1 Increasing test specificity without impairing sensitivity –

2 lessons learned from SARS-CoV-2 serology

3	Thomas Perkmann MD*1, Thomas Koller MD*1, Nicole Perkmann-Nagele MD1, Maria Oszvar-Kozma
4	MSc ¹ , David W Eyre DPhil ² , Philippa Matthews DPhil ³ , Abbie Bown MD ⁴ , Nicole Stoesser DPhil ³ , Marie-
5	Kathrin Breyer MD PhD ⁵ , Robab Breyer-Kohansal MD ⁵ , Otto C Burghuber MD ⁶ , Sylvia Hartl MD ^{5,6} , Daniel
6	Aletaha MD ⁷ , Daniela Sieghart PhD ⁷ , Peter Quehenberger MD ¹ , Rodrig Marculescu MD ¹ , Patrick Mucher
7	MSc ¹ , Astrid Radakovics MSc ² , Miriam Klausberger PhD ⁸ , Mark Duerkop PhD ⁹ , Barbara Holzer PhD ¹⁰ ,
8	Boris Hartmann PhD ¹⁰ , Robert Strassl MD ¹ , Gerda Leitner MD ¹¹ , Florian Grebien PhD ¹² , Wilhelm Gerner
9	PhD ^{13,14,15} , Reingard Grabherr PhD ⁸ , Oswald F Wagner MD ¹ , Christoph J Binder MD PhD ¹ , and Helmuth
10	Haslacher MD PhD ^{1*}
11	¹ Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
12	² Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
13	³ Nuffield Department of Medicine, University of Oxford, Oxford, UK
14	⁴ Public Health England (PHE) Porton Down, Salisbury, UK
15	⁵ Department of Respiratory and Critical Care Medicine and Ludwig Boltzmann Institute for Lung Health, Otto Wagner Hospital,
16	Vienna, Austria
17	⁶ Sigmund Freud University, Medical School and Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
18	⁷ Divison of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
19	⁸ Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU)
20	Vienna, Vienna, Austria
21	⁹ Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences
22	(BOKU) Vienna, Vienna, Austria
23	¹⁰ Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Moedling, Austria
24	¹¹ Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
25	¹² Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
26	¹³ Institute of Immunology, University of Veterinary Medicine Vienna, Austria
27	¹⁴ Christian Doppler Laboratory for an Optimized Prediction of Vaccination Success in Pigs, University of Veterinary Medicine,
28	Vienna, Austria
29	¹⁵ The Pirbright Institute, Pirbright, United Kingdom (current)
30	*both authors contributed equally

- 31 Address all correspondence to:
- 32 Helmuth HASLACHER, LECT MD PhD MSc BSc BA
- 33 Medical University of Vienna
- 34 Department of Laboratory Medicine
- 35 Waehringer Guertel 18-20
- 36 1090 Vienna
- 37 Austria
- 38 Tel: +43 1 40400 53190
- 39 Fax: +43 1 40495 15547
- 40 Mail: <u>helmuth.haslacher@meduniwien.ac.at</u>

41 Abstract

42 Background

43 Serological tests are widely used in various medical disciplines for diagnostic and

- 44 monitoring purposes. Unfortunately, the sensitivity and specificity of test systems is often
- 45 poor, leaving room for false positive and false negative results. However, conventional
- 46 methods used to increase specificity decrease sensitivity and vice versa. Using SARS-
- 47 CoV-2 serology as an example, we propose here a novel testing strategy: the
- 48 "Sensitivity Improved Two-Test" or "SIT²" algorithm.

49 Methods

- 50 SIT² involves confirmatory re-testing of samples with results falling in a predefined
- 51 retesting-zone of an initial screening test, with adjusted cut-offs to increase sensitivity.
- 52 We verified and compared the performance of SIT² to single tests and orthogonal testing
- 53 (OTA) in an Austrian cohort (1,117 negative, 64 post-COVID positive samples) and
- 54 validated the algorithm in an independent British cohort (976 negatives, 536 positives).

55 Results

- 56 The specificity of SIT² was superior to single tests and non-inferior to OTA. The
- 57 sensitivity was maintained or even improved using SIT² when compared to single tests
- 58 or OTA. SIT² allowed correct identification of infected individuals even when a live virus
- 59 neutralization assay could not detect antibodies. Compared to single testing or OTA,
- 60 SIT² significantly reduced total test errors to 0.46% (0.24-0.65) or 1.60% (0.94-2.38) at
- 61 both 5% or 20% seroprevalence.

62 Conclusion

63 For SARS-CoV-2 serology, SIT² proved to be the best diagnostic choice at both 5% and

- 64 20% seroprevalence in all tested scenarios. It is an easy to apply algorithm and can
- 65 potentially be helpful for the serology of other infectious diseases.

66 Running Head

67 Sensitivity-improved two-test serology

68 Keywords

69 serology; allergy and immunology; medical laboratory science

70 Key messages

71 What is already known on this topic

Serological tests are widely used throughout medical disciplines. When a serological assay is to be established, usually a threshold is defined above or below which a result is considered indicative of a certain medical condition. This cut-off comes with a distinct sensitivity and specificity. Sensitivity and specificity are communicating vessels – increasing one comes at the cost of the other. Common orthogonal testing algorithms concentrate on confirming positive cases, thereby increasing specificity, but decreasing sensitivity.

79 What this study adds

Here, we propose a novel orthogonal test algorithm applying serological assays with adjusted cut-offs. The reduction of the thresholds for positivity in both the screening and confirmation tests, as well as the additional introduction of a high cut-off in the screening test, above which no further confirmation is required, allows to increase the specificity without compromising the sensitivity. This alorithm, which we termed "Sensitivityimproved Two-Test, SIT²", was derived in an Austrian cohort using 5 different SARS-

86 CoV-2 antibody tests and validated in an independent UK cohort.

87 How this study might affect research, practice or policy

This paper clearly shows that, in the case of SARS-CoV-2 serology, the use of two randomly chosen test systems allowed for increasing test specificity without impairing its sensitivity. This is of specific interest, when an ongoing pandemic leads to waning antibody levels – in this case, sensitivities should not be further impaired. Furthermore, we are confident that the principle of SIT² is universally applicable and that this algorithm could also be used with serological assays other than those for SARS-CoV-2.

94 1. Introduction

95 Serological tests are commonly used diagnostic tools in a broad medical field, spanning 96 from infectiology [1, 2] to autoimmunity [3, 4], oncology [5] and transplantation medicine 97 [6]. They also play a critical role in animal disease surveillance [7]. However, many 98 serological tests come with acceptable but imperfect sensitivities and specificities. Tests 99 with specificities slightly above 90% are considered good [8] or even highly specific [5]. 100 However, at low seroprevalence rates, every single percent counts: if the frequency of a 101 given disease in the tested population is only 5%, a specificity of 90% would mean that -102 even at a sensitivity of 100% - 5 true positives would be matched by ten false positives. 103 Thus, the probability of an individual with a positive test (positive predictive value, PPV) 104 to be a true positive would be only 33%.

