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Abstract

In this work we analyze the inverse problem of recovering a space-dependent potential coefficient in
an elliptic / parabolic problem from distributed observation. We establish novel (weighted) conditional
stability estimates under very mild conditions on the problem data. Then we provide an error analysis of
a standard reconstruction scheme based on the standard output least-squares formulation with Tikhonov
regularization (by an H1-seminorm penalty), which is then discretized by the Galerkin finite element
method with continuous piecewise linear finite elements in space (and also backward Euler method in
time for parabolic problems). We present a detailed error analysis of the discrete scheme, and provide
convergence rates in a weighted L2(Ω) for discrete approximations with respect to the exact potential.
The error bounds explicitly depend on the noise level, regularization parameter and discretization pa-
rameter(s). Under suitable conditions, we also derive error estimates in the standard L2(Ω) and interior
L2 norms. The analysis employs sharp a priori error estimates and nonstandard test functions. Several
numerical experiments are given to complement the theoretical analysis.

Keywords: inverse problems, parameter identification, Tikhonov regularization, error estimate

1 Introduction

In this work, we study the inverse problem of recovering a space-dependent potential coefficient in elliptic
and parabolic equations. Let Ω ⊂ Rd (d = 1, 2, 3) be a simply connected convex polyhedral domain with a
boundary ∂Ω. Then the governing equation in the elliptic and parabolic cases are given respectively by{

−∆u+ qu = f, in Ω,

u = 0, on ∂Ω,
(1.1)

and 
∂tu−∆u+ qu = f, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(·, 0) = u0, in Ω,

(1.2)

where T > 0 is the final time. The functions f and u0 in (1.1) and (1.2) are the source and initial data,
respectively. The space-dependent potential q belongs to the admissible set K such that

K = {q ∈ L∞(Ω) : c0 ≤ q(x) ≤ c1 a.e. in Ω},
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with 0 ≤ c0 < c1 < ∞. To explicitly indicate the dependence of the solution u to problems (1.1) and (1.2)
on the potential q, we write u(q). Further, we are given the observational data zδ on Ω or Ω× (T0, T ):{

zδ(x) = u(q†)(x) + ξ(x), x ∈ Ω, elliptic

zδ(x, t) = u(q†)(x, t) + ξ(x, t), (x, t) ∈ Ω× (T0, T ), parabolic

where u(q†) denotes the exact data (corresponding to the exact potential q†), 0 ≤ T0 < T , and ξ denotes
the measurement noise. The accuracy of the data zδ is measured by the noise level δ = ‖u(q†)− zδ‖L2(Ω) or

δ = ‖u(q†)−zδ‖L2(T0,T ;L2(Ω)), in the elliptic and parabolic cases, respectively. The inverse potential problem

is to recover the potential q from the noisy observation zδ. It arises in several practical applications, where
q represents the radiativity coefficient in heat conduction [41] and perfusion coefficient in Pennes’ bio-heat
equation in human physiology [33, 37] (see [35, 43] for experimental studies) and the elliptic case also in
quantitative dynamic elastography [13].

The inverse potential problem is ill-posed, which poses challenges to construct accurate and stable nu-
merical approximations. A number of reconstruction methods have been designed to overcome the ill-posed
nature, with the most prominent one being Tikhonov regularization [18, 26]. In practical computation,
one still needs to discretize the continuous regularized formulation. This is often achieved by the Galerkin
finite element method (FEM) when the domain Ω is irregular and the problem data (u0 and f) have only
limited regularity. This strategy has been widely used [41, 16, 42]. Yamamoto and Zou [41] proved the
convergence of the discrete approximations in the parabolic case. However, the convergence rates of discrete
approximations are generally very challenging to obtain, due to the inherent nonconvexity of the regularized
functional, which itself stems from the high degree of nonlinearity of the parameter-to-state map, despite the
PDEs (1.1) and (1.2) being linear. Indeed, this has been a long standing issue for the numerical analysis of
many nonlinear inverse problems, e.g., parameter identifications for PDEs. So far there have been only very
few error bounds on discrete approximations, despite the fact that such an analysis would provide useful
guidelines for choosing suitable discretization parameters. For the related inverse conductivity problem, the
works [39, 27] derived error bounds in a weighted L2(Ω) norm by employing a special test function for elliptic
and parabolic cases, and the latter work [27] also gives the standard L2(Ω) error estimates with the help of
a positivity condition on the weighted function.

In this work we study the concerned elliptic and parabolic inverse potential problems, and contribute in
the following two aspects. First, we establish novel conditional stability estimates for the concerned inverse
problem, including both weighted L2(Ω) and standard L2(Ω) stability. The latter is obtained under a certain
positivity condition, which can be verified for a class of problem data. The derivation is purely variational,
using only a nonstandard test function, and extends directly to the error analysis. Our analysis strategy is
similar to that in the interesting works [6, 3], which are concerned with recovering the diffusion coefficient
from the internal measurements. Second, we derive novel weighted L2(Ω) error bounds for the discrete
approximations under very mild regularity conditions on the problem data and unknown coefficient q as
well as the standard L2(Ω) error bounds under some positivity condition. Note that the analysis does not
employ standard source type conditions. Instead, it is achieved by a novel choice of the test function in the
weak formulation, as in the conditional stability analysis, adapting the stability argument to the discrete
setting, which allows us to bypass the standard source condition. To the best of our knowledge, these results
represent the first error bounds for the discrete approximations for the inverse potential problem. Further,
we provide several numerical experiments to complement the theoretical analysis.

Now we review existing works on the analysis and numerics of the inverse potential problem. Several
uniqueness and stability results have been obtained [34, 14, 28, 4, 13]. Choulli and Yamamoto [14] proved
the uniqueness of recovering the potential q†, initial condition and boundary coefficient from terminal mea-
surement, and also gave a stability result under a smallness condition. In the parabolic case, Beretta and
Cavaterra [4] proved the unique recovery of the potential q(x) from the time-averaged observation. More
recently, Choulli [13] derived a new stability estimate in the elliptic case. The well-posedness of the con-
tinuous regularized formulation has been analyzed for both elliptic / parabolic cases [19, 41, 16, 42], and
convergence rates with respect to the noise level δ were obtained under various conditions. In the 1D elliptic
case, Engl et al [19, Example 3.1] derived a convergence rate of the regularized approximation by Tikhonov
regularization under the standard source condition with a small sourcewise representer. Hao and Quyen
[24] presented a different approach without explicitly using the source condition. More recently, Chen et
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al [11] proved conditional stability of the inverse problem in negative Sobolev spaces, which allows deriving
variational inequality type source conditions and also showing convergence rates of the regularized solutions,
and the authors studied both elliptic and parabolic cases. Klibanov, Li, and Zhang [29] presented an inter-
esting convexification method for the inverse problem which allows proving globle convergence despite the
nonlinearity of the inverse problem (and actually the method allows recovering a time-independent source
simultaneously). This work extends the current literature with new stability analysis and error analysis of
discrete approximations Broadly speaking, the present work is along the line of research which connects sta-
bility analysis with error analysis of discrete schemes (see, e.g., [9, 10]) and convergence rate with conditional
stability (see, e.g., [12, 40]).

The rest of the paper is organized as follows. In Section 2 we present novel conditional stability estimates
for the concerned inverse problems. In Sections 3 and 4, we describe the regularized formulations and their
finite element discretizations, and derive novel error bounds on the discrete approximations, for the elliptic
and parabolic cases, respectively. In Section 5, we present one- and two-dimensional numerical experiments
to complement the theoretical analysis. We conclude with some useful notation. For any m ≥ 0 and p ≥ 1,
we denote by Wm,p(Ω) the standard Sobolev spaces of order m, equipped with the norm ‖ · ‖Wm,p(Ω) and
also write Hm(Ω) and Hm

0 (Ω) with the norm ‖ · ‖Hm(Ω) when p = 2 [1]. We denote the L2(Ω) inner product
by (·, ·). We also use Bochner spaces: For a Banach space B, we define by

Hm(0, T ;B) = {v : v(·, t) ∈ B for a.e. t ∈ (0, T ) and ‖v‖Hm(0,T ;B) <∞}.

The space L∞(0, T ;B) is defined similarly. Throughout, we denote by C a generic positive constant not
necessarily the same at each occurrence but always independent of the discretization parameters h and τ ,
the noise level δ and the regularization parameter α.

2 Conditional stability estimates

In this section, we present novel conditional stability estimates for the concerned inverse problem. The
analysis will also inspire the error analysis of the discrete approximations in Sections 3 and 4.

2.1 Elliptic inverse problem

We have the following conditional stability results in weighted and standard L2(Ω) norms.

Theorem 2.1. Suppose that q1, q2 ∈ K ∩ H1(Ω) and f ∈ L2(Ω), with ‖∇q1‖L2(Ω), ‖∇q2‖L2(Ω) ≤ cq. Let
u(q1) and u(q2) be the corresponding weak solutions of problem (1.1). Then there exists a constant C depends
on cq such that

‖(q1 − q2)u(q1)‖L2(Ω) ≤ C‖u(q1)− u(q2)‖
1
2

H1(Ω).

