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Abstract
This paper presents a novel activity-based demand model that combines an optimisation 
framework for continuous temporal scheduling decisions (i.e. activity timings and dura-
tions) with traditional discrete choice models for non-temporal choice dimensions (i.e. 
activity participation, number and type of tours, and destinations). The central idea of our 
approach is that individuals resolve temporal scheduling conflicts that arise from overlap-
ping activities, e.g. needing to work and desiring to shop at the same time, in order to 
maximise their daily utility. Flexibility parameters capture behavioural preferences that 
penalise deviations from desired timings. This framework has three advantages over exist-
ing activity-based modelling approaches: (i) the time conflicts between different tempo-
ral scheduling decisions including the activity sequence are treated jointly; (ii) flexibility 
parameters follow a utility maximisation approach; and (iii) the framework can be used to 
estimate and simulate a city-scale case study in reasonable time. We introduce an estima-
tion routine that allows flexibility parameters to be estimated using real-world observations 
as well as a simulation routine to efficiently resolve temporal conflicts using an optimi-
sation model. The framework is applied to the full-time workers of a synthetic popula-
tion for the city of Lausanne, Switzerland. We validate the model results against reported 
schedules. The results demonstrate the capabilities of our approach to reproduce empirical 
observations in a real-world case study.
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Introduction

Planning for future transport infrastructure and efficient service concepts in light of possi-
ble changes in population (e.g. demographic shifts), policy or technology relies on quanti-
tative forecasts of travel demand. To that end, simulation models which aim to closely rep-
resent mobility behaviour are applied. Current state-of-the-art transport models adopt an 
activity-based (i.e. microscopic) approach (Castiglione et al. 2015). Activity-based trans-
port models treat mobility as individual decisions across many interwoven choice dimen-
sions. These models afford a high-resolution representation of travel behaviour as they 
simulate each traveller as an autonomous decision-making unit and consider full consist-
ency in time and space over a time period (e.g. a 24h-day) for each individual (Rasouli and 
Timmermans 2014). In most activity-based models, the different choice dimensions – e.g. 
activity participation, destinations, activity duration or start times – are simulated sequen-
tially (Castiglione et al. 2015; Davidson et al. 2011). Different modelling approaches can 
be used for each choice dimension. For example, activity participation as well as destina-
tion and mode decisions are well suited to discrete choice models. Particularly destination 
and mode choice models are demonstrated to be well calibrated in various applications 
(Hörl et al. 2019; Scherr et al. 2020a). In comparison, the temporal choice dimension (i.e. 
activity duration and timings) remains under-explored in the literature. These decisions are 
either modelled based on rule-based and data-driven approaches (Scherr et al. 2020a) or 
based on simplified behavioural assumptions, e.g. with a transformation of the continuous 
timings into discrete intervals (Vovsha et al. 2005).

Sequential and rule-based or data-driven approaches for generating activity-based 
schedules are found wanting since they only partially consider behavioural preferences and 
interactions between choice dimensions. To date, behavioural preferences for the temporal 
scheduling decisions have been modelled either as a discrete variable (Vovsha et al. 2005; 
Castiglione et al. 2015) or as a continuous variable with heuristic and simplified flexibility 
parameters (Javanmardi et al. 2016; Esztergár-Kiss et al. 2020). A framework to capture 
the interactions between choice dimensions was introduced by Pougala et al. (2022). How-
ever, the framework is only applied to a small sample of individuals and the applicability in 
a large-scale context is not demonstrated. Importantly, the heuristic flexibility parameters 
are selected heuristically. In this way, the preferences are specified by the modeller and not 
by statistical estimation routines.

