1a2 + b1b2)E1 ⊗ ωse3 + 3(a1b2 − b1a2)E1 ⊗ ωse2
+ 3

2

(
a2

1 + b21 + a2
2 + b22 − n

)
E1 ⊗ ωse0 + 3

2

(
−a2

1 − b21 + a2
2 + b22 + a0

)
E1 ⊗ ωse1

+ 3
2(a0 − 1)

(
a1

(
E2 ⊗ w1 − E3 ⊗ v1

)
+ b1

(
E2 ⊗ v1 + E3 ⊗ w1

))
∧ ηse

+ 3
2(a0 + 1)

(
a2

(
E2 ⊗ w2 − E3 ⊗ v2

)
+ b2

(
E2 ⊗ v2 + E3 ⊗ w2

))
∧ ηse

(2.7)

In a similar way, we can classify SU(2)2-invariant sections of the adjoint bundle: an

SU(2)2-invariant section of AdPn appears as an element of the Lie algebra su(2) invariant

under the 4U(1) action. This understood, the following proposition is immediate:

Proposition 2.3.2. SU(2)2-invariant sections of AdPn are of the form Φ = φ1E1 +

φ2E2 + φ3E3 for some φ1, φ2, φ3 ∈ R, where φ2 = φ3 = 0 if n 6= 0.

There are some useful facts about the bundle data of Propositions 2.3.1 and 2.3.2

that should be noted before continuing: firstly, it is clear that the bundles Pn admit

only reducible invariant connections when n 6= 1, and when n = 1, from the explicit
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expressions for curvature, we see that an invariant connection given by (2.7) is reducible

iff either a0 = 1, a2 = b2 = 0, or a0 = −1, a1 = b1 = 0, or a1 = b1 = a2 = b2 = 0.

Secondly, on Pn → SU(2)2/4U(1), there is an invariant gauge transformation gener-

ated by the vector field E1 on the fibre, which acts by rotation on the plane spanned by

E2, E3, and leaves E1 fixed. In the notation of Propositions 2.3.1, 2.3.2 for n 6= 0, this acts

as a rotation (a1 + ib1, a2 + ib2) 7→
(
eiθ(a1 + ib1), eiθ(a2 + ib2)

)
by some common angle θ,

and acts trivially on (a0, φ1).

Using Propositions 2.3.1, 2.3.2, we can now write down (2.4) on O (−2,−2), T ∗S3, and

O (−1)⊕O (−1) as ODE systems for the coefficients appearing in these two propositions.

Since we are primarily interested in finding non-abelian solutions to (2.4), it will suffice to

consider the case for n = 14:

Proposition 2.3.3. On P1 → R>0 × SU(2)2/4U(1) with Calabi-Yau structure (1.19),

invariant monopoles (A,Φ) can be written, up to gauge, as:

A = a1(E2 ⊗ v1 + E3 ⊗ w1) + a2(E2 ⊗ v2 + E3 ⊗ w2) + a0E1 ⊗ u− + E1 ⊗ u+ Φ = φE1

with (a0, a1, a2, φ) real-valued functions satisfying the following ODE system:

ȧ0 =
4λ

µ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)
ȧ1 =

3

2λµ
((a0 − 1)a1v3 − (a0 + 1)a2v0)− 2

u1 − u0

µ
a2φ

ȧ2 =
3

2λµ
((a0 − 1)a1v0 − (a0 + 1)a2v3)− 2

u1 + u0

µ
a1φ

φ̇ =
3

µ2

((
a2

1 + a2
2 − 1

)
v0 − 2a1a2v3

)
(2.8)

Proof. We use Propositions 2.3.1 and 2.3.2 in the monopole equations (2.4): we use the

temporal gauge to put the connection into the form At = a1I1 + b1J1 + a2I2 + b2J2 +

a0E1 ⊗ u− + nE1 ⊗ u+, where I1, I2, J1, J2 are defined by:

I1 := E2 ⊗ v1 + E3 ⊗ w1 J1 := E3 ⊗ v1 − E2 ⊗ w1

I2 := E2 ⊗ v2 + E3 ⊗ w2 J2 := E3 ⊗ v2 − E2 ⊗ w2

Then dAtΦ = [At,Φ] = φ [At, E1] = 2φ (−a1J1 + b1I1 − a2J2 + b2I2). This implies dAtΦ ∧
ω2

1 vanishes, so the static equation (2.4a) is just the single condition a1b2 − b1a2 = 0.

Equation (2.4b) also only has a single component, giving:

ȧ0 =
4λ

µ2

(
(a2

1 + b21 + a2
2 + b22 − 1)u0 − (a0 − a2

1 − b21 + a2
2 + b22)u1

)
Splitting (2.4c) into E1, E2, E3 components, the E1 component gives:

φ̇ =
3

µ2

((
a2

1 + b21 + a2
2 + b22 − 1

)
v0 − 2 (a1a2 + b1b2) v3

)
4See §2.4 for explicit abelian solutions in the case n = 1: the solutions for n 6= 1 are similar.
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Meanwhile the E2, E3 components together give:

ȧ1 =
3

2λµ
((a0 − 1)a1v3 − (a0 + 1)a2v0)− 2

u1 − u0

µ
a2φ

ḃ1 =
3

2λµ
((a0 − 1)b1v3 − (a0 + 1)b2v0)− 2

u1 − u0

µ
b2φ

ȧ2 =
3

2λµ
((a0 − 1)a1v0 − (a0 + 1)a2v3)− 2

u1 + u0

µ
a1φ

ḃ2 =
3

2λµ
((a0 − 1)b1v0 − (a0 + 1)b2v3)− 2

u1 + u0

µ
b1φ

We can now use the invariant gauge-transformation generated by E1 to simplify this ODE

system, which appears as the symmetry of the equations. Using the static condition

a1b2 − a2b1 = 0, we will use this symmetry to set b1 = b2 = 0, thus giving the ODEs in

the form stated.

We note here that (2.8) displays some further discrete symmetries:

Proposition 2.3.4. The following involution is a discrete symmetry of (2.8):

(a0, a1, a2, φ) 7→ (a0,−a1,−a2, φ) (2.9)

Specialising to the case of (2.8) with u0 = 0, we have an additional symmetry:

(a0, a1, a2, φ) 7→ (−a0, a2, a1, φ) (2.10)

Remark 2.3.5. If one is also free to vary the Calabi-Yau structure, (2.10) becomes a

symmetry of the full system (2.8) with u0 7→ −u0.

Proof. One can easily check that the symmetries of this proposition are indeed symmetries

of the ODE systems in question. We comment instead on the origin of such symmetries:

(2.9) is a residual symmetry from the invariant gauge transformation that we used to

set b1 = b2 = 0: it is simply the rotation by angle π of the plane spanned by E2, E3.

Meanwhile, (2.10) is the symmetry arising from interchanging the two factors of SU(2) on

the principal orbits: this explains why one must alter the Calabi-Yau structure to see it

as a symmetry of (2.8).

We also recall that a natural condition on solutions to the monopole equations on

asymptotically conical CY 3-folds is to require quadratically decaying curvature. In terms

of our ODE system (2.8), this requirement takes the following form:

Lemma 2.3.6. An invariant solution (A,Φ) to the monopole equations determined by a

solution (a0, a1, a2, φ) to (2.8) has quadratically decaying curvature if and only if ai, ta1φ,

ta2φ are bounded.

Proof. Using the expression for curvature FA = FAt−∂tAt∧dt in the temporal gauge, the

explicit expressions for FAt , At, given in (2.6), and the scaling of k-forms on the cone, it is

clear that t2|FA| is bounded if a0, a1, a2, tȧ0, tȧ1, tȧ2 are bounded. The converse is clear for

tȧ0, tȧ1, tȧ2, and note that t2|FAt | is bounded only if a2
1 +a2

2−1, and −a2
1 +a2

2 +a0 are: the

first of these implies a1, a2 must be bounded, and since | − a2
1 + a2

2 + a0| ≥ |a0| − |a2
1 − a2

2|
this implies a0 must be bounded also.
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Up to terms decaying faster than O(t−1), as t→∞, the ODE system (2.8) is asymp-

totic to (2.8) on the conifold:

ȧ0 = −4

t

(
a0 − a2

1 + a2
2

)
ȧ1 =

3

2t
(a0 − 1) a1 − 2a2φ

ȧ2 = − 3

2t
(a0 + 1) a2 − 2a1φ

φ̇ = − 6

t2
a1a2

(2.11)

and comparing the expressions for tȧ0, tȧ1, tȧ2 gives the statement of the lemma.

2.4 Reducible Solutions

Before conducting an analysis of the full system (2.8), we will briefly say something about

the reducible case, i.e. if we consider abelian or flat connections. Firstly, note that the

trivial flat connection A[ on P1 → SU(2)2/4U(1) ∼= S2 × S3 appears in two distinct

SU(2)2-invariant gauge-equivalence classes5, which can be represented by:

A[1 := E1 ⊗ u1 + E2 ⊗ v1 + E3 ⊗ w1 A[2 := E1 ⊗ u2 + E2 ⊗ v2 + E3 ⊗ w2 (2.12)

i.e. in terms of Proposition 2.3.1, we have a0 = 1, a1 = 1, b1 = a2 = b2 = 0, or

a0 = −1, a2 = 1, b1 = a1 = b2 = 0 respectively. These are clearly just lifts of the stan-

dard Maurer-Cartan form on SU(2) to P1, and A[1, A
[
2 are exchanged via non-equivariant

diffeomorphism obtained via exchanging the factors of SU(2) in SU(2)2/4U(1).

Secondly, note that if both a1 = a2 = 0 then the connection is abelian, and we can

solve (2.8) explicitly on the space of principal orbits:

a0(t) =
C − 2u0u1

µ2
φ = −3I(t) (2.13)

where İ(t) = v0
µ2

, and C is a constant of integration.

Using the results of Appendix A.2, we see that a generic solution (2.13) can extend

over the singular orbits S2, or S2×S2 only if6 C = 2u0u1(0), İ = 0, and can never extend

over the singular orbit S3.

Remark 2.4.1. For later reference, we note that the generic abelian solution (2.13) on

O(−1)⊕O(−1) \ CP1 is also unbounded near CP1 unless C = 2u0u1(0).

Remark 2.4.2. Note that the curvature of the abelian instanton (2.13), viewed as a

harmonic two-form, has norm decaying to O(t−2) as t → ∞ with respect to the cone

metric. The existence of abelian instantons on O(−1) ⊕ O(−1), O(−2,−2) with this

curvature decay, and their uniqueness on a fixed bundle, follows from [HHM04, Thm. 1A]

and its refinement [FHN21a, Thm. 5.12] for AC Calabi-Yau 3-folds.

5although these represent the same connection up to non-equivariant gauge, at least on S2 × S3.
6the converse will also hold for a suitable choice of bundle extension.
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Chapter 3

Calabi-Yau Gauge Theory:

Analysis

In the following chapter, we will classify quadratically decaying solutions to the SU(2)2-

invariant Calabi-Yau monopole equations (2.8), beginning by parametrizing solutions near

the singular orbit at t = 0 in §3.1. This uses the theory of singular-initial value-problems,

and the computations in Appendix A.2 to extend the solutions over the singular orbit at

t = 0.

Once we have parametrized solutions to (2.8) near t = 0, we will consider the long-time

behaviour of these local solutions as we move away from the singular orbit. We carry this

out in two parts: firstly for the subsystem of (2.8) when the Higgs field φ vanishes in

§3.2, i.e. for the Calabi-Yau instanton equations. With this done, in §3.4 we investigate

solutions for which the Higgs field is non-vanishing.

We also prove the relevant bubbling and compactness theorems in §3.3 for the families

of instantons constructed in §3.2.

3.1 Local Solutions

We consider the full system (2.8). Unlike with the reducible case, in general this will not

have explicit solutions, and instead, we will analyse the qualitative behaviour of solutions

as they move away from the singular orbit.

To determine their behaviour near the singular orbit, we will apply the theory of

singular initial value problems of the form [FH17, Thm.4.7]: tẏ = M−1(y)+M(t, y), where

M(t, y)t−1, M−1(y) are smooth functions of their arguments. To have unique solution

near t = 0, we require that M−1(y0) = 0 at the initial value y(0) = y0, and that the

linearisation dy0M−1 has no positive integer eigenvalues. This theory, combined with the

boundary conditions found in Appendix A.2, will allow us to construct local solutions to

(2.8) extending over the singular orbits at t = 0.

In all cases, we will find that solutions to the monopole equations are in a local two-

parameter family for each bundle extending P1 over the singular orbit, with the vanishing

of the second parameter corresponding to the vanishing of the Higgs field φ, and thus a

local one-parameter family of instantons.

First of all, there is a countable family of bundles P1−l,l, l ∈ Z extending P1 over the
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singular orbit S2 × S2 by Proposition A.2.1. However, we can reduce our computations

to the case l > 0 by the diffeomorphism exchanging the factors of SU(2) in the SU(2)2-

orbits on the total space of the bundle, since this map sends P1−l,l 7→ Pl,1−l. As this map

acts on the underlying Calabi-Yau structure (1.20) by sending the constant u0 7→ −u0,

the monopole ODEs (2.8) also transform, but solutions of the transformed system are

equivalent to solutions of (2.8) under the symmetry (2.10):

Proposition 3.1.1. In a neighbourhood of the singular orbit of P1−l,l → O(−2,−2) local

solutions to (2.8) are in a two-parameter family
(
Ql,Θl

)
αl,βl

:= (a0, a1, a2, φ)αl,βl for each

l ∈ Z. For l > 0, these solutions satisfy:

a0 = 1− 2l +O(t2) φ = βl +O(t2)

a1 = −1

l
βlαl

√
U1 − U0

U1 + U0
tl +O(tl+2) a2 = αlt

l−1 +O(tl+1)

Proof. We write (2.8) for a Calabi-Yau structure of type I:

ȧ0 =
4λ

µ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)
φ̇ = − 6

µ
a1a2

ȧ1 =
3

2λ
(a0 − 1)a1 − 2

u1 − u0

µ
a2φ

ȧ2 = − 3

2λ
(a0 + 1)a2 − 2

u1 + u0

µ
a1φ

(3.1)

We consider solutions to (3.1) with this Calabi-Yau structure given by (1.26), for any

U1, U0 with U1 > |U0| ≥ 0. Recall the power-series of λ, u1, µ near t = 0 is given by:

λ(t) = 3t+O(t3) u1 = U1 +O(t2) µ =
√
U2

1 − U2
0 +O(t2)

Although we cannot apply [FH17, Thm.4.7] directly, we can use the boundary conditions

for extending smoothly to the singular orbit in Appendix A.2 to re-write this system in

the correct form.

First, we assume l > 0. Then, using Proposition A.2.3, we can define smooth functions

X1, X2 such that a1 = tlX1, a2 = tl−1X2, and (3.1) becomes:

ȧ0 = O(t)

φ̇ = O(t2l−1)

Ẋ1 =
1

t

(
1

2
(a0 − 1− 2l)X1 − 2X2φ

√
U1 − U0

U1 + U0

)
+O(t)

Ẋ2 = − 1

2t
(a0 − 1 + 2l)X2 +O(t)

Since the extension conditions also require a0(0) = 1−2l, once we fix constants αl := X2(0),

δl := φ(0) such that lX1(0) + X2(0)φ(0)
√

U1−U0
U1+U0

= 0, then y(t) = (a0, X1, X2, φ) satisfies
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a singular initial-value problem with linearisation:

dy0M−1 =


0 0 0 0

0 0 0 0

1
2X1(0) −2

√
U1−U0
U1+U0

αl −2l −2
√

U1−U0
U1+U0

δl

−1
2αl 0 0 0


at initial value y0 =

(
1− 2l,−1

l αlβl

√
U1−U0
U1+U0

, αl, βl

)
. This has a unique solution once we

fix y0, since det (kId− dy0M−1) = (k + 2l) k3 > 0 for k > 0.

Recovering the local solutions extending smoothly over the singular orbit when l ≤ 0,

for a fixed Calabi-Yau structure, is a straightforward procedure: we consider the solutions

for l > 0 as previously, but with U0 7→ −U0. Applying the transformation (2.10) to these

solutions gives solutions to (2.8), and it is easy to verify from Proposition A.2.3 that these

solutions extend to Pl,1−l.

Remark 3.1.2. By setting βl = 0 in
(
Ql,Θl

)
αl,βl

, we obtain a local one-parameter family

of instantons i.e. solutions to (2.8) with φ = 0, and for l > 0 these solutions have:

a0 − aab
0 = −

6α2
l

l(U0 + U1)
t2l +O(t2l+2) (3.2)

near t = 0, where aab
0 denotes the abelian solution to (2.8) extending over the singular

orbit of P1−l,l.

Moreover, when l = 1, these solutions have:

a0 = −1− 6

U1 + U0
(α2

1 − 1)t2 +O(t4) a2 = α1 +
3

2(U1 + U0)
α1(α2

1 − 1)t2 +O(t4) (3.3)

As their proofs are similar, we will state the results for solutions extending over singular

orbits S2 and S3 without proof. The correct re-parametrisations, corresponding initial

values y0, and linearisations dy0M−1 as in [FH17, Thm.4.7] can be found in Appendix B.

Starting with S3, we note that by Proposition A.2.1, the bundle P1 extends uniquely

over this orbit, and we denote this extension PId:

Proposition 3.1.3. In the neighbourhood of the singular orbit, solutions to (2.8) on PId →
T ∗S3 are in a two-parameter family (S,Φ)ξ,χ := (a0, a+, a−, φ)ξ,χ, where a+ = a1 + a2,

a− = a1 − a2. These solutions satisfy:

a0 = ξ +O(t2) a+ = 1 +

(
9

8
(ξ2 − 1)− χ

)
t2 +O(t4) a− = ξ +O(t2) φ = χt+O(t3)

Remark 3.1.4. By setting χ = 0 in (S,Φ)ξ,χ, we obtain a local one-parameter family of

instantons i.e. solutions to (2.8) with φ = 0. For later reference, we give some additional
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terms in the resulting Taylor series:

a0 = ξ +
9

10
ξ(−1 + ξ2)t2 +O(t4)

a+ = 1 +
9

8
(−1 + ξ2)t2 +O(t4)

a− = ξ +
27

40
ξ(−1 + ξ2)t2 +O(t4)

(3.4)

Finally, the bundle P1 extends in exactly two ways over S2 = SU(2)2/U(1) × SU(2),

and we denote these possible extensions P0,Id and P1,0 cf. Proposition A.2.1:

Proposition 3.1.5. In the neighbourhood of the singular orbit of P0,Id → O(−1)⊕O(−1),

solutions to (2.8) are in a two-parameter family (R,Ψ)ε,δ := (a0, a1, a2, φ)ε,δ, with:

a0 = −1 + εt2 +O(t4) a1 = − δ√
3
t2 +O(t4) a2 = 1− 1

2
εt2 +O(t4) φ = δt2 +O(t4)

Proposition 3.1.6. In a neighbourhood of the singular orbit of P1,0 → O(−1)⊕O(−1),

solutions to (2.8) are in a two-parameter family (R′,Ψ′)ε′,δ′ := (a0, a1, a2, φ)ε′,δ′, with:

a0 = 1 +O(t2) a1 = ε′ +O(t2) a2 = O(t2) φ = δ′ +O(t2)

Remark 3.1.7. For later reference, we note that a2 = −
√

3
4 ε
′δ′t2 +O(t4) for the resulting

power-series of (R′,Ψ′)ε′,δ′.

Having computed these two-parameter families of local solutions to the monopole equa-

tions (2.8), by uniqueness, we see that the following one-parameter families are the local

solutions to the instanton equations, i.e. (2.8) with φ = 0:

Sξ := (S,Φ)ξ,0 Rε := (R,Ψ)ε,0 R′ε′ :=
(
R′,Ψ′

)
ε′,0

Qlαl :=
(
Ql,Θl

)
αl,0

For later reference, we have already computed some additional terms in the power-series

of Sξ, Q
l
αl

, in (3.4), (3.2), (3.3). For the analysis of the family R′ε′ , it will be more useful to

first apply the transformation (2.10), and then compute higher-order terms with respect

to (2.8) with u0 7→ −u0. To explain why, observe that the instanton equations for a

hypo-structure of type I, i.e. (2.8) with φ and v0 vanishing, has at least one of a1 or a2

vanishing identically, and if both vanish we have the abelian solution. From the boundary

conditions of Propositions A.2.3, A.2.7, which of a1 or a2 must necessarily vanish will

depend on how we extend the bundle P1 to the singular orbit: we have a1 vanishing for

P0,Id and P1−l,l for l > 0, while a2 vanishes for P1,0 and P1−l,l for l ≤ 0.

However, we can always reduce our analysis to a single ODE system with, say, a1

vanishing identically by applying (2.10) to (2.8) and mapping u0 7→ −u0: this is the same

as pulling back these equations by the diffeomorphism exchanging the factors of SU(2) in

the SU(2)2-orbits on the total space of the bundle. This has been previously explained for

the solutions Qlαl , and we can apply the same reasoning to the family R′ε′ : the caveat here

is that if we exchange the factors on the singular orbit S2, then the bundle P1 and the

Calabi-Yau structure on the principal orbits now extends over S2 = SU(2)2/SU(2)×U(1)

rather than our convention S2 = SU(2)2/U(1)× SU(2).
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With this explained, let us denote P0,1 as the bundle obtained from P1,0 by exchanging

the factors of SU(2)2, and pull back the local one-parameter family of invariant instantons

R′ε′ on P1,0 to a local one-parameter family of invariant instantons on P0,1. Corollary

A.2.8 ensures that these solutions actually extend to SU(2)2/SU(2)×U(1), and for later

reference, we compute some higher order terms in the power-series:

Lemma 3.1.8. In a neighbourhood of the singular orbit, solutions to (2.8) on P0,1 with

φ = 0 are in a one-parameter-family, pulled back via (2.10) from the one-parameter family

R′ε′, and these satisfy:

a0 = −1− 3

4

(
ε′2 − 1

)
t2 +O(t4) a2 = ε′ +

3

8
ε′
(
ε′2 − 1

)
t2 +O(t4) (3.5)

3.2 Solutions to the Instanton Equations

Using the description of solutions to (2.8) near the singular orbit, we will now describe

the qualitative behaviour of the solutions as we move away from this orbit. We will focus

first on the case φ vanishes i.e. instantons: in this case, by Lemma 2.3.6, the requirement

of quadratic curvature decay is equivalent to considering bounded solutions.

Our general strategy of proof will be to find forward-invariant sets for this system,

where we define a subset S ⊂ Rn to be forward-invariant for an ODE system ẋ = F (x, t)

if a solution x(t) contained in S at some non-singular initial time t∗, must remain in S
for all forward time t ≥ t∗ for which the solution exists. After determining the long-time

behaviour of any solutions lying in these sets, we will then take the power-series solutions

of §3.1, valid for small times t ≥ 0, and establish which of these local solutions enter our

forward-invariant sets, and hence remain there for all time.

This strategy will be sufficient in most cases, i.e. for Theorem 3.2.1 on T ∗S3, Theorems

3.2.6, 3.2.7 onO(−1)⊕O(−1) and Theorem 3.2.8 for special cases of bundles onO(−2,−2),

as the power-series solutions will lie in our invariant sets at arbitrarily small non-zero times.

However the general case of O(−2,−2) in Theorem 3.2.9 requires more care, and we will

employ a rescaling argument to determine which of the local solutions enter our invariant

sets.

We will start with the smoothing T ∗S3. Recall from §2.4 (2.12) that the equivariant

equivelance classes of the flat connection Ab1, Ab2 are trivial solutions to (2.8). Recall also

the canonical connection Acan := E1 ⊗ u+ is the unique non-trivial invariant instanton on

the conifold pulled back from the link SU(2)2/4U(1).

A single explicit non-trivial solution to (2.8) on the smoothing was found in [Oli16,

Theorem 2]:

a0 = φ = 0 a1 = a2 =
1

2

√
4

3λ(v3 − v0)
(3.6)

given locally by the power-series Sξ in (3.4) with ξ = 0. We now show that this instanton

actually lies in a one-parameter family:

Theorem 3.2.1. Invariant instantons with quadratic curvature decay on PId → T ∗S3 are

in a one-parameter family Sξ, −1 ≤ ξ ≤ 1, up to gauge. Moreover:
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(i) The isometry exchanging the factors of SU(2) on the principal orbits of T ∗S3 sends

Sξ 7→ S−ξ, with explicit fixed point S0 given by (3.6).

(ii) S1 = Ab1, S−1 = Ab2, and Sξ, −1 < ξ < 1 are irreducible with limt→∞ Sξ(t) = Acan.

Proof of Theorem 3.2.1. We will prove that the local solutions Sξ given by the power-series

(3.4) near the singular orbit exist for all time if |ξ| ≤ 1 and are otherwise unbounded.