Moreover, if there exists a β ≥ 0 such that

u(q1)(x) ≥ Cdist(x, ∂Ω)β a.e. in Ω, (2.1)

then with a constant C depending on cq, the following estimate holds

‖q1 − q2‖L2(Ω) ≤ C‖u(q1)− u(q2)‖
1

2(1+2β)

H1(Ω) .

Proof. By the weak formulations of u(q1) and u(q2), for any ϕ ∈ H1
0 (Ω)

((q1 − q2)u(q1), ϕ) = −(∇(u(q1)− u(q2)),∇ϕ)− (q2(u(q1)− u(q2)), ϕ) =: I.

Let ϕ = (q1− q2)u(q1). Note that ∇ϕ = (∇q1−∇q2)u(q1) + (q1− q2)∇u(q1). Since q1 ∈ K ∩H1(Ω), elliptic
regularity theory implies u(q1) ∈ H2(Ω), and by Sobolev embedding theorem, we have u(q1) ∈ L∞(Ω) for
d = 1, 2, 3. Then we have ‖ϕ‖L2(Ω) ≤ C and ‖∇ϕ‖L2(Ω) ≤ C, i.e., ϕ ∈ H1

0 (Ω). Now by the Cauchy-Schwarz
inequality, we obtain the first assertion by

|I| ≤ C(‖∇(u(q1)− u(q2))‖L2(Ω) + ‖u(q1)− u(q2)‖L2(Ω)) ≤ C‖u(q1)− u(q2)‖H1(Ω). (2.2)
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Next we decompose the domain Ω into two disjoint sets Ω = Ωρ ∪ Ωcρ, with Ωρ = {x ∈ Ω : dist(x, ∂Ω) ≥ ρ}
and Ωcρ = Ω \ Ωρ, with the constant ρ > 0 to be chosen. On the subdomain Ωρ, we have∫

Ωρ

(q1 − q2)2dx = ρ−2β

∫
Ωρ

(q1 − q2)2ρ2βdx ≤ ρ−2β

∫
Ωρ

(q1 − q2)2dist(x, ∂Ω)2βdx

≤ Cρ−2β

∫
Ωρ

(q1 − q2)2u(q1)2dx ≤ Cρ−2β‖u(q1)− u(q2)‖H1(Ω).

Meanwhile, by the box constraint of K, we have
∫

Ωcρ
(q1 − q2)2dx ≤ C|Ωcρ| ≤ Cρ. Then the desired result

follows by balancing the last two estimates with ρ.

The positivity condition (2.1) quantifies the decay rate of the solution u(q1) to zero as dist(x, ∂Ω)→ 0+

(due to the presence of a zero Dirichlet boundary condition). It can be verified under suitable conditions on
the source f . This requires the following property of Green’s function for the elliptic problem. The notation
B(x, r) denotes the ball centered at x ∈ Rd with a radius r.

Theorem 2.2. Let the diffusion coefficient a ∈ L∞(Ω) with a strictly positive lower bound over Ω. For any
y ∈ Ω and r > 0, let Gq(x) := Gq(x, y) ∈ H1(Ω \ B(y, r)) ∩W 1,1

0 (Ω) be Green’s function for the elliptic
operator −div(a∇·) + qI (with a zero Dirichlet boundary condition). Then for d ≥ 2, the following estimate
holds

Gq(x, y) ≥ C|x− y|2−d, for |x− y| ≤ 1
2dist(x, ∂Ω).

Proof. When q ≡ 0, the result is well known for d ≥ 3 [31, 23]. We prove the slightly more general case
for completeness. Let ρ(x) = dist(x, ∂Ω). Since the operator −div(a∇·) + qI is self-adjoint, there holds
Gq(x, y) = Gq(y, x). It suffices to prove

Gq(x, y) ≥ C|x− y|2−d, for |x− y| ≤ 1
2ρ(y). (2.3)

By definition, we have∫
Ω

a(z)∇Gq(z, y) · ∇ϕ(z) + q(z)Gq(z, y)ϕ(z) dz = ϕ(y), ∀ϕ ∈ C∞0 (Ω). (2.4)

Let r := |x − y|. Consider a cut-off function ϕ1 ∈ C∞0 (Ω) with the following properties: ϕ1 ≡ 1 on
B(y, r)∩ (Ω \B(y, r2 )) and ϕ1 ≡ 0 on (Ω \B(y, 3r

2 ))∪B(y, r4 ), meanwhile 0 ≤ ϕ1 ≤ 1 and |∇ϕ1| ≤ Cr−1. By
inserting a test function (ϕ1(z))2Gq(z, y) into (2.4) and applying the boundedness and uniform ellipticity of
the operator and the Cauchy-Schwarz inequality, since Gq(z) := Gq(z, y) ∈ H1(Ω \B(y, r4 )), we derive∫

r
4≤|z−y|≤

3r
2

ϕ1(z)2|∇Gq(z, y)|2 dz ≤ C
∫
r
4 |z−y|≤

3r
2

ϕ1(z)Gq(z, y)|∇ϕ1(z)||∇Gq(z, y)| dz

≤C
(∫

r
4≤|z−y|≤

3r
2

ϕ1(z)2|∇Gq(z, y)|2 dz
) 1

2
(∫

r
4≤|z−y|≤

3r
2

Gq(z, y)2|∇ϕ1(z)|2 dz
) 1

2

.

This and the construction of ϕ1 lead to∫
r
2≤|z−y|≤r

|∇Gq(z)|2dz ≤ Crd−2 sup
r
4≤|z−y|≤

3r
2

|Gq(z, y)|2. (2.5)

Since Gq(x, y) ∈W 1,1
0 (Ω) and q ≤ c1, we can choose a sufficiently small radius r0 := r0(c1) < r

3 such that∫
z∈B(y,r0)

Gq(z, y) dz ≤ 1
2c1
.

Replacing the radius r by r0 and repeating the argument of (2.5) yield∫
r0
2 ≤|z−y|≤r0

|∇Gq(z)|2dz ≤ Crd−2
0 sup

r0
4 ≤|z−y|≤

3r0
2

|Gq(z, y)|2.
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Let ϕ2 ∈ C∞0 (Ω) be a test function of (2.4) satisfying ϕ2 ≡ 1 on B(y, r02 ) and ϕ2 ≡ 0 on ((Ω \ B(y, r0)) ∩
B(y, r2 )) ∪ (Ω \ B(y, r)), with 0 ≤ ϕ2 ≤ 1 on Ω, |∇ϕ2| ≤ Cr−1

0 on B(y, r0) and |∇ϕ2| ≤ Cr−1 on (Ω \
B(y, r/2)) ∩B(y, r). It follows from the boundedness of the operator, and the last three estimates that

1 =

∫
Ω

a(z)∇Gq(z, y) · ∇ϕ2(z) + q(z)Gq(z, y)ϕ2(z) dz

≤
∫
r0
2 ≤|z−y|≤r0

a(z)∇Gq(z, y) · ∇ϕ2(z) dz +

∫
r
2≤|z−y|≤r

a(z)∇Gq(z, y) · ∇ϕ2(z) dz

+
1

2
+

∫
r
2≤|z−y|≤r

q(z)Gq(z, y)ϕ2(z) dz

≤ Crd−2
0 sup

r0
4 ≤|z−y|≤

3r0
2

Gq(z, y) + Crd−2 sup
r
4≤|z−y|≤

3r
2

Gq(z, y) +
1

2
+ Crd sup

r
2≤|z−y|≤r

Gq(z, y)

≤ Crd−2 sup
r0
4 ≤|z−y|≤

3r
2

Gq(z, y) +
1

2
≤ Crd−2 inf

r0
4 ≤|z−y|≤

3r
2

Gq(z, y) +
1

2
≤ C|x− y|d−2Gq(x, y) +

1

2
,

where we have used Harnack’s inequality [22, p. 189] for Green’s function Gq(z) on the compact subset
{z ∈ Ω : r04 ≤ |z − y| ≤

3r
2 } ⊂⊂ Ω, with the constant C depending on the d, c1 and Ω. This completes the

proof of the theorem.

Remark 2.1. When d = 1, i.e., Ω = (a, b) with −∞ < a < b < ∞, Green’s function Gc1(x, y) of the
operator −∆ + c1I is explicitly given by

Gc1(x, y) =


− e2

√
c1a(e2

√
c1y − e2

√
c1b)

2
√
c1(e

√
c1(2a+y) − e

√
c1(2b+y))

· (e−
√
c1x − e

√
c1(x−2a)), a ≤ x ≤ y,

− e2
√
c1b(e2

√
c1y − e2

√
c1a)

2
√
c1(e

√
c1(2a+y) − e

√
c1(2b+y))

· (e−
√
c1x − e

√
c1(x−2b)), y ≤ x ≤ b.