This work applies a novel activity-based model which is able to resolve scheduling con-
flicts in the temporal dimension based on estimated individual flexibility parameters for 
a real-world large-scale scenario. Non-temporal choice dimensions (i.e. activity participa-
tion, bundling into tours, and destinations) are simulated using the existing discrete choice 
models from Scherr et al. (2020a). The model aims to resolve activity-scheduling conflicts 
that arise from overlapping activities for each individual. In the case of a scheduling con-
flict, the flexibility parameters capture the behavioural preferences to shift timings of cer-
tain activity types compared to others. The flexibility parameters are quantified using maxi-
mum likelihood estimation. For the simulation of the conflict resolution, we build on the 
theoretical mathematical model introduced by Pougala et al. (2022). The framework allows 
to simulate desired choice dimensions simultaneously using a mixed-integer linear pro-
gram (MILP), which has two major advantages: (i) it allows for interactions between mul-
tiple choice dimensions; and (ii) conflicts in time and space among different activities are 
resolved based on behavioural preferences. In this paper, we introduce another contribution 
to the framework by providing a computationally efficient implementation to demonstrate 



Transportation	

1 3

the application capabilities to a synthetic population for a city-scale case-study, with a 
detailed validation against empirically available observations. The output of the framework 
is a realistic daily schedule containing a sequence of activities for each simulated individ-
ual. Each activity in this schedule has a certain type, start time, duration, location as well as 
a mode to travel to the following activity. The schedules are an essential input for a traffic 
assignment – e.g. using the software MATSim (Horni et al. 2016) – which can be used to 
derive network loads to support decisions about future transport infrastructure investments.

The remainder of the paper is structured as follows: first, a brief review of recent 
advances in activity-based demand modelling is provided. Next, the framework is intro-
duced, including the parameter estimation routine and the MILP. This framework is then 
applied to the group of full-time workers of a synthetic population in the case study for the 
city of Lausanne, Switzerland. Finally, the results are presented, validated against empiri-
cal data from a survey and discussed.

Background

Early activity-based approaches to travel demand modelling were proposed in the 1990s 
(Axhausen and Gärling 1992). The main motivation driving the transition from traditional 
aggregated models to activity-based models is the lack of behavioural realism in the tradi-
tional approach, which does not allow for forecasting new policies such as congesting pric-
ing, teleworking and ride-sharing incentives (Rasouli and Timmermans 2014). For a more 
detailed overview of the development of the activity-based approach, we direct the reader 
to the reviews provided by Bowman (2009) and Castiglione et al. (2015).

The first microscopic activity-based models were developed for several Northern Amer-
ican cities (Bowman and Ben-Akiva 2001; Vovsha et  al. 2005; Bhat et  al. 2004). They 
follow an econometric, utility-maximising approach to simulate the choice behaviours of 
households and individuals. Typically, the activity schedules are built using a set of dis-
crete choice models for mobility tool ownership, tour bundling, activity selection, mode 
choice, and location choice. Multinomial and nested logit models are the most commonly 
used model forms in practice to represent the interactions of the various dimensions and to 
link the separate model steps. As Bhat et al. (2004) highlight, several important structural 
issues are not addressed within these early models, one of them being the relation of the 
time-of-day decision to the mode and destination choices.

Other early implementations of activity-based models use a rule-based approach. For 
example, the ALBATROSS framework (Arentze and Timmermans 2004) uses decision 
trees to represent choice heuristics of individuals and derives these heuristics from travel 
data. Other rule-based frameworks that use decision trees for the scheduling procedure are 
FEATHERS (Bellemans et al. 2010) and TASHA (Miller and Roorda 2003; Roorda et al. 
2008). As stated in Auld et al. (2009), the issue with rule-based models is that they cannot 
predict modification choices, i.e. if an activity is modified, is it moved or shortened and by 
how much.

In Europe, the development of activity-based models was arguably driven by the 
increasingly popular agent-based transport simulation software MATSim (Horni et  al. 
2016). Most activity-based models are developed to generate schedules which are then fed 
into the dynamic traffic assignment of MATSim. The software MATSim itself provides a 
well-elaborated network simulation and route searching algorithms. However, the standard 
version of MATSim does not provide the functionality to generate activity-based demand 