105 During the early phase of the SARS-CoV-2 pandemic, seroprevalences were far below 106 1% [9]. Therefore, highly specific test systems were necessary (>99.5%) to provide good 107 positive predictive values [10]. Sensitivity and specificity can be seen as communicating 108 vessels – the improvement of one is usually at the expense of the other [11]. 109 Consequently, test systems adjusted by the manufacturers to very high specificities 110 (>99%) showed moderate sensitivity. This problem was particularly evident when non-111 hospitalized patients were included in the cohorts studied [12-14]. To further increase 112 specificity at very low seroprevalence levels, various methods have been proposed, e.g., 113 raising the thresholds for positivity or confirming a positive result with a second test 114 (orthogonal testing) [11, 15, 16]. Unfortunately, these specificity improvement strategies 115 inevitably lead to a further reduction of the previously moderate sensitivities. 116 As the pandemic progressed, the problem became more pronounced as antibodies 117 declined, and sophisticated statistical models were required to compensate for the

waning sensitivity [17]. In the case of SARS-CoV-2, as with any evolving pandemic,
increasing seroprevalence rates worldwide have attenuated the need for higher
specificity.

However, the problem persists in non-epidemic diseases where seroprevalence remains
low. Moreover, each new pandemic begins with extremely low seroprevalence rates as
well, and in the future, we should have better diagnostic strategies in infectious serology
ready here.

In the present work, we propose for the first time an orthogonal test algorithm based on
real-life data for the SARS-CoV-2 antibody tests of Roche, Abbott, DiaSorin, and two
commercial SARS-CoV-2 ELISAs [18] intending to maximize both specificity and

128 sensitivity at the same time. Although our algorithm follows a general principle, it was 129 developed based on SARS-CoV-2 antibody tests. The SARS-CoV-2 pandemic provided 130 a unique opportunity in this regard, as historical samples from before the pandemic are 131 negative by definition (thus allowing accurate specificity testing). In addition, sufficient 132 PCR-confirmed positive cases were available quickly, ensuring a sophisticated and 133 reliable sensitivity verification. Thus, for SARS-CoV-2 - in contrast to most other 134 circulating microorganisms - a realistic and unusually accurate estimation of specificities 135 and sensitivities of serological tests was possible. We benefited from this advantage to 136 develop our sophisticated diagnostic algorithm.

137 **2. Methods**

138 2.1. Study design and cohorts

Sera used in this non-blinded prospective cross-sectional study were either residual
clinical specimens or samples stored in the MedUni Wien Biobank (n=1,181), a facility
specialized in the preservation and storage of human biomaterial, which operates within
a certified quality management system (ISO 9001:2015) [19].

143 For derivation of the SIT² algorithm, sample sets from individuals known to be negative

144 and positive were established for testing. As previously described [20], samples

145 collected before 01.01.2020 (i.e., assumed SARS-CoV-2 negative) were used as a

146 specificity cohort (n=1117): a cross-section of the Viennese population (the LEAD

147 study)[21], preselected for samples collected between November and April to enrich for

148 seasonal infections (n=494); a collection of healthy voluntary donors (n= 265); a

149 disease-specific collection of samples from patients with rheumatic diseases (n=358);

150 (see also Tables S1 and S2).

151 The SARS-CoV-2 positive cohort (n=64 samples from n=64 individuals) included 152 patients testing positive with RT-PCR during the first wave and their close, symptomatic 153 contacts. Of this cohort five individuals were asymptomatic, 42 had mild-moderate 154 symptoms, four reported severe symptoms, and 13 were admitted to the Intensive Care 155 Unit (ICU). The timing of symptom onset was determined by a questionnaire for 156 convalescent donors and by reviewing individual health records for patients and was in 157 median 41 [26,25-49] days. For asymptomatic donors (n=5), SARS-CoV-2 RT-PCR 158 confirmation time was used instead (for more details, see Tables S1 and S3). All 159 included participants gave written informed consent to donate their samples for research 160 purposes. The overall evaluation plan conformed with the Declaration of Helsinki as well 161 as relevant regulatory requirements. It was reviewed and approved by the ethics 162 committee of the Medical University of Vienna (1424/2020).

For validation of the SIT² algorithm, we used data from an independent United Kingdom
cohort [22], including 1,512 serum/plasma samples (536 PCR confirmed SARS-CoV-2
positive cases; 976 negative cases, collected earlier than 2017).

166 2.2. Antibody testing

For the derivation analyses, SARS-CoV-2 antibodies were either measured according to
the manufacturers' instructions on three different commercially available automated
platforms (Roche Elecsys® SARS-CoV-2 [total antibody assay detecting IgG, IgM and
IgA antibodies against the viral nucleocapsid, further referred to as Roche NC], Abbott
SARS-CoV-2-IgG assay [nucleocapsid IgG assay, Abbott NC], DiaSorin LIASION®
SARS-CoV-2 S1/S2 assay [S1/S2 combination antigen IgG assay, DiaSorin S1/S2]) or
using 96-well enzyme-linked immunosorbent assays (ELISAs) (Technoclone

Technozym® RBD and Technozym® NP) yielding quantitative results[18] (for details see Supplement, Supplemental Methods). The antibody assays used in the validation cohort were Abbott NC, DiaSorin S1/S2, Roche NC, Siemens RBD total antibody, and a novel 384-well trimeric spike protein ELISA (Oxford Immunoassay) [22], resulting in 20 evaluable combinations. All samples from the Austrian SARS-CoV-2-positive cohort also underwent live virus neutralization testing (VNT), and neutralization titers (NT) were calculated, as is described in detail in the Supplemental Methods.

181 2.3. Sensitivity improved two-test method (SIT²)

Our newly developed sensitivity improved two-test (SIT²) method consists of the
following key components: i) sensitivity improvement by cut-off modification and ii)
specificity rescue by a second, confirmatory test (Fig. 1A).