(2.6)

Now consider the asymptotics of the function Gc1(x, y) near the boundary. Let y be close to the point a and
|x− y| ≤ 1

2 (y − a). Since ex − 1 ≥ x on R, we have

Gc1(x, y)

{
' e
√
c1(x−2a) − e−

√
c1x ≥ C(x− a) ≥ C|x− y|, a ≤ x ≤ y,

' e2
√
c1y − e2

√
c1a ≥ C(y − a) ≥ C|x− y|, a ≤ y ≤ x,

where the symbol “ ' ” denotes by “ = ” up to a positive constant depending on Ω and c1. A similar result
holds when y is close to the point b. Since the operator −∆ + c1I is self-adjoint, we have

Gc1(x, y) ≥ C|x− y| for |x− y| ≤ 1
2ρ(x) := dist(x, ∂Ω).

That is, the assertion in Theorem 2.2 holds also for d = 1. For a general potential q ∈ K ∩H1(Ω), by the
weak maximum principle, for any fixed y, we have Gq(x, y) ≥ Gc1(x, y) a.e. x ∈ Ω, and thus the desired
assertion follows.

Now we can state a sufficient condition for the positivity condition (2.1).

Proposition 2.1. Let q ∈ H1(Ω) ∩K and f ≥ cf > 0 a.e. in Ω. Then condition (2.1) holds with β = 2.

Proof. Recall that for every y ∈ Ω, there exists a unique Green’s function Gq(·, y) ∈ H1(Ω\B(y, r))∩W 1,1
0 (Ω)

for the elliptic operator −∆ + qI, such that∫
Ω

∇Gq(x, y) · ∇ϕ(x) + qGq(x, y)ϕ(x) dx = ϕ(y), ∀ϕ ∈ C∞0 (Ω).

By Theorem 2.2, we have

Gq(x, y) ≥ C|x− y|−(d−2) for |x− y| ≤ 1
2ρ(x) := dist(x, ∂Ω), d ≥ 2.
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Now for any x ∈ Ω, let B(x, ρ(x)
2 ) ⊂ Ω be the ball centered at x with a radius ρ(x)

2 . Since Gq(x, y) ≥ 0,
x, y ∈ Ω, we have

u(q)(x) =

∫
Ω

Gq(x, y)f(y)dy ≥
∫
B(x,

ρ(x)
2 )

f(y)Gq(x, y)dy

≥ cfC
∫
B(x,

ρ(x)
2 )

|x− y|−(d−2)dy ≥ Cρ2(x) = Cdist(x, ∂Ω)2,

and thus the desired result follows directly.

Remark 2.2. The argument for deriving the standard L2(Ω) estimate relies heavily on the weighted L2(Ω)
estimate and the positivity condition (2.1). Note that such an analysis strategy could also be applied to
other elliptic inverse problems [25, 30] (when equipped with alternative conditions for removing the weighted
function).

2.2 Parabolic inverse problem

The next result gives a conditional stability estimate for the parabolic inverse problem.

Theorem 2.3. Suppose that q1, q2 ∈ K ∩ H1(Ω) with ‖∇q1‖L2(Ω), ‖∇q2‖L2(Ω) ≤ cq, u0 ∈ H2(Ω) ∩ H1
0 (Ω)

and f ∈ H1(0, T ;L2(Ω)). Let u(q1) and u(q2) be the corresponding weak solutions of problem (1.2). Then
with T0 ≤ s ≤ t ≤ T , there exists a constant C depending on cq such that∫ T

T0

∫ t

T0

∫ t

s

‖(q1 − q2)u(q1)(ξ)‖L2(Ω) dξdsdt ≤ C‖u(q1)− u(q2)‖
1
2

L2(T0,T ;H1(Ω)).

Moreover, if there exists a β ≥ 0 such that

u(q1)(x, t) ≥ Cdist(x, ∂Ω)β a.e. in Ω (2.7)

for any t ∈ (T0, T ), then there exists a constant C depending on cq such that

‖q1 − q2‖L2(Ω) ≤ C‖u(q1)− u(q2)‖
1

2(1+2β)

L2(T0,T ;H1(Ω)).

Proof. By the weak formulations of u(q1) and u(q2), for any ϕ ∈ H1
0 (Ω)

((q1− q2)u(q1), ϕ) = −(∂ξu(q1)−∂ξu(q2), ϕ)− (∇(u(q1)−u(q2)),∇ϕ)− (q2(u(q1)−u(q2)), ϕ) =: I1 + I2 + I3.

Let ϕ = (q1 − q2)u(q1). Then ∇ϕ = (∇q1 − ∇q2)u(q1) + (q1 − q2)∇u(q1). By the standard parabolic
regularity theory [20], problem (4.2) has a unique solution u(q1) ∈ H1(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;H2(Ω)),
and then by Sobolev embedding theorem [1], u(q1) ∈ L∞(0, T ;L∞(Ω)). Then there holds ‖ϕ‖L2(Ω) ≤ C
and ‖∇ϕ‖L2(Ω) ≤ C. Thus we have ϕ ∈ H1

0 (Ω). Meanwhile, the Cauchy-Schwarz inequality and the box
constraint yield∫ T

T0

|I2| dt ≤ C‖∇(u(q1)− u(q2))‖L2(T0,T ;L2(Ω)) and

∫ T

T0

|I3|dt ≤ C‖u(q1)− u(q2)‖L2(T0,T ;L2(Ω)).

It remains to bound the term I1. By integration by parts, we have∫ t

s

(∂ξu(q1)(ξ)− ∂ξu(q2)(ξ), ϕ(ξ)) dξ = (u(q1)(t)− u(q2)(t), ϕ(t))− (u(q1)(s)− u(q2)(s), ϕ(s))

−
∫ t

s

(u(q1)(ξ)− u(q2)(ξ), ∂ξϕ(ξ)) dξ.

For the first two terms, by the Cauchy-Schwarz inequality, since ‖ϕ(t)‖L2(Ω) ≤ C, we have∣∣∣ ∫ T

T0

∫ t

T0

(u(q1)− u(q2), ϕ)(t)− (u(q1)− u(q2), ϕ)(s) dsdt
∣∣∣ ≤ C‖u(q1)− u(q2)‖L2(T0,T ;L2(Ω)).
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Next by the regularity u ∈ H1(0, T ;L2(Ω)), and the box constraint in K, we have ∂ξϕ = (q1−q2)∂ξu(q1)(ξ) ∈
L2(0, T ;L2(Ω)). Using Cauchy-Schwarz inequality leads to∣∣∣ ∫ T

T0

∫ t

T0

∫ t

s

(u(q1)(ξ)− u(q2)(ξ), ∂ξϕ(ξ)) dξdsdt
∣∣∣ ≤ C(∫ T

T0

‖u(q1)− u(q2)‖2L2(Ω) dt
) 1

2
(∫ T

T0

‖∂tϕ‖2L2(Ω) dt
) 1

2

≤ C‖u(q1)− u(q2)‖L2(T0,T ;L2(Ω))‖∂tu‖L2(T0,T ;L2(Ω)).

These estimates directly imply the first desired assertion. Under the positivity condition (2.7), the L2(Ω)
estimate follows from the argument of Theorem 2.1.

The next result gives a sufficient condition on the positivity condition (2.7).

Proposition 2.2. Let q ∈ H1(Ω) ∩K, the source f ≥ cf > 0 and ∂tf ≤ 0 a.e. in Ω × (0, T ), u0 ≥ 0 and
f(0) + ∆u0 − qu0 ≤ 0 a.e. in Ω. Then there exists a positive constant C, depending only on c0, c1, cf and
Ω, such that the positivity condition (2.7) holds with β = 2.

Proof. Since f ≥ 0 and u0 ≥ 0, the standard parabolic maximum principle (see, e.g., [32, 21]) implies u ≥ 0,
a.e. in Ω× [0, T ]. Let w := ∂tu, which satisfies

∂tw −∆w + qw = ∂tf, in Ω× (0, T ),

w = 0, on ∂Ω× (0, T ),

w(0) = f(0) + ∆u0 − qu0, in Ω.

Since ∂tf ≤ 0 a.e. in Ω × (0, T ) and f(0) + ∆u0 − qu0 ≤ 0 a.e. in Ω, the parabolic maximum principle
yields w ≤ 0 a.e. in Ω× [0, T ]. It suffices to prove that (2.7) with β = 2 holds for any t ∈ (0, T ]. By fixing
t ∈ [T0, T ], we have f(t)− w(t) ∈ L2(Ω). Then consider the following elliptic problem{

−∆u(t) + qu(t) = f(t)− w(t), in Ω,

u(t) = 0, on ∂Ω.

By the property of Green’s function Gq(x, y) in Theorem 2.2, there holds

u(q)(x, t) =

∫
Ω

Gq(x, y)(f(y, t)− w(y, t))dy ≥
∫
B(x,

ρ(x)
2 )

f(y, t)Gq(x, y)dy

≥ cfC
∫
B(x,

ρ(x)
2 )

|x− y|−(d−2)dy ≥ Cρ2(x) = Cdist(x, ∂Ω)2,

for any x ∈ Ω and t ∈ [T0, T ], i.e., the positivity condition (2.7) with β = 2 holds.

3 Error analysis for the elliptic inverse problem

Now we formulate the regularized output least-squares formulation for the elliptic inverse problem, discretize
the continuous formulation by the Galerkin FEM with continuous piecewise linear elements, and provide a
complete error analysis.

