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Abstract. Dice similarity coefficient (DSC) and Hausdorff distance (HD)
are widely used for evaluating medical image segmentation. They have
also been criticised, when reported alone, for their unclear or even mis-
leading clinical interpretation. DSCs may also differ substantially from
HDs, due to boundary smoothness or multiple regions of interest (ROIs)
within a subject. More importantly, either metric can also have a non-
linear, non-monotonic relationship with outcomes based on Type 1 and
2 errors, designed for specific clinical decisions that use the resulting
segmentation. Whilst cases causing disagreement between these metrics
are not difficult to postulate, one might argue that they may not nec-
essarily be substantiated in real-world segmentation applications, as a
majority of ROIs and their predictions often do not manifest themselves
in extremely irregular shapes or locations that are prone to such incon-
sistency. This work first proposes a new asymmetric detection metric,
adapting those used in object detection, for planning prostate cancer
procedures. The lesion-level metrics is then compared with the voxel-
level DSC and HD, whereas a 3D UNet is used for segmenting lesions
from multiparametric MR (mpMR) images. Based on experimental re-
sults using 877 sets of mpMR images, we report pairwise agreement and
correlation 1) between DSC and HD, and 2) between voxel-level DSC and
recall-controlled precision at lesion-level, with Cohen’s κ ∈ [0.49, 0.61]
and Pearson’s r ∈ [0.66, 0.76] (p-values<0.001) at varying cut-offs. How-
ever, the differences in false-positives and false-negatives, between the
actual errors and the perceived counterparts if DSC is used, can be as
high as 152 and 154, respectively, out of the 357 test set lesions. We
therefore carefully conclude that, despite of the significant correlations,
voxel-level metrics such as DSC can misrepresent lesion-level detection
accuracy for evaluating localisation of multifocal prostate cancer and
should be interpreted with caution.
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1 Introduction

Prostate cancer is one of the most frequently occurring malignancies in adult
men [20]. Transrectal ultrasound-guided (TRUS) biopsy is the gold standard
for detecting and grading prostate cancer; however, it has side effects such as
bleeding, pain, and infection. Multiparametric MR (mpMR) scan has been sug-
gested as a non-invasive assessment tool before a biopsy [1]. In addition, mpMR
scans can be performed after a biopsy or a treatment to investigate if any cancer
found in the prostate has progressed. Radiologists read mpMR images and give
lesions a score of 1-5 by using a Likert scoring system [21][9] or the Prostate
Imaging Reporting and Data System (PI-RADS) [22][6]. Both scoring systems
are used to describe the level of evidence for detecting lesions and to standardize
radiological assessment.

Recently, deep learning approaches have been proposed for diagnosing pa-
tients with suspicion of clinically significant prostate cancer and segment prostate
lesions directly from mpMR images [5][8][19][3][23]. In addition to evaluating
patient-level cancer detection - an image classification problem, results from im-
age segmentation using UNet and its variant [17] have also been reported, as the
mpMR-detected lesions may need histo-pathological examination or treatment,
for example, through targeted biopsy [10][13] and focal ablation [2][15]. Further
examples of mpMR-based procedure planning are discussed in Sec.2.1.

Voxel-level segmentation metrics including Dice similarity coefficient (DSC)
and Hausdorff distance (HD), defined in Sec.2.2, have long been established to
evaluate segmentation accuracy and reported for this application [5][8][19][3][23]
[12]. However, they have also been debated for their consistency and clinical
relevance. These limitations are particularly evident with multiple regions-of-
interest (ROIs). As illustrated in a1 and a2, Fig.1, when the number of predicted
(green) and ground-truth (red) ROIs differ, the HDs become dependent on the
distance from the missed ground-truth to the others, but the DSCs do not. Other
factors include boundary smoothness that are more sensitive to HDs than DSCs.

