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Abstract
Segmentation of thermal facial images is a challenging task. This is because facial

features often lack salience due to high-dynamic thermal range scenes and occlusion is-
sues. Limited availability of datasets from unconstrained settings further limits the use of
the state-of-the-art segmentation networks, loss functions and learning strategies which
have been built and validated for RGB images. To address the challenge, we propose
Self-Adversarial Multi-scale Contrastive Learning (SAM-CL) framework as a new train-
ing strategy for thermal image segmentation. SAM-CL framework consists of a SAM-CL
loss function and a thermal image augmentation (TiAug) module as a domain-specific
augmentation technique. We use the Thermal-Face-Database to demonstrate effective-
ness of our approach. Experiments conducted on the existing segmentation networks
(UNET, Attention-UNET, DeepLabV3 and HRNetv2) evidence the consistent perfor-
mance gains from the SAM-CL framework. Furthermore, we present a qualitative anal-
ysis with UBComfort and DeepBreath datasets to discuss how our proposed methods
perform in handling unconstrained situations.

1 Introduction
Thermal infrared imaging of human skin enables remote physiological sensing and affective,
psychological states monitoring [11, 15, 58]. Studies have indicated temperature patterns
over specific facial regions as important psychophysiological signatures. For instance, tem-
perature changes over the nostril region can be converted into breathing signals [13, 41, 47].
Another example is the nosetip temperature pattern associated with vasomotor activity which
is related to mental stress states [15, 16]. Automated computational pipelines for processing
thermal images therefore require identification of regions of interest (ROIs) which are either
defined by a fixed bounding box or by an anatomical mask, with the latter being more ap-
propriate for reliable extraction of physiological signals [21]. The automated identification
of an anatomical mask requires every pixel in a thermal image to be labelled according to its
respective anatomical region.
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Such semantic semantic segmentation task is particularly complex in thermal imaging. In
comparison with typical RGB or gray-scale facial images, thermal facial images possess
much less prominent facial features. This is because thermal images represent the tempera-
ture distribution over the skin surface, which is affected by dynamically varying physiolog-
ical state as well as ambient temperature [13, 23]. In addition, variations over the thermal
surface are very low and occlusions such as forehead hairs and eye-glasses further make it
challenging to reliably segment the ROIs in unconstrained settings.
The state-of-the-art in semantic segmentation has been under continuous progression follow-
ing the foundational work of Fully Convolutional Networks (FCN) [39]. The methodolog-
ical contributions in the research of semantic segmentation can be broadly categorized into
i) model architectures, ii) loss functions or learning strategies, and iii) data augmentation
techniques. Significant development has been made towards deep-learning architectures for
semantic segmentation with some notable ones such as: UNET [48] and its variants [51], the
family of DeepLab networks [6, 7, 8], HRNet [53], and the more recent transformer based
approaches such as “HRNet + OCR + SegFix” [59]. Pretrained network backbones such as
ResNet [26], Xception [17], and HRNet [53], have further accelerated the progress owing to
the availability of large-scale RGB datasets [19, 27, 37]. On the other side, the widely used
loss functions for semantic segmentation include softmax cross-entropy loss [18], DICE loss
[52] and region mutual information (RMI) loss [63], among others.
The existing challenges in semantic segmentation of thermal images include the lack of avail-
ability of large-scale bench-marking datasets. Furthermore, the studies validating the effec-
tiveness of the segmentation networks, data-augmentation techniques and loss functions for
RGB images have not sufficiently addressed the segmentation challenges of thermal images
acquired in unconstrained settings. Specifically, data-augmentation techniques developed for
RGB images [5, 49] do not consider thermal ambient conditions and therefore not suitable
to augment thermal images. In addition, thermal data is single channel, and the basic prop-
erties such as transparency in RGB change to opacity in thermal images (e.g. clear glass).
As thermal infrared wavelength is not transmissive for most of the objects, occlusions are
observed more frequently. In addition, the variations in thermal ambient conditions result in
varying appearances and can not be related to the brightness variations in RGB images [14].
This work addresses the challenge of training segmentation network with datasets of limited
size using a novel self-adversarial multi-scale contrastive learning (SAM-CL) framework
(§3). SAM-CL framework introduces a SAM-CL loss function (§3.1.2) and a thermal image
augmentation (TiAug) module (§3.2), while utilizing existing segmentation networks. The
TiAug module serves as domain specific augmentation, while the SAM-CL loss function
provides enhanced supervision in learning inter-class separation and intra-class proximity
in the presence of adversarial-attacks by TiAug. We compare the performance of SAM-CL
framework with the existing segmentation loss functions, supervised contrastive learning
(CL) [54] and Generative Adversarial Network (GAN) based approaches for segmentation
[57, 62] in §4.1.2. Our contributions are:
• Self-Adversarial Multi-scale Contrastive-Learning (SAM-CL) framework that introduces