185 For the first component of the SIT² algorithm, positivity thresholds were optimized for 186 sensitivity according to the first published alternative thresholds for the respective 187 assays, calculated e.g. by ROC-analysis [23-25]. Additionally, a high cut-off, above 188 which a result can be reliably regarded as true positive without the need for further 189 confirmation, was defined. These levels were based on in-house observations[20] and 190 represent those values (including a safety margin) above which no more false positives 191 were found. The highest results seen in false-positives were 1.800 COI, 2.86 Index, and 192 104.0 AU/mL, respectively. Hence, we defined the high cut-off for Roche and Abbott as 193 3.00 COI/Index and for DiaSorin as 150.0 AU/mL. The lowering of positivity thresholds 194 improves sensitivity; the high cut-off prevents unnecessary re-testing of clearly positive 195 samples. Moreover, the high cut-off avoids possible erroneous exclusion by the 196 confirmatory test. The newly defined interval between the reduced threshold for positivity 197 and the high cut-off is the re-testing zone (Fig. 1A). The initial antibody test (screening 198 test) is then followed by a confirmatory test, whereby positive samples from the re-199 testing zone of the screening test are re-tested. Also, for the confirmatory test, 200 sensitivity-adapted assay thresholds are needed (Figs.1A, 1B). As false-positive 201 samples are usually only positive in one test system (Fig. S1), false positives can be 202 identified, and specificity markedly restored with minimal additional testing as most 203 samples do not fall within the re-testing zone [16, 20]. A flowchart of the testing strategy

and the applied cut-off levels and their associated quality criteria are presented in Figs.1B, 1C.

206 2.4. Test strategy evaluation

207 On the derivation cohort, we compared the overall performance of the following SARS-208 CoV-2 antibody testing strategies: i) testing using single assays: ii) simple lowering of 209 thresholds; iii) classical orthogonal testing (OTA), and iv) our newly developed SIT² 210 algorithm at assumed seroprevalences of 5% and 20%. As part of the derivation, we 211 then compared the performance of OTAs and SIT² against the results of a virus 212 neutralization assay. On the validation cohort, we then compared the performance of 213 OTAs and SIT². Finally, we used data from this cohort to evaluate the performance of 214 SIT² versus single tests at seroprevalences of 5%, 10%, 20%, and 50% if the Abbott and 215 DiaSorin assays (i.e., assays with varying degrees of discrepancies in sensitivity and 216 specificity) were used.

217 2.5. Statistical analysis

218 Unless otherwise indicated, categorical data are given as counts (percentages), and 219 continuous data are presented as median (interguartile range). Total test errors were 220 compared by Mann-Whitney tests or, in case they were paired, by Wilcoxon tests. 95% 221 confidence intervals (CI) for sensitivities and specificities were calculated according to 222 Wilson, 95% CI for predictive values were computed according to Mercaldo-Wald unless 223 otherwise indicated. Sensitivities and specificities were compared using z-scores. P 224 values <0.05 were considered statistically significant. All calculations were performed 225 using Analyse-it 5.66 (Analyse-it Software, Leeds, UK) and MedCalc 19.6 (MedCalc

- bvba, Ostend, Belgium). Graphs were drawn using Microsoft Visio (Armonk, USA) and
- 227 GraphPad Prism 7.0 (La Jolla, USA).

228 **3. Results**

In the derivation cohort of 1,117 pre-pandemic sera and 64 sera from convalescent

230 COVID-19 patients (80% non-hospitalized, 20% hospitalized), the Roche NC, Abbott

NC, and DiaSorin S1/S2 antibody assays gave rise to 7/64, 10/64, and 11/64 false-

negative, as well as to 3/1,117, 9/1,117, and 20/1,117 false-positive results. Assuming a

seroprevalence of 20%, this led to 2180, 3120, and 3440 false-negative results per

234 100,000 tests, and 240, 650 and 1,440 false-positive results per 100,000 tests

235 respectively (Fig. 2A, right panel).

236 3.1. Effects of threshold lowering on Sensitivity and Specificity

Lowering the positivity thresholds for the Roche NC, Abbott NC, and Diasorin S1/S2 to 0.165 COI, 0.55 Index and 9 AU/mL increased the sensitivity significantly and reduced false-negative results to 63/64, 62/64, and 57/64 (320, 620, and 2,180 per 100,000 tests at a seroprevalence of 20%), but substantially increased false-positive results to 18/1,117, 27/1,117, and 31/1,117, respectively (1,280, 1,920 and 2,240 per 100,000 tests, an assumed seroprevalence of 20%; Table S4, Fig. 2A, right panel).

243 3.2. Classical OTA compared to SIT²

Subsequently, we evaluated 12 OTA combinations using the fully automated SARS-CoV-2 antibody tests from Roche NC, Abbott NC, and DiaSorin S1/S2 as screening tests, each combined with one of the other fully automated assays or a commercially available NC or RBD-specific ELISA as a confirmation test. Combining these tests as classical OTAs significantly increased specificity and reduced false positives to 0 (0-1)/1,117. However, the rate of false negatives was 14 (12-16)/64 (1,095 [955-1,230] per 100,000 tests at 20% seroprevalence), and therefore considerably higher than for single testing strategies. In contrast, the SIT² algorithm minimized false positives to 0 (02)/1,117 (0 [0-140) per 100,000 tests at 20% seroprevalence) while also reducing false
negatives to 5 (3-8)/64 (1,560 [940-2420] per 100,000 tests at 20% seroprevalence, Fig.
2A right panel; Table S5).

3.3. 255 Reduction of total error rates by the Sensitivity-Improved Two-Test Of all the methods assessed, SIT² reached the lowest total error rates per 100.000 tests 256 257 under both 5% and 20% assumed seroprevalence (455 [235-685] and 1,600 [940-2,490] 258 per 100,000 tests) (Fig. 2B). At a seroprevalence of 5 %, OTA on average performed 259 better than individual tests, and the total error rates of the single tests were higher for 260 the Abbott NC and DiaSorin S1/S2 assay (OTA 1,095 [955-1,325] vs. 830 [Roche NC], 261 1,540 [Abbott NC] and 2,570 [DiaSorin S1/S2] per 100,000 tests). But with a 262 seroprevalence of 20 %, performance of OTAs, worsened compared to single tests 263 (OTA 4,380 [3,820-5,000] vs 1,600 [Roche], 2,540 [Abbott] and 4,420 [DiaSorin] per 264 100,000 tests) (Fig. 2B). Therefore, at both 5% and 20% seroprevalence, SIT² resulted 265 in the lowest overall errors. Compared to OTAs, SIT² yielded a similar improvement in 266 specificity while not suffering from the significant sensitivity reduction (Fig. S2). Since the 267 better overall performance of SIT² compared to OTAs was not due to increased 268 specificity but improved sensitivity, we subsequently set out to examine these 269 differences in more detail.