Perhaps more relevant to clinical practice, either DSC or HD can disagree
with other metrics that are related to clinical decision making. Examples include
lesion-level detection accuracy that is of interest in this study. Shown in Fig.1,
one ground-truth ROI is entirely missed in b1 while both ground-truth ROIs
are, albeit partially, detected in b2. These two cases measure to similar DSCs
(here, ≈ 0.5). The lesion-level accuracy is important in many biomedical imaging
applications. In our applications, described in Sec.2.1, the heterogeneity within
individual foci has motivated diagnostic sampling and treating these lesions in-
dividually, rather than a uniform coverage of all cancerous regions, partly due
to the natural history of the pathology [15][2].

Lesion-level metrics used in object detection literature are arguably appro-
priate for quantifying lesion detection, even when segmentation algorithms are
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Fig. 1. Illustration of the prediction (green) overlaid with the ground-truth lesion (red),
details are described in Sec.2.

used, which have produced promising results in this application, perhaps due
to well-tuned algorithms such as UNet [18]. The object detection metrics are
discussed in Sec.2.2, together with their limitations in evaluating segmentation
output. We propose a new asymmetric lesion-level measure in Sec.2.4.

We investigate the following specific questions in this application. (1) Do
cases, such as those in Fig.1 that cause disagreement between these
metrics, exist in clinical data with a competent segmentation net-
work? and (2) To what extent, the presence of these cases affects the
ability of voxel-level segmentation metrics in evaluating lesion-level
detection? The correlation between these metrics can be dependent on the ra-
diological/histopathological ground-truth, the adopted segmentation networks
and the clinical tasks that utilise these detected lesions, while this study is in-
tended to answer these questions in specific clinical applications described in
Sec.2.1. In Sec.3, we report both voxel- and lesion-level results from prostate
lesion segmentation on clinical mpMR and summarise the overall disagreement
levels and correlations at a range of cut-off values. These metric results are pre-
sented together with the quantified impact, due to adopting the segmentation
metrics, on false-positive and false-negative numbers in this application.

2 Materials and methods

2.1 Prostate lesion segmentation for procedure planning

The mpMR images were acquired from 850 prostate cancer patients, with a
total of 877 studies from [anonymous trial details]. All trial patients gave writ-
ten consents and the ethics was approved as part of the respective trial pro-
tocols. Radiologist contours were obtained for all lesions with Likert-scores≥3
and served as ground-truth labels in this study. 192, 325, 232 and 106 stud-
ies have 1, 2, 3 and ≥4 lesions, respectively. Image volumes were resampled to
0.5×0.5×1.0mm3 with normalised intensities [0,1], before being centre-cropped
to a size of 192× 192× 96 voxels using gland segmentation masks, primarily for
computational consideration. No other pre-processing was applied.
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Three MR volumes, T2-weighted, ADC and diffusion with high-b values, were
channel-wise concatenated as the input to a 3D UNet. 877×3 mpMR images were
divided into 503, 190 and 184, as training-, validation- and test sets without same
patients in different sets. The network was trained with equally-weighted cross-
entropy and Dice losses [11] for 100 epochs, using an Adam optimiser with a
weight decay of 0.0001. The networks and training strategies were otherwise
non-optimised for this application to provide a reference performance. While
clustering ROIs from voxel-level segmentation algorithms remain an open re-
search question, individual lesions were separated, for the purpose of this study,
by testing the neighbouring 26-connected voxels, before filtering out any isolated
ROIs with fewer than 8 voxels.

For targeted biopsy planning, 3-6 biopsy needle positions are planned for
individual detected lesions [10][13]. Missing clinically-significant lesions could
mean missed opportunity for early detection of tumours that are still amenable
for less radical treatment. In a number of treatments such as focal therapy [2] and
nerve-sparing surgery [4][16], accurately identifying individual lesions does not
only ensure adequate coverage of cancers, but also supports different function-
preserving surgical options, as false-positive lesions could invalidate less-invasive
treatment options with less-complications and quicker recovery. In this work, we
focus on lesion-level accuracy as an example type of clinically-relevant metrics
to examine voxel-level DSC and HD.