3.1 Regularization problem and its FEM approximation

To reconstruct the coefficient q, we employ the standard Tikhonov regularization with an H1(Ω) seminorm
penalty [18, 26], minimizes the following regularized functional:

min
q∈K

Jα(q) =
1

2
‖u(q)− zδ‖2L2(Ω) +

α

2
‖∇q‖2L2(Ω), (3.1)

where u(q) ∈ H1
0 (Ω) satisfies

(∇u(q),∇ϕ) + (qu(q), ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 (Ω). (3.2)
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Recall that the given data zδ ∈ L2(Ω) is noisy with a noise level δ relative to the exact data u(q†) (cor-
responding to the exact radiativity q†), i.e., ‖u(q†) − zδ‖L2(Ω) = δ. The continuous problem (3.1)–(3.2) is
well-posed in the sense that it has at least one global minimizer, and the minimizer is continuous with respect
to the perturbations in the data, and further as the noise level tends to zero, the sequence of minimizers
converges to the exact solution in H1(Ω) (if α is chosen properly) [19, 18, 26].

To discretize problem (3.1)–(3.2), we employ the standard Galerkin FEM [7]. Let Th be a shape regular
quasi-uniform simplicial triangulation of the domain Ω, with a grid size h. On the triangulation Th, we define
the conforming piecewise linear finite element spaces Vh and Vh0 by

Vh := {vh ∈ H1(Ω) : vh|T is a linear polynomial, ∀T ∈ Th}

and Vh0 := Vh ∩ H1
0 (Ω). We use the spaces Vh0 and Vh to approximate the state u and the parameter q,

respectively. The following inverse inequality holds in the finite element space Vh0 [7]

‖vh‖H1(Ω) ≤ Ch−1‖vh‖L2(Ω), ∀vh ∈ Vh0. (3.3)

We denote by Ph the standard L2(Ω)-projection operator associated with the finite element space Vh0. Then
it is known that for s = 1, 2 [15, 36]:

‖v − Phv‖L2(Ω) + h‖∇(v − Phv)‖L2(Ω) ≤ Chs‖v‖Hs(Ω), ∀v ∈ Hs(Ω) ∩H1
0 (Ω). (3.4)

Let Πh be the Lagrange interpolation operator associated with the finite element space Vh. It satisfies the
following error estimate for s = 1, 2 and 1 ≤ p ≤ ∞ (with sp > d):

‖v −Πhv‖Lp(Ω) + h‖v −Πhv‖W 1,p(Ω) ≤ chs‖v‖W s,p(Ω), ∀v ∈W s,p(Ω). (3.5)

Now we can state the finite element approximation of problem (3.1)-(3.2):

min
qh∈Kh

Jα,h(qh) =
1

2
‖uh(qh)− zδ‖2L2(Ω) +

α

2
‖∇qh‖2L2(Ω), (3.6)

with Kh = K ∩ Vh, and uh(qh) ∈ Vh0 satisfying

(∇uh(qh),∇ϕh) + (qhuh(qh), ϕh) = (f, ϕh), ∀ϕh ∈ Vh0. (3.7)

The discrete problem is well-posed: there exists at least one global minimizer q∗h ∈ Kh to problem (3.6)–(3.7),
and it depends continuously on the data perturbation. The main objective of this work is to bound the error
q∗h − q† of the approximation q∗h.

3.2 Error estimates

Now we derive a weighted L2(Ω) estimate of the error q† − q∗h, under the following assumption. By the
standard elliptic regularity theory [20] and Sobolev embedding theorem [1], Assumption 3.1 implies u(q†) ∈
H2(Ω) ↪→ L∞(Ω), for d = 1, 2, 3.

Assumption 3.1. q† ∈ H2(Ω) ∩K and f ∈ L2(Ω).

Next we give the main result of this section, i.e., a novel weighted L2(Ω) error estimate.

Theorem 3.2. Let Assumption 3.1 be fulfilled. Let q† ∈ K be the exact potential, u(q†) be the solution of

problem (3.2), and q∗h ∈ Kh be a minimizer of problem (3.6)-(3.7). Then with η = h2 + δ + α
1
2 , there holds

‖(q† − q∗h)u(q†)‖L2(Ω) ≤ C(h
1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 , (3.8)

where the constant C depends only on q†.

The proof employs two preliminary estimates.
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Lemma 3.1. Let Assumption 3.1 be fulfilled. Then there holds

‖u(q†)− uh(Πhq
†)‖L2(Ω) + h‖∇(u(q†)− uh(Πhq

†))‖L2(Ω) ≤ Ch2. (3.9)

Proof. Céa’s Lemma and the standard duality argument imply

‖u(q†)− uh(q†)‖L2(Ω) + h‖∇(u(q†)− uh(q†))‖L2(Ω) ≤ Ch2‖u(q†)‖H2(Ω) ≤ Ch2. (3.10)

Then it suffices to bound wh = uh(Πhq
†)− uh(q†). Clearly, wh satisfies for any ϕh ∈ Vh0

(∇wh,∇ϕh) + ((Πhq
†)wh, ϕh) = ((q† −Πhq

†)uh(q†), ϕh)

=((q† −Πhq
†)u(q†), ϕh) + ((q† −Πhq

†)(u(q†)− uh(q†)), ϕh) =: I.

Letting ϕh = wh, the estimate (3.10), and the approximation property of Πh in (3.5) give

|I| ≤ Ch2
(
‖q‖H2(Ω)‖u(q)‖L∞(Ω)‖wh‖L2(Ω) + ‖q‖L∞(Ω)‖u(q)‖H2(Ω)‖wh‖L2(Ω)

)
.

Consequently, we have
‖∇wh‖2L2(Ω) + c0‖wh‖2L2(Ω) ≤ Ch

2‖wh‖L2(Ω).

Since c0 ≥ 0, this and Poincare’s inequality lead to

‖∇wh‖L2(Ω) ≤ Ch2.

This, Poincaré’s inequality, (3.10) and the triangle inequality imply the assertion.

The next result gives a crucial a priori bound on ‖∇q∗h‖L2(Ω) and state the approximation error ‖u(q†)−
uh(q∗h)‖L2(Ω). Note that this estimate allows bounding ‖∇q∗h‖L2(Ω) a priori by Cα−

1
2 (h2 +δ+α

1
2 ), where the

constant C depends only on the a priori regularity of the exact potential q†. This estimate shows explicitly
the delicate interplay of the parameters h, α and δ and it will play a central role in the error analysis below.

Lemma 3.2. Let the assumption in Theorem 3.2 be fulfilled. Then the following estimate holds

‖u(q†)− uh(q∗h)‖L2(Ω) + α
1
2 ‖∇q∗h‖L2(Ω) ≤ C(h2 + δ + α

1
2 ). (3.11)

Proof. Since q∗h is the minimizer of the system (3.6)-(3.7) and Πhq
† ∈ Kh, we have

Jα,h(q∗h) ≤ Jα,h(Πhq
†).

Then the definition of δ and Lemma 3.1 imply

‖uh(q∗h)− zδ‖2L2(Ω) + α‖∇q∗h‖2L2(Ω) ≤ ‖uh(Πhq
†)− zδ‖2L2(Ω) + α‖∇Πhq

†‖2L2(Ω)

≤C(‖uh(Πhq
†)− u(q†)‖2L2(Ω) + ‖u(q†)− zδ‖2L2(Ω) + α‖∇Πhq

†‖2L2(Ω))

≤C(h4 + δ2 + α),

where the last line follows from the inequality (3.5) and the inverse inequality (3.3), i.e., ‖∇Πhq
†‖L2(Ω) ≤

C‖q†‖H1(Ω). Then by the triangle inequality, we deduce

‖u(q†)− uh(q∗h)‖2L2(Ω) + α‖∇q∗h‖2L2(Ω) ≤ C(‖u(q†)− zδ‖2L2(Ω) + ‖uh(q∗h)− zδ‖2L2(Ω) + α‖∇q∗h‖2L2(Ω))

≤ C(h4 + δ2 + α).

This completes the proof of the lemma.

Now we can prove Theorem 3.2, which relies heavily on the novel test function ϕ = (q† − q∗h)u(q†), and
the overall strategy is inspired by the conditional stability analysis in Section 2.
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Proof. For any ϕ ∈ H1
0 (Ω), it follows from the weak formulations of u(q†) and uh(q∗h) that

((q† − q∗h)u(q†), ϕ) = ((q† − q∗h)u(q†), ϕ− Phϕ) + ((q† − q∗h)u(q†), Phϕ)

= ((q† − q∗h)u(q†), ϕ− Phϕ) + (∇(uh(q∗h)− u(q†)),∇Phϕ) + (q∗h(uh(q∗h)− u(q†)), Phϕ)

=: I1 + I2 + I3.

Let ϕ = (q† − q∗h)u(q†). Then direct computation gives ∇ϕ = u(q†)(∇q† − ∇q∗h) + (q† − q∗h)∇u(q†). By
Assumption 3.1 and the a priori regularity u(q†) ∈ H2(Ω) ↪→ L∞(Ω) for d = 1, 2, 3, we have

‖ϕ‖L2(Ω) ≤ C and ‖∇ϕ‖L2(Ω) ≤ C(1 + ‖∇q∗h‖L2(Ω)).