First, we formulate (2.8) with φ = 0 in terms of a+ = a1 + a2, a− = a1 − a2:

ȧ0 = f0(a+a− − a0) ȧ+ = f+(a0a− − a+) ȧ− = f−(a0a+ − a−) (3.7)

where we define:

f0 :=
4λ

µ
f+ :=

3(v3 + v0)

2λµ
f− :=

3(v3 − v0)

2λµ

By non-degeneracy of the hypo-structure (1.19), the functions f0, f+, f− are all strictly

positive on (0,∞), so the following lemma is immediate:

Lemma 3.2.2. Critical points of (3.7) for t ∈ (0,∞) are given by the following triples

(a0, a+, a−):

(1, 1, 1) (1,−1,−1) (−1, 1,−1) (−1,−1, 1) (0, 0, 0)

Proof. This follows by a simple computation: note that these critical points are just the

canonical connection Acan and the flat connections A[1, A[2 under the symmetries (2.9) and

(2.10).

Lemma 3.2.3. The following sets in R3 are forward-invariant for (3.7):

(0,∞)3 (0, 1)3 (1,∞)3

Proof. (i) We bound a solutions (a0, a+, a−) lying in the quadrant (0,∞)3 with bound-

ary a0 = 0, a+ = 0, and a− = 0. We can exclude the axes at intersections of these

planes by local uniqueness to ODEs, since (3.7) has three families of solutions given

by setting any two of (a0, a+, a−) to be identically zero.

At a0 = 0, a+ ≥ 0, a− ≥ 0, ȧ0 = f0a+a− ≥ 0, with equality iff a+ = 0 or a− = 0.

Since a solution cannot hit any of the axes, this implies both are zero if ȧ0 = 0, but

since (0, 0, 0) is a critical point, by uniqueness one cannot have this situation either,

and hence the inequality is strict. This implies a solution with a0 > 0, a+ ≥ 0, a− ≥ 0

for some non-zero time cannot leave this region at a0 = 0, a+ ≥ 0, a− ≥ 0.

One obtains the same result for a+ and a− by repeating the proof with permuted

subscripts 0,+,−.

(ii) We show that the boundary of the unit cube also bounds solutions lying inside it.

By the symmetry of permuting 0,+,−, and the previous result, it will be enough to

show this for the top face of the cube: i.e. prove that a solution with 1 > a0 > 0, 1 ≥
a+ > 0, 1 ≥ a− > 0 cannot leave this region via a0 = 1, 1 ≥ a+ > 0, 1 ≥ a− > 0. We

have, at a0 = 1, 1 ≥ a+ > 0, 1 ≥ a− > 0, ȧ0 = f0 (a+a− − 1) ≤ 0 , with equality iff
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both a+ = a− = 1. However since (1, 1, 1) is a critical point for (3.7), this cannot be

the case, hence the inequality is strict, and we cannot have a solution with 1 > a0 >

0, 1 ≥ a+ > 0, 1 ≥ a− > 0 leaving this region at a0 = 1, 1 ≥ a+ > 0, 1 ≥ a− > 0,

arguing as before.

(iii) The proof that the quadrant (1,∞)3 bounded by the planes a0 = 1, a+ = 1, and

a− = 1 goes almost exactly as for the previous part of the lemma: at a0 = 1, a+ ≥
1, a− ≥ 1, ȧ0 = f0 (a+a− − 1) ≥ 0 with equality iff both a+ = a− = 1, hence the

inequality is strict, and we cannot have a solution leaving this region via a0 = 1, a+ ≥
1, a− ≥ 1.

Having established these results, we can immediately see from the local solutions Sξ

in (3.4) for some sufficiently small non-zero time (a0, a+, a−)ξ ∈ (0, 1)3 for 0 < ξ < 1,

and (a0, a+, a−)ξ ∈ (1,∞)3 for 1 < ξ, so we have a rough bound on the behaviour of our

solutions as t→∞. However, we can use Lemma 3.2.3 to show an improved statement:

Lemma 3.2.4. The following sets are forward-invariant for (3.7):

(i) S∞ := {(a0, a+, a−) ∈ (1,∞)3 | a+a− > a0, a0a− > a+, a0a+ > a−}

(ii) S0 := {(a0, a+, a−) ∈ (0, 1)3 | a+a− < a0, a0a− < a+, a0a+ < a−}.

Proof. Given an ODE system ẋ = F (x, t) in Rn, if one has a hypersurface h(x) = 0 such

that ∇h · F (x, t) > 0, where ∇ is the gradient of h, and “ · ” denotes the standard dot

product on Rn, then for all time for which a smooth solution x(t) exists, it can only cross

hypersurface h(x) = 0 in the same direction as ∇h.

In the case of (3.7), we use the hypersurfaces {(a0, a+, a−) ∈ R3 | a0 = a+a−},
{(a0, a+, a−) ∈ R3 | a+ = a0a−}, and {(a0, a+, a−) ∈ R3 | a− = a+a0}:

(i) S∞ is the region in (1,∞)3 bounded by these three hyperbolic paraboloids, with

triple intersection at (1, 1, 1), and intersecting pairwise along three line segments in

R3. We can exclude the intersections by noting that

{(a0, a+, a−) ∈ [1,∞)3 | a+ = a0a−, a− = a0a+} =

{(a0, a+, a−) ∈ [1,∞)3 | a− = a+, a0 = 1}

which lies in the boundary of (1,∞)3. So using the previous lemma, and the sym-

metry of permuting 0,+,−, it will be enough to prove that a solution contained in

S∞, at some initial time, cannot leave via {(a0, a+, a−) ∈ [1,∞)3 | a0 = a+a−}. We

calculate for h = a+a− − a0, with a0 > 1, a+ > 1, a− > 1:

∇h · (ȧ0, ȧ+, ȧ−)|h=0 = a+a−
(
f+(a−

2 − 1) + f−(a+
2 − 1)

)
> 0

Repeating the proof with indices 0,+,− permuted gives the result for surfaces defined

by a0a− − a+ = 0 and a0a+ − a− = 0 respectively.

(ii) S0 is also bounded by these three hyperbolic paraboloids, but in (0, 1)3, ∇h (as we

have defined it) points outward. As for the intersections, we can again exclude them,
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as before for (a0, a+, a−) ∈ (0,∞)3, but also for

{(a0, a+, a−) ∈ [0, 1]3 | a+ = a0a−, a− = a0a+} =

{(a0, a+, a−) ∈ [0, 1]3 | a+ = a−, a0 = 1} ∪ {(a0, a+, a−) ∈ [0, 1]3 | a+ = a− = 0}

which lies in the boundary of the unit cube. Now the calculation is exactly the same

as the previous part of the lemma, with 0 < a0 < 1, 0 < a+ < 1, 0 < a− < 1 and

h = a+a− − a0, giving ∇h · (ȧ0, ȧ+, ȧ−)|h=0 < 0.

Note that solutions (a0, a+, a−) to (3.7) lying inside S0, S∞ have a0, a+, a− monotonic

in t. We can then use this fact to determine their asymptotic behaviour:

Lemma 3.2.5. A solution (a0, a+, a−) to (3.7) lying inside S0 at some time t∗ > 0, exists

for all forward time t ≥ t∗, and is asymptotic as t→∞ to (0, 0, 0). A solution (a0, a+, a−)

lying inside S∞ at some time t∗ cannot be bounded for all t ≥ t∗.

Proof. We begin by looking at solutions lying in S0. Forward-time existence and bound-

edness of these solutions follows from the boundedness of S0, and since a0, a+, a− are all

(strictly) monotonically decreasing in S0, the solution (a0, a+, a−) must have a limit lying

in the closure. To determine that limit, we reparameterize (3.7) in terms of the variable

s, as in the explicit solutions given by (1.27):

ȧ0 =
4λ2

µ
(a+a− − a0) ȧ+ =

3(v3 + v0)

2µ
(a0a− − a+) ȧ− =

3(v3 − v0)

2µ
(a0a+ − a−)

(3.8)

In particular, by using (1.27), one can check that λf0 → C0 > 0 as s→∞ for some strictly

positive constant C0, and similarly λf± → C± > 0. If a solution (a0, a+, a−) to (3.8) lying

in S0 does not have a+a− − a0 → 0 as s→∞, then we get a contradiction: otherwise for

s sufficiently large we can bound ȧ0 above, away from 0. Said more explicitly, if we do

not have a+a−− a0 → 0, then we do not have ȧ0 → 0, so for some constant C∗0 < 0, there

exists s∗ � 0 such that ȧ0(s) < C∗0 for all s ≥ s∗. Integrating this inequality would give

the contradiction a0 → −∞ as s→∞, thus we must have a+a− − a0 → 0 as s→∞.

One then repeats this argument for a±(s), to obtain that a solution in S0 must tend

to a critical point of this system in the closure of S0 as s→∞: either (0, 0, 0), or (1, 1, 1)

by Lemma 3.2.2. Since a0, a+, a− are all strictly decreasing, we must have (a0, a+, a−)→
(0, 0, 0).

Now we deal with solutions (a0, a+, a−) to (3.7) lying in S∞. These have a0, a+, a−

strictly increasing as long as the solution exists, so again, if a solution is bounded and

exists for all time, it must have limit lying in the closure of S∞. Let us assume this is the

case and derive a contradiction: since the right-hand side of (3.8) has a limit as s → ∞,

this implies that (ȧ0, ȧ+, ȧ−) must also have a limit. Since λf0 → C0 > 0 we have, for a

fixed constant C∗0 > 0, some S > 0 such that for all s > S:

ȧ0 > C∗0 (a+a− − a0)
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and likewise for ȧ±. As such, a bounded solution existing for all time cannot have si-

multaneously ȧ0, ȧ+, ȧ− → 0 as s → ∞, since this would require (a0, a+, a−) → (1, 1, 1),

which is impossible by the monotonicity of a0, a+, a−. Therefore, at least one of ȧ0, ȧ+, ȧ−

must be bounded below away from 0 for s sufficiently large, and hence the corresponding

a0, a+, a− must be unbounded above as s→∞.

We can now conclude the proof of Theorem 3.2.1: the first point is clear by applying

the symmetry outlined in (2.10) to the local power-series of (a0, a+, a−)ξ, i.e. (3.4), and

noting that the fixed point ξ = 0 is the explicit solution (3.6). For the rest, by using (3.4),

one finds the flat connection (a0, a+, a−)1 = (1, 1, 1) is a critical point, and:

a0 − a−a+ = − 9

10

(
ξ2 − 1

)
ξt2 +O(t4)

a+ − a0a− = 1− ξ2 − 45− 63ξ2

40

(
ξ2 − 1

)
t2 +O(t4)

a− − a+a0 = −27

20

(
ξ2 − 1

)
ξt2 +O(t4)

In particular, for non-zero t sufficiently small, and 0 < ξ < 1, we have (a0, a+, a−)ξ (t) ∈ S0,

while for 1 < ξ we have (a0, a+, a−)ξ (t) ∈ S∞. Using the symmetry (2.10) for ξ < 0,

Theorem 3.2.1 follows.

On O(−1)⊕O(−1) and O(−2,−2) there are multiple ways of extending the invariant

bundle P1 to the singular orbit. Each extension carries a distinct one-parameter family of

irreducible instantons:

Theorem 3.2.6. Invariant instantons with quadratic curvature decay on P0,Id → O(−1)⊕
O(−1) are in a one-parameter family Rε, ε ≥ 0, up to gauge. Moreover:

(i) R0 = A[2, and Rε are irreducible for ε > 0.

(ii) limt→∞Rε(t) = Acan for ε > 0.

Theorem 3.2.7. Invariant instantons with quadratic curvature decay on P1,0 → O(−1)⊕
O(−1) are in a one-parameter family R′ε′, 0 ≤ ε′ ≤ 1, up to gauge. Moreover:

(i) R′0 is abelian, R′1 = A[1, and R′ε′ are irreducible for 0 < ε′ < 1.

(ii) limt→∞R
′
ε′(t) = Acan for 0 ≤ ε′ < 1.

Here, the canonical connection Acan := E1 ⊗ u+ is the unique non-trivial invariant

instanton on the conifold pulled back from the link SU(2)2/4U(1), and Ab1, Ab2 are the

equivariant equivalence classes of the flat connection given by (2.12).

For instantons over O(−2,−2), we also split the statement of the theorem into two

cases. The first case is similar to the situation of Theorem 3.2.7:

Theorem 3.2.8. Invariant instantons with quadratic curvature decay on P1−l,l → O(−2,−2)

with l = 0, 1, are in a one-parameter family Qlαl,0 ≤ αl ≤ 1, up to gauge. Moreover:

(i) Ql0 is abelian, Q0
1 = A[1, Q1

1 = A[2, and Qlαl are irreducible for 0 < αl < 1.

(ii) limt→∞Q
l
αl

(t) = Acan for 0 ≤ αl < 1.
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The second case exhibits a new phenomenon: now, the instantons appearing at the

boundary of the moduli-space of instantons with asymptotics Acan are not themselves flat,

but are asymptotic to the flat connection:

Theorem 3.2.9. Invariant instantons with quadratic curvature decay on P1−l,l → O(−2,−2)

with l 6= 0, 1, are in a one-parameter family Qlαl, 0 ≤ αl ≤ αcrit
l for some αcrit

l > 0, up to

gauge. Moreover:

(i) Ql0 are abelian, and Qlαl are irreducible for 0 < αl ≤ αcrit
l .

(ii) limt→∞Q
l
αl

(t) = Acan for 0 ≤ αl < αcrit
l , limt→∞Q

l
αcrit
l

(t) = A[1 for l < 0, and

limt→∞Q
l
αcrit
l

(t) = A[2 for l > 1.

Proof of Theorems 3.2.6, 3.2.7, 3.2.8. Most of what is required to prove these theorems

boils down to studying the qualitative behaviour of a single ODE system. We study

solutions to (2.8) with φ = 0, a1 = 0:

ȧ0 = −4λ

µ2

(
a2

2(u1 − u0) + a0u1 + u0

)
ȧ2 = − 3

2λ
a2 (a0 + 1) (3.9)

where we have a family of Calabi-Yau structures defined by hypo-structures of type I, so

that u0, u1, µ, λ are non-degenerate solutions to hypo-evolution equations (1.21).

We consider forward-invariant sets for this system, see also Fig. 3.1 below:

Lemma 3.2.10. The following sets are forward-invariant for (3.9):

(i) H± := {(a0, a2) ∈ R2 | ±a2 > 0}

(ii) R∞ := {(a0, a2) ∈ R2 | a0 < −1, 1 < a2}

(iii) R0 := {(a0, a2) ∈ R2 | −1 < a0 < 1, 0 < a2 < 1}

Proof. (i) Since there is always a non-trivial abelian solution (a0, 0) to (3.9), by unique-

ness a solution hitting a2 = 0 at some time t∗ > 0 must be there for all time t > 0.

Furthermore, since the symmetry (2.9) exchanges the upper/lower-half planes, we

can reduce to the case of a2 > 0 in what follows.

(ii) In the following, we will split the upper-half plane into four quadrants centred around

the critical point (−1, 1), and look at the sign of ȧ0 along a0 = −1 and ȧ2 along

a2 = 1.

Since λ > 0 for all t > 0, and a2 > 0 by assumption, the sign of ȧ2 is the same as that

of−(a0+1), and the sign of ȧ0 is the same as that of−
(
(a2

2 − 1)(u1 − u0) + (a0 + 1)u1

)
.

Then ȧ2 > 0 for all a0 < −1. Since λ > 0, solutions to the hypo equations (1.21)

must have u1 ± u0 strictly increasing. In addition we must have µ =
√
u2

1 − u2
0 > 0

for all time t > 0, so u1 ± u0 must be strictly positive for all time t > 0, and hence

also u1. Thus at a0 = −1, we have that ȧ0 < 0 iff a2 > 1. Thus a solution in R∞ at

some initial time t∗ > 0, cannot leave via either of its boundaries a0 = −1 or a2 = 1,

and since the intersection (−1, 1) is a critical point, the solution must remain in R∞
for all time t > t∗.
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(iii) As shown in the first part of the lemma, no solution can hit a2 = 0, the bottom of

R0, unless it is contained in a2 = 0 for all time. From the proof of the second part of

the lemma, we see that a solution in R0 cannot exit R0 via. the top a2 = 1, a0 > −1,

or the side a0 = −1, a2 ≤ 1. All that remains to show is that the side a0 = 1,

1 > a2 > 0 is bounding. This follows from the fact that u1 ± u0 must be strictly

positive, since at a0 = 1, ȧ0 = −4λ
µ2

((a2
2(u1 − u0) + u1 + u0) < 0.

These sets determine the behaviour of solutions lying inside them:

Lemma 3.2.11. A solution (a0, a2) to (3.9) lying inside R0 at initial time t∗ > 0 exists

for all forward time t ≥ t∗, and converges to (0, 0) as t→∞. A solution lying inside R∞
at initial time t∗ > 0 cannot be uniformly bounded for all t ≥ t∗.

Proof. For the bounded set R0, it is clear that solutions exist for all time, but it remains

to prove their asymptotic behaviour. Since ȧ2 < 0 in R0, a2 is strictly decreasing, and

as it is bounded below, a2 must have a limit â2 ∈ [0, 1) as t → ∞. To get a limit for a0,

notice that the first equation of (3.9), together with the hypo-evolution equations (1.21),

gives:

d

dt

(
a0µ

2
)

= −4λ
(
a2

2(u1 − u0) + u0

)
(3.10)

Written in integral form on the interval t ≥ t∗, this is the equation:

a0(t) = − 1

µ2

((∫ t

t∗
4λ
(
a2

2(u1 − u0) + u0

))
+ a0(t∗)µ2(t∗)

)
(3.11)

Since the hypo-structure λ, u1, u0, µ is asymptotically conical as a function of t and a0

bounded, as t→∞ (3.11) gives:

a0(t) ∼ − 1

t4

∫ t

T
4t
(
â2

2t
2 + (â2

2 − 1)u0

)
∼ −â2

2 −
2u0

(
â2

2 − 1
)

t2
+O(t−4) ∼ −â2

2

for some T ≥ t∗ sufficiently large. Hence we also have a limit a0 → −â2
2 as t→∞. Since

a2 > 0, integrating the second equation of (3.9) gives us, as t→∞:

a2(t) = a2(T ) exp

(
−
∫ t

T

3

2λ
(a0 + 1)

)
∼ a2(T ) exp

(
(â2

2 − 1)

∫ t

T

3

2t

)
= Ct

3
2

(â22−1)

where C is some constant of integration. As â2 < 1, this implies a2 → 0, and thus also

a0 → 0.

Now we come to solutions lying in R∞. Since R∞ is forward-invariant, and a solution

lying in R∞ has ȧ2 > 0 for all finite t, the statement for finite t follows directly from the

previous lemmas. All that is left is to prove that if a solution exists for all time in R∞,

then it cannot be bounded. We will assume that it is, and derive a contradiction:

If a solution is bounded, then since a2 is strictly increasing in R∞, a2 must have a limit

as t→∞, and as before, the integral formula (3.11), and the boundedness of a0 gives that

(a0, a2) must have a limit lying on the curve a0 = −a2
2. Since a2 is strictly increasing, we

can bound a2 away from 1, thus for some t large enough, we can also bound a0 away from
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−1. Call this bound C, i.e. there exists T , such that for t > T we have a0 < C < −1.

Then we also have that:

ȧ2 > −
3

2λ
a2(C + 1)

So by integrating this inequality, we get:

a2(t) ≥ a2(T ) exp

(
− 3

2λ
(C + 1)

∫ t

T

1

λ

)

but the right-hand side grows to O(t−
3(C+1)

2 ) as t→∞, hence we have a contradiction.

We now conclude the proof of Theorem 3.2.6, by applying our analysis above to the

local power-series Rε of Proposition 3.1.5 with δ = 0, so that (a0, a2)ε ∈ R0 for ε > 0 while

(a0, a2)ε ∈ R∞ for ε < 0 at sufficiently small non-zero time. Taking ε = 0 gives the flat

connection (a0, a2)0 = (−1, 1), which is a critical point of (3.9).

Theorems 3.2.7, and 3.2.8, also follow from what has been said. In the first case, in

order to apply the results of the previous lemmas, one must first pull-back the Calabi-Yau

structure via the involution u0 7→ −u0 by exchanging the factors of SU(2) on the principal

orbits, which pulls back the local solutions to solutions of the form (3.5). These invariant

instantons extend on the singular orbit SU(2)2/SU(2)×U(1) rather than SU(2)2/U(1)×
SU(2) as is our convention, but one can fix this by again applying the involution lifted to

the total space of the principal bundle i.e. (2.10). Similarly for the latter case, to consider

l = 0, one considers the local solutions on P0,1 for the original Calabi-Yau structure pulled-

back via the involution, and then applies the involution again on the total space of P0,1

to get the result on P1,0.

With this in mind, we can apply our analysis to the local power-series (3.5) and

(3.3). We see that these situations exhibit the same behaviour: up to invariant gauge

transformation (2.9), for some sufficiently small t∗ > 0, for 1 > ε′ > 0 (respectively

1 > α1 > 0) we have (a0, a2)ε′ (t
∗) ∈ R0 (respectively (a0, a2)α1

), while for ε′ > 1, we

have (a0, a2)ε′ (t
∗) ∈ R∞ (respectively (a0, a2)α1

(t∗)). We also see that (a0, a2)0 (0) =

(−1, 0), hence by uniqueness (a0, a2)0 must correspond to the abelian solution to (3.9),

and (a0, a2)1 (0) = (−1, 1).

The proof for the remaining case of Theorem 3.2.9 requires slightly more care:

Proof of Theorem 3.2.9. We are again studying solutions to the ODE (3.9). Looking at

the local power-series solutions in Proposition 3.1.1, we see that they do not initially lie in

the sets R0 or R∞ covered in our previous analysis. However, we will show that the only

possibilities are that such solutions either enter R0 or R∞ in finite time, or are otherwise

asymptotic to the flat connection A[2:

Lemma 3.2.12. Let R1 := {(a0, a2) ∈ R2 | 1 > a2 > 0, a0 < −1}. A solution (a0, a2) to

(3.9) lying in R1 at initial time t∗ > 0 can remain in R1 for all forward time t ≥ t∗ only

if it is asymptotic to (−1, 1) as t→∞, and must otherwise enter one of R0, R∞ in finite

time.
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Proof. Since the hypo-structure (1.20) is non-degenerate, µ > 0, λ > 0, u1 ± u0 > 0 for

t > 0. So, in R1:

ȧ0 = −4λ

µ2

(
(a2

2 − 1)(u1 − u0) + (a0 + 1)u1

)
> 0 ȧ2 = − 3

2λ
a2 (a0 + 1) > 0

Hence, a solution lying in R1 can only leave in finite time via the boundaries {a2 =

1, a0 < −1} or {a0 = −1, 0 < a2 < −1}, since (−1, 1) is a critical point for (3.9). Since

ȧ2 is strictly positive on the first boundary, and ȧ0 is strictly positive on the second, this

proves that if a solution leaves R1 in finite time, it must actually cross the boundary and

end up in the regions R∞, R0 respectively.

If a solution remains in R1 for all forward-time, then by monotonicity (a0, a2) has a

limit lying in the closure. The existence of a limit, combined with the integral formula

(3.11), gives that (a0, a2) must also converge to a point lying on the curve a0 = −a2
2, which

only intersects the closure of R1 at (−1, 1).

a0

a2

-1 1

A[2

Acan

R0R1

R∞

Figure 3.1: Distinguished sets for (3.9), and possible asymptotics: the flat connection A[2
at (a0, a2) = (−1, 1) and Acan at (a0, a2) = (0, 0).

We must also prove a comparison lemma for two solutions to (3.9), which will allow

us to compare our power-series solutions away from the singular orbit at t = 0:

Lemma 3.2.13 (Forward-Comparison). Let (a0, a2), (â0, â2) be two solutions to (3.9). If

a0(t∗) < â0(t∗), a2(t∗) > â2(t∗) ≥ 0, at initial time t∗ > 0, then a0(t) < â0(t), a2(t) >

â2(t) ≥ 0, for all forward time t ≥ t∗ for which these solutions exist.