following to train existing segmentation networks:
– Self-adversarial multi-scale contrastive loss function for semantic segmentation, to effi-

ciently achieve intra-class proximity and inter-class separation of the feature represen-
tations by utilizing the adversarial attacks generated by the TiAug module.

– a Thermal image augmentation (TiAug) module to generate representations of uncon-
strained thermal settings by applying domain-specific transformations to the thermal
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images acquired in controlled settings.
• Performance benchmark with semantic segmentation of facial regions on Thermal Face

Database [33, 34] as well as qualitative analysis on UBComfort [45] and DeepBreath
datasets [12] demonstrating the performance gains by the proposed techniques.

2 Related Work
Semantic Segmentation: Segmentation networks largely follow encoder-decoder schemes
[39, 40, 43, 48, 65]. To learn cross-pixel dependencies, several models apply attention mech-
anisms [3] for semantic segmentation [22, 28, 29, 32, 44, 66]. Atrous convolutions along
with pyramid pooling in DeepLab networks [6, 7, 8] enable learning of the multi-scale fea-
tures. HRNet, as proposed in [53], shows performance gain on the semantic segmentation
task, among other tasks, by making use of high-resolution and multilevel representations.
Furthermore, the more recent development using transformer networks such as HRNet +
OCR + SegFix has achieved competitive performances on multiple benchmarking datasets
[59]. While increased network complexity and deeper layers prove effective for training
models with large-scale RGB datasets, it is challenging to benefit from the same with a
limited dataset size as typically observed in the case of thermal infrared imaging.

Existing semantic segmentation approaches for thermal images are not equipped to handle
real-world scenarios, such as occlusion and varying thermal ambient conditions. One ear-
lier study on occlusion removal in thermal imaging [55] proposes a modelling-based method
using kernel principal component analysis for removing a specific occluding object (eye-
glasses). This method requires the use of a registered color image to reconstruct the oc-
cluded thermal image, limiting its generalizability unless a large-scale dataset with pair of
color-images and thermal-images is available. Large scale datasets allow capturing diverse
representations, though acquiring a large scale dataset with thermal imaging and perform-
ing pixel wise annotations for semantic segmentation remains impractical. Furthermore, the
thermal imaging datasets that are currently available with facial images have been acquired
in highly controlled settings [1, 33, 34, 36]. It is therefore required to review the data aug-
mentation techniques that can allow achieving robust performance in real-world scenarios.