Thus, ϕ ∈ H1
0 (Ω). We bound the three terms. By Lemma 3.2 and (3.4), we bound the term I1 by

|I1| ≤ Ch‖∇ϕ‖L2(Ω) ≤ Ch(1 + ‖∇q∗h‖L2(Ω)) ≤ Ch(1 + α−
1
2 η) ≤ Chα− 1

2 η,

where the constant C depends on q†. By applying Lemma 3.2 and (3.4) again and also the inverse inequality
(3.3), the term I2 can be bounded by

|I2| ≤ ‖∇(u(q†)− uh(q∗h))‖L2(Ω)‖∇ϕ‖L2(Ω)

≤ (‖∇(u(q†)− Phu(q†))‖L2(Ω) + Ch−1‖Phu(q†)− uh(q∗h)‖L2(Ω))‖∇ϕ‖L2(Ω)

≤ C(h+ h−1‖u(q†)− uh(q∗h)‖L2(Ω))‖∇ϕ‖L2(Ω)

≤ C(h+ h−1η)(1 + ‖∇q∗h‖L2(Ω)) ≤ C(h+ h−1η)α−
1
2 η.

Meanwhile, by the a priori estimate, we have

‖∇(u(q†)− uh(q∗h))‖L2(Ω) ≤ C.

Thus, we obtain
|I2| ≤ C min(h+ h−1η, 1)α−

1
2 η.

Finally, the bound on the term I3 follows from Lemma 3.2 and the L2(Ω) stability of Ph by

|I3| ≤ C‖Phϕ‖L2(Ω)‖u(q†)− uh(q∗h)‖L2(Ω) ≤ Cη.

Then the desired estimate follows from the bounds on Ii.

From Theorem 3.2, we can derive two L2(Ω) estimates on the error q† − q∗h. First, we give an interior
L2-error estimate, by means of maximum principle.

Corollary 3.1. Let the assumptions in Theorem 3.2 be fulfilled and the source f 6≡ 0 be nonnegative a.e. in
Ω. Then for any compact subset Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) > 0, there exists a positive constant C, depending
on dist(Ω′, ∂Ω) and q†, such that

‖q† − q∗h‖L2(Ω′) ≤ C(h
1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 .

Proof. Let w ∈ H2(Ω) ∩H1
0 (Ω) be the solution of problem (3.2) with q replaced by c1. Since f ≥ 0 a.e. in

Ω, by the maximum principle [8], u(q†) ≥ 0. Note that u(q†)− w satisfies

(∇(u(q†)− w),∇ϕ) + (q†(u(q†)− w), ϕ) = ((c1 − q†)u(q†), ϕ), ∀ϕ ∈ H1
0 (Ω).

By the maximum principle [8], u(q†) − w ≥ 0 a.e. in Ω. Meanwhile, by Sobolev embedding theorem [1],
H2(Ω) ↪→ C(Ω), we have u(q†) ≥ w ≥ 0 in Ω. Then by Theorem 3.2

‖(q† − q∗h)w‖L2(Ω) ≤ C(h
1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 .

Note that for any Ω′ ⊂⊂ Ω, by [38, Theorem 1] and w ∈ C(Ω), there exists a positive constant C depending
on dist(Ω′, ∂Ω) such that w ≥ C > 0 in Ω′. The desired estimate follows directly.
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The next result gives an L2(Ω) error estimate under the positivity condition (2.1).

Corollary 3.2. Let the conditions in Theorem 3.2 be fulfilled, and condition (2.1) holds. Then there holds

‖q† − q∗h‖L2(Ω) ≤ C((h
1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 )

1
1+2β .

Proof. The proof is identical with that in Theorem 2.1, and hence omitted.

Remark 3.1. The error estimates provide useful guidelines for choosing the algorithmic parameters, e.g.,
α and h, in order to achieve the best possible convergence rates of the discrete approximations q∗h in terms
of the noise level δ. Indeed, by properly balancing the terms in the upper bound, we should choose α ∼ δ2

and h ∼ δ
1
2 so as to obtain the following interior estimates: ‖q† − q∗h‖L2(Ω′) ≤ Cδ

1
4 . Similarly, there holds

‖qh−q†‖L2(Ω) ≤ Cδ
1

4(1+2β) , under the positivity condition (2.1). Note that the choice α ∼ δ2 contrasts sharply
with that in standard regularization theory [18, 26] which typically assumes a slower decay than δ2, but it
is actually the most common choice when using conditional stability estimates [12, 17]. It is instructive to
compare the rate with the conditional stability estimate in Theorem 2.1. Specifically, by the a prior regularity
estimate u(q) ∈ H2(Ω) for q ∈ K ∩H1(Ω) and the Gagliardo-Nirenberg interpolation inequality

‖v‖H1(Ω) ≤ C‖v‖
1
2

L2(Ω)‖v‖
1
2

H2(Ω),

we have

‖q1 − q2‖L2(Ω) ≤ C‖u(q1)− u(q2)‖
1

4(1+2β)

L2(Ω) , ∀q1, q2 ∈ K ∩H1(Ω).

Thus the error estimate in Corollary 3.2 is consistent with the conditional stability estimate in Theorem 2.1.

4 Error analysis for the parabolic inverse problem

Now we turn to the convergence analysis for parabolic systems.

4.1 Regularized formulation and its FEM approximation

Like the elliptic case in Section 3, we consider the inverse problem of recovering a space-dependent potential
q from the following noisy distributed observation zδ

zδ(x, t) = u(q†)(x, t) + ξ(x, t), in Ω× (T0, T ),

where 0 ≤ T0 < T , and the accuracy of zδ is measured by the noise level δ, defined by δ = ‖u(q) −
zδ‖L2(T0,T ;L2(Ω)). To reconstruct the potential q from the data zδ, we employ the standard Tikhonov regu-
larization, which minimizes the following regularized functional:

min
q∈K

Jα(q) =
1

2
‖u(q)(t)− zδ(t)‖2L2(T0,T ;L2(Ω)) +

α

2
‖∇q‖2L2(Ω), (4.1)

where u(t) ≡ u(q)(t) ∈ H1
0 (Ω) with u(0) = u0 satisfies

(∂tu(t), ϕ) + (∇u(t),∇ϕ) + (qu(t), ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 (Ω), a.e. t ∈ (0, T ). (4.2)

Similar to the elliptic case, the well-posedness of the continuous formulation (4.1)–(4.2) can be shown easily
using the direct method in calculus of variation [41].

For the spatial discretization of problem (4.1)–(4.2), we apply the Galerkin FEM described in Section 3,
i.e., to approximate the state variable u ∈ H1

0 (Ω) by Vh0 and the unknown potential q by the space Vh. For
the time discretization, we employ the backward Euler method on a uniform time grid. We divide the time
interval (0, T ) into N equal subintervals with a time step size τ and the time grids tn = nτ , n = 0, . . . , N .
Further, we denote by vn = v(tn) and define the backward difference quotient ∂τv

n and and the piecewise
constant L2-projection in the cell (tn−1, tn) by

∂τv
n := τ−1(vn − vn−1) and v̄n := τ−1

∫ tn

tn−1

v(t) dt,
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respectively. Throughout, we assume that T0 is at a grid point, with N0 = T0/τ for some N0 ∈ N (which
depends on the step size τ).

Then the fully discrete problem for problem (4.1)-(4.2) reads:

min
qh∈Kh

Jα,h,τ (qh) =
τ

2

N∑
n=N0

‖unh(qh)− zδn‖2L2(Ω) +
α

2
‖∇qh‖2L2(Ω), (4.3)

with zδn = τ−1
∫ tn
tn−1

zδ(t)dt, Kh = K ∩ Vh, where unh ≡ unh(qh) ∈ Vh0 satisfies u0
h(qh) = Phu0 and

(∂τu
n
h, ϕh) + (∇unh,∇ϕh) + (qhu

n
h, ϕh) = (fn, ϕh), ∀ϕh ∈ Vh0, n = 1, . . . , N. (4.4)

Problem (4.3)—(4.4) is a finite-dimensional constrained optimization problem, and the existence of a mini-
mizer q∗h follows easily in view of the norm equivalence in finite-dimensional spaces. Below we give an error
analysis of the approximation q∗h.

In the analysis, we use extensively the Ritz projection operator Rh : H1
0 (Ω)→ Vh0 defined by

(∇u(q),∇ϕh) + (qu(q), ϕh) = (∇Rhu(q),∇ϕh) + (qRhu(q), ϕh), ∀ϕh ∈ Vh0.

The following approximation result holds [36]:

‖v −Rhv‖L2(Ω) + h‖v −Rhv‖H1(Ω) ≤ Ch2‖v‖H2(Ω), ∀v ∈ H2(Ω) ∩H1
0 (Ω). (4.5)

4.2 Error estimates

First, we derive a weighted L2(Ω)-error estimates of the approximation q∗h. Throughout we make following
assumption on the problem data. Under Assumption 4.1, by the standard parabolic regularity theory [20],
the weak solution u(q†) ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)) to problem (4.2) belongs to H1(0, T ;H1
0 (Ω))∩

L∞(0, T ;H2(Ω)), and then by Sobolev embedding theorem [1], u(q†) ∈ L∞(0, T ;L∞(Ω)).