Proof. Let t > t∗ > 0 be the first time for which the condition a0 < â0, a2 > â2 fails. By

uniqueness of solutions to ODEs, we cannot have both a0(t) = â0(t) and a2(t) = â2(t),

hence we must have exactly one of these. In the first case, at t:

ȧ0 − ˙̂a0 = −4λ

µ2
((a2

2 − â2
2)(u1 − u0)) < 0

but this implies a0(t∗∗)− â0(t∗∗) > 0 for some t∗ < t∗∗ < t, which contradicts t being the

first time the condition fails. In the second case, at t:

ȧ2 − ˙̂a2 = − 3

2λ
((a0 − â0)a2 > 0

but this implies a2(t∗∗)− â2(t∗∗) < 0 for some t∗ < t∗∗ < t, which is again a contradiction.
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Another ingredient we will need is a slight improvement on the comparison lemma,

restricted to solutions lying in R1:

Lemma 3.2.14 (Improved Comparison). Let (a0, a2), (â0, â2) be two solutions to (3.9),

with a0(t∗) < â0(t∗), a2(t∗) > â2(t∗) ≥ 0, at some initial time t∗ > 0. Then a2 − â2 is

strictly increasing ∀t ≥ t∗ for which (a0, a2) (t) ∈ R1.

Proof. By the forward-comparison lemma, a0 < â0, a2 > â2 ≥ 0 for all time t ≥ t∗, and

by definition (a0 + 1) < 0 for all time t ≥ t∗ such that (a0, a2) (t) ∈ R1. Rewriting ȧ2− ˙̂a2

using (3.9):

ȧ2 − ˙̂a2 =
3

2λ
(â2 (â0 − a0) + (â2 − a2) (a0 + 1)) > 0

for all such t, and hence a2 − â2 is strictly increasing in t as claimed.

With these out of the way, we are almost ready to prove the theorem. First of all, it

is clear that the one-parameter family Qlαl of local solutions to the ODEs (3.9) given by

Proposition 3.1.1 with βl = 0, αl > 0, are all contained in R1 for some t∗ > 0 sufficiently

small, and up to gauge transformation (2.9) we can assume this one-parameter family has

αl ≥ 0. The local solution with αl = 0 is clearly the abelian solution by uniqueness.

If (a0, a2)α = (aα0 , a
α
2 ) and (a0, a2)α′ = (aα

′
0 , a

α′
2 ) are any two of these solutions, then

near the singular orbit:

aα0 − aα
′

0 = − 6

l(U1 + U0)

(
α2 − α′2

)
t2l +O(t2l+2)

aα2 − aα
′

2 =
(
α− α′

)
tl−1 +O(tl+1)

(3.12)

So, by the forward-comparison lemma, if (a0, a2)αl hits the boundary of R0 in finite time

(and thus enters it if αl > 0) then so does (a0, a2)α′l
for all 0 ≤ α′l ≤ αl. Similarly, if

(a0, a2)αl hits the boundary ofR∞ in finite time (and thus enters it), then so does (a0, a2)α′l
,

for all α′l ≥ αl. By continuous dependence on initial conditions for singular initial-value

problems, these sets are disjoint open intervals in R≥0. Clearly, the set αl ∈ R≥0 for which

(a0, a2)αl hits the boundary of R0 in finite time is non-empty since it contains 0, so to

complete the theorem, we must prove:

1. There exists αl > 0 such that (a0, a2)αl enters R∞ in finite time.

2. There is at most one αl such that (a0, a2)αl remains in R1 for all time.

The latter statement follows directly from our improved forward-comparison lemma: if

α > α′ then aα0 (t) < aα
′

0 (t), aα2 (t) > aα
′

2 (t) for all t > 0, and ȧ2
α(t) − ȧα′2 (t) > 0 when the

solutions are in R1. However, if two distinct solutions lie in R1 for all time t > 0, they

must both be asymptotic as t→∞ to (−1, 1) which would be a contradiction as aα2 − aα
′

2

can be bounded below away from 0.

The former statement can be proved via a rescaling argument, which we state below

as a proposition:

Proposition 3.2.15. Fix l > 1. Then ∃αl > 0, t∗ > 0 such that (a0, a2)αl (t∗) ∈ R∞,

where (a0, a2)αl is the one-parameter family of solutions Qlαl to (3.9) near t = 0 given in

Proposition 3.1.1.
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Proof. As has been said previously, every local solution (a0, a2)αl is contained in the region

R1 for small t > 0. Since these solutions can only fail to exist for all forward time if they

leave in finite time via R∞, it suffices to consider the case that, for all αl, these solutions

exist for all time.

We start by rescaling the Calabi-Yau structure along the fibre C2,−2 of O(−2,−2), by

defining, for some δ > 0:

λδ(t) :=
λ(δt)

δ
(u1)δ (t) := u1(δt) (3.13)

Near the singular orbit S2×S2, we have the power-series expansions λ = 3t+O(t3), u1 =

U1 +O(t2) for some fixed Calabi-Yau structure, and for fixed t, λδ(t)→ 3t, (u1)δ (t)→ U1

as δ → 01.

In terms of the rescaled Calabi-Yau structure, the instanton equations (3.9) for
(
aδ0, a

δ
2

)
(t) =

(a0, a2) (δt) become the family of ODEs, parametrized by δ:

ȧδ0 = − 4δ2λδ

(u1)2
δ − u2

0

(
a2

2((u1)δ − u0) + a0 (u1)δ + u0

)
ȧδ2 = − 3

2λδ
a2 (a0 + 1) (3.14)

One can always rescale the one-parameter family of (local) solutions (a0, a2)αl to (3.9) to

obtain solutions to (3.14) for fixed δ > 0, but one can show that there is a one-parameter

family of (local) solutions extending to the singular orbit for any δ ≥ 0.

To verify this claim, we apply the boundary conditions in Proposition A.2.3 for ex-

tending an invariant connection to the singular orbit, which allows us to write aδ2 = tl−1Xδ
2

for some smooth Xδ
2 . The ODEs (3.14) can now be written as the singular initial-value

problem:

ȧδ0 = O(t) Ẋδ
2 = −a0 + 2l − 1

2t
Xδ

2 +O(t) (3.15)

which, for every δ ≥ 0, has a one-parameter family of solutions by fixing Xδ
2(0) as some

constant κl.

These solutions are determined by the local power-series:

aδ0 = 1− 2l +O(t2) aδ2 = κlt
l−1 +O(tl+1) (3.16)

and by comparing the two power-series, it is clear that the rescaled solutions (a0, a2)αl (δt)

to (3.14) for any δ > 0 have κl = αlδ
l−1.

Meanwhile, for δ = 0, (3.14) can be solved explicitly:

a0
0 = 1− 2l a0

2 = κlt
l−1 (3.17)

We can always fix κl = 1 for this solution by a further rescaling of t, so as δ → 0, a

solution
(
aδ0, a

δ
2

)
to (3.14) has

(
aδ0, a

δ
2

)
(t)→

(
1− 2l, tl−1

)
. By assumption, for all δ these

solutions exist for all time, and therefore we can always find T > 1, δ � 1, such that(
aδ0, a

δ
2

)
(T ) ∈ R∞. If we set δ(αl) such that δ1−l = αl, and take t∗ = Tδ, then the

1if we consider the metric on O(−2,−2), rescaled by the diffeomorphism t 7→ δt, this rescaling is the
adiabatic limit as δ → 0 of the product of the rescaled metric on the fibres and the two copies of CP1 of
fixed volume. See Prop. 3.3.4 in §3.3 for a similar discussion.
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solution (a0, a2)αl to the instanton equations (3.9) can be rescaled to a solution of (3.14),

so it must satisfy (a0, a2)αl (t∗) ∈ R∞ for some αl sufficiently large.

This concludes the proof of Theorem 3.2.9, in the case l > 1. As before, one can

consider the case l < 0 in the same way, by first considering solutions for the pulled-back

Calabi-Yau structure by exchanging the factors of SU(2) on the underlying manifold, and

then applying this diffeomorphism again on the total space of the principal bundle.

3.3 Bubbling

Having described the one-parameter family Rε of solutions to (2.8) on O(−1)⊕O(−1) in

Theorem 3.2.6, a natural question would be to ask about the behaviour of solutions as

ε→∞. We will show that there is a familiar bubbling phenomenon [Tia00, Thm.4.3.3] in

this setting: after a suitable rescaling of the metric, the one-parameter family of Calabi-Yau

instantons Rε converges as ε→∞ to an anti-self-dual connection along the co-dimension

four calibrated singular orbit S2 = CP1 ⊂ O(−1)⊕O(−1).

We use this result to obtain the expected removable-singularity statement [Tia00, §5.2],

which says that as Rε bubbles off this anti-self-dual connection, if we do not perform this

rescaling, it will uniformly converge on compact subsets of O(−1) ⊕ O(−1) \ CP1 to the

instanton R′0 of Theorem 3.2.7, which extends smoothly over CP1. Recall here that the

abelian instanton R′0 is determined by the unique solution to the ODE (3.9) on [0,∞)

with a2 = 0, which has explicit form (2.13) with C = −2, u0 = −1, u1(0) = 1.

In terms of the solutions to (2.8), the heuristic picture is that the smooth trajectory

{(a0, a2) (t) | t ≥ 0} of the solution Rε, ε > 0 degenerates in the limit ε → ∞ to a

piecewise-smooth trajectory consisting of two components: the first corresponding to the

trajectory of an anti-self-dual connection, which is only traversed in non-zero time t if we

rescale, and the second being the trajectory of the abelian instanton R′0.

Let us first discuss this rescaling in detail: as O(−1) ⊕ O(−1) has the structure of

a vector bundle, fibre-wise multiplication equips it with an natural SU(2)2-equivariant

action of R>0. Let sδ denote the corresponding R-action for some δ > 0, i.e. the map

fixing the singular orbit and sending t 7→ δt on the space of principal orbits. Pulling back

the Riemannian metric g on O(−1)⊕O(−1) as in (1.24) gives:

s∗δg = δ2
(
dt2 + λ2

δ (ηse)2 + 2
3u

+
δ

(
(v2)2 + (w2)2

))
+ 2

3u
−
δ

(
(v1)2 + (w1)2

)
(3.18)

where λδ, u
+
δ , and u−δ are defined as:

λδ(t) :=
λ(δt)

δ
u+
δ (t) :=

(u1 + u0) (δt)

δ2
u−δ (t) := (u1 − u0) (δt) (3.19)

We will refer to the limit δ → 0 as the adiabatic limit, and recall that here, u0 = −1,

and that λ(t) = 3
2 t + O(t3), u1 = 1 + 3

2 t
2 + O(t4) near t = 0. We claim that λδ, u

±
δ have

well-defined point-wise limits as δ → 02:

2c.f. Prop. 3.3.4., the proof of Prop. 3.3.1 is similar.
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Proposition 3.3.1. Let u1, u0, λ, µ be the solution to the hypo-evolution equations (1.21)

extending to S2 with u1(0) = −u0(0) = −1 fixed. Define λδ, u
±
δ as in (3.19) for some

δ > 0. As δ → 0,

2
3u

+
δ → t2 u−δ → 2 2

3λδ → t2

Near the adiabatic limit, restricted to any finite distance from the singular orbit, s∗δg is

approximated by the metric δ2gF +gB for some δ sufficiently small, where gF denotes a lift

of the Euclidian metric on the fibre C2 and gB denotes a round metric on the base S2. Here,

the lift of the Euclidian metric on C2 to the fibres identifies 3
2η

se = u1−u2, v2, w2 with the

standard orthonormal basis of one-forms on S3 ⊂ C2, and v1, w1 as an orthonormal basis

of one-forms for the singular orbit S2, viewed upstairs on SU(2)2 → SU(2)2/U(1)×SU(2).

One can always obtain a solution to the Calabi-Yau instanton equation (2.2) on the flat

Calabi-Yau 3-fold C3 by pulling-back any anti-self-dual connection on C2 to C3 = C2×C,

so at least at the level of tangent spaces, if we pull back some Calabi-Yau instanton by sδ

on some sufficiently large neighbourhood of CP1 ⊂ O(−1)⊕O(−1) in the adiabatic limit,

there should appear an anti-self-dual connection pulled back from the fibre. However, the

bundle O(−1) ⊕ O(−1) is non-trivial, so to make this a global statement, one must first

choose a connection on this bundle: as we shall see, this connection will be fixed by the

assumption of symmetry.

We first explain how to view the SU(2)2-invariant bundle P0,Id over O(−1) ⊕ O(−1)

as a bundle over the C2-fibres: there is an obvious SU(2)2-equivariant U(1)-action on

S3 × C2, viewed as SU(2) × H, where SU(2)2 acts on the left and U(1) on the right,

and this U(1)-action induces a quotient map q : S3 × C2 → O(−1) ⊕ O(−1). By the

definition of P0,Id, its pull-back via q is also the pull-back of an SU(2)-invariant bundle

over C2, via the projection π : S3 × C2 → C2 onto the second factor. Here, we view C2

as a co-homogeneity one manifold with group diagram {1} ⊂ SU(2) ⊆ SU(2), and define

the SU(2)-invariant SU(2)-bundle over C2 by the homomorphism Id : SU(2) → SU(2),

i.e. the singular isotropy group SU(2) acts via the identity homomorphism on the fibre

SU(2) cf. Example 1.1.2.

The canonical connection on P0,Id over the singular orbit S2 = SU(2)2/U(1)× SU(2)

is just the flat Maurer-Cartan form A[2, and this pulls back via q over S3 × C2 as the

canonical connection (pulled-back via π) on the singular orbit {0} = SU(2)/SU(2) of the

SU(2)-invariant bundle over C2. Using this choice of reference connection, a connection

defined on q∗P0,Id over S3×C2 descends to O(−1)⊕O(−1) if and only if the corresponding

adjoint-valued one-form is basic with respect to the U(1)-action.

Furthermore, the one-form u1 is the unique SU(2)-invariant connection on the principal

U(1)-bundle S3 → S2, and this induces an SU(2)-invariant connection on the associated

vector bundle O(−1)⊕O(−1)→ S2. We can use this connection to project any (adjoint-

valued) one-form on S3 × C2 to its semi-basic component, and thus uniquely lift any

U(1)× SU(2)-invariant SU(2)-connection over C2 to a connection over O(−1)⊕O(−1).

The upshot of this discussion is that, if we recall the SU(2)2-invariant anti-self-dual
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instanton over C2 given in Example 1.1.2:

Aasd :=
1

1 + t2
(
E1 ⊗ u2 + E2 ⊗ v2 + E3 ⊗ w2

)
(3.20)

then since this connection is implicitly U(1) × SU(2)-invariant, it can be uniquely lifted

to the connection Āasd := Aasd −
(

1
1+t2
− 1
)
E1 ⊗ u1.

With these preliminaries out of the way, we can now state the main theorem of this

section:

Theorem 3.3.2. Let δ(ε) =
√

2ε−1. Then, as ε→∞:

(i) s∗δRε(t)→ Āasd(t).

(ii) Rε(t)→ R′0(t) uniformly on compact subsets of (0,∞).

Proof of Theorem 3.3.2 (i). We start by rewriting the instanton equations in terms of

the rescaling (3.18), and the lift from an invariant connection on the fibre. If we define(
aδ0, a

δ
2

)
(t) :=

(
1−a0

2 , a2

)
(δt), and consider some invariant connection A defined by (a0, a2),

as in Proposition 2.3.1, then:

s∗δA(t) = aδ2(t)
(
E2 ⊗ v2 + E3 ⊗ w2

)
+ aδ0(t)E1 ⊗ (u2 − u1) + E1 ⊗ u1

Written in this way, the instanton equations (3.9) for (a0, a2) becomes the following one-

parameter family of ODEs for
(
aδ0, a

δ
2

)
:

ȧδ0 =
2λδ

u+
δ

((
aδ2

)2
− aδ0

)
+

2δ2λδ

u−δ

(
(1− a0

δ)
)

ȧδ2 = − 3

λδ

(
1− a0

δ
)
aδ2 (3.21)

By rescaling the family of solutions Rε to (3.9), we obtain a one-parameter family of

solutions of (3.21) for each δ > 0. We now show that one still obtains a one-parameter

family as δ → 0.

Considering the boundary conditions in Proposition A.2.7 for extending
(
aδ0, a

δ
2

)
to

t = 0, we can write aδ0 = 1 − t2X0, aδ2 = 1 − t2X2 for some smooth functions X0, X2, so

that, in a neighbourhood of t = 0, (3.21) becomes the well-defined initial-value problem:

tẊ0 = 2 (X0 −X2) +O(t2) tẊ2 = 2 (X0 −X2) +O(t2) (3.22)

hence, once we fix the parameter κ := X0(0) = X2(0), the continuous dependence of (3.21)

on δ gives existence of a sufficiently small open neighbourhood of t = 0 such that, for each

δ ≥ 0, solutions to (3.21) are in a one-parameter family. These are determined by the

power-series:

aδ0 = 1− κt2 +O(t4) aδ2 = 1− κt2 +O(t4) (3.23)

Comparing with the power-series in Proposition 3.1.5 for Rε, we see that the rescaled

solutions
(

1−a0
2 , a2

)
ε
(δt) for δ > 0 have κ = δ2ε/2, and so the family of solutions

(
aδ0, a

δ
2

)
exist for all time if κ ≥ 0, δ > 0 by Theorem 3.2.6.

By continuity, the solutions must also exist for all time for κ ≥ 0 as δ → 0, but as the
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resulting equations:

tȧ0
0 = 2

((
a0

2

)2 − a0
0

)
tȧ0

2 = 2
(
a0

0 − 1
)
a0

2 (3.24)

have the explicit solutions a0
0 = a0

2 =
(
1 + κt2

)−1
cf. Example 1.1.2, this is already

guaranteed.

We now set δ (ε) =
√

2κε−1 for some given κ > 0, which we can always fix to be 1

by a further rescaling. By rescaling the family Rε = (a0, a2)ε to the instanton equations

(3.9), we get a solution
(
aδ0, a

δ
2

)
(t) =

(
1−a0

2 , a2

)
ε
(δt) to (3.21). As we have just shown,

the solution has aδ0(t), aδ2(t)→
(
1 + t2

)−1
as δ → 0, hence s∗δRε(t)→ Āasd(t).

Remark 3.3.3. Since
(
1 + κt2

)−1
blows up in finite time if κ < 0, by keeping the freedom

to vary κ, this rescaling argument can be used to show that local solutions of Theorem

3.2.6 with ε < 0 are not only unbounded but blow up in finite time.

Proof of Theorem 3.3.2 (ii). Let (a0, a2)ε (t) = (aε0, a
ε
2) (t) denote the one-parameter fam-

ily of solutions to (3.9) corresponding to Rε. Using the local power-series in Proposition

3.1.5, and the forward-comparison lemma, it follows that aε0(t∗), aε2(t∗) are both strictly

monotonic (increasing and decreasing, respectively) in ε > 0 for fixed t∗ > 0, and so

(a0, a2)ε (t) converges point-wise on (0,∞) as ε→∞.

Since aε2(t) is strictly decreasing in t for all t > 0, ε > 0, if we assume that the pointwise-

limit infε a
ε
2(t∗) is non-zero, then we can use the inequality aε2(t) ≥ aε2(t∗) ≥ infε a

ε
2(t∗) ≥ 0

for all ε > 0, t ≤ t∗ to uniformly bound aε2 away from zero on (0, t∗) and derive a

contradiction. Explicitly, by part (i), for any ε > 0, T > 0, ∃ε(ε, T ) > 0 such that ∀ε ≥
ε(ε, T ), the rescaled solution (a0, a2)ε (

√
2ε−1T ) satisfies |aε2(

√
2ε−1T ) − (1 + T 2)−1| < ε.

By the assumption L := infε a
ε
2(t∗) > 0, we can pick ε, T such that 0 < ε < L−(1+T 2)−1,

and then apply our inequality to any ε ≥ max{ε(ε, T ), 2
(
T
t∗

)2}:
ε < L− (1 + T 2)−1 ≤ |aε2(

√
2ε−1T )| − |(1 + T 2)−1| ≤ |aε2(

√
2ε−1T )− (1 + T 2)−1|

since
√

2ε−1T ≤ t∗. However, this demonstrates the existence of an ε ≥ ε(ε, T ) such that

the inequality |aε2(
√

2ε−1T )− (1 + T 2)−1| < ε fails.

This previous discussion implies that aε2 converges uniformly to zero on any compact

interval contained in (0,∞), and by using (3.10) to express the derivative ȧε0 purely in

terms of aε2 (up to some fixed functions of t), we also get the uniform convergence of

aε0. Now consider the initial value problem defined by the ODE (3.9) with (a0, a2) (t∗) =

(a0, a2)ε (t∗) at fixed initial time t∗ > 0: this has unique solution (a0, a2)ε (t) on (0,∞),

and continuous dependence on initial conditions guarantees that the limit as ε→∞ is the

unique solution to (3.9) with a2 = 0, and a0(t∗) = supε a
ε
0(t∗). Since this solution must

be contained in the closure of R0, by Remark 2.4.1, this must be identified with R′0 on

(0,∞), the unique solution to (3.9) bounded on (0,∞) with a2 = 0.

We will now move on to discussing a somewhat similar bubbling phenomena for instan-

tons on O(−2,−2). Recall Example 1.1.3, there is a one-parameter family of anti-self-dual

instantons for the Eguchi-Hanson metric on T ∗CP1: we will show that we can recover these

instantons fibred along a co-dimension four calibrated sub-manifold CP1 ⊂ O(−2,−2), by
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considering an appropriate adiabatic limit of the one-parameter families of Calabi-Yau

instantons Qlαl on O(−2,−2).

Firstly, without loss of generality, we can fix an overall scale for the family of metrics

on O(−2,−2) such that one of the copies of CP1 ⊂ O(−2,−2) has fixed volume. If we let

the volume of the other CP1 ⊂ O(−2,−2) go to zero, while rescaling the metric by sδ as in

(3.18), (3.19) with δ → 0, then the metric s∗δg is approximated by a fibration δ2gEH + gB

of the lift of a rescaled Eguchi-Hanson metric gEH described in (1.5) over a round metric

on the base CP1, for some δ sufficiently small. More precisely:

Proposition 3.3.4. Let u1, u0, λ, µ be the one-parameter family of solutions to the hypo-

evolution equations (1.21) extending to S2 × S2 with U1 − U0 = u1(0) − u0(0) = 1 fixed.

Define λδ, u
±
δ as in (3.19), with δ =

√
2
3 (U1 + U0). As δ → 0,

2
3u

+
δ → ϕ2 u−δ → 1 2

3λδ → ϕ
√

1− ϕ−4

where ϕ(t) is the unique solution to ϕ̇2 = 1− ϕ−4 on [0,∞) with ϕ(0) = 1, ϕ̈(0) = 2.

Proof. Let u1, u0, λ, µ be solutions to (1.21) extending over S2 × S2 at t = 0. We define:

u+
δ (t) := 1

δ2
(u1 + u0) (δt) u−δ (t) := (u1 − u0) (δt) (µλ)δ (t) := 1

δ2
µλ(δt)

with δ =
√

2
3 (U1 + U0). Then u±δ , (µλ)δ solve the rescaled system:

u̇+
δ =

2(µλ)δ√
u+δ u

−
δ

u̇−δ =
2δ2(µλ)δ√
u+δ u

−
δ

˙(µλ)δ = 3
√
u+
δ u
−
δ (3.25)

with initial conditions u+
δ (0) = 3

2 , (µλ)δ (0) = 0, and u−δ (0) > 0 a fixed constant. By

varying initial condition u−δ (0) for this family of smooth initial-value problems, we obtain

a continuous one-parameter family of solutions to (3.25) for each fixed δ ≥ 0: for δ > 0,

these arise by rescaling solutions to (1.21), with u−δ (0) = U1 − U0.

The parameter u−δ (0) corresponds to varying the overall scale of the resulting Eguchi-

Hanson metric in the limit δ → 0; we will fix this by setting u−δ (0) = 1. We can then can

explicitly solve the system (3.25) with δ = 0, by taking:

u+
0 = 3

2ϕ
2 u−0 = 1 (µλ)0 =

√(
3
2

)3
(ϕ4 − 1)

Since (µλ)δ = λδ

√
u+
δ u
−
δ by definition, the claim is proved.

With the geometry in the adiabatic limit made explicit, we now discuss the procedure

for lifting invariant connections on T ∗CP1 to invariant connections on O(−2,−2). This

follows a very similar strategy as previously discussed for lifting invariant connections on

C2 to O(−1)⊕O(−1), and we will only sketch the details here:

First, note that there is an SU(2)2-equivariant U(1)-action on S3×T ∗CP1 given by the

product eiθ 7→
(
eiθ, e−2iθ

)
of the standard Hopf action on S3 and fibre-wise multiplication

on T ∗CP1. Taking the quotient by this action, by definition, gives a map S3 × T ∗CP1 →
O(−2,−2).
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Pulling back the SU(2)2-invariant bundle P1−l,l by this quotient map identifies it with

the pull-back of an SU(2)-invariant bundle over T ∗CP1 via projection S3 × T ∗CP1 →
T ∗CP1 onto the second factor. Here, we view T ∗CP1 as a co-homogeneity one manifold

with group diagram Z2 ⊂ U(1) ⊂ SU(2), with the SU(2)-invariant SU(2)-bundle defined

by the homomorphism λl : U(1) → SU(2), i.e. the singular isotropy group U(1) acts as

the lth-power of the standard diagonal embedding λ : U(1) ↪→ SU(2) on the fibre SU(2)

cf. Example 1.1.3.