3.4. Sensitivities of single tests, OTA and SIT² in relation to Neutralization
Testing

272 Next, we compared the sensitivities of the three screening tests as single tests and in
273 both two-test methods (OTA and SIT²), benchmarking them using the Austrian

274 sensitivity cohort (n=64) simultaneously evaluated with an authentic SARS-CoV-2 virus 275 neutralization test (VNT). Regardless of the screening test used (Roche NC, Abbott NC, 276 or DiaSorin S1/S2), OTAs had lower sensitivities than single tests (80.5% [78.5-83.6], 277 78.1% [75.8-82.8], or 75.8% [71.5-78.9] vs. 89.1%, 84.4%, or 82.8% respectively), and 278 SIT² showed the best sensitivities of all methods (95.3% [93.0-96.5], 93.8% [92.2-96.5], 279 or 87.5% [85.1-88.7]) (Fig. 3). SIT² algorithms, including the Roche NC and Abbott NC 280 assays, achieved similar or even higher sensitivities than VNT (Fig. 3, VNT reference 281 line), made possible by the unique re-testing zone of SIT² (Fig. S3).

282 3.5. Validation of the Sensitivity-Improved Two-Test using an

283 independent cohort

To confirm the improved sensitivity of SIT² compared to OTA, we analyzed the 284 285 sensitivities of OTAs and SIT² in an independent validation cohort of 976 pre-pandemic 286 samples and 536 post-COVID samples. Out of 20 combinations using the assays Roche 287 NC (total antibody), Abbott NC (IgG), DiaSorin S1/S2 (IgG), Siemens RBD (total 288 antibody), and Oxford trimeric-S (IgG), a statistically significant improvement in sensitivities over OTAs was shown for SIT² in 18 combinations (Fig. 4). The 289 290 performance was comparable for the remaining two combinations (Siemens RBD with 291 Oxford trimeric-S and vice versa). Still, no statistically significant improvement could be 292 achieved due to the high pre-existing sensitivities of these assays on this particular 293 sample cohort.

To further illustrate the effect of SIT² on the outcome of SARS-CoV-2 antibody testing, we compared single testing versus SIT² with the Abbott and DiaSorin assays at varying assumed seroprevalences (5, 10, 20, and 50%), given that the Abbott NC assay is a

highly specific (99.9%), but moderately sensitive test (92.7%), and the DiaSorin S1/S2
assay has the most limited specificity (98.7%) of all evaluated assays but an acceptable
sensitivity (96.3%). Regardless of whether a lack of specificity (DiaSorin S1/S2) or
sensitivity (Abbott NC) had to be compensated for, SIT² improved the overall error rate
compared to the individual tests in all four combinations and at all four assumed
seroprevalence levels (Fig. 5).

303 4. Discussion

304 Serology is a commonly used, multi-purpose analytical method [1-6]. However, not all 305 serologic assays have appropriate sensitivities and specificities, especially in low-306 prevalence settings. The SARS-CoV-2 pandemic prompted the simultaneous 307 development of several antibody tests and, which is rare otherwise, allowed to evaluate 308 these tests with both confirmed positive and negative cases, the latter derived from 309 biobank collections established before the virus emerged. In the case of SARS-CoV-2, 310 false-positive samples are usually not simultaneously reactive in different test systems 311 [16, 20]. This led to the hypothesis that reducing the threshold for positivity in screening 312 and confirmation tests would increase the specificity without impairing the sensitivity. A 313 further improvement in sensitivity was possible by defining a high cut-off for the 314 screening test, above which, due to the excellent reliability of high test results, no further 315 confirmation (and, thereby, a possible false-negative result in the confirmation test) was 316 necessary.

317 In the early waves of the SARS-CoV-2 pandemic, many commercially available SARS-318 CoV-2 antibody tests did not provide sufficient specificity to achieve acceptable positive 319 predictive values (PPVs), for example, at a seroprevalence rate of 1-5% [15, 20]. 320 Lowering positivity thresholds might improve test sensitivity [23-25] and conventional 321 orthogonal testing can maximize specificity [11, 26, 27]. The latter might increase the 322 positive predictive value, but PPV will only be relevantly increased at low 323 seroprevalences. However, since seroprevalence is often neither known and varies 324 widely from region to region, it is difficult to judge whether a less specific or less 325 sensitive test is the lesser of two evils.

326 Based on actual data related to SARS-CoV-2, we propose a new, universally adaptable 327 two-test system that could, in the case of SARS-CoV-2, perform better than any other 328 known approach regardless of the actual seroprevalence: the sensitivity-improved Two-329 Test or SIT². For this, we established the algorithm in our COVID-19 cohort (including 330 1181 samples, 1117 pre-pandemic negative, and 64 confirmed post-COVID positive 331 samples) and validated it in a completely independent UK cohort (including 1512) 332 samples, 976 negatives, and 536 positives). So, the associations found were neither 333 exclusively related to a particular cohort nor the analyzing institutions. All Austrian cohort 334 samples were tested with the following assays: Roche, Abbott, DiaSorin S1/S2, 335 Technozym RBD, and Technozym NP. The UK cohort we used for validation included a 336 complete data set of all samples analyzed with the Roche, Abbott, DiaSorin S1/S2, 337 Siemens, Oxford assays. Hence, the Austrian and the UK cohorts shared three test 338 systems (Roche, Abbott, DiaSorin S1/S2) but differed regarding specific characteristics 339 of the included negative and positive samples. Besides these three overlapping test 340 systems, each cohort included data of two more exclusive SARS-CoV-2 antibody assays 341 in the analysis. The use of these different combinations should underscore the 342 universality of SIT².

343 Its generalizability can be inferred further in detail from the following features: i) the 344 adapted cut-offs used to optimize sensitivity were determined in various independent 345 studies and were not explicitly calculated for our cohort [23-25]; ii) SIT² was effective, 346 albeit with different efficiencies, in a total of 32 different test combinations; and iii) SIT² 347 was successfully validated in an independent cohort which was profoundly different from 348 the derivation cohort. The robustness of a diagnostic algorithm regarding analytical 349 variability (lot-to-lot variability, instrument-dependent variability, or method-specific

350 confounders) is essential. Based on our study design with three overlapping assays 351 (Roche, Abbott, DiaSorin) tested at two sites with two different cohorts but without lot 352 matching, we did not find any adverse effects on the robustness of our algorithm by 353 these potential confounders. Moreover, we estimated the SIT²-robustness to between-lot 354 variability simulating how the algorithm's performance would change if results would 355 vary according to their respective reference change values (RCVs). For this, we used a 356 SIT²-algorithm consisting of Roche and Abbott as an example and could conclude that 357 expectable between-assay variability might only marginally affect the algorithm (data not 358 shown). Therefore, SIT² does not require a particular infrastructure, the availability of 359 high-performance individual test systems or specific reagent lots to work, but can 360 optimize the performance of any available test system.