Assumption 4.1. q† ∈ H2(Ω) ∩K, u0 ∈ H2(Ω) ∩H1
0 (Ω) and f ∈ H1(0, T ;L2(Ω)).

Now we can state the main result of this section, i.e., a weighted L2(Ω) error estimate.

Theorem 4.2. Let Assumption 4.1 be fulfilled. Let q† ∈ K be the exact coefficient, u(q†) be the solution of

problem (4.2), and q∗h ∈ Kh be a minimizer of problem (4.3)-(4.4). Then with η = τ + h2 + δ + α
1
2 , there

exists a constant C depending on q† such that

τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

‖(q† − q∗h)un(q†)‖L2(Ω) ≤ C(τ
1
2 + h

1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 . (4.6)

The overall proof strategy is similar to the elliptic case in Section 3, but it is more involved due to the
presence of time derivative. It relies heavily on the following preliminary results. The lengthy proofs are
similar to the elliptic case, and hence are deferred to the appendix.

Lemma 4.1. Let Assumption 4.1 be fulfilled. Then for sufficiently small τ , there holds

τ

N∑
n=1

‖un(q†)− unh(q†)‖2L2(Ω) ≤ C(τ2 + h4). (4.7)

Lemma 4.2. Let Assumption 4.1 be fulfilled. Then for small τ , there holds

τ

N∑
n=1

‖un(q†)− unh(Πhq
†)‖2L2(Ω) ≤ C(τ2 + h4). (4.8)

Lemma 4.3. Let the assumption in Theorem 4.2 be fulfilled. Then there holds

τ

N∑
n=N0

‖un(q†)− unh(q∗h)‖2L2(Ω) + α‖∇q∗h‖2L2(Ω) ≤ C(τ2 + h4 + δ2 + α).
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Now we can state the proof of Theorem 4.2.

Proof. Let u ≡ u(q†). For any ϕ ∈ H1
0 (Ω), we have the following splitting

((q† − q∗h)un, ϕ) = ((q† − q∗h)un, ϕ− Phϕ) + ((q† − q∗h)un, Phϕ)

=((q† − q∗h)un, ϕ− Phϕ) + (∂τu
n
h(q∗h)− ∂tun, Phϕ)

+ (∇(unh(q∗h)− un),∇Phϕ) + (q∗h(unh(q∗h)− un), Phϕ) =:

4∑
i=1

Ini .

Let ϕ = ϕn = (q†− q∗h)un. Then ∇ϕn = (∇q†−∇q∗h)un+ (q†− q∗h)∇un. By Assumption 4.1 and the a priori
regularity u ∈ L∞(0, T ;L∞(Ω)), there holds

‖ϕn‖ ≤ C and ‖∇ϕn‖L2(Ω) ≤ C(1 + ‖∇q∗h‖L2(Ω)), n = 1, . . . , N, (4.9)

which implies ϕn ∈ H1
0 (Ω). Using Assumption 4.1, Lemma 4.3, and repeating the argument of Theorem 3.2,

we deduce

N∑
n=N0

|In1 | ≤ Chα−
1
2 η, τ

N∑
n=N0

|In3 | ≤ Cmin(h+ h−1η, 1))α−
1
2 η, and τ

N∑
n=N0

|In4 | ≤ Cη,

where the constant C depends on q†. To estimate In2 , we split it into

In2 = (∂τ (unh(q∗h)− un), Phϕ
n) + (∂τu

n − ∂tun, Phϕn) =: In2,1 + In2,2.

Let ϕ = Phϕ
n in (A.5) and (4.2). By Assumption 4.1, f ∈ H1(0, T ;L2(Ω)), we have the a priori regularity

u ∈ H1(0, T ;H1(Ω)). Consequently, the proof of Lemma 4.1 yields

τ

N∑
n=N0

‖f̄n − fn‖2L2(Ω) ≤ Cτ
2, τ

N∑
n=N0

‖ūn − un‖2H1(Ω) ≤ Cτ
2, τ

N∑
n=N0

‖ūn − un‖2L2(Ω) ≤ Cτ
2.

This, the L2(Ω)-stability of Ph in (3.4), the Cauchy-Schwarz inequality and (4.9) imply

∣∣∣τ N∑
n=N0

In2,2

∣∣∣ =
∣∣∣τ N∑
n=N0

(f̄n − fn, Phϕn)− τ
N∑

n=N0

(∇(ūn − un),∇Phϕn)− τ
N∑

n=N0

(q†(ūn − un), Phϕ
n)
∣∣∣

≤ C
(
τ

N∑
n=N0

‖f̄n − fn‖2L2(Ω)

) 1
2

+
(
τ

N∑
n=N0

‖ūn − un‖2H1(Ω)

) 1
2

max
n=N0,...,N

‖∇ϕn‖L2(Ω)

+
(
τ

N∑
n=N0

‖ūn − un‖2L2(Ω)

) 1
2 ≤ Cτα− 1

2 η.

Next we bound the term In2,1. For N0 + 1 ≤ i ≤ j ≤ N , the summation by parts formula leads to

τ

j∑
n=i

In2,1 = (ujh(q∗h)− uj , Phϕj)− (ui−1
h (q∗h)− ui−1, Phϕ

i−1)− τ
j∑
n=i

(un−1
h (q∗h)− un−1, ∂τPhϕ

n).

Using Assumption 4.1, Lemma 4.3, the L2(Ω) stability of Ph and the Cauchy-Schwarz inequality, we have

|τ2
N∑

j=N0+1

j∑
i=N0+1

(ujh(q∗h)− uj , Phϕj)− (ui−1
h (q∗h)− ui−1, Phϕ

i−1)|

≤ C
(
τ

N∑
n=N0

‖unh(q∗h)− un‖2L2(Ω)

) 1
2 ≤ Cη.
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Next, by the L2(Ω) stability of Ph in (3.4), the box constraint and the Cauchy-Schwarz inequality, we have

‖∂τPhϕn‖L2(Ω) =
∥∥∥Ph(τ−1

∫ tn

tn−1

(q† − q∗h)∂tudt)
∥∥∥
L2(Ω)

≤ C
∥∥∥τ− 1

2

(∫ tn

tn−1

|∂tu|2dt
) 1

2
∥∥∥
L2(Ω)

.

Since u ∈ H1(0, T ;H1
0 (Ω)), we deduce

τ

N∑
n=N0+1

‖∂τPhϕn‖2L2(Ω) ≤
N∑

n=N0+1

‖∂tu‖2L2(tn−1,tn;L2(Ω)) = ‖∂tu‖2L2(T0,T ;L2(Ω)) ≤ C.

This and the Cauchy-Schwarz inequality imply∣∣∣τ j∑
n=i

(un−1
h (q∗h)−un−1, ∂τPhϕ

n)
∣∣∣ ≤ τ j∑

n=i

‖un−1
h (q∗h)− un−1‖L2(Ω)‖∂τPhϕn‖L2(Ω)

≤
(
τ

N∑
n=N0+1

‖un−1
h (q∗h)− un−1‖2L2(Ω)

) 1
2
(
τ

N∑
n=N0+1

‖∂τPhϕn‖2L2(Ω)

) 1
2 ≤ Cη,

and hence there holds

|τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

(un−1
h (q∗h)− un−1, ∂τPhϕ

n)| ≤ Cη.

Combining the preceding estimates gives

τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

‖(q† − q∗h)un‖2L2(Ω) ≤ C(τ + h+ α
1
2 + min(h+ h−1η, 1))α−

1
2 η.

This completes the proof of the theorem.

Now we establish interior and global L2 error estimations.

Corollary 4.1. Let Assumption 4.1 be fulfilled, the source f 6≡ 0 be nonnegative a.e. in Ω × (0, T ) and
u0 ≥ 0 a.e. in Ω. Then for any compact subset Ω′ ⊂⊂ Ω with dist(Ω′, ∂Ω) > 0, there exists a positive
constant C, depending on dist(Ω′, ∂Ω) and q†, such that

‖q† − q∗h‖L2(Ω′) ≤ C(τ
1
2 + h

1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 .

Proof. By the standard parabolic maximum principle (see, e.g., [32, 21]), f ≥ 0 a.e. in Ω× (0, T ) and u0 ≥ 0
in Ω imply u(q†) ≥ 0 a.e. in Ω× (0, T ). Let w ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) with w(0) = u0

2 solve

(∂tw,ϕ) + (∇w,∇ϕ) + (c1w,ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

Then v = u(q†)− w satisfies v(0) = u0

2 and

(∂tv, ϕ) + (∇v,∇ϕ) + (q†v, ϕ) = ((c1 − q†)u(q†), ϕ), ∀ϕ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

Then the weak maximum principle for parabolic problem implies v ≥ 0, i.e., u(q†) ≥ w a.e. in Ω × (0, T ).
By Theorem 4.2, there holds

τ3
N∑

j=N0+1

j∑
i=N0+1

j∑
n=i

‖(q† − q∗h)wn‖L2(Ω) ≤ C(τ
1
2 + h

1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 .