Then, using the canonical connection on the singular orbit S2 as a reference connection,

and the SU(2)-invariant one-form u1 on S3 → S2, we can (uniquely) lift U(1) × SU(2)-

invariant connections on T ∗CP1 to SU(2)2-invariant connections on O(−2,−2). In par-

ticular, the one-parameter family of U(1) × SU(2)-invariant anti-self-dual instantons Alκ

over T ∗CP1 described in Example 1.1.3:

Alκ := α1E1 ⊗ u2 + α2

(
E2 ⊗ v2 + E3 ⊗ w2

)
(3.26)

with α1, α2 given explicitly by (1.7), can be lifted to a one-parameter family of SU(2)2-

invariant connections Ālκ := Alκ − (α1 − 1)E1 ⊗ u1.

Theorem 3.3.5. Fix U1 − U0 = 1, l > 0, 0 ≤ κ ≤ 1, and let δ =
√

2
3 (U1 + U0),

αl = l
√
κδ1−l. Then s∗δQ

l
αl

(t)→ Ālκ(t) as δ → 0.

Proof. We consider solutions to the rescaled system (3.21) with δ =
√

2
3 (U1 + U0). Using

extension conditions to t = 0 given by Proposition A.2.3, we can write aδ2 = tl−1X2 for

some smooth function X2(t), so that aδ0, X2 solve a family of singular initial problems of

the form:

tȧδ0 = O(t2) tẊ2 =
(
aδ0 − l

)
X2 +O(t2)

This system has a one-parameter family of solutions all the way to δ = 0, parametrised

by γ := X2(0). Comparing with the power-series for Qlαl in Proposition 3.1.1, we see that

γ = αlδ
l−1 for δ > 0.

In the limit δ → 0, the rescaled system (3.21) converges to the anti-self-dual equations

(1.6) for
(
aδ0, a

δ
2

)
:

ȧδ0 = 2 ϕ̇ϕ

((
aδ2

)2
− aδ0

)
ȧδ2 = 2 1

ϕ̇ϕa
δ
2

(
aδ0 − 1

)
which can be explicitly solved by (1.7) with κ =

(γ
l

)2
.

Remark 3.3.6. Since the explicit solution (1.7) blows up in finite time if κ > 1, up to

exchanging the copies of CP1 ⊂ O(−2,−2), one can use this rescaling argument to show

that the local solutions Qlαl for metrics on O(−2,−2) with U1 ± U0 sufficiently close to 0

must also blow up in finite time for some αl sufficiently large.

3.4 Solutions to the Monopole Equations

In this section, we analyse the qualitative behaviour of solutions to the monopole equa-

tions (2.8) with non-zero Higgs field Φ away from the singular orbit. Assuming that the
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connection is not an instanton, we first show that there are no solutions for O(−2,−2), or

O(−1)⊕O(−1) with quadratic curvature decay:

Proposition 3.4.1. There are no irreducible invariant monopoles on O(−2,−2) or O(−1)⊕
O(−1) with quadratic curvature decay.

Proof. We look at solutions to the monopole equations (2.8) with v0 = 0, v3 = µ, i.e. for

a hypo-structure of type I given by (1.20):

ȧ0 =
4λ

µ2

(
(a2

1 + a2
2 − 1)u0 − (a0 − a2

1 + a2
2)u1

)
φ̇ = − 6

µ
a1a2

ȧ1 =
3

2λ
(a0 − 1)a1 − 2

u1 − u0

µ
a2φ

ȧ2 = − 3

2λ
(a0 + 1)a2 − 2

u1 + u0

µ
a1φ

(3.27)

Recall from Lemma 2.3.6 that a weak condition for solutions (a0, a1, a2, φ) was to assume

at least boundedness of a0, a1, a2. We will show that there are no such solutions to (3.27)

existing for all time: in particular, we show that if a solution exists for all time with a0

bounded and φ non-zero, then a1 − a2 must have at least exponential growth at infinity,

provided certain initial conditions are satisfied. These initial conditions will be satisfied by

the local solutions extending to t = 0 obtained in the previous propositions, up to certain

easily-verified symmetries:

Lemma 3.4.2. The following involutions are symmetries of (3.27):

(a0, a1, a2, φ) 7→ (a0,−a1,−a2, φ) (3.28)

(a0, a1, a2, φ) 7→ (a0,−a1, a2,−φ) (3.29)

We now find the set in which our solutions remain for all time:

Lemma 3.4.3. The set R+
∞ := {(a0, a1, a2, φ) ∈ R4 | a1 > 0 > a2, φ > 0} is forward-

invariant under (3.27).

Proof. We let t be the first time a solution (a0, a1, a2, φ) leaves R+
∞. However, none of the

possibilities for a solution to leave R+
∞ can hold at t:

(i) a1 = 0, a2 < 0, φ > 0, since it implies ȧ1 > 0.

(ii) a2 = 0, a1 > 0, φ > 0, since it implies ȧ2 < 0.

(iii) a1 = a2 = 0, φ ≥ 0 coincides with the reducible solution a1 ≡ a2 ≡ 0. By uniqueness,

this would imply that the solution must be reducible for all time.

(iv) Since φ(t0) > 0 for some t0 < t, if we assume φ(t) = 0, then by the mean value

theorem φ̇(t1) < 0 for some t0 < t1 < t which implies a1(t1)a2(t1) > 0.
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Remark 3.4.4. Although we have shown explicitly from the ODEs that solutions preserve

|φ| > 0, it also follows more generally, since the function |Φ|2 : M → R is sub-harmonic

for any monopole (A,Φ) over an arbitrary Calabi-Yau 3-fold M . In the invariant co-

homogeneity one setting, this implies that if |Φ(t)|2 = 0 for some t > 0, then it vanishes

for all t by the maximum principle.

We also prove that solutions lying in this set, if they exist for all time, are (exponen-

tially) unbounded as t→∞:

Lemma 3.4.5. If (a0, a1, a2, φ) is a solution to (3.27) existing for all time t ≥ t∗ with a0

bounded, lying in R+
∞ at initial time t∗, then a1(t) − a2(t) cannot be uniformly bounded

for all t ≥ t∗.

Proof. Since the CY-structure is AC, λ ∼ t as t→∞, hence 3
2λ(a0 ± 1)→ 0 as t→∞ by

assumption. We also have that u1±u0
µ → 1 in the same limit. Since a1 > 0 > a2, then for

every ε > 0, ∃T ∗ � 0 such that ∀t > T ∗ the following inequalities hold:

3

2λ
(a0 − 1)a1 > −εa1 − 3

2λ
(a0 + 1)a2 < −εa2

− u1 − u0

µ
a2 > −(1− ε)a2 − u1 − u0

µ
a1 < −(1− ε)a1

(3.30)

Let T := max{t∗, T ∗} for our fixed initial time t∗, and φ̄ := φ(t∗) > 0. Since φ is strictly

increasing in R+
∞, we have φ(t) > φ̄ for t > t∗. Putting all our inequalities together on

t > T , we obtain the following:

ȧ1 − ȧ2 > (2φ̄− ε(2φ̄+ 1))(a1 − a2)

and if we choose ε <
φ̄

(2φ̄+ 1)
, then by integrating:

a1(t)− a2(t) ≥ (a1(T )− a2(T )) exp((t− T )φ̄)

This completes the proof the proposition, since in all cases, using the symmetries

(3.28), (3.29), for the power series solutions near the singular orbit, one can reduce to the

case of the monopole lying in R+
∞ for some small initial time:

1. For local solutions (R′,Ψ′)ε′,δ′ defined by Proposition 3.1.6, since ε′, δ′ 6= 0 by as-

sumption i.e. we do not have an instanton, then up to symmetry one can assume

ε′, δ′ > 0. Hence (a0, a1, a2, φ)ε′,δ′ lies in R+
∞.

2. For local solutions
(
Ql,Θl

)
αl,βl

defined by Proposition 3.1.1, since αl, δl 6= 0 by

assumption, up to symmetry one can assume αl < 0, βl > 0. Hence (a0, a1, a2, φ)αl,βl
lies inR+

∞. This also covers the case l ≤ 0, by exchanging the factors of SU(2) on the

principal orbits, and considering the Calabi-Yau structure on O(−2,−2) pulled-back

via this diffeomorphism.

3. For local solutions (R,Ψ)ε,δ defined by Proposition 3.1.5, since δ 6= 0 by assumption,

then up to (3.29), one can also assume δ > 0. While the image of a solution under
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(3.28) may not extend to the singular orbit, existence of a bounded solution extending

to the singular orbit would imply existence of a bounded solution in R+
∞ under the

symmetry.

The existence of invariant monopoles on T ∗S3 was shown in [Oli16]: by restricting to

monopoles that are independent of the base S3-directions, i.e. solving (2.8) with a0 = 0,

a1 = a2, Oliveira constructed a one-parameter family of invariant monopoles for T ∗S3, first

by considering the local solutions (S,Φ)ξ,χ with ξ = 0 of this system, and then applying

PDE methods for monopoles on a family of metrics on the fibre. Due to a computational

error in [Oli16, Lemma 6, Appendix A], Oliveira did not consider local solutions (S,Φ)ξ,χ
with ξ non-zero, but we fix the resulting gap in the proof of the main theorem [Oli16,

Theorem 1] by imposing quadratic curvature decay:

Proposition 3.4.6. Invariant monopoles with quadratic curvature decay on PId → T ∗S3

are in a one-parameter family (S,Φ)χ := (S,Φ)0,χ, χ > 0, up to gauge. Moreover:

(i) limt→∞ (S,Φ)χ (t) = (Acan,Φχ), where Φχ is a constant non-trivial Higgs field.

(ii) (S,Φ)0,0 = S0 where S0 is the instanton of Theorem 3.2.1, with a trivial Higgs field.

Proof. We rewrite the monopole equations (2.8) with a± := a1 ± a2:

ȧ0 =
4λ

µ
(a+a− − a0)

ȧ+ =
3(v3 + v0)

2λµ
(a0a− − a+)− 2a+φ

ȧ− =
3(v3 − v0)

2λµ
(a0a+ − a−) + 2a−φ

φ̇ =
3

µ2

((
1

2
(a2

+ + a2
−)− 1

)
v0 −

1

2
(a2

+ − a2
−)v3

)
(3.31)

for µ, λ, v3, v0 explicit solutions to the hypo-equations given in (1.27), and recall from

Lemma 2.3.6, that we are interested in solutions with a0, a+, a−, tφa+, tφa− bounded.

There are three parts to the proof:

1. Solutions to (3.31) extending over the singular orbit with a0, a− 6≡ 0 are unbounded.

2. Solutions to (3.31) with a0, a− ≡ 0, which have local power-series (S,Φ)ξ,χ given in

Proposition 3.1.3 for ξ = 0, are bounded iff χ ≥ 0.

3. In this case, solutions with χ > 0 have a+ → 0, φ→ φχ as t→∞ for some constant

φχ > 0, and ta+φ bounded. The solution with ξ, χ = 0 is the explicit instanton (3.6)

found in [Oli16].

To prove the first part, we will recall the symmetries (2.9) and (2.10) of the problem:

Lemma 3.4.7. The following involutions are symmetries of (3.31):

(a0, a+, a−, φ) 7→ (a0,−a+,−a−, φ) (3.32)
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(a0, a+, a−, φ) 7→ (−a0, a+,−a−, φ) (3.33)

We can also prove a strict monotonicity condition for φ:

Lemma 3.4.8 (Monotonicity). A solution (a0, a+, a−, φ) to (3.31) with ±φ(t∗) > 0,±φ̇(t∗) >

0 at some initial time t∗ > 0, has ±φ(t) > 0,±φ̇(t) > 0 for all t ≥ t∗.

Proof. We calculate:

φ̈
∣∣∣
φ̇=0

=
6

µ2

(
a2

+ (v3 − v0) + a2
− (v3 + v0)

)
φ

In particular, since φ̇ 6= 0 for a+ = a− = 0, and (v3 ± v0) > 0 for t 6= 0, we have φ̈ > 0

at φ̇ = 0 iff φ > 0. Hence any critical point for φ > 0 must be minimum, and since

φ̇(t∗) > 0, we must have φ̇(t) > 0, φ(t) > 0 for all t > t∗. The proof for φ(t) < 0, φ̇(t) < 0

is similar.

Using this, we find a set that contains our solutions for all time:

Lemma 3.4.9. A solution (a0, a+, a−, φ) to (3.31) lying in the set

S±∞ := {(a0, a+, a−, φ) ∈ R4 | a0 > 0, a+ > 0, a− > 0,±φ > 0}

at some initial time t∗ with ±φ̇(t∗) > 0, remains there for all forward time t ≥ t∗.

Proof. Let t be the first time a solution (a0, a+, a−, φ) leaves S±∞. However, none of the

possibilities for a solution to leave S±∞ can hold at t:

(i) a0 = 0, a− > 0, a+ > 0, since it implies ȧ0 > 0. The same is true if we permute

indices 0,+,−.

(ii) a+ = 0, a− = 0, a0 > 0, since then ȧ+ = ȧ− = 0. By local uniqueness and existence

for ODEs, from (3.31), one sees that the solution must have a+ ≡ 0, a− ≡ 0, at least

for some small interval (t− ε, t+ ε). Again one obtains similar results by permuting

indices.

(iii) a0 = a+ = a− = 0 coincides with solution (0, 0, 0,−3I), where İ = v0
µ2

, which is a

solution to (3.31) for any choice of initial condition φ(t) for t > 0.

(iv) φ = 0 is impossible by monotonicity.

We can now use monotonicity to bound φ away from zero, which will show that solu-

tions in S±∞ must be unbounded as t→∞:

Lemma 3.4.10. A solution (a0, a+, a−, φ) to (3.31) lying in S±∞ with ±φ̇ > 0 at some

initial time t∗ > 0 cannot have a∓ uniformly bounded for all forward-time t ≥ t∗.

Proof. We start with the case S+
∞. Since a+a0 > 0, we have the following inequality:

ȧ− >

(
2φ− 3(v3 − v0)

2λµ

)
a−
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As the Calabi-Yau structure (1.27) is asymptotically conical, we have 3(v3−v0)
2λµ → 0 as

t→∞. So, as φ strictly increasing, then for fixed t∗, ∃T > t∗ such that ∀t > T :

φ̄ := φ(t∗) >
3(v3 − v0)

2λµ
(t)

Then, since a− > 0, integrating the inequality for ȧ− gives:

a−(t) ≥ a−(T ) exp((t− T )φ̄)

The proof for S−∞ is almost identical, since now:

ȧ+ >

(
−2φ− 3(v3 + v0)

2λµ

)
a+ (3.34)

with φ < 0 monotonically decreasing and 3(v3+v0)
2λµ → 0.

To complete the proof of the first part of the theorem, one only need apply this lemma

to the power-series solution (S,Φ)ξ,χ of Proposition 3.1.3. Up to symmetry, we can take

χ, ξ > 0, so for some 0 < t∗ sufficiently small, the solution (a0, a+, a−, φ)ξ,χ (t∗) lies in S+
∞

with φ̇(t∗) > 0, and hence we obtain that these solutions are unbounded.

To prove the second and third parts of the theorem (cf. [Oli16, Theorem 1]), we need

to prove local solutions (S,Φ)0,χ with ξ = 0, i.e. solutions to the ODE:

ȧ+ = −a+

(
3(v3 + v0)

2λµ
+ 2φ

)
φ̇ = − 3

µ2

(
1

2
a2

+(v3 − v0) + v0

)
(3.35)

have fixed asymptotics a+ → 0, φ→ φχ > 0 only in the case χ > 0, and if χ < 0 are these

solutions are unbounded as t → ∞. By uniqueness, the local solution with χ = 0, ξ = 0

is the instanton (3.6) with φ ≡ 0.

We first note that the sign of a+ is preserved by (3.35), hence by using the gauge

symmetry (3.32) we can always reduce to the case a+ > 0 in the following. Assuming this,

we can prove the existence of a set in which solutions become unbounded:

Lemma 3.4.11. Solutions to (3.35) with a+ > 0, φ < 0, φ̇ < 0 at some initial time t∗ > 0,

cannot have a+ uniformly bounded for all forward-time t ≥ t∗.

Proof. This proceeds almost identically to the proof of Lemma 3.4.10, only now we have

the inequality (3.34) is an equality. Again we have φ < 0 monotonically decreasing by

Lemma 3.4.8, and integrating the inequality for ȧ+ in terms of φ(t∗), we have that there

exists T > t∗, such that for all t ≥ T :

a+(t) ≥ a+(T ) exp(−(t− T )φ(t∗))

We also prove the existence of a set in which solutions are bounded for all time, and

have the desired asymptotics:
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Lemma 3.4.12. Solutions to (3.35) with a+ > 0, φ > 0, φ̇ > 0 at some initial time t∗, are

bounded for all t ≥ t∗, and have (a+, φ) → (0, φχ) as t → ∞, for some constant φχ > 0.

Moreover, ta+φ is bounded for all t ≥ t∗.

Proof. We already have lower bounds for a+ and φ. We now prove an upper bound for

φ: we have the inequality φ̇ < −3v0
µ2

, and hence by integrating φ must be bounded above.

Since φ is also strictly increasing, this implies the existence of a limit φ → φχ > 0 as

t→∞.

For a+, since 3(v3+v0)
2λµ > 0, and φ > 0 strictly increasing, we have the inequality

ȧ+ ≤ −2a+φ(t∗). Integrating this, we get:

0 < a+(t) ≤ a+(t∗) exp(−2(t− t∗)φ(t∗))

giving us the required asymptotics for a+, tφa+.

The final two parts of the proof of the Theorem 3.4.6 are now immediate, since the

local solutions (S,Φ)0,χ to (3.35) given by Proposition 3.1.3 with ξ = 0, χ < 0 satisfies

the conditions of Lemma 3.4.11, while for χ > 0 they satisfy the conditions of Lemma

3.4.12.

Remark 3.4.13. Since the local solutions (a0, a1, a2, φ) to (2.8) satisfying the conditions

of Lemmas 3.4.11, 3.4.5, or 3.4.10 grow at least exponentially in t as t→∞ one could also

consider weakening the assumption of quadratic curvature decay to e.g. bounded curvature,

in the statements of Propositions 3.4.1 and 3.4.6 .
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Chapter 4

G2 Gauge Theory

In this final chapter, which is based on a joint work with Matthew Turner, we will give a

complete description of the behaviour of G2-instantons with an SU(2)3-symmetry, on G2-

manifolds with asymptotically conical geometry and SU(2)3 acting with co-homogeneity

one. Note that a result of [FHN21b, Thm.E] implies that the only complete, simply-

connected G2-manifold with co-homogeneity one symmetry of SU(2)3 is the spinor bundle

S(S3) of S3, equipped with the family of metrics of Bryant-Salamon [BS89].

We consider G2-instantons on S(S3) with its one-parameter family of G2-metrics,

completing the analysis of [LO18] by constructing a new one-parameter family of G2-

instantons, and classifying the relevant moduli-spaces satisfying a natural curvature decay

condition.

To carry this out, we will first give an overview of the G2-instanton equations in §4.1,

before focusing on the invariant setting in §4.2. We will recall from [LO18] the system

of ODEs corresponding to the SU(2)3-invariant equations in Proposition 4.2.1, and the

parametrization of its local solutions in Proposition 4.2.3. The new results contained in

this section are Theorem 4.2.5, classifying global solutions to the G2-instanton ODEs using

the theory of asymptotically autonomous ODE systems from [Mar56].

In the final section §4.3, we use a computation of [Dri20] to show Proposition 4.3.5,

which describes the moduli-space ofG2-instantons on S(S3) away from the invariant regime

of §4.2.

4.1 G2 Gauge Theory: Set-Up

Let
(
M7, ϕ

)
be a G2-manifold, equipped with a principal G-bundle P →M for a compact,

semi-simple Lie group G, where ϕ ∈ Ω3(M) is a non-degenerate torsion-free G2-structure

on M . A connection A on P is called a G2-instanton if it satisfies the G2-instanton

equations:

∗FA = −FA ∧ ϕ (4.1)

where ∗ is the Hodge star of the Riemannian metric defined by ϕ, and FA ∈ Ω2 (adP ) is

the curvature of A.

From (4.1), it is not hard to see that G2-instantons minimize the Yang-Mills energy

functional YM(A) :=
∫
M |FA|

2 on the space of finite-energy connections on P .
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We will write (4.1) in the case (M,ϕ) is foliated by parallel hyper-surfaces. Recall

(1.29) from §1.3: in this case, we can write the G2-structure on M in terms of a one-

parameter family of half-flat structures (ω,Ω)t∈I :

ϕ = dt ∧ ω + ReΩ ∗ϕ = −dt ∧ ImΩ + 1
2ω

2

As it will be more convenient for the following computations, we note that theG2-instanton

equations (4.1) are equivalent to:

FA ∧ ∗ϕ = 0 (4.2)

So, written in the temporal gauge, the G2-instanton equations for A = At appear as:

FAt ∧ ω2 = 0 (4.3a)

FAt ∧ ImΩ− 1

2
∂tAt ∧ ω2 = 0 (4.3b)

If the G2-structure ϕ is torsion-free, in particular if ϕ is co-closed, then (ω,Ω)t∈I is subject

to the evolution equation dImΩ = −1
2∂t
(
ω2
)
. Thus, the G2-instanton equation (4.3a) is

preserved under evolution by (4.3b).

If (M,ϕ) is a G2 cone, i.e. (ω,Ω)t∈R>0
is constructed from a fixed nearly-Kähler half-

flat structure
(
ωnK ,ΩnK

)
on the link via ω = t2ωnK , Ω = t3ΩnK as in (1.34), t-invariant

solutions to (4.3) are pulled back from solutions to the Hermitian Yang-Mills equations

on the link:

FA ∧ ReΩnK = 0 FA ∧
(
ωnK

)2
= 0 (4.4)

Solutions of (4.4) are referred to as nearly-Kähler instantons, and appear naturally as

asymptotic limits of G2-instantons on asymptotically conical G2-manifolds, cf. [CH16] .

4.2 Invariant Instanton ODEs

We recall [LO18] for (4.3) in the invariant setting: we consider the SU(2)3-invariant co-

homogeneity one G2-metrics on the spinor bundle S(S3) from Example 1.3.3 in §1.3, and

assume the bundle and connection form are also invariant under some lift of the SU(2)3-

action to the total space of the bundle.

SU(2)3-homogeneous bundles over the principal orbit SU(2)3/4SU(2) of S(S3) with

gauge group SU(2) are classified by homomorphisms4SU(2)→ SU(2). This gives exactly

two non-equivariantly equivalent bundles over the principal orbit, defined by the trivial

homomorphism 4SU(2) → SU(2), and the identity homomorphism 4SU(2) → SU(2)

respectively.

By [Wan58, Thm. A], the space of invariant connections on these homogeneous bundles

is an affine space of intertwiners of the 4SU(2)-action on left-invariant one-forms on

SU(2)3/4SU(2) and on the Lie-algebra of the gauge group. Recall also from §1.3 that

the action of 4SU(2) acts on the tangent space of SU(2)3/4SU(2) = SU(2)2 as two

copies of the adjoint representation su+(2)⊕ su−(2).
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Since 4SU(2) acts trivially on the gauge group for the trivial homogeneous bundle,

the only SU(2)3-invariant connection on this bundle is the trivial flat connection. Mean-

while, for the non-trivial homogeneous bundle, 4SU(2) acts on su(2) via the adjoint

representation, thus the space of invariant connections is two-dimensional.

Using this description of invariant connections, and the description of SU(2)3-invariant

torsion-free G2-structures (1.39) in §1.3, [LO18, Prop. 5] write the G2-instanton equations

(4.3) as follows:

Proposition 4.2.1 ([LO18]). On R>0×SU(2)2 with a torsion-free G2-structure given by

(1.39), SU(2)3-invariant instantons can be written, up to gauge, as:

A = x+

(
E1 ⊗ u+ + E2 ⊗ v+ + E3 ⊗ w+

)
+ x−

(
E1 ⊗ u− + E2 ⊗ v− + E3 ⊗ w−

)
(4.5)

with (x+, x−) real-valued functions satisfying the following ODE system:

ẋ+ =
x+

α

(
1− α2

β2
− x+

)
+ x2

−
α

β2
ẋ− =

2x−
α

(x+ − 1) (4.6)

Here, we can identify both SU(2)3-homogeneous bundles with the trivial SU(2)2-

homogeneous bundle over SU(2)2, up to SU(2)2-equivariant isomorphism. We can retrieve

the case of the flat connection on the trivial SU(2)3-homogeneous bundle by taking x+ =

x− = 0.