2.2 Voxel-level segmentation metrics

DSC measures the overlap between the predicted segmentation Yp and the
ground-truth Yg, SDSC = 2× (Yp ∩ Yg)/Yp ∪ Yg. HD measures the greatest sur-
face distance between the boundaries of the predicted segmentation and the
ground-truth. In Sec.3, we report the 95th percentile of surface distances, de-
noted as DHD, as a robust alternative.

2.3 Lesion-level object detection metrics

In object detection literature, the accuracy metrics are computed typically for
comparing overall performance from different algorithms, by first defining the
individual true-positives that represent correctly detected ROIs (i.e. instances
or, here, lesions), based on an overlap measure intersection over union (IoU),
SIoU = (Yp ∩ Yg)/Yp ∪ Yg, between the predicted Yp and the ground-truth Yg
ROIs. The predicted ROIs with greater and less than a given overlap thresh-
old sIoU are considered true-positives and false-positives, respectively. Ground-
truth lesions that are not detected by any predicted ROIs are false-negatives.
Individual predicted or ground-truth ROIs are counted once with their highest-
overlapping counterparts [14]. True-negative ROIs are not defined. These metrics
are customarily defined between bounding-boxes representing instances in ob-
ject detection algorithms, whilst these are reported at voxel-level in Sec.3 with
respect to the evaluated segmentation algorithms.
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The lesion-level accuracy can, in turn, be summarised by counting the num-
bers of true-positive, false-positive and false-negative ROIs, denoted as TP, FP
and FN, respectively, precisionIoU = TP IoU/(TP IoU+FP IoU ) and recallIoU =
TP IoU/(TP IoU + FN IoU ) where the superscripts IoU indicate the IoU-based
definitions.

Marginalising over varying prediction probability cut-off values obtains sum-
mary metrics such as average precision, area under the precision-versus-recall
curve. However these metrics are not discussed further in this work, as they may
be appropriate for comparing different methods but lacks direct clinical interpre-
tation in specific applications [7]. We instead compare precision with controlled
recall at individual cut-off values, whereas this cut-off applies on voxel class prob-
abilities in the segmentation task, rather than on ROI (instance) probabilities
in a typical object detection algorithm.

Limitations in evaluating multifocal cancer localisation Direct ap-
plying the object detection metrics was found challenging to interpret in our
multifocal cancer application, which considers multiple ROIs of the same type5
described in Sect2.1. Object detection algorithms allow flexible and many more
ROI candidate proposals before thresholding on overlaps. This is in contrast to
typical segmentation results, in which no overlapping ROIs are predicted. To
balance the flexibility in region proposals and avoiding over-predicting, TP IoU ,
FP IoU and FN IoU are designed with an arguably more stringent criterion. As
described above, a) a symmetric overlap measure IoU is used, and b) individual
predicted and ground-truth ROIs are not allowed to be counted more than once.
For example, one of the two ground-truth ROIs is considered as false-negative in
Fig.1.b3, while the left green ROI is likely to be a false-positive in Fig.1.b4. We
observed that disregarding ROIs with substantial overlap in these two cases, by
using object detection metrics on segmentation output, makes it difficult to ac-
count for varying detection and coverage levels. In other words, changing cut-off
does not differentiate cases, in which both ground-truth ROIs were “detected"
or both predicted ROIs collectively “covered" the disease area, from others.

In general, it is its symmetric nature of the overlap measure SIoU (and SDSC)
that lead to precisionIoU and recallIoU being insensitive to the different com-
binations of false-negative- and false-positive voxels, where the cut-off applies
for segmentation output. As we show in Table 1 in Sect. 3, different values
in precisionIoU indeed lead to similar or even the same recallIoU values, vice
versa. This indifference to the “costs” associated with respective false-negatives
and false-positives could have direct clinical consequences. However, adapting
the definition of individual ROIs, such that they are amenable to these metrics,
is not trivial.