Then by [5, Theorem 2.4], we have w ∈ C((0, T ];C(Ω)) and w > 0 in Ω× (0, T ). The assertion follows from
the continuity of w and the compactness of Ω′.

We also have the following global L2(Ω) estimate by the positive condition (2.7).

Corollary 4.2. Let conditions in Theorem 4.2 be fulfilled and condition (2.7) hold. Then there holds

‖q† − q∗h‖L2(Ω) ≤ C((τ
1
2 + h

1
2 + α

1
4 + min(h

1
2 + h−

1
2 η

1
2 , 1))α−

1
4 η

1
2 )

1
(1+2β) .

Remark 4.1. For the choice α ∼ δ2, τ ∼ δ and h ∼ δ
1
2 , we obtain the following interior estimate:

‖q† − q∗h‖L2(Ω′) ≤ Cδ
1
4 . Likewise, under the positivity condition, there holds ‖q† − q∗h‖L2(Ω) ≤ Cδ

1
4(1+2β) .
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5 Numerical experiments and discussions

Now we present numerical experiments for elliptic and parabolic inverse problems to illustrate the analysis.
We solve the discrete optimization system by the conjugate gradient method [2], with the gradient computed
by the standard adjoint technique. Despite the regularized functional being nonconvex, the method converges
relatively robustly with the given initial guess, and the convergence is achieved within tens of iterations. The
lower and upper bounds of the box constraint K are taken to be 0.4 and 2, respectively. In the elliptic case,
the noise data zδ is generated by

zδ(x) = u(q†)(x) + ε‖u(q†)‖L∞(Ω)ξ(x), x ∈ Ω,

where ξ follows the standard normal Gaussian distribution and ε > 0 is the relative noise level. The noise
data zδ(x, t) in the parabolic case is generated similarly. In the computation, we set the parameters α ∼ δ2,
h ∼
√
δ and τ ∼ δ according to Remarks 3.1 and 4.1.

The first test is about the elliptic case.

Example 5.1. We consider the following two cases.

(a) Ω = (0, 1), q = 1 + x(1− x) sin(2πx) and f ≡ 1.

(b) Ω = (0, 1)2, q = 1 + y(1− y) sin(πx) and f ≡ 1.

To study the convergence behavior of the discrete approximation q∗h, we employ two different metrics,
i.e., eq = ‖q†− q∗h‖L2(Ω) and eu = ‖u(q†)−uh(q∗h)‖L2(Ω). Note that the error analysis provides a convergence

O(δ
1
4 ) at best (in the interior) for eq, and the state approximation eu is predicted to be O(δ). The numerical

results for Example 5.1 are presented in Table 1. The convergence of eq and eu can be observed clearly as the
noise level δ → 0, more precisely, in the one-dimensional case, with the behavior eq ∼ δ0.54 and eu ∼ δ1.01.
These observations remain valid for the two-dimensional test in (b). The empirical rate of eq is much faster
than the theoretical one, indicating potential suboptimality of the theoretical results in Corollaries 3.1 and
3.2. Figs. 1 and 2 show the numerical reconstruction for the examples with different noise levels. These plots
clearly show the convergence of the reconstruction q∗h as the noise level δ tends to zero. Note the accuracy
near the boundary is a bit worse in all cases.

Table 1: Numerical results for Example 5.1.

(a) initialized with α = 2.00e-7 and h = 2.00e-2

ε 2.00e-2 5.00e-3 1.25e-3 3.13e-4 7.81e-5 1.95e-5 rate

eq 1.30e-1 1.20e-1 2.85e-2 2.57e-2 1.02e-2 5.98e-3 0.54
eu 2.71e-4 6.81e-5 1.80e-5 3.43e-6 9.78e-7 1.72e-7 1.01

(b) initialized with α = 1.00e-6 and h = 1.00e-1

ε 1.00e-2 2.50e-3 6.25e-4 4.00e-4 1.00e-4 rate

eq 1.16e-1 9.14e-2 7.07e-2 5.81e-2 3.55e-2 0.33
eu 8.36e-5 3.41e-5 1.30e-5 7.88e-6 1.60e-6 0.99

The second test is about the parabolic case.

Example 5.2. We consider the following two cases.

(a) Ω = (0, 1), T0 = 0, T = 0.01, q = 1 + sin(2πx)/2, u0 = sin(πx) and f ≡ 1.

(b) Ω = (0, 1)2, T0 = 0, T = 0.01, q = 1 + sin(πx) sin(πy)/2, u0 = sin(πx) sin(πy) and f ≡ 1.
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Figure 1: Numerical reconstructions for Example 5.1(a).

(a) exact (b) ε = 1.00e-4 (c) ε = 3.91e-5

Figure 2: Numerical reconstructions for Example 5.1(b).
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Like in the elliptic case, we monitor the following two metrics, i.e., eq = ‖q† − q∗h‖L2(Ω) and eu =

(τ
∑N
n=N0

‖un(q†) − unh(q∗h)‖2L2(Ω))
1
2 . The numerical results for Example 5.2 are presented in Table 2 and

Figs. 3 and 4. Overall the convergence behaivour is very similar to the elliptic case: A steady convergence of
both eq and eu is observed; The convergence rate of eu is slightly faster than first order; but the convergence
rate of eq is again much higher than theoretical one.

Table 2: Numerical results for Example 5.2.

(a) initialized with α = 1.00e-8 and h = 2.00e-2

ε 1.00e-2 2.50e-3 6.25e-4 1.56e-4 3.91e-5 rate

eq 6.78e-1 1.73e-1 1.06e-1 6.69e-2 4.19e-2 0.50
eu 1.61e-4 1.62e-5 3.68e-6 1.24e-6 2.31e-7 1.18

(b) initialized with α = 1.00e-6 and h = 1.00e-1

ε 1.00e-2 2.50e-3 4.00e-4 1.00e-4 rate

eq 9.35e-1 8.73e-1 4.11e-1 2.22e-1 0.30
eu 4.31e-4 4.63e-5 2.15e-5 4.36e-6 1.06
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Figure 3: Numerical reconstructions for Example 5.2(a).

A Proofs of technical lemmas

In this appendix, we collect the proof of Lemmas 4.1, 4.2 and 4.3. First we prove Lemma 4.1.

Proof. Let u ≡ u(q†) and unh ≡ unh(q†). Under the data regularity in Assumption 4.1, we have u ∈
H1(0, T ;H1

0 (Ω)). Consequently,

|un − ūn| =
∣∣∣τ−1

∫ tn

tn−1

∫ tn

t

∂su(s)dsdt
∣∣∣ ≤ τ 1

2

(∫ tn

tn−1

|∂tu|2dt
) 1

2

,

and thus the following a priori estimate holds

τ

N∑
n=1

‖un − ūn‖2L2(Ω) ≤ τ
2
N∑
n=1

‖∂tu‖2L2(tn−1,tn;L2(Ω)) = τ2‖∂tu‖2L2(0,T ;L2(Ω)) ≤ Cτ
2.
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(a) exact (b) ε = 4.00e-4 (c) ε = 1.00e-4

Figure 4: Numerical reconstructions for Example 5.2(b).

Thus it suffices to estimate τ
∑N
n=1 ‖ūn−unh‖2L2(Ω). We introduce a discrete dual problem: find {wn−1

h }1n=N ⊂
Vh0 with wNh = 0 such that

(−∂τwnh , ϕh) + (∇wn−1
h ,∇ϕh) + (q†wn−1

h , ϕh) = (ūn − unh, ϕh), ∀ϕh ∈ Vh0. (A.1)

By letting ϕh = −τ∂τwnh in (A.1), and the Cauchy-Schwarz inequality, we have

τ‖∂τwnh‖2L2(Ω) + 1
2 (‖∇wn−1

h ‖2L2(Ω) − ‖∇w
n
h‖2L2(Ω) + ‖q† 12wn−1

h ‖2L2(Ω) − ‖q
† 12wnh‖2L2(Ω))

≤ Cτ‖ūn − unh‖2L2(Ω) + τ
2‖∂τw

n
h‖2L2(Ω).

Since wNh = 0 and ∇wNh = 0, summing the inequality over n from 1 to N gives

τ

N∑
n=1

‖∂τwnh‖2L2(Ω) ≤ Cτ
N∑
n=1

‖ūn − unh‖2L2(Ω). (A.2)

Similarly, by letting ϕh = 2wn−1
h in (A.1), and applying the Cauchy-Schwarz inequality, we deduce

τ−1(‖wn−1
h ‖2L2(Ω) − ‖w

n
h‖2L2(Ω)) ≤ ‖ū

n − unh‖2L2(Ω) + ‖wn−1
h ‖2L2(Ω).

Then summing this inequality over n from N to any k ∈ {N,N − 1 . . . , 1} yields

‖wk−1
h ‖2L2(Ω) ≤ τ

k∑
n=N

‖wn−1
h ‖2L2(Ω) + τ

k∑
n=N

‖ūn − unh‖2L2(Ω).