We note here an additional discrete symmetry of (4.6), arising from the non-equivariant

isometry exchanging the factors of SU(2)2 on the principal orbits:

Lemma 4.2.2. (x+, x−)→ (x+,−x−) is a symmetry of (4.6).

Moreover, to find solutions of (4.6) for the one-parameter family of torsion-free G2-

structures (α, β) extending over the singular orbit S3, in what follows, it will suffice to

consider the fixed member (1.42). Namely, if we recall Lemma 1.3.1: this one-parameter

family of G2-structures are related by (α, β) 7→ (αδ, βδ), where αδ(t) := α(δt)
δ , βδ(t) := β(δt)

δ

for some δ > 0. So, we get a solution of (4.3) by pulling back the connection via the

rescaling t 7→ δt, i.e. if (x+(t), x−(t)) is a solution to (4.6), (x+(δt), x−(δt)) is a solution

to (4.6) with (α, β) 7→ (αδ, βδ).

Now, up to SU(2)2-equivariant isomorphism, we can extend the trivial bundle over

the principal orbit SU(2)2 to the singular orbit S3 = SU(2)2/4SU(2) in one of two ways:

using either the identity homomorphism 4SU(2)→ SU(2) or the trivial homomorphism.

As is shown in [LO18], each extension gives a one-parameter family of solutions to (4.6)

near t = 0:

Proposition 4.2.3 ([LO18]). In a neighbourhood of the singular orbit at t = 0, solutions

to (4.6) are in two one-parameter families Tγ, T ′γ′ for parameters γ, γ′ ∈ R:

1. The family Tγ extends over the trivial SU(2)2-homogeneous bundle over the singular

orbit, and these solutions satisfy near t = 0:

x+ = γt2 +O(t4) x− = 0 (4.7)
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2. The family T ′γ′ extends over the non-trivial SU(2)2-homogeneous bundle over the

singular orbit, and these solutions satisfy near t = 0:

x+ = 1 +O(t2) x− = γ′ +O(t2) (4.8)

Remark 4.2.4. For later use, we compute some additional terms in the Taylor series of

T ′γ′ near t = 0:

x+ = 1 +
3

8

(
γ′2 − 1

)
t2 +O(t4) x− = γ′ +

3

4

(
γ′2 − 1

)
γ′t2 +O(t4) (4.9)

Far away from t = 0, the G2-structure on S(S3) is asymptotic to the conical SU(2)3-

invariant G2-structure over S3 × S3: more precisely α = t
3 +O(t−2), β = t√

3
+O(t−2) for

t sufficiently large. So if (x+, x−) are bounded a-priori, the system (4.6) differs from the

corresponding instanton equations on the cone

ẋ+ =
1

t

(
2x+ − 3x2

+ + x2
−
)

ẋ− =
6

t
x− (x+ − 1) (4.10)

by O(t−4) terms.

We will see later that bounded solutions of (4.6) will converge to critical points of

(4.10): (1, 1), (0, 0), (1,−1), (2
3 , 0). These critical points correspond to SU(2)3-invariant

nearly-Kähler instantons: the critical points (1, 1), (0, 0), (1,−1) are all the flat connection

in different non-equivariant gauges, while the only non-trivial instanton is AnK := (2
3 , 0).

This is identified with the canonical connection on SU(2)3 → SU(2)3/4SU(2), and has

been studied previously as a nearly-Kähler instanton in [CH16].

With the two regimes t→ 0, t→∞ understood, we will now discuss complete solutions

to (4.6). The family of local solutions Tγ in Proposition 4.2.3 can be obtained explicitly

by solving (4.6) with x− = 0, and was found previously in [Cla14]. In terms of variable

r(t) =
√

3β(t), these solutions are given by:

x+ =
2

3

(
1 +

2γ(r − 1)− 3r

2γr(r2 − 1) + 3r

)
x− = 0 (4.11)

Clearly, these solutions exist for all time if and only if γ ≥ 0, and γ = 0 is just the flat

connection (0, 0). Furthermore, in the limit γ →∞, the solution (4.11) converges outside

the singular orbit at r = 1 to another explicit solution of (4.6):

x+ = 2
3

(
1 + 1

r(r+1)

)
x− = 0 (4.12)

The limiting solution (4.12) still extends over the singular orbit, but on a different

invariant bundle: it extends to r = 1 as the member of the family T ′γ′ with γ′ = 0. This

solution was found previously in [LO18], but we now show it lies in a one-parameter family

of solutions with γ′ non-zero:

Theorem 4.2.5. SU(2)3-invariant instantons with quadratic curvature decay on S(S3)

are in two one-parameter families Tγ, γ ≥ 0, and T ′γ′, −1 ≤ γ′ ≤ 1. Moreover:

1. The isometry exchanging the factors of SU(2)2 on the principal orbits sends T ′γ′ 7→
T ′−γ′.
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2. T0, T ′1, T ′−1 are flat, otherwise Tγ, T ′γ′ are irreducible and asymptotic to AnK .

Proof. The analysis for the family Tγ follows from its explicit form (4.11), and the trans-

formation T ′γ′ 7→ T ′−γ′ is not hard to see from applying Lemma 1.3.1 to the local expression

(4.8) for T ′γ′ . For the rest of this section, we will prove Theorem 4.2.5 by showing that the

local solutions T ′γ′ exist for all time if −1 ≤ γ′ ≤ 1, and otherwise cannot be bounded.

Lemma 4.2.6. The following sets are forward-invariant for (4.6):

(i) H± := {(x+, x−) ∈ R2 | ±x− > 0}

(ii) T∞ := {(x+, x−) ∈ R2 | x+ > 1, x− > 1}

(iii) T0 := {(x+, x−) ∈ R2 | 2
3 < x+ < 1, 0 < x− < 1}.

Proof. (i) As previously mentioned, setting x− = 0 gives a family of solutions to (4.6).

Hence, by symmetry of Lemma 4.2.2, we will reduce to the case x− > 0 in what

follows.

(ii) For x− > 0, the sign of ẋ− is given by the sign of x+ − 1, hence a solution cannot

leave T∞ via the line x+ > 1, x− = 1. Secondly, ẋ+|x+=1 = α
β2

(
x2
− − 1

)
, hence a

solution cannot leave via the line x+ = 1, x− > 1 either. Finally, the intersection

x+ = x− = 1 is a critical point of (4.6), corresponding to the flat connection.

(iii) By part (i), we can always assume x− > 0. Using the same argument as part (ii), we

see that ẋ− < 0 when 1 > x+ > 0, ẋ+|x+=1 < 0 when 1 > x− > 0, and x+ = x− = 1

is a critical point. Thus, it only remains to show a solution cannot leave T0 via the

line segment x+ = 2
3 , x− > 0. This follows from the inequality, 3α2 < β2 on t > 0,

which can easily be seen from (1.42). With this inequality, it is clear that:

ẋ+|
x+=

2
3

= 2
3α

(
1
3 −

α2

β2

)
+ x2

−
α
β2 > 0

Lemma 4.2.7. A solution (x+, x−) to (4.6) lying in T∞ at some initial time t0 > 0,

cannot be uniformly bounded for all t ≥ t0.

Proof. Since x− is strictly increasing in T∞, if the solution (x+, x−) blows up at finite

time T , then necessarily the solution cannot be bounded for all t < T . On the other

hand, recalling the asymptotic behaviour (4.10) of the system, if we re-parametrise (4.6)

by t 7→ et, then for t sufficiently large and (x+, x−) lying in a compact subset of T∞, this

re-parametrised system is asymptotic to the autonomous system:

ẋ+ = 2x+ − 3x2
+ + x2

− ẋ− = 6x− (x+ − 1) (4.13)

up to terms decaying exponentially in t. The theory of non-autonomous systems asymp-

totic to autonomous systems can be found in [Mar56]: here, we apply [Mar56, Thm.3],

which says that if solutions to (4.13) in T∞ cannot be uniformly bounded for sufficiently

large times, then neither can solutions to (4.6).
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So let us assume for contradiction a solution to (4.13) exists for all time in T∞, and is

uniformly bounded. Since x− is monotonically increasing in T∞, there exists an ε > 0 such

that x− > 1+ε for t > t0. If we let x+(ε) > 1 be the unique solution to 2x+−3x2
++(1+ε)2 =

0 in T∞, then x+ is strictly increasing in 1 < x+ < x+(ε) for time t > t0, and hence x+ is

uniformly bounded below away from 1. But this is a contradiction, since it implies ẋ− is

bounded below away from zero, and hence x− cannot be bounded.

Lemma 4.2.8. A solution (x+, x−) to (4.6) lying in T0 at some initial time t0 > 0

converges to AnK =
(

2
3 , 0
)

as t→∞

Proof. The key to proving this statement will be to show that a solution in T0 must get

arbitrarily close to the critical point
(

2
3 , 0
)

of (4.13) at some forward time. Once we have

proved this, we can apply [Mar56, Thm.2]: since the linearisation of (4.13) near
(

2
3 , 0
)

has

only (real) negative eigenvalues, it is asymptotically stable for (4.6).

So, let (x+, x−) be a solution to the re-parametrisation t 7→ et of (4.6) which lies in

T0. Since x− is strictly decreasing, there must be an ε ∈ (0, 1) such that x− < 1 − ε

for all forward time. Then we can take T (ε) > t0 sufficiently large such that ẋ+ <

2x+ − 3x2
+ + x2

− + ε for all t > T , and an x+(ε) sufficiently close to 1 such that ẋ+ <

2x+ − 3x2
+ + (1− ε)2 + ε < 0 on x+(ε) < x+ < 1, t > T . Hence, we can bound x+ away

from 1 for t > T .

On the other hand x− (x+ − 1) cannot be bounded above away from zero, since this

would imply that ẋ− would be bounded above away from zero after some sufficiently large

time, and hence x− would be unbounded. Combined with the previous observation, this

implies x− cannot be bounded away from 0, and hence x− → 0 as t → ∞ since x− is

decreasing. Similarly, |2x+− 3x2
+ +x2

−| cannot be bounded below away from 0, and hence

x+ cannot be bounded away from 2
3 , and we are done.

The proof of the main theorem now follows from the local power-series solutions T ′γ′ =

(x+, x−)γ′ of (4.8): The solution with γ′ = 0 is the explicit solution (4.12), and one can

take γ′ > 0 otherwise, up to the symmetry of Lemma 4.2.2. Then (x+, x−)γ′ ∈ T0 when

0 < γ′ < 1, (x+, x−)γ′ ∈ T∞ when 1 < γ′, and T ′γ′ with γ′ = 1 is the critical point (1, 1) of

(4.6) corresponding to the flat connection.

Remark 4.2.9. There is a solution to the conical equations (4.10) on t ∈ (0,∞):

x+ =

√
1 + 2t2 − 1 + 2t2

3t2
x− =

√
1 + 2t2 − 1

t2
(4.14)

interpolating between the flat connection A[ = (1, 1) as t → 0, and the nearly-Kähler

instanton AnK = (2
3 , 0) as t → ∞. One may also be able to apply a construction similar

to [MNT22] to recover the long-time existence of the family of instantons T ′γ′ near the

limit γ′ → 1 using the flat connection near t = 0 and (4.14) as an asymptotic model.

4.3 Deformation Theory

In the previous section, we classified SU(2)3-invariant solutions to the G2-instanton equa-

tions, giving two families asymptotic to the non-trivial invariant nearly-Kähler instanton
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AnK on S3×S3. One might then hope to produce more examples of G2-instantons on the

Bryant-Salamon metric by considering deformations of these symmetric solutions away

from the symmetric regime.

However, using the deformation theory of G2-instantons on asymptotically conical

G2-manifolds worked out in [Dri20], we will find that these invariant families actually

classify all G2-instantons on S(S3) asymptotic to AnK , at least if their deformations are

unobstructed. For completeness, we will first briefly recount this deformation theory,

following [Dri20], also [Nak90].

Let
(
M7, ϕ

)
be an AC G2-manifold, with asymptotic cone C(Σ), and P → M be

a principal G-bundle with G compact, semi-simple. Extending the radial parameter on

C(Σ) ∼= R>0 ×Σ to a smooth positive function t on M , we define the weighted norms for

smooth compactly-supported adjoint-valued p-forms Φ ∈ Ωp
c (adP ):

||Φ||
Wk,2
µ

:=

 k∑
j=0

∫
M

∣∣∣tj−µ∇jAΦ
∣∣∣2 t−7


1
2

||Φ||Ckµ :=
k∑
j=0

sup
M

∣∣∣tj−µ∇jAΦ
∣∣∣

for some µ < 0, and a fixed connection A on P .

We will use Ωp
k,µ (adP ) to denote the completion of Ωp

c (adP ) with respect to the

weighted Sobolev norm W k,2
µ , and define Ωp

µ (adP ) := ∩k≥0Ωp
k,µ (adP ). A weighted version

of the standard Sobolev embedding in dimension seven [Dri20, Thm.2.5.5] can be used to

show that Φ ∈ Ωp
µ (adP ) implies that ||Φ||Ckµ <∞ for all k ≥ 0, i.e. |∇jAΦ| = O

(
tµ−j

)
.

To consider the space of connections on P with fixed asymptotic behaviour, we fix a

framing at infinity : a pair (P∞, A∞) consisting of a bundle P∞ → Σ equipped with a

connection A∞, such that P →M is identified with P∞ pulled back over the conical end

of M . We will define a connection A on P as asymptotic to A∞ at polynomial rate µ < 0

if ||A−A∞||Wk,2
µ

<∞ for all k ≥ 0, where we pull back A∞ to the end of M and use the

W k,2
µ -norm defined using the covariant derivative associated to A∞.

The relevant space of connections we will consider is the set Aµ−1, µ < 0 of all con-

nections asymptotic to A∞ with polynomial rate strictly less than −1. While Aµ−1 is

not preserved under arbitrary gauge transformations of P , we consider the subgroup Gµ
of framed gauge transformations with weight µ: gauge transformations of P which are

asymptotic to the identity on P∞ at rate µ, see [Nak90], [Dri20] for precise details of how

to set-up these weights. The gauge group Gµ has the property that the point-wise expo-

nential map exp : Ω0
µ (adP )→ Gµ is surjective on a open neighbourhood of the identity in

Gµ, and the tangent space to the Gµ-orbit through some A ∈ Aµ−1 is spanned by elements

of the form dAΦ for some Φ ∈ Ω0
µ.

Using this framework, we can now begin describing solutions to the G2-instantons

equations with fixed asymptotics. However, instead of defining their moduli-space directly,

it turns out to be more convenient to describe G2-instantons in Aµ−1 as solutions to the

G2-monopole equations:

FA ∧ ∗ϕ = ∗dAΦ (4.15)

with (Φ, A) ∈ Ω0
µ−1 (adP ) ⊕ Aµ−1. Since any solution (Φ, A) to (4.15) has |Φ|2 sub-
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harmonic, if |Φ|2 decays to 0 as t → ∞, we must have Φ = 0 by the maximum principle:

thus we do not actually enlarge the solution space by switching to this set-up.

We are now in a position to define the framed moduli-space of G2-instantons:

M (A∞, µ) := {(Φ, A) ∈ Ω0
µ−1 (adP )⊕Aµ−1 | FA ∧ ∗ϕ = ∗dAΦ}/Gµ

for some given weight µ < 0. In a neighbourhood of a solution (0, A) to (4.15), we can fix

a gauge such that a neighbourhood of [(0, A)] ∈ M (A∞, µ) is described by the zeroes of

the non-linear operator

dAφ+ ∗ (∗ϕ ∧ dAa+ a ∧ a) = 0 d∗Aa = 0 (4.16)

on (φ, a) ∈ Ω0
µ−1 (adP ) ⊕ Ω1

µ−1 (adP ), where d∗Aa = 0 is the standard gauge-fixing condi-

tion.

The advantage of passing to the monopole equations (4.15) is that linearising the gauge-

fixed equations (4.16) at some fixed solution (0, A) yields the elliptic PDE DA (φ, a) = 0,

where DA is the Dirac operator:

DA :=

(
0 d∗A
dA ∗ (∗ϕ ∧ dA·)

)
: Ω0

µ−1 (adP )⊕ Ω1
µ−1 (adP )→ Ω0

µ−2 (adP )⊕ Ω1
µ−2 (adP )

We also note by [Dri20, Theorem 4.2.12], for weights −5 < µ < 0, the kernel of DA can

be identified with the deformation space H1
µ−1(A) of the G2-instanton equations at A:

H1
µ−1 (A) :=

ker
(
∗ (∗ϕ ∧ dA·) : Ω1

µ−1 (adP )→ Ω1
µ−2 (adP )

)
im
(
dA : Ω0

µ (adP )→ Ω1
µ−1 (adP )

)
defined as the space of solutions to the linearised instanton equations ∗ϕ∧dAa = 0, modulo

linearised gauge transformations dAΦ for some Φ ∈ Ω0
µ.

By [Dri20, Prop.4.4.2], outside of some discrete set of critical weights depending only

on (P∞, A∞) and the geometry of asymptotic cone, the elliptic operator DA : Ω0
k,µ−1 ⊕

Ω1
k,µ−1 → Ω0

k−1,µ−2 ⊕Ω1
k−1,µ−2 is Fredholm, so the standard results apply see e.g. [DK90,

Prop.4.2.19], [Dri20, Theorem 4.5.3]:

Proposition 4.3.1 ([Dri20]). Let −5 < µ < 0 be a non-critical weight. Then DA :

Ω0
µ−1 (adP )⊕ Ω1

µ−1 (adP )→ Ω0
µ−2 (adP )⊕ Ω1

µ−2 (adP ) has finite-dimensional kernel and

co-kernel. Moreover, there exists an open neighbourhood U ⊂ kerDA of 0, and smooth map

π : U → cokerDA, π(0) = 0, dπ(0) = 0, such that a neighbourhood of [A] ∈ M (A∞, µ) is

homeomorphic to a neighbourhood of 0 in π−1(0).

The point is that if DA is surjective, then we can apply the implicit function theorem

to obtain smooth solutions of the non-linear equation (4.16) in a sufficiently small neigh-

bourhood of A, and a neighbourhood of [A] ∈ M(A∞, µ) has the structure of a smooth

manifold of dimension indDA = dim kerDA. We define A to be obstructed if the co-kernel

is non-empty: in general, this neighbourhood is only smooth of dimension indDA if π−1(0)

contains only regular values.
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In the case of interest, on the spinor-bundle S(S3), we wish to consider the moduli-

space M
(
AnK , µ

)
of G2-instantons with gauge group SU(2), asymptotic to the unique

non-trivial SU(2)3-invariant nearly-Kähler instanton AnK on S3×S3 with rate µ− 1. To

understand this moduli-space in more detail, we now consider the role of symmetries in

the weighted set-up of [Dri20], adapting arguments of [Bra89, Thm. 1.3].

As before, let (M,ϕ) be an AC G2-manifold with asymptotic cone C(Σ), and let

P → M be a principal G-bundle with compact Lie group G. Denote by Aut(M,ϕ) the

subgroup of diffeomorphisms of M fixing the G2-structure ϕ, and Aut(P ) the subgroup of

diffeomorphisms of P commuting with the G-action. Finally, fix an asymptotic framing

(P∞, A∞) over Σ for P , and denote by Aut(P∞, A∞) the subgroup of diffeomorphisms of

P∞ commuting with the G-action and fixing A∞.

Suppose that (M,ϕ) has a connected Lie sub-group of automorphisms K ⊂ Aut(M,ϕ)

which restrict to automorphisms of (Σ, ϕ|Σ) along the conical end. Moreover, assume we

are given a lift of the K-action on Σ to P∞ for which A∞ is invariant, i.e. a Lie group

homomorphism K → Aut(P∞, A∞), k 7→ k∞, and for simplicity we will also assume this

lift has an extension K → Aut(P ) to the interior.

Then there is a short exact sequence:

1 Gµ Hµ K 1

where Hµ ⊂ Aut(P ) denotes the subgroup of automorphisms covering some element of

K, such that k̂.k−1
∞ ∈ Gµ for all k̂ ∈ Hµ covering k ∈ K, i.e. the automorphism k̂ is

asymptotic to k∞ with rate µ. The map Gµ → Hµ is just the inclusion as automorphisms

of P covering the identity map on M , and the map Hµ → K is induced by the projection

P →M .

Given some equivalence class [A] ∈ Aµ−1/Gµ, denote K [A] ⊂ K the subgroup such that

k ∈ K [A] if [k∗∞A] = [A]. We claim that, given A ∈ [A], we can uniquely lift K [A] to a

group of automorphisms of P fixing A, asymptotic to the lift k → k∞ with rate µ:

Lemma 4.3.2. For all A ∈ [A] there exists a unique homomorphism k 7→ kA lifting

K [A] → Hµ, such that k∗AA = A.

Proof. To see this, let GAµ ⊂ Gµ, HAµ ⊂ Hµ denote the subgroups fixing A ∈ [A]. Then

K [A] ⊂ K fits into the exact sequence:

1 GAµ HAµ K [A] 1

In other words, k∗∞.A = g∗A for some g ∈ Gµ if and only if there exists kA ∈ Hµ covering

k such that k∗AA = A, with kA unique up to an element in GAµ . However, in contrast to

the un-weighted case, Gµ acts freely on Aµ−1 [Dri20, p.47], and thus kA is unique.

We can repeat this discussion at the infinitesimal level: denote by aut(M,ϕ) the Lie-

algebra of vector-fields on M fixing the G2-structure, and aut(P∞, A∞) the Lie-algebra of

vector fields on P∞ fixing the connection A∞.

Suppose we have a Lie sub-algebra k ⊂ aut(M,ϕ) of vector-fields which restrict to

vector-fields pulled back from Σ along the end, and we are given a lift X 7→ X∞ of k

to P∞ for which A∞ is invariant, i.e. a Lie-algebra homomorphism k → aut(P∞, A∞).
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Moreover, assume there exists an extension of this lift to the interior i.e. a lift X 7→ X̃∞

to a vector-field on the total space of P , such that the vertical vector-field X̃∞ − X∞,

viewed here as a section of the adjoint bundle, lies in Ω0
µ (adP )1.

In this set-up, we prove the following lemma:

Lemma 4.3.3. If A ∈ Aµ−1 is a G2-instanton on P asymptotic to A∞, then there is

well-defined linear map:

L : k→ H1
µ−1 (A) L : X 7→

[
LX̃∞A

]
(4.17)

Moreover, kerL ⊂ k is a Lie-sub-algebra.

Proof. To verify that (4.17) is well-defined, we will use the identity

LX̃A := d(X̃yA) + X̃ydA = XyFA + dA

(
X̃yA

)
for any lift X̃ to P of a vector field X on M , where we view the G-equivariant map

X̃yA from P to the Lie algebra of G as a section of the adjoint bundle. We can show

LX∞A ∈ Ω1
µ−1 (adP ) by restricting to the end of M and setting a = A − A∞. Then for

any Φ ∈ Ω0 (adP ):

FA∞ = FA − dAa− [a ∧ a] dA∞Φ = dAΦ− [a,Φ]

Since by assumption, LX∞A∞ = XyFA∞ + dA∞ (X∞yA∞) = 0, we have:

LX̃∞A = XyFA∞ +Xy (dAa+ [a ∧ a]) + dA

(
X̃∞yA

)
= dA (Xya) + [a, (X∞yA∞)] +Xy (dAa+ [a ∧ a]) + dA

(
X̃∞ −X∞

)
To show that this lies in Ω1

µ−1 (adP ), we note that X∞yA∞ ∈ Ω0 (adP∞) has constant

norm along the end, and X restricts to a vector-field pulled back from Σ, so |X| grows

linearly. Moreover, a ∈ Ω1
µ−1 (adP ), X̃∞ −X∞ ∈ Ω0

µ (adP ) by assumption, thus LX̃∞A ∈
Ω1
µ−1 (adP ).

As in the previous discussion for K [A], L(X) = 0 if and only if there is a unique

lift X 7→ XA to a vector-field on P such that LXAA = 0, and the vertical vector-field

XA − X̃∞ on P lies in Ω0
µ (adP ), viewed here as a section of the adjoint bundle. This

section XA − X̃∞ is precisely the one for which LX̃∞A = dA

(
XA − X̃∞

)
, so uniqueness

follows from the injectivity of dA : Ω0
µ (adP )→ Ω1

µ−1 (adP ) [Dri20, Cor.4.2.6].

Now, since the lift of [X,Y ]∞ can be identified with the commutator [X∞, Y∞] on P∞

for all X,Y ∈ k, then it is not hard to see that [X,Y ]A := [XA, YA] also satisfies the

two conditions for lifting [X,Y ] to P if L(X) = L(Y ) = 0, and so kerL ⊂ k is a Lie

sub-algebra.