Our SIT² strategy can rescue the specificity with minimal repeat testing required (see 361 362 Table S6). For example, when applying the Roche NC as a screening test to our cohort, 363 only 27 out of 1,181 samples needed confirmation testing with the Abbott NC test to 364 correctly identify 62/64 true positives. Simultaneously, all false-positive results were 365 eliminated, including those added by lowering the cut-offs (Table S4 and Fig. S1). 366 Additionally, it was more sensitive than virus neutralization testing, which identified only 367 60/64 clinical positives (Fig. 3). This result is not completely surprising as it is known that 368 not all patients who recovered from COVID-19 show detectable levels of neutralizing 369 antibodies [28]. Nevertheless, it should be noted that although antibody binding assays 370 may have a higher sensitivity than neutralization assays, they only partially reflect the 371 functional activity of SARS-CoV-2-reactive antibodies [29, 30]. The sensitivity of SARS-372 CoV-2 tests may change over time, as prominently shown in a Brazilian study, where 373 pronounced antibody waning led to an apparent decrease in seroprevalence already a

374 few months after a SARS-CoV-2 corona wave [17]. However, this was mainly caused by 375 the strongly decreasing sensitivity of the test system used. The measured 376 seroprevalence decreased from 46.3% in June 2020 to only 20.7% in October 2020, 377 when the standard manufacturer cut-off of 1.4 was used for the Abbott NC test. When 378 the same data were analyzed with a reduced cut-off of 0.4, the values changed from 379 54.3% in June to 44.6% in October, so the apparent decrease in seroprevalence was 380 much less pronounced. Lowering the cut-off to increase the sensitivity of a test system 381 (and therefore also to compensate for such time-dependent sensitivity losses) is the first 382 step of our SIT² algorithm. As this cut-off lowering reduces the specificity of a test (so 383 with the 0.4 cut-off, the seroprevalence rate in June was 8% higher than with the 1.4 cut-384 off, including more false-positives), it is necessary to rescue this loss of specificity by a 385 second test (also highly sensitive by cut-off lowering). This should illustrate that while 386 there are test systems whose sensitivity changes more rapidly over time and there is 387 physiologically a time-dependent decrease in antibody levels, SIT² offers a strategy to 388 counteract this development with an increase in sensitivity by cut-off lowering and 389 subsequent correction of specificity. Thus, these time-dependent sensitivity changes are 390 not a significant problem for SIT². Accordingly, there are far-reaching potential 391 applications. Regarding SARS-CoV-2, on the one hand, the use of an algorithm of this 392 kind could increase the reliability of seroprevalence analyses, especially in low-393 prevalence areas. On the other hand, its use in routine clinical diagnostics is also 394 conceivable. In the case of SARS-CoV-2, the emergence of new viral variants 395 particularly affects test sensitivity [31]. This could be counteracted by increasing 396 sensitivity through modified cut-offs, and specificity would subsequently be restored by a 397 second test. For SARS-CoV-2 testing, it must be further emphasized that different

398 mechanisms of immunization induce different humoral responses. Whereas an infection 399 usually leads to both anti-nucleocapsid and anti-spike antibodies, the immune response 400 to an mRNA-, vector-, or protein-based vaccine that introduces only the spike-protein 401 lacks the anti-nucleocapsid antibody [32]. Accordingly, amongst the vaccinated, tests 402 assessing anti-spike antibodies might not be useful in detecting individuals after SARS-403 CoV-2 infection, as the measured amount would have at least partly been induced by 404 the vaccine. However, add-on infection could boost anti-spike levels [33]. These 405 conditions must be considered when searching for the optimal combination of tests for a 406 SIT² approach.

407 Our study has both strengths and limitations. One strength is the size of the cohorts 408 examined, both in deriving the SIT² algorithm (N=1,181) and validating it (N=1,512). The 409 composition of our specificity cohort is also unique: it consists of three sub-cohorts with 410 selection criteria to further challenge analytical specificity. The lower cut-offs used to 411 increase sensitivity were not modeled within our datasets but were derived from ROC-412 analyses data of independent studies [23-25]. Furthermore, we were able to test the 413 performance of the two-test systems in a total of 32 combinations, 12 in the derivation 414 cohort and another 20 combinations in the validation cohort. As a limitation, in the 415 Austrian cohort, only samples ≥14 days after symptom onset were included. Therefore, 416 no conclusions on the sensitivity of the early seroconversion phase can be made from 417 these data. Furthermore, mild and asymptomatic cases were underrepresented in the 418 British cohort, perhaps leading to an observed higher sensitivity of the test systems. 419 Moreover, the analysis did only include samples collected during the first wave, 420 therefore, positive individuals were most likely infected by the wildtype virus. However, 421 as stated above, the emergence of new variants challenges a test system's sensitivity

422 even more, which only reinforces the need to increase sensitivity without harming

423 specificity, as we propose here by using SIT².

424 In conclusion, we describe the novel two-test algorithm SIT², which makes it possible to

425 maintain or even significantly improve sensitivity while approaching 100% specificity.

426 **5. Funding**

427 The MedUni Wien Biobank is funded to participate in the biobank consortium BBMRI.at

428 (www.bbmri.at) by the Austrian Federal Ministry of Science, Research and Technology.

- 429 There was no external funding received for the work presented. However, test kits for
- 430 the Technoclone ELISAs were kindly provided by the manufacturer.

431 6. Acknowledgments

We sincerely thank Marika Gerdov, Susanne Keim, Karin Mildner, Elisabeth Ponweiser,
Manuela Repl, Ilse Steiner, Christine Thun, and Martina Trella for excellent technical
assistance. Finally, we want to thank all the donors of the various study cohorts.

435 **7. Competing interests**

All authors have read the journal's policy on disclosure of potential conflicts of interest
and the following has to be disclosed: NP-N received a travel grant from DiaSorin. DWE
reports lecture fees from Gilead outside the submitted work. OCB reports grants from
GSK, grants from Menarini, grants from Boehringer Ingelheim, grants from Astra, grants
from MSD, grants from Pfizer, and grants from Chiesi, outside the submitted work. SH
does receive unrestricted research grants (GSK, Boehringer, Menarini, Chiesi, Astra
Zeneca, MSD, Novartis, Air Liquide, Vivisol, Pfizer, TEVA) for the Ludwig Boltzmann

443 Institute of COPD and Respiratory Epidemiology, and is on advisory boards for G. SK. 444 Boehringer Ingelheim, Novartis, Menarini, Chiesi, Astra Zeneca, MSD, Roche, Abbvie, 445 Takeda, and TEVA for respiratory oncology and COPD. PQ is an advisory board 446 member for Roche Austria and reports personal fees from Takeda outside the submitted 447 work. The Dept. of Laboratory Medicine (Head: OWF) received compensations for 448 advertisement on scientific symposia from Roche, DiaSorin, and Abbott and holds a 449 grant for evaluating an in-vitro diagnostic device from Roche. CJB is a Board Member of 450 Technoclone. HH receives compensations for biobank services from Glock Health 451 Science and Research and BlueSky immunotherapies.