Furthermore, for the purpose of assessing other metrics, voxel-level segmenta-
tion metrics in this work, such insensitive lesion-level metrics may over-estimate
their correlation due to limited numerical and statistical precision determined
by practical factors such as noise in the data and size of the subjects.

5 This work uses binary segmentation as an example, though the discussion may gener-
alise to multiclass segmentation by considering lesions of different grades separately.
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2.4 Lesion detection metrics for multifocal segmentation output

To address some of the above-discussed limitations with precisionIoU and recallIoU
for assessing the segmentation output in this clinical applications, we propose
an asymmetric measure, such that the voxel-level cut-off becomes sensitive to,
thus practically useful for, balancing the two error types.

For each of N ground-truth lesions {Y n
g }n=1,...,N , it is considered as a true-

positive lesion if it has overlap with any of the M predictions {Y m
p }m=1,...,M ,

single or multiple, that is greater than a pre-defined overlap threshold sGT ,
otherwise false-negative. Thus, SGT =

∑M
m=1(Y

m
p ∩ Y n

g )/Y n
g where the su-

perscripts GT indicating the ground-truth-based definitions, with which false-
positive lesions is not defined. The recall thus can be computed, recallGT =
TPGT /(TPGT + FNGT ) where TPGT and FNGT are the numbers of true-
positive and false-negative lesions using the ground-truth-based definitions, re-
spectively.

For individual predicted lesions Y m
p , a true-positive lesion requires the over-

lap with ground-truth regions Y n
g to be greater than sPred, otherwise false-

positive. Thus, SPred =
∑N

n=1(Y
n
g ∩ Y m

p )/Y m
p where the superscripts Pred for

the prediction-based definitions and undefined FNPred. Therefore, precisionPred =
TPPred/(TPPred + FPPred).

2.5 Correlation, pairwise agreement and impact on evaluation

Pearson’s r is reported to measure the linear correlation between SDSC and DHD

and that between voxel-level SDSC and lesion-level precisionPred/precisionIoU ,
on 100 boostrapping samples with a sample size of 20, from the holdout set.
Cohen’s Kappa coefficient κ is computed, between two metrics, to measure the
level of pairwise agreement on judging the better one from two randomly sam-
pled holdout cases. For example, a higher SDSC agrees (true) with a higher
precisionPred but disagrees (false) with a higher DHD, if measured from the
same case of the two. For comparison purposes, an overlap threshold of 0.3 was
used for SIOU , SPred and SGT , approximating the mean SDSC on holdout set,
with varying cut-off values. Other non-extreme threshold values did not alter
the conclusions summarised in Sec.3.

The DSC results are used as an example to estimate the false-positive and
false-negative cases, using the linearly fitted correlation models (see Fig. 2 for
examples). The differences, between these Dice-estimated and the actual errors,
provide quantitative evidence of the clinical impact on evaluating lesion locali-
sation using segmentation metrics.

3 Results

The segmentation results are reported in Table 1, showing that the precisionPred

and recallGT are more sensitive to the cut-off than precisionIoU and recallIoU
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c/o Lesion-level Voxel-level Dice-est./Actual
prec.Pred rec.GT prec.IoU rec.IoU SDSC DHD F̂P/FP ˆFN/FN

0.1 0.26 0.69 0.12 0.17 0.33(0.18) 20.40(10.41) 257/409 86/106
0.2 0.36 0.61 0.21 0.27 0.34(0.19) 18.20(10.20) 214/306 101/136
0.3 0.42 0.54 0.23 0.27 0.34(0.20) 18.50(9.75) 232/273 103/154
0.4 0.44 0.52 0.25 0.29 0.33(0.20) 18.25(10.13) 256/253 111/169
0.5 0.47 0.49 0.25 0.28 0.33(0.21) 19.02(10.70) 216/237 104/178
0.6 0.49 0.45 0.25 0.28 0.32(0.21) 18.97(10.63) 219/213 101/194
0.7 0.52 0.42 0.27 0.27 0.31(0.21) 19.71(11.57) 179/190 101/208
0.8 0.58 0.37 0.26 0.26 0.29(0.21) 20.00(12.54) 132/158 98/227
0.9 0.64 0.31 0.27 0.23 0.26(0.21) 22.63(13.37) 114/115 101/255

Table 1. Summary of the voxel- and lesion-level results, with varying cut-off (c/o)
values. Estimated F̂P and ˆFN are derived from linear relationship between DSC and
lesion-level metrics. Results are based on 357 lesions in holdout patients.