With this general picture understood, let us return to the Bryant-Salamon metric on

S(S3). Any principal bundle P → S(S3) must be trivial for gauge group SU(2), and we

fix an asymptotic framing by the homogeneous bundle P∞ = SU(2)3 ×4SU(2) SU(2) →
1note that such an extension always exists if P admits a K-invariant connection asymptotic to A∞ with

rate µ− 1.
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SU(2)3/4SU(2), where 4SU(2) acts on the gauge group via the identity map. Recall

that the SU(2)3-invariant canonical connection associated to this homogeneous bundle is

the nearly-Kähler instanton AnK considered in §4.2.

Consider the Dirac operatorDA : Ω0
µ−1 (adP )⊕Ω1

µ−1 (adP )→ Ω0
µ−2 (adP )⊕Ω1

µ−2 (adP ),

associated to aG2-instantonA ∈ Aµ−1 on S(S3) asymptotic toAnK . By [Dri20, Thm.6.5.5],

this operator is Fredholm with index indDA = 1 between −2 < µ < 0, and below the crit-

ical rate µ = −2 the index jumps to indDA = −1.

Remark 4.3.4. The SU(2)3-invariant family Tγ, γ > 0 given by (4.11) decays to AnK

at the critical rate with µ = −2: i.e. |Tγ − AnK | = O(t−3) as t → ∞. We note an error

in [LO18, Prop. 5], as the invariant instanton T ′0 given by (4.12) shares this asymptotic

decay rate. Moreover, we expect this holds for the whole invariant family T ′γ′, −1 < γ′ < 1.

We will use this computation to prove the following proposition:

Proposition 4.3.5. Any G2-instanton on S(S3) asymptotic to AnK with rate −2 < µ−
1 < 0 is either obstructed or gauge-equivalent to an instanton in the one of the families

Tγ, T ′γ′.

Proof. We will use the computation of the index in [Dri20] to show that, if an instan-

ton A ∈ Aµ−1 is not obstructed, then it must be SU(2)3-invariant, for some lift of

the action of SU(2)3 to P asymptotic to the action of SU(2)3 on the framing bundle

P∞ = SU(2)3 ×4SU(2) SU(2)→ SU(2)3/4SU(2). Once this is proven, the result follows

from the existence and uniqueness results of Theorem 4.2.5 in the previous section, since

any connection asymptotic to the non-trivial connection AnK on the asymptotic link must

have quadratic curvature decay.

So to prove invariance, we note that if A is not obstructed, the deformation space

H1
µ−1 (A) is one-dimensional for weights −2 < µ < 0 by [Dri20, Thm.6.5.5]. Since the

map L : su(2)3 → H1
µ−1 (A) defined in Lemma 4.3.3 is linear, then the kernel has co-

dimension at most one in su(2)3. However, since this kernel is a Lie sub-algebra of su(2)3,

it cannot have co-dimension one, and so L must vanish on all of su(2)3.

As previously discussed, this implies that we can uniquely lift su(2)3 to a Lie-algebra

of vector-fields on P fixing A, such that these vector-fields are asymptotic to the in-

finitesimal action of SU(2)3 on the homogeneous bundle P∞ = SU(2)3 ×4SU(2) SU(2)→
SU(2)3/4SU(2). Since these vector-fields are complete, and SU(2)3 is simply-connected,

it follows by [Pal57, Ch.3 Thm.7, Ch.4 Thm.3] that these vector-fields integrate to give a

unique lift of the SU(2)3-action to P fixing A.
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Appendix A

Extending invariant data to the

singular orbit

A.1 Calabi-Yau structures

By considering SU(2)2-invariant SU(3)-structures on the space of principal orbits of

O(−2,−2), O(−1)⊕O(−1), and T ∗S3 in §1.2, and imposing that these SU(3)-structures

be closed, we obtained ordinary differential equations (1.21), (1.23) depending on geodesic

parameter t ∈ R>0. In this appendix, we compute the boundary conditions that these

SU(3)-structures must satisfy in order to extend smoothly to the singular orbits at t = 0.

For O(−1)⊕O(−1), this analysis has been carried out in [FH17, Lemma 4.1] and partially

carried out for T ∗S3 in [FH17, Lemma 4.2]. However, for completeness, we will include

proofs of these results to match the conventions in this thesis.

We will use the method of computing these boundary conditions developed by Eschenburg-

Wang in [EW00]. We will briefly recall this technique:

Suppose K is a compact Lie group acting with co-homogeneity one on a smooth man-

ifold M , and for simplicity, we will assume there is exactly one singular K-orbit, with

corresponding group diagram of M given by H ⊂ H ′ ⊆ K. Recall that, in this case, M

can be equivariantly identified with K ×H′ V for some orthogonal H ′-representation V ,

such that H is identified with the stabiliser subgroup of some non-zero v0 ∈ V .

Let p denote the space of left-invariant vector fields on the singular orbit K/H ′. H ′

acts on the tangent space of M as the direct sum p⊕ V , so that any K-invariant form on

M can be viewed as an H ′-equivariant map from V into the exterior algebra of forms on

p⊕ V . The evaluation of this map at v0 ∈ V is an H-invariant form on p⊕ V , or in other

words, a K-invariant form on the principal orbit.

To extend K-invariant k-forms to the singular orbit, one writes down a basis of the

finite-dimensional space of H-invariant elements of
∧k (p∗ ⊕ V ∗), obtained by evaluating

H ′-equivariant maps V →
∧k (p∗ ⊕ V ∗) that are specified by homogeneous polynomials

in the coordinates of v ∈ V .

If α ∈
∧k (p∗ ⊕ V ∗) denotes such a basis element, then it has a well-defined degree

d ∈ Z≥0, defined as the degree of the equivariant homogeneous polynomial map V →∧k (p∗ ⊕ V ∗) evaluating to α at v0. As is shown in [EW00, Lemma 1.1] any K-invariant
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form a(t)α on the space of principal orbits, for some smooth function a(t) of the geodesic

parameter t, extends smoothly over the singular orbit at t = 0 if and only if a(t)t−d is

a smooth, even function of t near t = 0. We will refer to such a function a(t) as having

degree d.

We will use this procedure to write down the boundary conditions for SU(2)2-invariant

two-forms and three-forms on the co-homogeneity one manifolds O(−2,−2), O(−1) ⊕
O(−1), and T ∗S3. We summarise below:

Proposition A.1.1. Let α = λdt ∧ ηse + u0ω
se
0 + u1ω

se
1 + u2ω

se
2 + u3ω

se
3 be an SU(2)2-

invariant two-form on R>0 × SU(2)2/K2,−2. Then α extends smoothly over the singular

orbit S2×S2 = SU(2)2/U(1)2 at t = 0 if and only if u2, u3, λ are odd, and u0, u1 are even.

By a result of Hitchin in [Hit00, §2], it is enough to determine ω and ReΩ to deter-

mine the whole SU(3)-structure, so we only need to determine the additional boundary

extension conditions for the three-form ReΩ to extend (ω,Ω) to the singular orbit:

Proposition A.1.2. Let ReΩ = µωse2 ∧dt−λ (v0ω
se
0 + v3ω

se
3 )∧ηse be an SU(2)2-invariant

three-form on R>0 × SU(2)2/K2,−2. Then ReΩ extends smoothly over the singular orbit

S2 × S2 = SU(2)2/U(1)2 at t = 0 iff µ, λv0 are even, λv3 is odd, (λv3)′ (0) = 3µ(0) and

λv0(0) = 0.

For O(−1)⊕O(−1), it will suffice to check the boundary conditions for 2-forms:

Proposition A.1.3. (c.f. [FH17, Lemma 4.1]) Let α = λdt∧ηse+u0ω
se
0 +u1ω

se
1 +u2ω

se
2 +

u3ω
se
3 be an SU(2)2-invariant two-form on R>0×SU(2)2/4U(1). Then α extends smoothly

over the singular orbit S2 = SU(2)2/U(1)×SU(2) at t = 0 if and only if u0, u1, u2, u3 are

even, λ is odd, u0(0) + u1(0) = 0, u2(0) = u3(0) = 0, and u′′0(0) + u′′1(0) = 2λ′(0).

Since O(−1) ⊕ O(−1) arises as the small resolution of the conifold, realised as the

affine variety {z2
1 + z2

2 + z2
3 + z2

4 = 0 | (z1, z2, z3, z4) ∈ C4}, the complex structure on this

singular variety extends automatically to CP1 ⊂ O(−1)⊕O(−1). We can use this fact to

obtain the following corollary to Proposition A.1.3:

Corollary A.1.4. Let (ω,Ω) be an SU(2)2-invariant Calabi-Yau structure on R>0 ×
SU(2)2/4U(1). Then Ω extends smoothly over the singular orbit S2 = SU(2)2/U(1) ×
SU(2) at t = 0 if ω extends.

For the smoothing T ∗S3, we compute the following boundary conditions for two- and

three-forms:

Proposition A.1.5. (c.f. [FH17, Lemma 4.2]) Let α = λdt ∧ ηse + u0ω
se
0 + u1ω

se
1 +

u2ω
se
2 +u3ω

se
3 be an SU(2)2-invariant two-form on R>0×SU(2)2/4U(1). Then α extends

smoothly over the singular orbit S3 = SU(2)2/4SU(2) at t = 0 if and only if u0, u1, u3

are odd, u2, λ are even, u2(0) = 0, u′0(0) + u′3(0) = 0, and 2λ(0) = u′1(0).

Proposition A.1.6. Let β =
∑

i uiω
se
i ∧ dt +

∑
i viω

se
i ∧ ηse be an SU(2)2-invariant

three-form on R>0 × SU(2)2/4U(1). Then β extends smoothly over the singular orbit

S3 = SU(2)2/4SU(2) at t = 0 if and only if u0, v0, u1, v1, u3, v3 are even, u2, v2 are odd,

u1(0) = v1(0) = 0, u0(0) + u3(0) = v0(0) + v3(0) = 0, 3(u0(0)− u3(0)) + 2v′2(0) = 0, and

v′′0(0) + v′′3(0) + 3u′2(0) = 0.
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The rest of this section will be devoted to the proofs of these claims:

Proof of Proposition A.1.1. First of all, we describe how to rewrite the Cartesian coordi-

nates on the fibre C2,−2 in terms of vector fields on SU(2)2/4U(1) × Z2. Here, let dx0,

dx1 denote the Cartesian coordinate one-forms on the fibre C2,−2 at the identity coset in

SU(2)2/U(1)2. The flow (eis, e−is, t) of the vector field U− on SU(2)2×C along the curve

γ(t) = (1, 1, t) is identified with (1, 1, e4ist) by the U(1)2 action, so along γ, the polar coor-

dinate vector field on C2,−2 is identified with 1
4U
− and we may write dx0 = 4tu− = 3tηse

and dx1 = dt.

Here we will denote the tangent space to the fibre C2,−2 as V , and p as the span

of left-invariant vector fields 〈V 1,W 1, V 2,W 2〉: clearly, the tangent space at a point of

O (−2,−2) can be identified with p ⊕ V . As 4U(1) × Z2-representations, V is trivial

and p ∼= C2 ⊕ C2, so the space of 4U(1) × Z2 invariant two-forms on p ⊕ V is (real)

5-dimensional: explicitly, if p1,2 := v1,2 + iw1,2, then a basis for this space can be written

as the real and imaginary parts of dx0 ∧ dx1, p1 ∧ p̄1, p2 ∧ p̄2, p1 ∧ p̄2.

As a U(1)2-representation, the space of 4U(1) × Z2 invariant two-forms decomposes

into the following irreducible representations:

∧2(p∗ ⊕ V ∗) ⊃ 〈dx0 ∧ dx1, p1 ∧ p̄1, p2 ∧ p̄2〉 ⊕ 〈p1 ∧ p̄2〉 ∼= R3 ⊕ C2,−2 (A.1)

To apply the general machinery of [EW00, Lemma 1.1], we find U(1)2-equivariant maps

V →
∧

2(p∗⊕V ∗) into the space of invariant two-forms defined by a homogeneous polyno-

mial of fixed degree. The two-forms arising from degree zero homogeneous polynomials are

the U(1)2-invariant two-forms dx0∧dx1, p1∧ p̄1, p2∧ p̄2, while the degree one homogeneous

polynomials have the single generator z 7→ zp1 ∧ p̄2, where z ∈ C2,−2. This evaluates at

z = 1 to a multiple of the two-forms ωse2 and ωse3 by taking real and imaginary parts.

We now rewrite the generic smooth SU(2)2-invariant two-form α on the space of prin-

cipal orbits:

α = λdt ∧ ηse + u0ω
se
0 + u1ω

se
1 + u2ω

se
2 + u3ω

se
3

=
λ

3t

(
dx0 ∧ dx1

)
+

2

3
(u0 − u1)(v1 ∧ w1) +

2

3
(u0 + u1)(v2 ∧ w2) + u2ω

se
2 + u3ω

se
3

thus, by the previous calculation, α extends to the singular orbit at t = 0 if and only if

u2, u3, λ are odd, and u0, u1 are even.

Proof of Proposition A.1.2. We denote V , p, p1, p2, dx0, dx1 as in the previous proof. As

irreducible U(1)2-representations, the (real) 8-dimensional space of 4U(1)× Z2-invariant

3-forms on p⊕ V can be written C0,0 ⊕ C4,−4 ⊕ 2C2,−2, corresponding to a splitting:

〈(dx0 − idx1) ∧ p1 ∧ p̄2〉 ⊕ 〈(dx0 + idx1) ∧ p1 ∧ p̄2〉 ⊕ 〈(dx0 + idx1) ∧ pj ∧ p̄j〉j=1,2 (A.2)

and as before, we must find generators for U(1)2-equivariant polynomial maps from V into

the space of invariant 3-forms.

The U(1)2-invariant 3-forms corresponding to a degree zero polynomial are spanned

by (dx0 − idx1) ∧ p1 ∧ p̄2, with real and imaginary parts dt ∧ ωse3 + 3tηse ∧ ωse2 and dt ∧
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ωse2 − 3tηse ∧ ωse3 . Homogeneous degree one polynomials have the two generators z 7→
z(dx0 + idx1) ∧ pj ∧ p̄j for z ∈ C2,−2, which evaluate at z = 1 to dt ∧ vj ∧ wj and

3tηse ∧ vj ∧ wj by taking real and imaginary parts, and finally homogeneous polynomials

of degree two have the single generator z 7→ z2(dx0 + idx1) ∧ p1 ∧ p̄2, which evaluates at

z = 1 to dt ∧ ωse3 − 3tηse ∧ ωse2 and dt ∧ ωse2 + 3tηse ∧ ωse3 .

This splitting of the space of invariant 3-forms provides the boundary extension condi-

tions for a generic invariant 3-form. Applying this to the specific 3-form:

ReΩ = µdt ∧ ωse2 −
λ

3t
(v0ω

se
0 + v3ω

se
3 ) ∧ 3tηse

defined by a generic hypo-structure (1.19), shows that this 3-form extends if and only if(
µ+ λv3

3t

)
is even,

(
µ− λv3

3t

)
has degree two and λv0

3t is odd.

Proof of Proposition A.1.3. We first describe a change of coordinates from left-invariant

vector fields on the principal orbits of O(−1)⊕O(−1) to a coordinate system adapted to

the boundary extension problem. We identify S2 ⊂ O(−1)⊕O(−1) with S2 ⊂ imH, and

the fibre over i ∈ S2 with H, so that SU(2)2 acts on S2 ×H as:

(q1, q2) . (x, y) 7→ (q1xq̄1, q2yq̄1)

With this description of the SU(2)2-action, we will write vector fields on SU(2)2 as vector

fields on S2 × R4:

Here, let (x0, x1, x2, x3) denote Cartesian coordinates on the fibre. Along the curve

γ(t) = (i, t) ∈ S2 ×H, the vector fields U1, U2, V 1, V 2,W 1,W 2 are given by:

U1 =
d

ds

∣∣∣∣
s=0

(
i, te−is

)
= (0,−it) U2 =

d

ds

∣∣∣∣
s=0

(
1, eist

)
= (0, it)

V 1 =
d

ds

∣∣∣∣
s=0

(
ejsie−js, te−js

)
= (−2k,−jt) V 2 =

d

ds

∣∣∣∣
s=0

(
i, ejst

)
= (0, jt)

W 1 =
d

ds

∣∣∣∣
s=0

(
eksie−ks, te−ks

)
= (2j,−kt) W 2 =

d

ds

∣∣∣∣
s=0

(
i, ekst

)
= (0, kt)

Clearly ∂
∂t = ∂

∂x0
, and:

V 2 = t
∂

∂x2
W 2 = t

∂

∂x3
U− = −2t

∂

∂x1

so that:

dx0 = dt dx1 = −2tu− dx2 = tv2 dx3 = tw2 (A.3)

We will now describe the boundary conditions for extending 2-forms over the singular

orbit. Here, V will denote the tangent space to the fibre over i ∈ S2, and p denote the

complement of the Lie algebra of U(1) × SU(2) in SU(2)2, i.e. p = 〈V 1,W 1〉, and V is

the span of the coordinate vector fields ∂
∂x0

, ∂
∂x1

, ∂
∂x2

, ∂
∂x3

.
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Recall that the 4U(1)-invariant subspace of
∧

2 (p∗ ⊕ V ∗) is 5-dimensional: it contains

the real and imaginary parts of
(
dx0 + idx1

)
∧
(
dx2 + idx3

)
in
∧

2(V ∗), v1 ∧w1 in
∧

2(p∗),

and the rest is spanned by the real and imaginary parts of
(
dx2 + idx3

)
∧
(
v1 − iw1

)
.

We find a basis for these in terms of U(1)× SU(2)-equivariant homogeneous polynomials

V →
∧

2 (p∗ ⊕ V ∗), evaluated at some v0 ∈ V .

Firstly, since {1} × SU(2) ⊂ U(1) × SU(2) acts trivially on
∧

2(p∗) and p ∼= C2 as a

U(1)-representation, it is clear that v1∧w1 = 3
4(ωse0 +ωse1 ) is U(1)×SU(2)-invariant, thus

identified with a degree zero homogeneous polynomial map.

Second, observe that the action of U(1)×SU(2) on V arises from the restriction of the

natural action of SU(2)2 on the left and right of C2 respectively: viewing the U(1)×SU(2)

action this way, it not hard to see that
∧

2(V ∗) ∼= (R⊕ C2) ⊕ su(2) as a U(1) × SU(2)-

representation, where U(1) is understood as acting trivially on the SU(2)-representation

and vice-versa.

The trivial sub-representation in
∧

2(V ∗) is spanned by the standard symplectic form

dx0∧dx1+dx2∧dx3 on V , and the su(2) is spanned by the standard anti-self-dual two-forms

on V , i.e. dx0∧dx1−dx2∧dx3 under cyclic permutations of (123). Identifying V with H,

and su(2) with imH, a degree two equivariant homogeneous polynomial map L : H→ imH
is given by L(v) = viv̄ for v ∈ H, which evaluates at v = 1 to dx0∧dx1−dx2∧dx3. In terms

of coordinates (A.3), the images of these degree zero and two homogeneous polynomials

V →
∧

2(V ∗) respectively, are:

−3t

2
dt ∧ ηse +

3t2

4
(ωse0 + ωse1 ) −3t

2
dt ∧ ηse − 3t2

4
(ωse0 + ωse1 )

Third, a map L : V → V⊗p∗ is U(1)×SU(2)-equivariant if L(qve−iθ).z = q
(
L(v).ze−2iθ

)
e−iθ,

where z ∈ C, v ∈ V (identified as elements of p, H respectively), and (eiθ, q) ∈ U(1) ×
SU(2). There are two degree one homogeneous polynomial maps Ll(v).z = vlz̄ for

l ∈ {j, k}. Identifying Ll(v) with an anti-symmetric endomorphism in End (V ⊕ p), so

naturally an element of
∧

2 (p∗ ⊕ V ∗), and evaluating at v = 1, gives dx2 ∧ v1 + dx3 ∧ w1

and dx3 ∧ v1 − dx2 ∧ w1, or −3t
2 ω

se
2 and −3t

2 ω
se
3 in terms of coordinates (A.3).

This splitting provides the boundary extension conditions for a generic invariant two-

form α = λdt ∧ ηse +
∑

i uiω
se
i on the space of principal orbits. Rewriting α with respect

to our basis:

α =
1

4

(
u1 + u0

t2
− λ

t

)(
−2tdt ∧ ηse + t2(ωse0 + ωse1 )

)
+

1

4

(
u1 + u0

t2
+
λ

t

)(
2tdt ∧ ηse + t2(ωse0 + ωse1 )

)
+
u1 − u0

2
(ωse0 − ωse1 ) +

u2

t
ωse2 +

u3

t
ωse3

we see that, to extend α to t = 0, u0, u1, u2, u3 must be even, λmust be odd, u0(0)+u1(0) =

0, u2(0) = u3(0) = 0, and u′′0(0) + u′′1(0) = 2λ′(0) as claimed.

Proof of Corollary A.1.4. By Proposition A.1.3, if the Kähler form ω of an invariant

Calabi-Yau structure (ω,Ω) extends over the singular orbit S2 = SU(2)2/U(1)×SU(2) at

t = 0, then (ω,Ω) must it induce a hypo-structure of type I on the principal orbits: if the
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evolution equations (1.23) are satisfied with λ(t) odd, µ(t) even, and µ(0) = 0, then v0(t)

must vanish for all t. For a hypo-structure of type I solving the evolution equations (1.21),

re-parametrising t 7→ r, r(t) := 3
√
λµ pulls back the corresponding holomorphic volume

form from the conifold. Hence if ω extends, then O(−1)⊕O(−1)\CP1 has a holomorphic

volume form pulled back from the conifold, and hence it extends automatically to the

singular orbit SU(2)2/U(1) × SU(2) = CP1 ⊂ O(−1) ⊕ O(−1) at r(0) = 0 of the small

resolution O(−1)⊕O(−1).

Proof of Proposition A.1.5. We first describe a change of coordinates from left-invariant

vector fields on the principal orbits of T ∗S3 to a coordinate system adapted to the bound-

ary extension problem. The coordinate system we will need is achieved via the isomor-

phism:

T ∗S3 = SU(2)2 ×4SU(2) su(2) ∼= S3 × imH ⊂ H× imH

Identifying su(2) with the imaginary quaternions imH and SU(2) with the unit quaternions

S3 ⊂ H, this map can be explicitly given along with its inverse:

(p, q, y) 7→ (qp̄, pyp̄) (x, y) 7→ (x̄, 1, xyx̄)

By requiring this map is equivariant, we get a description of an SU(2)2-action in this new

coordinate system via the embedding in H× ImH:

(q1, q2) . (x, y) 7→ (q2xq̄1, q1yq̄1)

With this description in hand, we will write vector fields on SU(2)2 as vector fields on

T ∗S3: here, let (x1, x2, x3) denote the Euclidean coordinates on the fibre of S3 × imH.

Along the curve γ(t) = (1, it), the vector fields U1, U2, V 1, V 2,W 1,W 2 are given by:

U1 =
d

ds

∣∣∣∣
s=0

(
e−is, it

)
= (−i, 0) U2 =

d

ds

∣∣∣∣
s=0

(
eis, it

)
= (i, 0)

V 1 =
d

ds

∣∣∣∣
s=0

(
e−js, ejsite−js

)
= (−j,−2tk) V 2 =

d

ds

∣∣∣∣
s=0

(
ejs, it

)
= (j, 0)

W 1 =
d

ds

∣∣∣∣
s=0

(
eks, eksite−ks

)
= (−k, 2tj) W 2 =

d

ds

∣∣∣∣
s=0

(
eks, it

)
= (k, 0)

Clearly ∂
∂t = ∂

∂x1
, and:

V + := V 1 + V 2 = (0,−2tk) = −2t
∂

∂x3
W+ := V 1 + V 2 = (0, 2tj) = 2t

∂

∂x2

so that:

dx1 = dt dx2 = 2tw+ dx3 = −2tv+ (A.4)

We proceed with the calculation describing the boundary conditions for extending 2-forms

over the singular orbit: here, V will denote the tangent space to the fibre of T ∗S3, and

su(2)− will denote the tangent space to the singular orbit i.e. su(2)− = 〈U−, V −,W−〉,
and V is the span of the coordinate vector fields ∂

∂x1
, ∂
∂x2

, ∂
∂x3

. As4SU(2)-representations,
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both su(2)− and V are isomorphic to the adjoint representation, and isomorphic to R⊕C2

as 4U(1)-representations, where the trivial component of this representation is spanned

by U− and ∂
∂x1

respectively.