452 8. Ethics approval statement

The overall evaluation plan was reviewed and approved by the ethics committee of theMedical University of Vienna (1424/2020).

455 9. Contributorship Statement

- 456 TP und TK contributed equally. Conceptualization: TP, TK, OFW, HH. Methodology: TP,
- 457 TK, NP-N, HH; Investigation: TP, TK, NP-N, MO-K, DWE, PM, AB, NS, M-LB, RB-K,
- 458 OCB, SH, DA, DS, PQ, RM, PM, AR, MK, MD, BHo, BHa, RS, GL, FG, WG, RG, HH;
- 459 Data curation: TP, TK, DW, PM, AB, NS, M-LB, RB-K, OCB, SH, DA, DS; Project
- 460 administration: PM, AR; Formal analysis: HH; Validation: DWE, PM, AB, NS; Writing –
- 461 original draft: TP, TK, NP-N, HH; Visualization: HH; Supervision: OFW, CJB, HH;
- 462 Resources: DWE, PM, AB, NS, M-LB, RB-K, OCB, SH, DA, DS, PQ, RM, MK, MD, BHo,
- 463 BHa, RS, GL, FG, WG, RG, OFW, CJB; Writing review & editing: all authors.

464 **10.** References

- 465 [1] C. Lass-Flörl, E. Samardzic, M. Knoll, Serology anno 2021-fungal infections: from
 466 invasive to chronic, Clin Microbiol Infect 27(9) (2021) 1230-1241.
- 467 [2] S.A. Davison, S.I. Strasser, Ordering and interpreting hepatitis B serology, Bmj 348468 (2014) g2522.
- 469 [3] A. Popp, L. Kivelä, V. Fuchs, K. Kurppa, Diagnosing Celiac Disease: Towards Wide-
- 470 Scale Screening and Serology-Based Criteria?, Gastroenterol Res Pract 2019 (2019)471 2916024.
- 472 [4] B. Terziroli Beretta-Piccoli, G. Mieli-Vergani, D. Vergani, Serology in autoimmune
- 473 hepatitis: A clinical-practice approach, Eur J Intern Med 48 (2018) 35-43.
- 474 [5] J. Hibbert, G. Halec, D. Baaken, T. Waterboer, N. Brenner, Sensitivity and Specificity
- 475 of Human Papillomavirus (HPV) 16 Early Antigen Serology for HPV-Driven
- 476 Oropharyngeal Cancer: A Systematic Literature Review and Meta-Analysis, Cancers
- 477 (Basel) 13(12) (2021) 3010.
- 478 [6] M.K. Smatti, D.W. Al-Sadeq, N.H. Ali, G. Pintus, H. Abou-Saleh, G.K. Nasrallah,
- 479 Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene
- 480 Among Healthy Population: An Update, Front Oncol 8 (2018) 211.
- 481 [7] M. Gaudino, A. Moreno, C.J. Snoeck, S. Zohari, C. Saegerman, T. O'Donovan, E.
- 482 Ryan, I. Zanni, E. Foni, A. Sausy, J.M. Hübschen, G. Meyer, C. Chiapponi, M.F.
- 483 Ducatez, Emerging Influenza D virus infection in European livestock as determined in
- 484 serology studies: Are we underestimating its spread over the continent?, Transbound
- 485 Emerg Dis 68(3) (2021) 1125-1135.
- 486 [8] Y. Shibata, N. Horita, M. Yamamoto, T. Tsukahara, H. Nagakura, K. Tashiro, H.
- 487 Watanabe, K. Nagai, K. Nakashima, R. Ushio, M. Ikeda, A. Narita, A. Kanai, T. Sato, T.

- 488 Kaneko, Diagnostic test accuracy of anti-glycopeptidolipid-core IgA antibodies for
- 489 Mycobacterium avium complex pulmonary disease: systematic review and meta-
- 490 analysis, Sci Rep 6 (2016) 29325.
- 491 [9] R.K. Arora, A. Joseph, J. Van Wyk, S. Rocco, A. Atmaja, E. May, T. Yan, N.
- 492 Bobrovitz, J. Chevrier, M.P. Cheng, T. Williamson, D.L. Buckeridge, SeroTracker: a
- 493 global SARS-CoV-2 seroprevalence dashboard, Lancet Infect Dis 21(4) (2020) e75-e76.
- 494 [10] D. Bailey, D. Konforte, V.E. Barakauskas, P.M. Yip, V. Kulasingam, M. Abou El
- 495 Hassan, L.A. Beach, I.M. Blasutig, P. Catomeris, K.C. Dooley, Y. Gong, P. Kavsak, E.W.
- 496 Randell, J.L. Robinson, J. Shaw, J. Taher, N. White-Al Habeeb, Canadian society of
- 497 clinical chemists (CSCC) interim consensus guidance for testing and reporting of SARS-
- 498 CoV-2 serology, Clin Biochem 86 (2020) 1-7.
- 499 [11] S.E. Turbett, M. Anahtar, A.S. Dighe, W. Garcia Beltran, T. Miller, H. Scott, S.M.
- 500 Durbin, M. Bharadwaj, J. Thomas, T.S. Gogakos, M. Astudillo, J. Lennerz, E.S.
- 501 Rosenberg, J.A. Branda, Evaluation of Three Commercial SARS-CoV-2 Serologic
- 502 Assays and Their Performance in Two-Test Algorithms, J Clin Microbiol 59(1) (2020)
- 503 e01892-20.
- 504 [12] P. Gattinger, K. Borochova, Y. Dorofeeva, R. Henning, R. Kiss, B. Kratzer, B. Muhl,
- 505 T. Perkmann, D. Trapin, M. Trella, P. Ettel, I. Tulaeva, W.F. Pickl, R. Valenta, Antibodies
- 506 in serum of convalescent patients following mild COVID-19 do not always prevent virus-
- 507 receptor binding, Allergy 76(3) (2020) 878-883.
- 508 [13] Q.X. Long, X.J. Tang, Q.L. Shi, Q. Li, H.J. Deng, J. Yuan, J.L. Hu, W. Xu, Y. Zhang,
- 509 F.J. Lv, K. Su, F. Zhang, J. Gong, B. Wu, X.M. Liu, J.J. Li, J.F. Qiu, J. Chen, A.L. Huang,
- 510 Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Nat
- 511 Med 26(8) (2020) 1200-1204.