Image Augmentation Techniques: The commonly used augmentation techniques include
geometric transformations as well as learning or modelling based methods [49]. While geo-
metric transformations are relevant for thermal images, augmentation techniques pertaining
to variations in brightness and contrast in RGB images cannot be directly mapped to thermal
images. Among the learning based methods, GAN [24] and self-adversarial training (SAT)
[25] have shown promising performance. SimGAN as proposed in [50] utilizes simulator
generated images and a GAN to synthesize realistic augmented eye images. This method re-
lies on the effectiveness of a simulator in synthesizing images, which may not generalize for
different scenes and image modalities. YOLOv4 [4] showed the effectiveness of SAT based
augmentation technique called Fast Gradient Sign Method (FGSM) [25] in which an origi-
nal image gets updated instead of the network weights in one forward pass, and this altered
image is then used as an adversarial attack to improve the robustness of the trained model.
A more recent work on localization of image forgery [67] also highlights the usefulness of
FGSM based self-adversarial attacks in augmenting the data. While existing SAT approaches
increase the robustness of the model for subtle changes in an image, they are insufficient in
modelling range of real-world scenarios. Unlike gradient based update of images in SAT ap-
proaches, our proposed method (§3.2) models plausible variations of unconstrained settings
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in thermal images for adversarial attacks to enhance the robustness of the trained model in
such settings.

Loss Functions or Learning Strategies: In addition to segmentation network and augmen-
tation techniques, loss function or learning strategy plays a crucial role in achieving higher
performance. For semantic segmentation tasks, cross-entropy loss [18] and weighted cross-
entropy loss functions have been widely used [2, 31]. In cases of unequal class distribution,
due to imbalanced distribution of pixels between semantic classes, focal loss [38] and DICE
loss functions [52] have been reported to show better performance. In a more recent devel-
opment, researchers proposed a loss function based on mutual information between pixels
and semantic regions [63], and showed substantial improvements on benchmarking datasets.
Learning strategies such as GAN [10, 20, 24, 57, 60, 62] and CL [54, 61, 64] have also
shown to be effective for the segmentation task. A recent study using GAN [42] proposes
multi-class segmentation approach, though, it is limited to handle only the occluding objects
learnt at training time. The corner stone for the success of GAN as well as CL approaches
is the availability of large scale datasets, which limits their effective deployment in thermal
imaging. Our work takes inspiration from GAN as well as CL, however unlike the critic
network in GAN, the auxiliary network in our approach does not compete with the generator
(segmentation network). In addition, unlike the use of feature space for sampling anchors in
CL, our approach uses predicted segmentation masks or logits as anchors.

3 Proposed Method: Self-Adversarial Multi-scale
Contrastive Learning (SAM-CL)

Figure 1 provides an overview of our proposed Self-Adversarial Multi-scale Contrastive
Learning (SAM-CL) framework. One of the highlights of our framework is that it is used
only during the training, resulting in no computation overhead during the inference. Though

Figure 1: Proposed SAM-CL framework for Semantic Segmentation. In SAM-CL frame-
work, the multi-scale contrastive-loss is computed by the four layer auxiliary network.
TiAug generates augmented thermal images representing real-world scenarios.

this framework can be generically applied to segmentation tasks, the key objective in this
work is to train a segmentation network on thermal facial images for: i) segmentation of fa-
cial regions including eyes, eyebrows, nose, mouth and chin area and, ii) resilience to varying
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thermal ambient conditions as well as occlusions in unconstrained settings. The proposed
SAM-CL framework utilizes existing segmentation networks and introduces a SAM-CL loss
function and a thermal image augmentation (TiAug) module to achieve the objective without
requiring thermal images acquired in unconstrained scenarios.

3.1 Loss Function
3.1.1 Preliminaries

For a semantic segmentation task, the segmentation network SEG learns a function fSEG(I)
that maps input image I to the ground-truth mask Y , that specifies a semantic class c ∈ C
for every pixel i ∈ I. A limitation of the most commonly used pixel-wise segmentation loss
functions such as cross-entropy loss, is their inability to capture the relationships between
pixels. To address this limitation, a recent work proposed the mutual information based loss
function [63] that combines cross-entropy and structural similarity loss. Furthermore, to
learn the relationship between pixels of multiple images and to supervise the representations
within pixel-embedding, supervised contrastive loss for semantic segmentation is proposed
in [54]:

LNCE
y =

1
|Py| ∑

y+∈Py

−log
exp(y · y+/τ)

exp(y · y+/τ)+∑y−∈Ny exp(y · y−/τ)
(1)

where Py and Ny are positive and negative samples of pixel-embedding, belonging to classes
dissimilar to that of the anchor pixel y. This learning strategy is very effective in maximizing
inter-class separation, while minimizing intra-class distance within pixel-embedding, spe-
cially when large-scale dataset and corresponding pretrained weights are available. However,
feature representations within pixel-embeddings remain transient while training a segmen-
tation network without pretrained weights and with a limited dataset size. This limits the
effectiveness of CL in training the segmentation network. To address this, we resort to a CL
strategy that uses logits instead of pixel-embedding, while remaining effective in maximizing
inter-class separation and minimizing intra-class proximity.

3.1.2 SAM-CL Loss Function

In a one-hot encoded ground-truth segmentation mask (Y+
oh), each channel represents a bi-

nary mask for the respective classes. Class swapped mask (Y−
oh) is generated by randomized

swapping of channels of the (Y+
oh) with the constraint that no channels of Y+

oh and Y−
oh match.

With logits or one-hot predicted mask Yoh representing an anchor, Y+
oh and Y−

oh represent-
ing positive and negative samples respectively, the first triplet loss is computed as shown in
Equation (2):

Ls0(Yoh,Y+
oh,Y

−
oh) = max{d(Yoh,Y+

oh)−d(Yoh,Y−
oh)+margin,0} (2)

Equation (2) allows learning inter-class separation as well as intra-class proximity without
requiring to compute the contrastive loss with pixel-embedding. As Y−

oh preserves spatial fea-
tures at mask-level, the optimization results in effective inter-class separation of the spatial
features. Yoh, Y+

oh, and Y−
oh are passed through a 4-layered auxiliary network in three different

forward passes to compute the feature maps yConv1, yConv2 and yConv3; (y = Yoh,Y+
oh,Y

−
oh) for

each layer. Down-scaling of 2 is applied at each layer with the number of channels in every
layer held constant and equal to the number of classes, consistent with the first layer input
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channels.

LSAM−CL = Ls0(Yoh,Y+
oh,Y

−
oh)+Ls1(YConv1,Y+

Conv1,Y
−

Conv1)+

Ls2(YConv2,Y+
Conv2,Y

−
Conv2)+Ls3(YConv3,Y+

Conv3,Y
−

Conv3) (3)

The overall SAM-CL loss function as formulated in Equation (3), therefore offers supervi-
sion to maximize inter-class separation at multiple-scales. To compute the distance function
d(x,y) as mentioned in Equation (2), we use RMI [63] on logits, and cross-entropy loss for
down-convolved feature-maps in the auxiliary network (see Figure 1).

3.2 Thermal Image Augmentation (TiAug) Module
The thermal image augmentation module (TiAug), as illustrated in Figure 2, transforms a
thermal image acquired in controlled settings into an image resembling one acquired in un-
constrained ambient settings. This is an important step as there often exist high-dynamic
thermal range scenes in the real world settings [13]. Inspired by the Optimal Quantisa-
tion technique in [13], this module is designed to first add synthesized objects with diverse
parameters in an occluding as well as a non-occluding manner. These parameters include
size, shape, temperature, position and configuration (i.e. single, dual or dual-connected ob-
jects). In addition, a random temperature value is added as thermal noise to every pixel.
The maximum magnitude of the noise is set as per the noise equivalent temperature differ-
ence (NETD), a sensitivity parameter of thermal infrared imaging camera, that provides the
minimum value of temperature difference that can be sensed reliably by a camera. While a
high-sensitive thermal camera has lower magnitude of NETD, it is higher for the low-cost
mobile thermal imaging camera. TiAug sets the maximum NETD value (T hmax

NET D = 0.1◦C)
considering the low-cost thermal imaging camera.

Figure 2: Thermal Image Augmentation (TiAug) Module. TiAug module consists of mod-
ules for thermal data specific occlusion generation as well as additive thermal noise modules
along with the commonly used geometric transformation modules.