The 5-dimensional space of4U(1)-invariant 2-forms on su(2)−⊕V can be written as the

span of u− ∧ dx1, dx2 ∧ dx3, v− ∧w−, and the real and imaginary parts of
(
dx2 + idx3

)
∧

(v− − iw−), and as before, we associate an integer degree to each component in a splitting

of this space, by taking the degree of some 4SU(2)-equivariant homogeneous polynomials

in v ∈ V , and evaluating at some non-zero v0 ∈ V .

To achieve this, we first identify su(2)− and V with the imaginary quaternions imH.

Then as 4SU(2)- representations:

∧2(imH⊕ imH) ∼= 2
∧2 (imH)⊕ (imH⊗ imH∗) ∼= 2imH⊕ (imH⊗ imH∗)

where the second of these isomorphisms arises from the equivariant isomorphism ∗ :∧
2 (imH)→ imH given by the standard Hodge star on R3:

∗dx1 = dx2 ∧ dx3 ∗dx2 = dx3 ∧ dx1 ∗dx3 = dx1 ∧ dx2

First of all, is not hard to see equivariant polynomial maps L : imH→ imH have a single

degree one generator L(v) = v, which evaluates at v = i to ∗u− = v−∧w−, ∗dx1 = dx2∧dx3

respectively. The latter can be rewritten as −4t2v+ ∧w+ in the coordinate system (A.4).

To determine the space of equivariant maps imH → imH ⊗ imH∗, we identify the

adjoint action of SU(2) on imH with the standard action of SO(3) on R3: equivariant

polynomial maps from R3 into R3 ⊗
(
R3
)∗

with this action are spanned by the constant

map id : R3 → R3, the degree-one polynomial v 7→ . × v, and the degree-two polynomial

v 7→ 〈 . , v〉v, where × denotes the cross product on R3 and 〈 . , v〉 denotes the Euclidian

dot product with v. These evaluate at v = (1, 0, 0) to idR +idC2 , jC2 , and idR respectively,

where we denote the map between the trivial 4U(1)-representations in imH as idR, and

the maps corresponding to the identity and multiplication by complex number i between

the 4U(1)-representations C2 as idC2 and jC2 respectively.

Considering these as 2-forms on su(2)− ⊕ V , from the linear map idR + idC2 we get

dx1∧u−+dx2∧v−+dx3∧w− which can be rewritten as dt∧u−+2t (w+ ∧ v− − v+ ∧ w−)

using our coordinate system (A.4). Meanwhile jC2 gives dx3 ∧ v− − dx2 ∧ w−, which can

be rewritten as −2t (v+ ∧ v− + w+ ∧ w−), and idR gives dx1 ∧ u− which is rewritten as

dt ∧ u−.

This splitting provides the boundary extension conditions for a generic invariant two-

form α = λdt ∧ ηse +
∑

i uiω
se
i on the space of principal orbits. Rewriting α with respect

to our basis:

α =
2

3

(
2λ− u1

t

)
dt ∧ u− +

4 (u0 + u3)

3t2
v+ ∧ w+ +

4

3
(u0 − u3) v− ∧ w−

+
4u2

3t

(
v+ ∧ v− + w− ∧ w+

)
+

2u1

3t

(
dt ∧ u− + 2t

(
w+ ∧ v− − v+ ∧ w−

))
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we see that for α to extend we must have u0, u1, u3 are odd, u2, λ even, u2(0) = 0,

u′0(0) + u′3(0) = 0, and 2λ(0) = u′1(0) as claimed.

Proof of Proposition A.1.6. We denote V , su−(2), dx1, dx2, dx3 as in the previous proof.

Identifying V , su−(2) with the imaginary quaternions imH, then the space of 3-forms on

su−(2)⊕ V can be written as a 4SU(2)-representation:

∧3(imH⊕ imH) ∼= 2
∧3 (imH)⊕ 2

(
imH⊗

∧2 (imH∗)
) ∼= R2 ⊕ 2 (imH⊗ imH∗)

where again, the second of these equivalences arises from the equivariant isomorphism

∗ :
∧

2 (imH)→ imH given by the standard Hodge star on R3.

Now the space of equivariant maps from imH→ imH⊗ imH∗ was given in the previous

proof: its image, when evaluated at i ∈ imH, is spanned by idR + idC2 , jC2 , and idR with

degrees 0, 1, and 2 respectively. So, denoting u−, v−, w− as e1, e2, e3, the degree zero

maps on imH⊗ imH∗ corresponding to idR + idC2 are
∑

i e
i∧∗dxi and

∑
i dx

i∧∗ei, which

can be rewritten as:

3

8
(dt ∧ (ωse0 − ωse3 )− 3tωse2 ∧ ηse) −3

8

(
4dt ∧ ωse2 − 3t2(ωse0 + ωse3 ) ∧ ηse

)
The degree one maps on imH⊗ imH∗ corresponding to jC2 are e3 ∧ ∗dx2 − e2 ∧ ∗dx3 and

dx3 ∧ ∗e2 − dx2 ∧ ∗e3, which can be rewritten as:

9

8
tωse1 ∧ ηse

9

8
tωse1 ∧ dt

and the degree two maps on imH⊗ imH∗ corresponding to idR are e1∧∗dx1 and dx1∧∗e1,

which can be rewritten as:

−9

8
t2(ωse0 + ωse3 ) ∧ ηse 3

8
dt ∧ (ωse0 − ωse3 )

Furthermore, the invariant (degree zero) maps spanning imH→
∧

3 (imH) are the constant

map dx1 ∧ dx2 ∧ dx3 and e1 ∧ e2 ∧ e3 respectively, which can be rewritten as:

3

8
t2dt ∧ (ωse0 − ωse3 )

3

8
t2dt ∧ (ωse0 − ωse3 ) ∧ ηse

We now rewrite an invariant 3-form β =
∑

i uiω
se
i ∧ dt +

∑
i viω

se
i ∧ ηse in terms of this

basis:

β =
v2

3t
(dt ∧ (ωse0 − ωse3 )− 3tωse2 ∧ ηse)−

u2

t

(
dt ∧ ωse2 −

3

4
t2(ωse0 + ωse3 ) ∧ ηse

)
+

1

2
(u0 + u3) dt ∧ (ωse0 + ωse3 ) +

(
1

2
(u0 + u3) +

v2

3t

)
dt ∧ (ωse0 − ωse3 )

+
1

2
(v0 − v3) (ωse0 − ωse3 ) ∧ ηse +

(
1

2
(v0 + v3) +

3tu2

4

)
(ωse0 + ωse3 ) ∧ ηse

+ u1ω
se
1 ∧ dt+ v1ω

se
1 ∧ ηse

So for β to extend, applying [EW00], v2
t , u2

t , u0+u3
t , and v0 − v3 must be even, u1

t and v1
t

must be odd, and 1
t2

(
1
2 (v0 + v3) + 3tu2

4

)
, 1

2 (u0 + u3)− v2
3t must be degree two. Unravelling
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these conditions, we get u0, v0, u1, v1, u3, v3 must be even, u2, v2 must be odd, u1(0) =

v1(0) = 0, u0(0) + u3(0) = v0(0) + v3(0) = 0, 3(u0(0) − u3(0)) + 2v′2(0) = 0, and v′′0(0) +

v′′3(0) + 3u′2(0) = 0 as claimed.

A.2 Bundle Data

By considering SU(2)2-invariant Calabi-Yau instantons and monopoles on the space of

principal orbits R>0 × SU(2)2/4U(1) of T ∗S3, O(−1) ⊕ O(−1), and O (−2,−2) in §2,

we obtained ordinary differential equations depending on the geodesic parameter t ∈ R>0.

In this appendix, we check the boundary conditions used in §3.1 for these data to extend

smoothly to the singular orbits at t = 0.

Firstly, we must extend the invariant bundle: let H denote the principal isotropy sub-

group of the SU(2)2 action, and H ′ the singular isotropy subgroup. Recall from §1.1 that

the homogeneous SU(2)-bundles over the principal orbit, defined by the homomorphism

H → SU(2), can be extended to an SU(2)2-invariant bundle over the total space by

extending the homomorphism H → SU(2) to a homomorphism H ⊂ H ′ → SU(2).

Recall also §2.3: homogeneous bundles Pn,j over the principal orbits of O (−2,−2)

are classified by a pair (n, j) ∈ Z × Z2. Using the isomorphism of the principal isotropy

subgroup K2,−2
∼= 4U(1) × Z2 ⊂ U(1)2, we can write the associated homomorphism

K2,−2 → SU(2) as:

(eiθ, eiθ).(e2iπ, eiπ) 7→

(
−1 0

0 −1

)j (
einθ 0

0 e−inθ

)
(A.5)

and similarly for the bundles Pn over the principal orbits of T ∗S3, O(−1)⊕O(−1) asso-

ciated to homomorphisms 4U(1)→ SU(2) of the principal isotropy subgroup 4U(1).

Proposition A.2.1. Up to equivariant isomorphism, the SU(2)2-invariant SU(2)-bundles

extending Pn, Pn,j to the singular orbit are given by:

(i) Extending over S3 = SU(2)2/4SU(2): P1, P0 extend to PId, P0 defined by homo-

morphisms Id,0 respectively.

(ii) Extending over S2 = SU(2)2/U(1) × SU(2): Pn extends to Pn,0 defined by homo-

morphism in × 0 for all n, and P1 also extends to P0,Id defined by homomorphism

i0 × Id.

(iii) Extending over S2 = SU(2)2/SU(2) × U(1): Pn extends to P0,n defined by homo-

morphism 0 × in for all n, and P1 also extends to PId,0 defined by homomorphism

Id× i0.

(iv) Extending over S2 × S2 = SU(2)2/U(1)2: Pn,j extends to Pl,m defined by homomor-

phism il × im, where l +m = n, and either j = mmod2 or j = lmod2.

where Id, 0 : SU(2) → SU(2) denote the identity and the trivial homomorphism respec-

tively, and in denotes the nth-power of the diagonal embedding i : U(1) ↪→ SU(2).

Proof. The first two parts of the proposition follow directly from the previous discussion,

and the group diagrams 4U(1) ⊂ 4SU(2) ⊂ SU(2)2, and 4U(1) ⊂ U(1) × SU(2) ⊂
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SU(2)2 for T ∗S3 and O(−1)⊕O(−1), respectively. The third part follows via exchanging

the factors of SU(2)2 for O(−1) ⊕ O(−1), i.e. writing the group diagram as 4U(1) ⊂
SU(2)× U(1) ⊂ SU(2)2.

The group diagram for O (−2,−2) is given by K2,−2 ⊂ U(1)2 ⊂ SU(2)2, so the singular

homomorphisms are classified by a pair of integers (l,m):

(eiθ1 , eiθ2) 7→

(
eilθ1+imθ2 0

0 e−ilθ1−imθ2

)
(A.6)

where the principal isotropy group K2,−2 is uniquely defined as the kernel of (A.6) with

(l,m) = (2,−2). One can realise the isomorphism K2,−2
∼= 4U(1) × Z2 ⊂ U(1)2 in

exactly two ways, either with Z2 ⊂ U(1)2 defined as the subgroup generated by (e2iπ, eiπ)

or Z2 ⊂ U(1)2 defined as the subgroup generated by (eiπ, e2iπ), equivalent up to the

automorphism exchanging the factors of U(1) ⊂ U(1)2.

The first of these isomorphisms K2,−2 → 4U(1) × Z2 ⊂ U(1)2 is given by the map

(eiθ1 , eiθ2) 7→ (eiθ1 , eiθ1).(e2iπ, ei(θ2−θ1)), and if we re-write (A.6) as:

(eiθ1 , eiθ2) 7→

(
eiθ2−iθ1 0

0 e−iθ2+iθ1

)m(
ei(l+m)θ1 0

0 e−i(l+m)θ1

)

and fix the Z2-generator (e2iπ, eiπ), then (A.6) restricts to 4U(1) × Z2 ⊂ U(1)2 as the

homomorphism (A.5) with j = mmod2 and l + m = n. By exchanging the factors of

U(1) ⊂ U(1)2, which also exchanges (l,m) in (A.6), we get the homomorphism (A.5) with

j = lmod2 and l +m = n.

With a little extra work, the following proposition can also be seen from the previous

discussion:

Proposition A.2.2. Any SU(2)2-invariant SO(3)-bundle over O(−1)⊕O(−1), T ∗S3 or

O(−2,−2) admitting irreducible invariant connections has a lift to an SU(2)2-invariant

SU(2)-bundle.

Proof. By definition, an invariant SO(3)-bundle lifts if the homomorphism H ′ → SO(3)

from the singular isotropy subgroup H ′ to the gauge group lifts to SU(2). On the other

hand, to admit irreducible invariant connections, the invariant SO(3)-bundle restricted to

the space of principal orbits must lift to the invariant SU(2)-bundle P1 i.e. if we denote the

principal isotropy group by H, the homomorphism H → SO(3) lifts to the homomorphism

H → SU(2) given by (2.5) with n = 1.

The statement for T ∗S3 and O (−1) ⊕ O (−1) is then immediate from Proposition

A.2.1. As for O (−2,−2), the SO(3)-bundles are classified by the singular homomorphisms

U(1)2 → SO(2) ⊂ SO(3):

(eiθ1 , eiθ2) 7→

1 0 0

0 cos (lθ1 +mθ2) sin (lθ1 +mθ2)

0 − sin (lθ1 +mθ2) cos (lθ1 +mθ2)

 (A.7)

which lift to the SU(2)-homomorphism (A.6) when l,m are both even.
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By the assumption of irreducibility, we require l+m = 2, so it suffices to consider the

case where l,m are also both odd. Restricted to K2,−2 ⊂ U(1)2, this gives:

(eiθ1 , eiθ2) 7→

1 0 0

0 −1 0

0 0 −1


1 0 0

0 cos (2θ1) sin (2θ1)

0 − sin (2θ1) cos (2θ1)

 (A.8)

up to the automorphism exchanging the factors of U(1) ⊂ U(1)2. Recall from §1.10 that

both (eiπ, e2iπ), (e2iπ, eiπ) ∈ K2,−2 act trivially on the tangent space of the principal orbits

of O (−2,−2) given in terms of basis (1.16), but one of (eiπ, e2iπ), (e2iπ, eiπ) acts non-

trivially on so(3) by (A.8), and so every invariant so(3)-valued connection one-form on

the principal orbit can only take values in the set of fixed-points u(1) ⊂ so(3) and must

therefore be reducible.

In any case, now we have classified possible extensions of invariant bundles over the sin-

gular orbit in Proposition A.2.1, for the rest of this section, we will describe the conditions

for smoothly extending invariant connections and sections of the adjoint bundle.

For any SU(2)2-invariant connection A, it will suffice to describe the conditions for

extending SU(2)2-invariant adjoint-valued one-forms: if we denote λ : H ′ → SU(2) the

homomorphism extending the bundle over the singular isotropy subgroup H ′, then we can

use the canonical connection dλ over the singular orbit as an SU(2)2-invariant reference

connection to get an SU(2)2-invariant adjoint-valued one form A−dλ. In order to calculate

these extension conditions, we apply a similar analysis as in [EW00, Lemma 1.1] applied

to adjoint-valued forms, cf. [LO18].

For brevity, we will restrict to the case that the bundle extends the homogeneous

bundle P1 over the singular orbit, i.e. the bundle admits irreducible invariant connections:

recall Propositions 2.3.1, 2.3.2, on P1 pulled back to the space of principal orbits, an

SU(2)2-invariant connection A can be written:

A = a1(E2 ⊗ v1 + E3 ⊗ w1) + b1(E3 ⊗ v1 − E2 ⊗ w1)

+ a2(E2 ⊗ v2 + E3 ⊗ w2) + b2(E3 ⊗ v2 − E2 ⊗ w2) + a0E1 ⊗ u− + E1 ⊗ u+
(A.9)

for some (a0, a1, a2, b1, b2) functions of geodesic distance t ∈ R>0 from the singular orbit

at t = 0. Meanwhile, an SU(2)2-invariant section Φ of the adjoint bundle can be written:

Φ = φE1 (A.10)

for some function φ of t ∈ R>0.

Proposition A.2.3. (A.9) extends to the singular orbit S2×S2 = SU(2)2/U(1)2 on Pl,m

with l +m = 1, if and only if a0(0) = l −m, a0 is even, and:

(i) If l ≥ 1, then a1, b1 must be of degree l − 1 and a2, b2 of degree l

(ii) If m ≥ 1, then a1, b1 must be of degree m and a2, b2 of degree m− 1.

Proposition A.2.4. (A.10) extends to the singular orbit S2 × S2 = SU(2)2/U(1)2 on

Pl,m with l +m = 1, if and only if φ is even.
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Proposition A.2.5. (A.9) extends to the singular orbit S3 = SU(2)2/4SU(2) on PId

if and only if a1, a2, a0 even, b1, b2 odd, b′1(0) = −b′2(0), a1(0) − a2(0) = a0(0), and

a1(0) + a2(0) = 1.

Proposition A.2.6. (A.10) extends to the singular orbit S3 = SU(2)2/4SU(2) on PId

if and only if φ is odd.

Proposition A.2.7. (A.9) extends to the singular orbit S2 = SU(2)2/U(1) × SU(2) on

P0,Id, P1,0 iff:

(1) On P0,Id: a1, a2, a0 b1, b2 even, a1(0) = b1(0) = b2(0) = 0, a2(0) = −a0(0) = 1, and

a′′0(0) + 2a′′2(0) = b′′2(0) = 0.

(2) On P1,0: a1, b1, a2, b2, a0 even, a2(0) = b2(0) = 0, a0(0) = 1.

By exchanging the factors of SU(2) ⊂ SU(2)2 in Proposition A.2.7, we also obtain the

following corollary:

Corollary A.2.8. (A.9) extends to the singular orbit S2 = SU(2)2/SU(2) × U(1) on

PId,0, P0,1 iff:

(1) On PId,0: a1, a2, a0 b1, b2 even, a2(0) = b2(0) = b1(0) = 0, a1(0) = a0(0) = 1, and

a′′0(0)− 2a′′1(0) = b′′1(0) = 0.

(2) On P0,1: a1, b1, a2, b2, a0 even, a1(0) = b1(0) = 0, and a0(0) = −1.

Proposition A.2.9. (A.9) extends to the singular orbit S2 = SU(2)2/U(1) × SU(2) on

AdP0,Id, AdP1,0 if and only if:

(1) On P0,Id: φ even, and φ(0) = 0.

(2) On P1,0: φ even.

In the remainder of this section, we will explicitly prove these claims:

Proof of A.2.3. We first calculate the boundary extension conditions for invariant sections

of Ω1 (AdPl,m). Here, denote g = su(2), p = 〈V 1,W 1, V 2,W 2〉, and V the tangent space

of the fibre C2,−2, spanned by the Cartesian coordinate vector fields ∂
∂x0

, ∂
∂x1

. Clearly

p ⊕ V is a U(1)2-invariant splitting of the tangent space of O (−2,−2), and as U(1)2-

representations:

g = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2l,2m p = 〈V 1,W 1〉 ⊕ 〈V 2,W 2〉 ∼= C2,0 ⊕ C0,2 V ∼= C2,−2

(A.11)

while as 4U(1)× Z2-representations1:

g = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2(l+m) p = 〈V 1,W 1〉 ⊕ 〈V 2,W 2〉 ∼= C2 ⊕ C2 V ∼= R2

(A.12)

1note the factor of Z2 in K2−2
∼= 4U(1)×Z2 does not appear in the representation theory, as it always

acts trivially on the tangent space and the Lie algebra of the gauge group.
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Recall that, since l + m = 1, the space of 4U(1) × Z2-invariant adjoint-valued one-

forms in g ⊗ (V ∗ ⊕ p∗) is spanned by the real and imaginary parts of E1 ⊗
(
dx0 + idx1

)
,

(E2 + iE3)⊗
(
v1 − iw1

)
, (E2 + iE3)⊗

(
v2 − iw2

)
.

To apply the analysis of [EW00, Lemma 1.1], we use (A.11) to look for a basis in

terms of U(1)2-equivariant homogeneous polynomials p : V → g⊗ (V ∗ ⊕ p∗), evaluated at

1 ∈ V = C.

First assume l > 0. By making the identification of the fibre Cartesian coordinate

one-forms dx0 = dt and dx1 = 3tηse = 4tu− along γ(t) = (1, 1, t) ∈ SU(2)2 × C, and by

taking real and imaginary parts, we obtain the following splitting:

degree polynomial p(z) evaluation at z = 1

1 zE1 ⊗
(
dx0 + idx1

)
E1 ⊗ dt, E1 ⊗ 4tu−

l − 1 zl−1 (E2 + iE3)⊗
(
v1 − iw1

)
E2 ⊗ v1 + E3 ⊗ w1,−E2 ⊗ w1 + E3 ⊗ v1

l zl (E2 + iE3)⊗
(
v2 − iw2

)
E2 ⊗ v2 + E3 ⊗ w2,−E2 ⊗ w2 + E3 ⊗ v2

We can recover the case l ≤ 0 by exchanging Pl,m 7→ Pm,l, since clearly, the polynomials

of degree l−1 and l are exchanged by this map, and we are working under the assumption

l +m = 1.

We now apply this calculation to an invariant connection A of the proposition: the

canonical connection dλ on Pl,m is given by dλ = lE1 ⊗ u1 + mE1 ⊗ u2, so writing the

SU(2)2-invariant connection A in (A.9) as an invariant section A− dλ ∈ Ω1 (AdPl,m), we

get:

A− dλ = a1(E2 ⊗ v1 + E3 ⊗ w1) + b1(E3 ⊗ v1 − E2 ⊗ w1)

+ a2(E2 ⊗ v2 + E3 ⊗ w2) + b2(E3 ⊗ v2 − E2 ⊗ w2) + (a0 − 2l + 1)E1 ⊗ u−

So if l > 0, we require a0(0) = 2l − 1, a0 be even, a1, b1 to have degree l − 1 and a2, b2 to

have degree l to extend A. Again, one gets the corresponding claim for l ≤ 0 by exchanging

the factors of SU(2).

Proof of A.2.4. The degree of a function appearing as the coefficient of an SU(2)2-invariant

element in Ω0 (AdPl,m) on the principal orbits is determined by a U(1)2-equivariant ho-

mogeneous polynomial from V = C2,−2 to g = 〈E1〉 ⊕ 〈E2, E3〉 ∼= R⊕ C2l,2m.

When l + m = 1, there is a single degree zero polynomial given by the constant map

E1, so the invariant section Φ = φ1E1 must have φ1 even.

Proof of A.2.5. Let g denote the Lie algebra of the gauge group SU(2), V denote the

tangent space to the fibre of T ∗S3, and su(2)− denote the complement of the Lie algebra

of 4SU(2) in SU(2)2, i.e. g = 〈E1, E2, E3〉, su(2)− = 〈U−, V −,W−〉, and V is the span

of the coordinate vector fields ∂
∂x1

, ∂
∂x2

, ∂
∂x3

as in (A.4). Recall that the tangent space of

T ∗S3 can be written as the 4SU(2)-invariant splitting su(2)− ⊕ V , with 4SU(2) acting

as the adjoint on imH ⊕ imH. An invariant element of Ω1 (AdP ) is determined by an

4SU(2)-equivariant map V → g ⊗ (su(2)− ⊕ V )
∗
, where 4SU(2) acts as a 4SU(2)-

representations:

g⊗
(
su(2)− ⊕ V

) ∼= imH⊗ (imH⊕ imH)∗
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So that the space of SU(2)2-invariant one-forms on adPId is identified with the space of

4SU(2)-equivariant maps:

L : imH→ imH⊗ (imH⊕ imH)∗

Recall from the proof of A.1.5, the space of equivariant polynomial maps imH → imH ⊗
imH∗ evaluated at i ∈ imH is spanned by idR + idC2 , jC2 , and idR with respective de-

grees 0,1 and 2. Here, we are denoting the map between the trivial 4U(1) ⊂ 4SU(2)-

representations in imH as idR, and the maps corresponding to the identity and multi-

plication by complex number i between the 4U(1)-representations C2 as idC2 and jC2

respectively.

The maps idR + idC2 , in this setting, are E1 ⊗ u− + E2 ⊗ v− + E3 ⊗ w− and E1 ⊗
dx1 +E2⊗ dx2 +E3⊗ dx3, and in the coordinates on the principal orbits (A.4), these are

written:

E1 ⊗ u− + E2 ⊗ v− + E3 ⊗ w− E1 ⊗ dt+ 2t(E2 ⊗ w+ − E3 ⊗ v+)

Similarly, the maps jC2 are E2 ⊗ w− − E3 ⊗ v− and E2 ⊗ dx3 − E3 ⊗ dx2 here, and in

coordinates (A.4):

E2 ⊗ w− − E3 ⊗ v− −2t
(
E2 ⊗ v+ + E3 ⊗ w+

)
and finally, the maps idR correspond to E1 ⊗ dx1 and E1 ⊗ u−, where the first of these is

rewritten E1 ⊗ dt in coordinates on the principal orbits.