- 512 [14] R.C. Baron, L. Risch, M. Weber, S. Thiel, K. Grossmann, N. Wohlwend, T. Lung, D.
- 513 Hillmann, M. Ritzler, S. Bigler, K. Egli, F. Ferrara, T. Bodmer, M. Imperiali, S. Heer, H.
- 514 Renz, L. Flatz, P. Kohler, P. Vernazza, C.R. Kahlert, M. Paprotny, M. Risch, Frequency
- of serological non-responders and false-negative RT-PCR results in SARS-CoV-2
- testing: a population-based study, Clin Chem Lab Med 58(12) (2020) 2131-2140.
- 517 [15] D.M. Manthei, J.F. Whalen, L.F. Schroeder, A.M. Sinay, S.H. Li, R. Valdez, D.A.
- 518 Giacherio, C. Gherasim, Differences in Performance Characteristics Among Four High-
- 519 Throughput Assays for the Detection of Antibodies Against SARS-CoV-2 Using a
- 520 Common Set of Patient Samples, Am J Clin Pathol 155(2) (2020) 267-279.
- 521 [16] L.S. Pfluger, J.H. Bannasch, T.T. Brehm, S. Pfefferle, A. Hoffmann, D. Norz, M. van
- 522 der Meirschen, S. Kluge, M. Haddad, S. Pischke, J. Hiller, M.M. Addo, A.W. Lohse,
- 523 J.S.Z. Wiesch, S. Peine, M. Aepfelbacher, M. Lutgehetmann, Clinical evaluation of five
- 524 different automated SARS-CoV-2 serology assays in a cohort of hospitalized COVID-19
- 525 patients, J Clin Virol 130 (2020) 104549.
- 526 [17] L.F. Buss, C.A. Prete, Jr., C.M.M. Abrahim, A. Mendrone, Jr., T. Salomon, C. de
- 527 Almeida-Neto, R.F.O. França, M.C. Belotti, M. Carvalho, A.G. Costa, M.A.E. Crispim,
- 528 S.C. Ferreira, N.A. Fraiji, S. Gurzenda, C. Whittaker, L.T. Kamaura, P.L. Takecian, P. da
- 529 Silva Peixoto, M.K. Oikawa, A.S. Nishiya, V. Rocha, N.A. Salles, A.A. de Souza Santos,
- 530 M.A. da Silva, B. Custer, K.V. Parag, M. Barral-Netto, M.U.G. Kraemer, R.H.M. Pereira,
- 531 O.G. Pybus, M.P. Busch, M.C. Castro, C. Dye, V.H. Nascimento, N.R. Faria, E.C.
- 532 Sabino, Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a
- 533 largely unmitigated epidemic, Science 371(6526) (2021) 288-292.
- 534 [18] M. Klausberger, M. Duerkop, H. Haslacher, G. Wozniak-Knopp, M. Cserjan-
- 535 Puschmann, T. Perkmann, N. Lingg, P.P. Aguilar, E. Laurent, J. De Vos, M. Hofner, B.

- 536 Holzer, M. Stadler, G. Manhart, K. Vierlinger, M. Egger, L. Milchram, E. Gludovacz, N.
- 537 Marx, C. Köppl, C. Tauer, J. Beck, D. Maresch, C. Grünwald-Gruber, F. Strobl, P.
- 538 Satzer, G. Stadlmayr, U. Vavra, J. Huber, M. Wahrmann, F. Eskandary, M.K. Breyer, D.
- 539 Sieghart, P. Quehenberger, G. Leitner, R. Strassl, A.E. Egger, C. Irsara, A.
- 540 Griesmacher, G. Hoermann, G. Weiss, R. Bellmann-Weiler, J. Loeffler-Ragg, N. Borth,
- 541 R. Strasser, A. Jungbauer, R. Hahn, J. Mairhofer, B. Hartmann, N.B. Binder, G.
- 542 Striedner, L. Mach, A. Weinhäusel, B. Dieplinger, F. Grebien, W. Gerner, C.J. Binder, R.
- 543 Grabherr, A comprehensive antigen production and characterisation study for easy-to-
- 544 implement, specific and quantitative SARS-CoV-2 serotests, EBioMedicine 67 (2021)
- 545 103348.
- 546 [19] F. Eskandary, H. Regele, L. Baumann, G. Bond, N. Kozakowski, M. Wahrmann,
- 547 L.G. Hidalgo, H. Haslacher, C.C. Kaltenecker, M.B. Aretin, R. Oberbauer, M. Posch, A.
- 548 Staudenherz, A. Handisurya, J. Reeve, P.F. Halloran, G.A. Böhmig, A Randomized Trial
- 549 of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection, J Am Soc
- 550 Nephrol 29(2) (2018) 591-605.
- [20] T. Perkmann, N. Perkmann-Nagele, M.K. Breyer, R. Breyer-Kohansal, O.C.
- 552 Burghuber, S. Hartl, D. Aletaha, D. Sieghart, P. Quehenberger, R. Marculescu, P.
- 553 Mucher, R. Strassl, O.F. Wagner, C.J. Binder, H. Haslacher, Side-by-Side Comparison
- of Three Fully Automated SARS-CoV-2 Antibody Assays with a Focus on Specificity,
- 555 Clin Chem 66(11) (2020) 1405-1413.
- [21] R. Breyer-Kohansal, S. Hartl, O.C. Burghuber, M. Urban, A. Schrott, A. Agusti, T.
- 557 Sigsgaard, C. Vogelmeier, E. Wouters, M. Studnicka, M.K. Breyer, The LEAD (Lung,
- 558 Heart, Social, Body) Study: Objectives, Methodology, and External Validity of the
- 559 Population-Based Cohort Study, J Epidemiol 29(8) (2019) 315-324.