As expressed in Equation (4), an augmented image (IHxW
aug ) is generated from an original im-

age (IHxW
org ) of height (H) and width (W ) by applying an occlusion transformation ( focc) and

adding thermal noise (ηHxW : 0 < κ < T hmax
NET D∀κ ∈ ηHxW ). The parameters characterizing

occluding objects in focc are size (ϑsz: 1-40% of facial region), shape (ϑsh) characterized by

Citation
Citation
{Zhao, Wang, Yang, and Cai} 2019

Citation
Citation
{Cho, Julier, Marquardt, and Bianchi-Berthouze} 2017{}

Citation
Citation
{Cho, Julier, Marquardt, and Bianchi-Berthouze} 2017{}



JOSHI, BERTHOUZE, CHO: SAM-CL FRAMEWORK FOR SEMANTIC SEGMENTATION 7

number of vertices (2-30) and the corresponding irregularity (0 to 10%) as well as spikeness
(0 to 50%), temperature (ϑtemp: Imin

org − (Imax
org − Imin

org ) ≤ ϑtemp ≤ Imax
org +(Imax

org − Imin
org )), posi-

tion (ϑxy: (x,y) ∈ RHxW ), and configurations (ϑcon f ig: single, dual and dual-connected). The
function g(...) uniquely combines the values of each parameter from the respective range, al-
lowing the synthesis of endless new representations. focc replaces the specific pixels of IHxW

org
with the synthesized objects which may or may not occlude the facial regions. This leads to
real-world histogram distribution of thermal images, unlike bimodal distribution when ther-
mal images are acquired in controlled settings. In a bimodal histogram distribution, a peak
at a lower temperature value depicts background and a peak at a higher temperature corre-
sponds to the facial regions. Several segmentation algorithms assume bimodal histogram
distribution for an automated segmentation [30], which affects their performance in uncon-
strained settings.

IHxW
aug = focc(IHxW

org ,g(ϑsz,ϑsh,ϑtemp,ϑxy,ϑcon f ig))+η
HxW (4)

Real-world scenarios may include objects at temperatures higher than the facial regions (e.g.,
sun, hot beverages), as well as objects at lower temperatures [13]. In such real-world sce-
narios, histogram distribution is not generally bimodal. To simulate real-world variations in
histogram distribution pattern, TiAug adds synthesized objects both at temperatures higher
and lower than that of the facial regions. This approach prevents the deep-learning network
from over-fitting to bimodal-distributions. Hence, the obtained IHxW

aug represents real-world
scenarios both in terms of spatial characteristics of ambient objects as well as the histogram
distribution of temperature values. IHxW

aug is further normalized and passed as input to the
segmentation network. While the examples in the Figure 2 show changes in spatial charac-
teristics, the box-plot analysis signifies the effectiveness of TiAug in altering average fore-
ground (facial-regions) temperature and average background temperature in the normalized
images. Furthermore, TiAug applies the following geometric transformations: horizontal
flip, vertical flip, rotation, Gaussian blur, and resizing (0.5X to 2X).

4 Experiments
We perform various experiments to compare the proposed SAM-CL framework with existing
loss functions and learning strategies, using the following segmentation networks: U-NET
[48], Attention UNET [44], DeepLabV3 [9] and HRNet [53]. Our code uses PyTorch [46]
and is available on GitHub. It is built upon a prior work on contrastive learning for semantic
segmentation [54]. Given a lack of benchmark segmentation performance reports on thermal
facial datasets as well as pretrained models, we implement and train the aforementioned
prior-art segmentation networks with Xavier uniform initialization. We use a batch size of
16 along with an SGD optimiser with a weight decay of 1e-8 and betas set to 0.9 and 0.999.
For our experiments, it is required to use datasets of raw thermal matrices (ie. absolute
temperature value assigned to each pixel). The available datasets of thermal facial images
include: Thermal Face Database [33, 35], UBComfort dataset [45], and DeepBreath dataset
[12, 13]. For training and quantitative evaluation (§4.2), we mainly use the Thermal Face
Database [33, 35] as it provides, together with the data, the ground-truth labels. A limitation
of this dataset is that it is acquired in controlled setting. For this reason, we have use the
other two datasets collected in uncontrained settings. However, due to the lack of ground
truth in these two datasets, we use them for qualitative analysis only (§4.2) to demonstrate
the effectiveness of SAM-CL framework in such settings.
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4.1 Quantitative Evaluation on Thermal Face Database
4.1.1 Dataset Description