Then for small τ , the discrete Gronwall’s inequality leads to

‖wk−1
h ‖2L2(Ω) ≤ Cτ

N∑
n=1

‖ūn − unh‖2L2(Ω), ∀k ∈ {N,N − 1, . . . , 1}. (A.3)

The estimates (A.2) and (A.3) together imply

max
1≤n≤N

‖wn−1
h ‖2L2(Ω) + τ

N∑
n=1

‖∂τwnh‖2L2(Ω) ≤ Cτ
N∑
n=1

‖ūn − unh‖2L2(Ω). (A.4)

Next, using the Ritz projection Rh, we have the following splitting

τ

N∑
n=1

‖ūn − unh‖2L2(Ω) =τ

N∑
n=1

(ūn − unh, ūn −Rhūn) + τ

N∑
n=1

(ūn − unh, Rhūn − unh).
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Substituting ϕh = τ(Rhū
n − unh) into (A.1), using the definition of Ritz projection Rh and summing over n

from 1 to N lead to

τ

N∑
n=1

‖ūn − unh‖2L2(Ω) = τ

N∑
n=1

(ūn − unh, ūn −Rhūn) + τ

N∑
n=1

(−∂τwnh , Rhūn − un)

+ τ

N∑
n=1

(−∂τwnh , un − unh) + τ

N∑
n=1

(∇wn−1
h ,∇(ūn − unh))

+ τ

N∑
n=1

(q†wn−1
h , ūn − unh) =:

5∑
i=1

Ii.

Thus, it suffices to bound the summands Ii, i = 1, . . . , 5. Meanwhile, integrating the identity (4.2) on the
interval (tn−1, tn) for n = 1, . . . , N gives

(∂τu
n, ϕ) + (∇ūn,∇ϕ) + (q†ūn, ϕ) = (f̄n, ϕ), ∀ϕ ∈ H1

0 (Ω). (A.5)

Letting ϕ = wn−1
h in (A.5) and ϕh = wn−1

h in (4.4) (associated with q† instead of qh, i.e., the finite element
problem for unh), we deduce

τ

N∑
n=1

(∂τ (un − unh), wn−1
h ) + τ

N∑
n=1

(∇(ūn − unh),∇wn−1
h ) (A.6)

+ τ

N∑
n=1

(q†(ūn − unh), wn−1
h ) = τ

N∑
n=1

(f̄n − fn, wn−1
h ).

Meanwhile, since wNh = 0 and u0
h = Phu0, by the summation by parts formula, we deduce

I3 = (u0 − Phu0, w
0
h) + τ

N∑
n=1

(∂τ (un − unh), wn−1
h ). (A.7)

It follows from (A.6) and (A.7) that

5∑
i=3

Ii = (u0 − Phu0, w
0
h) + τ

N∑
n=1

(f̄n − fn, wn−1
h ).

It remains to bound the terms separately. First, by (A.4),

|(u0 − Phu0, w
0
h)| ≤ ‖u0 − Phu0‖L2(Ω)‖w0

h‖L2(Ω) ≤ Ch2‖u0‖H2(Ω)

(
τ

N∑
n=1

‖ūn − unh‖2L2(Ω)

) 1
2

.

Meanwhile, since τ
∑N
n=1 ‖f̄n − fn‖2L2(Ω) ≤ τ

2‖∂tf‖L2(0,T ;L2(Ω)), we obtain from (A.4) that

∣∣∣τ N∑
n=1

(f̄n − fn, wn−1
h )

∣∣∣ ≤ (τ N∑
n=1

‖f̄n − fn‖2L2(Ω)

) 1
2
(
τ

N∑
n=1

‖ūn − unh‖2L2(Ω)

) 1
2

≤ Cτ
(
τ

N∑
n=1

‖ūn − unh‖2L2(Ω)

) 1
2

.

Further, it follows directly from (4.5), the a priori regularity u ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) and the
estimate (A.4) that

|I1| ≤ Ch2‖u‖L2(0,T ;H2(Ω))

(
τ

N∑
n=1

‖ūn − unh‖2L2(Ω)

) 1
2

,
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|I2| =
∣∣∣τ N∑
n=1

(−∂τwnh , Rhūn − ūn) + τ

N∑
n=1

(−∂τwnh , ūn − un)
∣∣∣

≤ Ch2τ

N∑
n=1

‖∂τwnh‖L2(Ω)‖ūn‖H2(Ω) + τ

N∑
n=1

‖∂τwnh‖L2(Ω)‖ūn − un‖L2(Ω)

≤ C(τ + h2)(τ

N∑
n=1

‖ūn − unh‖2L2(Ω))
1
2 .

These estimates together imply

τ

N∑
n=1

‖ūn − unh‖2L2(Ω) ≤ C(τ2 + h4).

The desired estimate (4.7) follows directly by the triangle inequality.

Next we give the proof of Lemma 4.2.

Proof. By Lemma 4.1, it suffices to prove

τ

N∑
n=1

‖unh(q†)− unh(Πhq
†)‖2L2(Ω) ≤ C(τ2 + h4).

Let ρnh := unh(q†)− unh(Πhq
†) for n = 1, 2, . . . , N . Then ρnh satisfies for any ϕh ∈ Vh0

(∂τρ
n
h, ϕh) + (∇ρh,∇ϕh) + (Πhq

†ρnh, ϕh) = ((Πhq
† − q†)unh(q†), ϕh) (A.8)

= ((Πhq
† − q†)(unh(q†)− un(q†)), ϕh) + ((Πhq

† − q†)un(q†), ϕh).

Letting ϕh = 2ρnh in (A.8), by (3.5), Assumption 4.1, the regularity ‖u(q†)‖L∞(0,T ;L∞(Ω)) ≤ C and Young’s
inequality, there holds

τ−1(‖ρnh‖2L2(Ω) − ‖ρ
n−1
h ‖2L2(Ω)) ≤ C‖q

†‖L∞(Ω)‖un(q†)− unh(q†)‖L2(Ω)‖ρnh‖L2(Ω)

+ Ch2‖q†‖H2(Ω)‖u(q†)‖L∞(0,T ;L∞(Ω)))‖ρnh‖L2(Ω)

≤ C‖un(q†)− unh(q†)‖2L2(Ω) + Ch4 + ‖ρnh‖2L2(Ω).

Summing the inequality over n from 1 to any k ∈ {1, 2 . . . , N} and noting ρ0
h = 0 and Lemma 4.1, we have

‖ρkh‖2L2(Ω) ≤ Cτ
k∑

n=1

‖ρnh‖2L2(Ω) + C(τ2 + h4),

and thus for small τ , the discrete Gronwall’s inequality leads directly to

‖ρkh‖2L2(Ω) ≤ C(τ2 + h4), k = 1, 2, . . . , N.

This completes the proof of the lemma.

Last we give the proof of Lemma 4.3.

Proof. First we prove an elementary estimate:

τ

N∑
n=N0

‖un(q†)− zδn‖2L2(Ω) ≤ C(τ2 + δ2). (A.9)

Indeed, by the proof of Lemma 4.1, we have τ
∑N
n=N0

‖un(q†) − ūn(q†)‖2L2(Ω) ≤ Cτ2. Meanwhile, direct
computation leads to

|ūn(q†)− zδn| =
∣∣∣τ−1

∫ tn

tn−1

u(q†)(t)− zδ(t)dt
∣∣∣ ≤ τ− 1

2

(∫ tn

tn−1

|u(q†)(t)− zδ(t)|2dt
) 1

2

,
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and hence

τ

N∑
n=N0

‖ūn(q†)− zδn‖2L2(Ω) ≤ ‖u(q†)− zδ‖2L2(T0,T ;L2(Ω)) = δ2.

The claim (A.9) follows from triangle inequality. Since q∗h is the minimizer of the system (4.3)-(4.4) and
Πhq

† ∈ Kh, we have
Jα,h,τ (q∗h) ≤ Jα,h,τ (Πhq

†).

Then by the inequality (3.5), ‖∇Πhq
†‖L2(Ω) ≤ C‖q†‖H1(Ω), and thus there holds

τ

N∑
n=N0

‖unh(q∗h)− zδn‖2L2(Ω) + α‖∇q∗h‖2L2(Ω) ≤ τ
N∑

n=N0

‖unh(Πhq
†)− zδn‖2L2(Ω) + α‖∇Πhq

†‖2L2(Ω)

≤Cτ
N∑

n=N0

‖unh(Πhq
†)− un(q†)‖2L2(Ω) + Cτ

N∑
n=N0

‖un(q†)− zδn‖2L2(Ω) + Cα ≤ C(τ2 + h4 + δ2 + α).

where the last step is due to Lemma 4.2 and (A.9). Then by the triangle inequality and (A.9), we obtain

τ

N∑
n=N0

‖un(q†)− unh(q∗h)‖2L2(Ω) + α‖∇q∗h‖2L2(Ω)

≤ C
(
τ

N∑
n=N0

‖un(q†)− zδn‖2L2(Ω) + τ

N∑
n=N0

‖zδn − unh(q∗h)‖2L2(Ω) + α‖∇q∗h‖2L2(Ω)

)
≤ C(τ2 + h4 + δ2 + α).

This completes the proof of the lemma.
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