- 560 [22] S.-C.-S.A.E.G. National, Performance characteristics of five immunoassays for
- 561 SARS-CoV-2: a head-to-head benchmark comparison, Lancet Infect Dis 20(12) (2020)562 1390-1400.
- 563 [23] J. Favresse, C. Eucher, M. Elsen, M. Tre-Hardy, J.M. Dogne, J. Douxfils, Clinical
- 564 Performance of the Elecsys Electrochemiluminescent Immunoassay for the Detection of
- 565 SARS-CoV-2 Total Antibodies, Clin Chem 66(8) (2020) 1104-1106.
- 566 [24] C.S. Lau, H.M.L. Oh, S.P. Hoo, Y.L. Liang, S.K. Phua, T.C. Aw, Performance of an
- 567 automated chemiluminescence SARS-CoV-2 IG-G assay, Clin Chim Acta 510 (2020)
- 568 760-766.
- 569 [25] F. Bonelli, A. Sarasini, C. Zierold, M. Calleri, A. Bonetti, C. Vismara, F.A. Blocki, L.
- 570 Pallavicini, A. Chinali, D. Campisi, E. Percivalle, A.P. DiNapoli, C.F. Perno, F. Baldanti,
- 571 Clinical and Analytical Performance of an Automated Serological Test That Identifies
- 572 S1/S2-Neutralizing IgG in COVID-19 Patients Semiquantitatively, J Clin Microbiol 58(9)
 573 (2020) e01224-20.
- 574 [26] S. Bolotin, V. Tran, S. Osman, K.A. Brown, S.A. Buchan, E. Joh, S.L. Deeks, V.G.
- 575 Allen, SARS-CoV-2 seroprevalence survey estimates are affected by anti-nucleocapsid
- 576 antibody decline, J Infect Dis 223(8) (2021) 1334-1338.
- 577 [27] C. Irsara, A.E. Egger, W. Prokop, M. Nairz, L. Loacker, S. Sahanic, A. Pizzini, T.
- 578 Sonnweber, W. Mayer, H. Schennach, J. Loeffler-Ragg, R. Bellmann-Weiler, I.
- 579 Tancevski, G. Weiss, M. Anliker, A. Griesmacher, G. Hoermann, Evaluation of four
- 580 commercial, fully automated SARS-CoV-2 antibody tests suggests a revision of the
- 581 Siemens SARS-CoV-2 IgG assay, Clin Chem Lab Med 59(6) (2021) 1143-1154.

- 582 [28] M. Kalkan Yazici, M.M. Koc, N.S. Cetin, E. Karaaslan, G. Okay, B. Durdu, B.
- 583 Sumbul, M.Z. Doymaz, Discordance between Serum Neutralizing Antibody Titers and
- the Recovery from COVID-19, J Immunol 205(10) (2020) 2719-2725.
- 585 [29] A. Bal, B. Pozzetto, M.A. Trabaud, V. Escuret, M. Rabilloud, C. Langlois-Jacques,
- 586 A. Paul, N. Guibert, C. D'Aubarede-Frieh, A. Massardier-Pilonchery, N. Fabien, D.
- 587 Goncalves, A. Boibieux, F. Morfin-Sherpa, V. Pitiot, F. Gueyffier, B. Lina, J.B. Fassier, S.
- 588 Trouillet-Assant, G. Covid Ser Study, Evaluation of high-throughput SARS-CoV-2
- 589 serological assays in a longitudinal cohort of patients with mild COVID-19: clinical
- 590 sensitivity, specificity and association with virus neutralization test, Clin Chem 67(5)
- 591 (2021) 742-752.
- [30] A. Padoan, F. Bonfante, M. Pagliari, A. Bortolami, D. Negrini, S. Zuin, D. Bozzato,
- 593 C. Cosma, L. Sciacovelli, M. Plebani, Analytical and clinical performances of five
- 594 immunoassays for the detection of SARS-CoV-2 antibodies in comparison with
- neutralization activity, EBioMedicine 62 (2020) 103101.
- 596 [31] T.P. David Niklas Springer, Claudia Jani, Patrick Mucher, Katja Prüger, Rodrig
- 597 Marculescu, Elisabeth Reuberger, Jeremy Vann Camp, Marianne Graninger, Christian
- 598 Borsodi, Josef Deutsch, Oliver Lammel, Stephan Walter Aberle, Elisabeth Puchhammer-
- 599 Stöckl, Helmuth Haslacher, Eva Höltl, Judith Helene Aberle, Karin Stiasny, Lukas
- 600 Weseslindtner, Reduced sensitivity of commercial Spike-specific antibody assays after
- 601 primary infection with the SARS-CoV-2 Omicron variant. PREPRINT (Version 3)
- available at Research Square 2022. <u>https://doi.org/10.21203/rs.3.rs-1669740/v3</u>.
- 603 (Accessed 2022-07-15.

- 604 [32] R. Midorikawa, M. Nakama, H. Furukawa, S. Oka, T. Higuchi, H. Nagai, N. Nagai,
- 605 S. Tohma, Detection of SARS-CoV-2 Nucleocapsid, Spike, and Neutralizing Antibodies
- 606 in Vaccinated Japanese, Viruses 14(5) (2022).
- 607 [33] T. Perkmann, N. Perkmann-Nagele, T. Koller, P. Mucher, A. Radakovics, M. Wolzt,
- 608 O.F. Wagner, C.J. Binder, H. Haslacher, Serum antibody response to BNT162b2 after
- natural SARS-CoV-2 infection, Eur J Clin Invest 51(11) (2021) e13632.

611 **11. Figure Legends**

612 Fig. 1. A) The Sensitivity Improved Two-Test (SIT²) algorithm includes sensitivity 613 improvement by adapted cut-offs and a subsequent specificity rescue by re-testing all 614 samples within the re-testing zone of the screening test by a confirmatory test. B) 615 Testing algorithm for SIT² utilizing a screening test on an automated platform 616 (ECLIA/Roche, CMIA/Abbott, CLIA/DiaSorin) and a confirmation test, either on one of 617 the remaining platforms or tested by means of ELISA (Technozym RBD, NP). C) All test 618 results between a reduced cut-off suggested by the literature, and a higher cut-off, 619 above which no more false-positives were observed, were subject to confirmation 620 testing. **... results between 12.0 and 15.0, which are according to the manufacturer 621 considered borderline, were treated as positives; ***... suggested as a cut-off for 622 seroprevalence testing; ****... determined by in-house modeling; 1... see [23]; 2... see 623 [24]; ³... see [25].

- 624 Fig. 2. False-positives (FP)/false-negatives (FN) (A) and total error (B) of single tests,
- tests with reduced thresholds according to [23-25], orthogonal testing algorithms (OTAs)
- 626 and the Sensitivity Improved Two-Test (SIT²) algorithm at 5 and 20% estimated
- 627 seroprevalence. Data in (B) were compared by Mann-Whitney tests (unpaired) or
- 628 Wicoxon tests (paired). *... P<0.05; **...P<0.01; ***...P<0.001.

Fig. 3. Sensitivities of single tests, orthogonal testing algorithms (OTAs) and the
Sensitivity Improved Two-Test (SIT²) algorithm. The dotted line indicates the sensitivity
of virus neutralization test (VNT).

Fig. 4. Differences in sensitivity and specificity (mean±95% confidence interval) between
the Sensitivity Improved Two-Test (SIT²) algorithm and standard orthogonal testing

- 634 algorithms (OTAs) within the UK validation cohort. *... P<0.05; **...P<0.01;
- 635 ***...*P*<0.001; ****...*P*<0.0001
- 636 Fig. 5. Comparing false-positives (FP), false-negatives (FN), and total error (TE) for two
- 637 selected test systems, A) Abbott, B) DiaSorin, between different Sensitivity Improved
- 638 Two-Test (SIT²) combinations and the respective single test within the UK validation
- 639 cohort for different estimated seroprevalences.