Fig. 2. Quantitative comparison on holdout set, a) shows the correlation between SDSC

and DHD in box plot and scatter plot, respectively. b-d) show the correlation between
DSC and Precision/Recall under different cut-offs.

are. This was indeed due to the difference between the symmetric overlap mea-
sure SIoU/SDSC and the asymmetric SGT /SPred, discussed in Secs. 2.2 and 2.4.
Fig.2 provides examples of the lesion segmentation with their quantitative re-
sults.

3.1 Comparison between DSC and HD

Fig.2 a) observe a monotonic relationship between SDSC and DHD, with a cor-
relation of r=-0.6462 (p−value=0.000) and a “moderate” pairwise agreement of
κ=0.57. However, examples were found that the two metrics disagree on which
case of a given pair is a “better" segmentation. For example, the case in Fig.3
c) yielded a lower SDSC and a lower DHD, compared with those measured from
the cases in a) and b). This indeed indicates that variable number of ROIs may
be a factor of such disagreement, due to their sizes and locations.
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Fig. 3. Holdout set segmentation results, with ground-truth (predicted) lesions in red
(green), showing examples of a-c) inconsistency between DSC and HD, d) good predic-
tion in all evaluation metrics, e) single lesion with multiple predictions, f) two lesions
with one prediction, g-h) poorer performance with higher cut-off, and i-j) better per-
formance with higher cut-off.

3.2 Comparison between voxel- and lesion-level metrics

Fig.2 b-d) illustrate that both lesion-level metrics are increasingly correlated
with SDSC with higher cut-offs, ranging from 0.35 to 0.85 and from 0.66 to 0.76,
for recallGT and precisionPred, respectively.

In Fig.3, Cases d-f) show examples of levels of correlation and agreement be-
tween the voxel- and lesion-level metrics, Cases g-j) show the effect of different
cut-off values on two cases. It is noteworthy that these cases were cherry-picked
to show various scenarios that motivated recallGT /precisionPred and the overall
comparison reported in Fig2. Visual examples are generally consistent with the
reported quantitative correlation and agreement results and showed an interest-
ingly strong correlation between the voxel- and lesion-level evaluation metrics.

As summarised in the last two columns of Table 1, the ratio of Dice-estimated
false-positives to true false-positives rises, partly due to the reduced number of
false-negative lesions as the cut-off increases. The DSC may therefore be consid-
ered a good evaluation metric at a cutoff close to 0.9. The opposite trend can be
observed for the false-negatives. However, the differences in general cannot be
overlooked, with the maximum being 37% (152) and 60% (154) of the respective
true errors.

4 Conclusion

In this work, we compare voxel-level segmentation metrics DSC and HD, with
lesion-level accuracy metrics, on the prostate lesion segmentation task. For eval-
uating segmentation output, we proposed new lesion detection metrics that are
asymmetric and suitable for voxel-level cut-off adjustment. Experimental results
show considerable correlation and pairwise agreement not only between the DSC
and HD, but also between voxel- and lesion-level metrics. Notwithstanding a de-
gree of agreement and the apparent correlations, the voxel-level segmentation
metrics could still lead to significant misinterpretation in lieu of the lesion-level
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errors. Following the presented evidence from the real-world clinical application,
we recommend reporting these voxel-level metrics with caution and an appreci-
ation of their limitations. Future work includes studies with wider clinical down-
stream tasks that use automated segmentation and a comparison between these
metrics as loss functions for network training.
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