With this grading of the space of 4U(1)-invariant subspace of adjoint-valued one-forms,

we can now check the extension of any SU(2)2-invariant adjoint-valued one-form defined

on the principal orbits to t = 0, by writing any such adjoint-valued one-form as a t-

dependent linear combination of these Lie algebra-valued one-forms. To apply this result

to the connection A in (A.9), we need to use the canonical connection to get a section of

Ω1 (adPId). In this case, the canonical connection is:

dλ = E1 ⊗ u+ + E2 ⊗ v+ + E3 ⊗ w+

Writing A− dλ in terms of the basis above, this is:

A− dλ =

(
a1 + a2 − 1

2t

)
2t
(
E2 ⊗ v+ + E3 ⊗ w+

)
−
(
b1 + b2

2t

)(
E1 ⊗ dt− 2t

(
E3 ⊗ v+ − E2 ⊗ w+

))
+ (a1 − a2)

(
E1 ⊗ u− + E2 ⊗ v− + E3 ⊗ w−

)
+ (b1 − b2)

(
E3 ⊗ v− − E2 ⊗ w−

)
+ (a0 − (a1 − a2))E1 ⊗ u− +

(
b1 + b2

2t

)
E1 ⊗ dt

So we require a1−a2 to be even, a1+a2−1
t , b1− b2 be odd, and b1+b2

t , a0−a1 +a2 be degree

2 for connection A in (A.9) to extend to the singular orbit at t = 0. This is equivalent

to the requirement a1, a2, a0 even, b1, b2 odd, b′1(0) = −b′2(0), a1(0)− a2(0) = a0(0), and
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a1(0) + a2(0) = 1, as claimed.

Proof of A.2.6. Write, V , g as in the previous proof. The space of SU(2)2-invariant

sections of adP is identified with the space of 4SU(2)-equivariant maps L : V → g,

and homogeneous generators for the polynomial elements gives extension conditions for

SU(2)2-invariant sections restricted to the principal orbits. L is a 4SU(2)-equivariant

map:

L : imH→ imH

This has a single polynomial generator L(v) = v for v ∈ imH, so that for q ∈ 4SU(2),

qL(v)q−1 = L(qvq−1), and the corresponding invariant section evaluated at i ∈ imH is E1.

This generator is degree one, so 4U(1)-invariant section Φ = φE1 must have φ odd.

Proof of A.2.7. We first calculate the boundary extension conditions for invariant adjoint-

valued one-forms. Here, denote Lie algebra of the gauge group g = su(2) = 〈E1, E2, E3〉,
the space of left-invariant tangent-vectors on the singular orbit p = 〈V 1,W 1〉, and V the

tangent space of the fibre of O (−1) ⊕ O (−1) over a fixed point in S2, spanned by the

co-ordinate vector fields ∂
∂x0

, ∂
∂x1

, ∂
∂x2

, ∂
∂x3

as in (A.4). Recall that U(1)× SU(2) acts on

p trivially for the SU(2)-factor and as C2 for the U(1)-factor, and on v ∈ V (identified as

an element of H) as (eiθ, q).v = qve−iθ.

An SU(2)2-invariant adjoint-valued one-forms is determined by a U(1)×SU(2)-equivariant

map V → g⊗ (p⊕ V )∗, and we find the subset of homogeneous polynomial maps in each

of the cases of the proposition:

1. P = P0,Id: In this case, U(1)× SU(2) acts on g as imH for SU(2), and trivially for

U(1).

We first find homogeneous polynomial generators for SU(2)2-invariant adjoint-

valued one-forms on the singular orbit S2, i.e. equivariant maps L : V → g ⊗ p∗,

where the domain is identified with H, and the image is understood as a space of

real linear maps H ⊃ C → imH. In this setting, SU(2) × U(1)-equivariance is the

requirement that the map evaluated at v ∈ H given by L(v) : C → imH satisfies

L(qve−iθ).p = q
(
L(v).(e2iθp)

)
q̄ where p ∈ C, (eiθ, q) ∈ U(1)× SU(2).

There are two such polynomial generators, both of degree two: Ll(v).p = vlpv̄, for

l ∈ {j, k}. Evaluating at 1 ∈ H to the maps Ll(1).p = lp, and writing in terms of the

explicit basis for g, p, these are E2⊗v1 +E3⊗w1 and E3⊗v1−E2⊗w1 respectively.

We also find homogeneous polynomial generators for SU(2)2-invariant adjoint-valued

one-forms on the fibre V , i.e. equivariant maps L : V → g⊗V ∗, where the domain is

identified with H, and the image is understood as the space of real linear maps H→
imH. Here, SU(2) × U(1)-equivariance is the requirement that the map evaluated

at v ∈ H given by L(v) : H → imH satisfies L(qve−iθ).p = q
(
L(v).(q̄peiθ)

)
q̄ where

p ∈ H, (eiθ, q) ∈ U(1)× SU(2).
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There are two polynomial generators of degree one, given by Ll(v).p = pil̄v̄+〈p, vli〉,
where l ∈ {1, i} and 〈. , .〉 denotes the Euclidian dot-product on R4. Evaluating at

1 ∈ H to the maps p 7→ pi+〈p, i〉 and p 7→ Im (p), and writing in terms of the explicit

basis for g, V in co-ordinates (A.3), these are E1 ⊗ dt + t
(
E2 ⊗ w2 − E3 ⊗ v2

)
and

t
(
−2E1 ⊗ u− + E2 ⊗ v2 + E3 ⊗ w2

)
respectively.

There are also two polynomial generators of degree three, given by Ll(v).p = 〈vl, p〉viv̄
for l ∈ {1, i}. Evaluating at 1 ∈ H to the map p 7→ 〈l, p〉i, and writing in terms of

the explicit basis for g, V in co-ordinates (A.3), these are E1 ⊗ dt and −2tE1 ⊗ u−

respectively.

Now we have obtained this splitting of the 4U(1)-invariant subspace of adjoint-

valued one-forms, we can check the extension to the singular orbit of any SU(2)2-

invariant element of Ω1 (adPId) defined on the principal orbits. To apply this result

to the connection A in (A.9), we need to use the canonical connection to get a section

of Ω1 (adPId). In this case, the canonical connection is:

dλ = E1 ⊗ u2 + E2 ⊗ v2 + E3 ⊗ w2

So writing A− dλ in terms of our basis above:

A− dλ = a1(E2 ⊗ v1 + E3 ⊗ w1) + b1(E3 ⊗ v1 − E2 ⊗ w1)

+
a2 − 1

t

(
t(E2 ⊗ v2 + E3 ⊗ w2)− 2tE1 ⊗ u−

)
+
b2
t

(
t(E3 ⊗ v2 − E2 ⊗ w2)− E1 ⊗ dt

)
+

(a0 + 2a2 − 1)

t

(
tE1 ⊗ u−

)
+
b2
t
E1 ⊗ dt

it follows we require a1, a2, a0 b1, b2 even, a1(0) = b1(0) = b2(0) = 0, a2(0) =

−a0(0) = 1, and a′′0(0) + 2a′′2(0) = b′′2(0) = 0 to extend A to t = 0.

2. P = P1,0: In this case, U(1)× SU(2) acts on g = 〈E1〉 ⊕ 〈E2, E3〉 as R⊕ C2 for the

U(1)-factor, and trivially for the SU(2)-factor.

We first find homogeneous polynomial generators for SU(2)2-invariant adjoint-

valued one-forms on the fibre V , i.e. U(1) × SU(2)-equivariant maps L : V →
g ⊗ V ∗, where the domain is identified with H, and the image is understood as

the space of real linear maps H → imH. Here, SU(2) × U(1)-equivariance is the

requirement that the map evaluated at v ∈ H given by L(v) : H → imH satisfies

L(qve−iθ).p = einθ
(
L(v).(q̄peiθ)

)
e−inθ where p ∈ H, (eiθ, q) ∈ U(1)× SU(2).

There are two polynomial generators of degree one given by Ll(v).p = 〈p, vl〉i,
where l ∈ {1, i}, and 〈. , .〉 denotes the Euclidian dot-product on R4. Evaluating at

1 ∈ H to the maps p 7→ 〈p, l〉i and writing in terms of the explicit basis for g, V in

co-ordinates (A.3), these are E1 ⊗ dt and −2tE1 ⊗ u− respectively.
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Finally, there are an additional two polynomial generators of degree one, given by

Ll(v).p = 〈p, vli〉+il̄v̄p for l ∈ {1, i}. Evaluating at 1 ∈ H to the maps p 7→ 〈p, i〉+ip,
p 7→ Im (p), and writing in terms of the explicit basis for g, V in co-ordinates (A.3),

these are E1 ⊗ dt + t
(
E3 ⊗ v2 − E2 ⊗ w2

)
and t

(
E2 ⊗ v2 + E3 ⊗ w2 − 2E1 ⊗ u−

)
respectively.

Next, we find homogeneous polynomial generators for SU(2)2-invariant adjoint-

valued one-forms on the singular orbit, i.e. equivariant maps L : V → g ⊗ p∗,

where the domain is identified with H, and the image is understood as the space

of real linear maps H ⊃ C → imH. Here, SU(2) × U(1)-equivariance is the re-

quirement that the map evaluated at v ∈ H given by L(v) : C → imH satisfies

L(qve−iθ).p = eiθ
(
L(v).(pe−2iθ)

)
e−iθ where p ∈ C, (eiθ, q) ∈ U(1)× SU(2).

There are two polynomial generators of degree zero, the U(1)×SU(2) invariant maps

Ll(v).p = pl, where l ∈ {j, k}. Writing these in terms of the explicit basis for g, p,

these are E2 ⊗ v1 + E3 ⊗ w1 and E3 ⊗ v1 − E2 ⊗ w1 respectively.

Given our description of the 4U(1)-invariant subspace of adjoint-valued one-

forms, we can now check the extension of any SU(2)2-invariant section of Ω1 (adP1,0)

defined on the principal orbits to the zero section, since any such section must be a

linear combination of these Lie algebra-valued one-forms with associated degree.

To apply this result to the connection A in (A.9), we need to use the canonical

connection to get adjoint-valued one-form. In this case, the canonical connection is:

dλ = nE1 ⊗ u1

so writing A− dλ in terms of our basis above:

A− dλ = a1(E2 ⊗ v1 + E3 ⊗ w1) + b1(E3 ⊗ v1 − E2 ⊗ w1)

+
a2

t

((
tE2 ⊗ v2 + E3 ⊗ w2

)
− 2tE1 ⊗ u−

)
+
b2
t

(
t(E3 ⊗ v2 − E2 ⊗ w2) + E1 ⊗ dt

)
+
a0 + 2a2 − 1

t

(
tE1 ⊗ u−

)
− b2

t
E1 ⊗ dt

and so we require a1, b1, a2, b2, a0 even, a2(0) = b2(0) = 0, and a0(0) = 1 as claimed.

Proof of A.2.9. Write, V , g as in the previous proof. The space of SU(2)2-invariant sec-

tions of adP is identified with the space of U(1) × SU(2)-equivariant maps L : V → g,

and homogeneous generators for the polynomial elements gives extension conditions for

SU(2)2-invariant sections restricted to the principal orbits.

1. P = P0,Id: in this case, a map L : H → imH is U(1) × SU(2)-equivariant if

L(qve−iθ) = qL(v)q̄, where v ∈ H, (eiθ, q) ∈ U(1)× SU(2). This has a single degree

two homogeneous polynomial generator L(v) = viv̄, which evaluates at 1 ∈ H to

i ∈ imH corresponding to the element E1 ∈ g. Hence, the invariant section Φ = φE1

must have φ(0) = 0, and φ even.
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2. P = P1,0: in this case, a map L : H → imH is U(1) × SU(2)-equivariant if

L(qve−iθ) = eiθL(v)e−iθ, where v ∈ H, (eiθ, q) ∈ U(1) × SU(2). This has a sin-

gle degree zero homogeneous polynomial generator given by the constant map i,

corresponding to the element E1 ∈ g. Hence, the invariant section Φ = φE1 must

have φ even.

A.3 Bundle Data: Eguchi-Hanson

In this section of the appendix, we consider extending SU(2)-invariant connections on

T ∗CP1, equipped with the Eguchi-Hanson metric (1.5), smoothly over the singular orbit

CP1 via the method of [EW00].

Recall Example 1.1.3, if we identify the underlying space of T ∗CP1 with T ∗CP1 =

SU(2)×U(1)C2, where C2 is the irreducible U(1)-representation with weight two, then the

obvious SU(2)-action on T ∗CP1 has the group diagram Z2 ⊂ U(1) ⊂ SU(2).

There is a family of SU(2)-invariant SU(2)-bundles on T ∗CP1 defined by the homo-

morphism λl : U(1) → SU(2) given by taking l’th power of the diagonal embedding

λ : U(1) ↪→ SU(2) for some l ∈ Z>0. Recall that on these bundles, any smooth SU(2)-

invariant connection over the space of principal orbits can be put into the diagonal form:

A = α1E1 ⊗ e1 + α2E2 ⊗ e2 + α3E3 ⊗ e3 (A.13)

for some α1, α2, α3 smooth functions of the geodesic distance t ∈ R>0 from the singular

orbit at t = 0.

To ensure this connection extends smoothly to the singular orbit at t = 0, we compute:

Proposition A.3.1. (A.13) extends smoothly over the singular orbit CP1 = SU(2)/U(1)

on the invariant bundle defined by λl if and only if α1 is even, α1(0) = l, α2 + α3 has

degree l − 1, and α2 − α3 has degree l + 1.

Here, we refer to a function α(t) defined on some open neighbourhood of 0 ∈ [0,∞) as

having degree d ≥ 0 if α(t)t−d is a smooth, even function of t in this neighbourhood.

Proof. First, we note that the singular isotropy subgroup U(1) acts on the tangent space

of T ∗CP1 over the identity coset in the base CP1 = SU(2)/U(1) as two copies of C2: one

spanned by left-invariant vector-fields E2, E3 on CP1, and one spanned by the vector-fields

in the fibre C2. Moreover for each l ∈ Z, U(1) acts on the Lie algebra of the gauge group as

R⊕C2l, where the trivial representation is spanned by E1, and the weight 2l-representation

is spanned by E2, E3.

By [EW00], an SU(2)-invariant Lie-algebra valued one-form extends smoothly over the

singular orbit if it is in the image of the evaluation map at some non-zero z ∈ C2, on the

space of U(1)-equivariant homogoneous polynomial maps C2 7→ (R⊕ C2) ⊗R (C2 ⊕ C2)∗

of degree d, with coefficients given by smooth functions of degree d.

To understand this in more detail, we shall see an example: we can construct two

U(1)-equivariant degree-one homogeneous polynomials Rez, Imz taking z ∈ C2 to R-linear

maps Rez, Imz : C2 → R defined by Rez(w) := Re(z̄w), Imz(w) := Im(z̄w) for w ∈ C2.
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Evaluating Rez, Imz at z = 1 gives the corresponding SU(2)-invariant adjoint-valued one-

forms E1 ⊗ e2, E1 ⊗ e3, E1 ⊗ dx0, and E1 ⊗ dx1, where dx0, dx1 denote the Cartesian

coordinate one-forms on the fibre C2.

We can repeat a similar construction for equivariant homogeneous polynomial maps

pz : C2 7→ C2⊗R (C2 ⊕ C2)∗. By evaluating at z = 1 and taking real and imaginary parts,

we get the following table:

degree polynomial pz evaluation at z = 1

1 z̄E1 ⊗ (e2 + ie3) E1 ⊗ e2, E1 ⊗ e3

l − 1 zl−1 (E2 + iE3)⊗
(
e2 − ie3

)
E2 ⊗ e2 + E3 ⊗ e3,−E2 ⊗ e3 + E3 ⊗ e2

l + 1 zl+1 (E2 + iE3)⊗
(
e2 + ie3

)
E2 ⊗ e2 − E3 ⊗ e3, E2 ⊗ e3 − E3 ⊗ e2

with a similar table replacing e2, e3 with the Cartesian coordinate one-forms dx0, dx1 on

the fibre. Note that by switching to polar coordinates in C2, we can identify dx0 = dt and

dx1 = 2te1 along the ray γ(t) = t ∈ C2.

Now, to apply [EW00] to the connection (A.13), we can use the canonical connection

dλl = lE1 ⊗ e1 on this bundle as a reference connection, to get the adjoint-valued one

form A− dλl, which extends over t = 0 if and only if A extends. Along γ(t), we can write

A− dλl in terms of our basis:

A− dλl = α1−l
2t (2tE1 ⊗ e1) + 1

2(α2 + α3) (E2 ⊗ e2 + E3 ⊗ e3)

+ 1
2(α2 − α3) (E2 ⊗ e2 − E3 ⊗ e3)

So, for A to extend smoothly over the singular orbit at t = 0, we require α1(0) = l, α1 to

be even, α2 + α3 to be degree l − 1, and α2 − α3 to be degree l + 1.
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Appendix B

Singular Initial Value Problems

For use in the following proof, we note that the Calabi-Yau structure on T ∗S3 is given by

(1.27), and we compute the power-series near t = 0 of the following expressions:

4λ

µ
=

2

t
+O(t)

3 (v3 − v0)

2λµ
=

1

t
+O(t)

3 (v3 + v0)

2λµ
=

9

4
t+O(t3)

3v0

µ2
= − 1

2t2
+

3

2
+O(t2)

3v3

µ2
=

1

2t2
+

3

4
+O(t2)

Proof of Proposition 3.1.3. Let (a0, a1, a2, φ) be a solution to (2.8) on T ∗S3. Using Prop.

A.2.5, define smooth functions a−, A+, ψ such that a1 − a2 = a−, a1 + a2 = 1 + t2A+,

φ = tψ. Then y(t) = (a0, ψ,A+, a−) must satisfy a singular initial value problem with

linearisation:

dy0M−1 =


−1 0 0 1

0 −1 −1 9
4ξ

9
4ξ −2 −2 9

4ξ

2 0 0 −2


at initial value y0 =

(
ξ, 9

8(ξ2 − 1)− χ, ξ, χ
)

for some ξ, χ ∈ R. This initial value problem

has a unique solution once we fix y0, since det(kId− dy0M−1) = (k + 3)2 k2.

For use in the following proofs, we note that the Calabi-Yau structure on O(−1) ⊕
O(−1) is given by (1.26) with U1 = −U0 = −u0 = 1, and the power-series of λ, u1, µ near

t = 0 satisfy:

λ(t) =
3

2
t+O(t3) u1 = 1 +

3

2
t2 +O(t4) µ =

√
3t+O(t3)

Proof of Propositions 3.1.6. Let (a0, a1, a2, φ) be a solution to (2.8) on O(−1) ⊕ O(−1).

Using Prop. A.2.7 for extending on P1,0, y(t) = (a0, a1, a2, φ) satisfies a singular initial

value problem with linearisation:

dy0M−1 =


−2 0 0 0

0 0 0 −2
√

3ε′

ε′ 0 0 − 4√
3
δ′

0 0 0 −2


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at initial value y0 = (1, ε′, 0, δ′) for some ε′, δ′ ∈ R. This initial value problem has a unique

solution once we fix y0, since det(kId− dy0M−1) = (k + 2)2 k2.

Proof of Proposition 3.1.5. Let (a0, a1, a2, φ) be a solution to (2.8) on O(−1) ⊕ O(−1).

Using Prop. A.2.5 for extending on P0,Id, we define smooth functions X0, X1, X2, ψ such

that a0 = −1+ t2X0, a1 = t2X1, a2 = 1+ t2X2, and φ = t2ψ. Then y(t) = (X0, X1, X2, ψ)

satisfies a singular initial value problem with linearisation:

dy0M−1 =


−4 0 0 −8

0 −2 −2
√

3 0

0 − 4√
3

−4 0

−1 0 0 −2


at initial value y0 =

(
ε,− 1√

3
δ,−1

2ε, δ
)

. This initial value problem has a unique solution

once we fix y0, since det(kId− dy0M−1) = (k + 6)2 k2.
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[FNO20] Daniel Fadel, Ákos Nagy, and Gonçalo Oliveira. The asymptotic geometry of

G2 -monopoles. to appear in Mem. Amer. Math. Soc., 2020. arXiv:2009.06788.

[HHM04] Tamás Hausel, Eugenie Hunsicker, and Rafe Mazzeo. Hodge cohomology of

gravitational instantons. Duke Math. J., 122(3):485–548, 2004.

[Hit00] Nigel Hitchin. The geometry of three-forms in six dimensions. J. Differential

Geom., 55(3):547–576, 2000.

[Hit01] Nigel Hitchin. Stable forms and special metrics. In Global differential geom-

etry: the mathematical legacy of Alfred Gray (Bilbao, 2000), volume 288 of

Contemp. Math., pages 70–89. Amer. Math. Soc., Providence, RI, 2001.

[Joy07] Dominic D. Joyce. Riemannian Holonomy Groups and Calibrated Geometry.

Number 12 in Oxford Graduate Texts in Mathematics. Oxford University

Press, 1st edition, 2007.

[Kar09] Spiro Karigiannis. Desingularization of G2 manifolds with isolated conical

singularities. Geom. Topol., 13(3):1583–1655, 2009.

[LO18] Jason D. Lotay and Goncalo Oliveira. SU(2)2-invariant G2-instantons. Math.

Ann., 371(1-2):961–1011, 2018.

[Mar56] L. Markus. Asymptotically autonomous differential systems. In Contributions

to the theory of nonlinear oscillations, vol. 3, Annals of Mathematics Studies,

no. 36, pages 17–29. Princeton University Press, Princeton, N.J., 1956.

[MNT22] Karsten Matthies, Johannes Nordström, and Matt Turner. SU(2)2 ×
U(1)-invariant G2-instantons on the AC limit of the C7 family, 2022.

arXiv:2202.05028.

[MS13] Thomas Bruun Madsen and Simon Salamon. Half-flat structures on S3 × S3.

Ann. Global Anal. Geom., 44(4):369–390, 2013.

[Nak90] Hiraku Nakajima. Moduli spaces of anti-self-dual connections on ALE gravi-

tational instantons. Invent. Math., 102(2):267–303, 1990.

[Oli16] Goncalo Oliveira. Calabi-Yau monopoles for the Stenzel metric. Comm. Math.

Phys., 341(2):699–728, 2016.

[Pal57] Richard S. Palais. A global formulation of the Lie theory of transformation

groups. Mem. Amer. Math. Soc., 22:iii+123, 1957.

96



[PZT01] Leopoldo A. Pando Zayas and Arkady A. Tseytlin. 3-branes on spaces with

R× S2 × S3 topology. Phys. Rev., D63:086006, 2001.

[Spa11] James Sparks. Sasaki-Einstein manifolds. In Surveys in differential geometry.

Volume XVI. Geometry of special holonomy and related topics, volume 16 of

Surv. Differ. Geom., pages 265–324. Int. Press, Somerville, MA, 2011.

[Ste93] Matthew B. Stenzel. Ricci-flat metrics on the complexification of a compact

rank one symmetric space. Manuscripta Math., 80(2):151–163, 1993.

[Ste21] Jakob Stein. SU(2)2-invariant gauge theory on asymptotically conical Calabi-

Yau 3-folds, 2021. arXiv:2110.05439.

[Tia00] Gang Tian. Gauge theory and calibrated geometry. I. Ann. of Math. (2),

151(1):193–268, 2000.

[Wal17] Thomas Walpuski. G2-instantons, associative submanifolds and Fueter sec-

tions. Comm. Anal. Geom., 25(4):847–893, 2017.

[Wan58] Hsien-chung Wang. On invariant connections over a principal fibre bundle.

Nagoya Math. J., 13:1–19, 1958.

[WG68] Joseph A. Wolf and Alfred Gray. Homogeneous spaces defined by Lie group

automorphisms. II. J. Differential Geometry, 2:115–159, 1968.

97


	Background
	Gauge Theory in Four Dimensions
	Calabi-Yau structures
	G2 structures

	Calabi-Yau Gauge Theory: Set-up and Results
	Overview
	Monopole and Instanton Equations
	Invariant Monopole and Instanton ODEs
	Reducible Solutions

	Calabi-Yau Gauge Theory: Analysis
	Local Solutions
	Solutions to the Instanton Equations
	Bubbling
	Solutions to the Monopole Equations

	G2 Gauge Theory
	G2 Gauge Theory: Set-Up
	Invariant Instanton ODEs
	Deformation Theory

	Extending invariant data to the singular orbit
	Calabi-Yau structures
	Bundle Data
	Bundle Data: Eguchi-Hanson

	Singular Initial Value Problems