Thermal Face Database [33, 35] consists of 2935 images of 90 individuals with 68 manu-
ally annotated facial landmark points. We derive segmentation masks from the landmarks
points for each anatomical region (chin, mouth, nose, eyes and eye-brows). Data is split into
training (85%) and validation (15%) sets based on subject ids.

4.1.2 Results

To investigate the generalizability of the SAM-CL framework, we train UNET [48], At-
tention UNET [44], DeepLabV3 [9] and HRNet [53] segmentation networks. In all the
experiments, augmentation with basic geometric transformations including horizontal flip,
vertical flip, rotation, Gaussian blur, and resizing (0.5X to 2X), is uniformly applied. The
loss functions used for bench-marking includes weighted binary cross-entropy loss (BCE),
DICE loss, and region mutual information (RMI) loss [63]. As SAM-CL framework relates
to CL and GAN, we additionally compare performance with SegAN [56, 57], SegGAN [62],
along with a recent work on the supervised CL applied to semantic segmentation [54].

Table 1: Performance Evaluation of SAM-CL Framework
Segmentation Network

Learning Strategy

(Loss Function)
mIoU (%) Segmentation Network

Learning Strategy

(Loss Function)
mIoU (%)

UNET [48]

Pixel-wise Segmentation (BCE) 67.64

Attention UNET [44]

Pixel-wise Segmentation (BCE) 66.61

Pixel-wise Segmentation (DICE) 75.00 Pixel-wise Segmentation (DICE) 75.14

GAN (SegAN) [57] 76.79 GAN (SegAN) [57] 76.75

GAN (SegGAN) [62] 75.50 GAN (SegGAN) [62] 76.24

RMI [63] 81.35 RMI [63] 81.39

ContrastiveSeg [54] 81.24 ContrastiveSeg [54] 81.50

SAM-CL (Ours) 82.11 (+0.76) SAM-CL (Ours) 82.85 (+1.35)

DeepLabV3+ResNet101 [8, 26]

RMI [63] 75.85

HRNetV2-W48 [53]

RMI [63] 78.46

ContrastiveSeg [54] 74.45 ContrastiveSeg [54] 78.36

SAM-CL (Ours) 79.29 (+3.44) SAM-CL (Ours) 78.97 (+0.61)

Table 1 shows the comparison of performances with percentage mean IoU metric. We ob-
serve consistent performance gains with the use of DICE loss when compared against BCE
loss. GAN based learning strategy [57, 62] is found effective for UNET and Attention UNET,
while the performance drops for DeepLabV3 network when comparing against the respec-
tive performance with the DICE loss. Consistent performance improvements from DICE
loss function as well as GAN based learning strategy is evident for the models trained with
RMI loss function. The performance gains across all the segmentation networks can be noted
when deploying the SAM-CL framework.

Table 2: Ablation Study for TiAug and SAM-CL Loss Function
Segmentation Network

mIoU (%) Performance
RMI RMI + TiAug RMI + TiAug + SAM-CL

UNET [48] 81.36 81.91 82.11

Attention UNET [44] 81.39 82.29 82.85

HRNetV2-W48 [53] 78.13 78.87 78.97

DeepLabV3+ResNet101 [8, 26] 75.85 78.07 78.12

DeepLabV3+Xception [8, 17] 76.55 77.31 77.85

We performed an ablation study to examine the individual contribution of the TiAug module
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and the SAM-CL loss function. From Table 2, we observe performance gains from the base-
line, trained with RMI loss, for all the segmentation networks when the data is augmented
using the TiAug module. Similarly additional performance gains for the respective segmen-
tation networks are observed when the SAM-CL loss function is used along with the TiAug
module. The TiAug module presents a segmentation network with the adversaries such as
occlusions and varying ambient temperature levels in the input thermal images, while the
SAM-CL loss function maximizes the inter-class separation using the class-swapped nega-
tive sample Y− and its down-scaled representations in the auxiliary network.

4.2 Qualitative Analysis

As Thermal Face Database does not include real-world occlusions, we extend the evaluation
of our approach with a qualitative analysis on the datasets acquired in unconstrained settings
(see Figure 3). The UBComfort dataset [45] was acquired from in-the-wild car users with
varying thermal ambient conditions using a high-resolution thermal camera. Instead, the

Figure 3: Qualitative Performance Analysis on Different Thermal Imaging Datasets. Atten-
tion UNET is trained using RMI loss to compare the performance of the proposed SAM-CL
framework. Please refer to §4.2 for the discussion on qualitative performance analysis.
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DeepBreath dataset [12] was acquired from participants under induced stress levels using a
low-resolution mobile thermal camera.

The thermal images in the first row of the Figure 3 present ground-truth labelmask overlaid
with color-coded class-labels. The histogram plot on the top-right shows the temperature
distribution across the images in the Thermal Face database, highlighting the highly con-
trolled laboratory settings. We further identify a few samples (row-2) within the Thermal
Face Database in which hairs occlude a small part of the thermal image. The superiority
of the model trained jointly with the SAM-CL loss function and the TiAug module in reli-
ably handling forehead hairs occlusions is evidenced by the segmentation outcome. In the
following row, we present samples generated by the TiAug module, which after min-max
normalization, appear significantly different, as would be the case when objects that are ei-
ther too hot or too cold appear in an image. The state-of-the-art (SOTA) model fails in these
scenarios (row-3) as it has not been trained with such variations.

The thermal images of individuals without and with eye-glasses, seated in a car [45] are
shown in rows 4 and 5 of Figure 3 respectively. Though the training set does not include
such images, the model trained with our proposed method shows resilience towards per-
forming reliable segmentation in the presence of eye-glasses, while the SOTA sub-performs.
Similarly, the thermal images of individuals performing cognitive tasks [12], without and
with eye-glasses, are shown in rows 6 and 7 respectively. While SOTA sub-performs on
both cases, SAM-CL framework shows reliable performance. It can be noted that the ther-
mal images in the DeepBreath dataset [12] are acquired using mobile thermal camera (FLIR
One), highlighting the robustness of the model trained using SAM-CL framework across for
different thermal camera specifications.

5 Conclusion

The proposed SAM-CL framework that introduces the SAM-CL loss function and the TiAug
module, is shown to be effective in training segmentation networks with datasets of lim-
ited size. The TiAug module transforms thermal images acquired in controlled laboratory
environment into ones representing real-world scenarios. This transformation considers a
range of plausible ambient temperature, geometric properties of common occluding objects
as well as noise specification of widely used thermal cameras. This makes the TiAug module
suitable to be applied on thermal images for various learning-based computer-vision tasks
including classification, object detection, instance and panoptic segmentation to train deep-
learning networks to handle common real-world scenarios, without explicitly requiring a
thermal dataset to be acquired in such scenarios.

Furthermore, the SAM-CL loss function benefits from the TiAug module that presents the
segmentation network with adversaries (e.g. occluded images), resulting in a portion of
predicted logits to overlap with the synthesized negative sample (from class-swapped label-
mask). This overlap of logits with negative sample results in a higher loss for the incorrect
label predicted by the segmentation network in the corresponding region. This explains the
effectiveness of the SAM-CL loss function in conjunction with the TiAug module in of-
fering consistent performance gains across different segmentation networks. SAM-CL loss
function can be extended to other imaging modalities to train segmentation networks with
datasets of limited size, by devising appropriate augmentation technique for self-adversarial
learning.
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