	 Transportation

1 3

including the choice dimensions of activity participation, sequence, locations, and initial 
timings. For this purpose, Ziemke et al. (2015) use the econometric framework CEMDAP 
(Bhat et  al. 2004) to couple an existing activity-based model with MATSim. They take 
the original discrete choice parameters as estimated for Los Angeles, and apply them to 
a synthetic population of Berlin. Hilgert et  al. (2017) propose the framework mobiTopp 
that covers the time period of one week. It is also inspired by the approach of Bowman 
and Ben-Akiva (2001) and applies a set of discrete choice models. Activity durations and 
start times are simulated as combination of discrete choice of an aggregated category and 
weighted random draws within the chosen category. The resulting activity-based schedules 
of the mobiTopp model are then integrated into MATSim (Briem et al. 2019). A very simi-
lar approach is presented in Scherr et al. (2020a). They show a comprehensively validated 
microscopic model called SIMBA MOBi in which agents react to transport supply across 
all mobility choices. For the choices in the temporal dimension, it applies a rule-based 
approach that is based on weighted random draws from empirical distributions. Moeckel 
et  al. (2020) propose a framework called MITO containing a simplified activity-based 
model. Destination choice is influenced by a travel time budget for every household, i.e. 
people who spent a lot of time commuting are less likely to do much other travel. A recent 
study from Hörl and Balac (2021) introduces a standardised process for generating activ-
ity-based travel demand based on open data and open software that is fully replicable by 
any user. Their approach is predominantly data-driven and does not focus on behavioural 
parameters. Drchal et al. (2019) implement another fully data-driven approach.

A newer generation of activity-based model tries to solve the scheduling problem with 
techniques like Hidden Markov Models or Bayesian Networks. Both Liu et al. (2015) and 
Saadi et  al. (2016) introduce a Hidden Markov Model. The advantage of this method is 
that it considers trends of their activity sequencing from a temporal perspective. However, 
Saadi et al. (2016) point out that the approach presents a limitation at the temporal dimen-
sion. Joubert and De Waal (2020) present a Bayesian Network approach and highlight the 
benefits of a behaviourally rich travel demand model which allows for causal interpreta-
tion. This method can also account for temporal variables like activity duration.

There have been few attempts to combine activity-based modelling and mathematical opti-
misation techniques reported in the literature. An early study by Recker (2001) presents a the-
oretical mathematical formulation targeting to facilitate the practicality of activity-based mod-
elling approaches. It unifies the complex interactions among the scheduling conflicts solved 
by households in performing their daily activities, while preserving the utility-maximising 
principles. Building from this work, Recker et al. (2008) introduce an estimation procedure 
for this optimisation framework. They estimate the relative importance of factors associated 
with spatial and temporal interactions among the activities in a schedule, however they con-
clude that the formulation for the time sequence is rather simplistic. Another framework called 
ADAPTS is demonstrated by Javanmardi et al. (2016), which implements a flexible non-linear 
optimisation model. The model is applied to a synthetic population for the Chicago region. 
The objective function aims to minimise the amount of changes in timing and duration of 
involved activities in a conflict situation. The weights used to account for individual activity 
preferences are constant weights for all activity types. Rizopoulos and Esztergár-Kiss (2020) 
develop an optimisation model for the interaction of activity scheduling and charging electric 
vehicles. For this purpose, the authors use a Genetic Algorithm that considers temporal flex-
ibility which is defined based on heuristic rules and priority labels per activity. Esztergár-Kiss 
et al. (2020) suggest an activity-based schedule optimisation method that includes temporal 
and spatial flexibility of the activities using a modified version of the Traveling Salesman 
Problem with Time Window constraints. Similar to Rizopoulos and Esztergár-Kiss (2020), 
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they define heuristic flexibility priorities. Also, they focus on the travel episodes with a rather 
simple utility specification. Ballis and Dimitriou (2020) aim to convert multi-period and pur-
pose-dependant origin-destination matrices into sets of activity schedules. They show a com-
prehensively validated framework that is mainly established on advanced graph-theoretical 
and combinatorial optimisation concepts. However, they only use simplified activity types and 
the activity schedules are not accompanied by socio-demographic information.

Many of the discussed issues are addressed by the activity-scheduling framework proposed 
by Pougala et al. (2022). They provide a theoretical framework that combines multiple choice 
dimensions (activity participation, location, start time, duration and mode choice) into a single 
optimisation problem and that captures the complex trade-offs between scheduling decisions 
for multiple activities. The framework is based on the behavioural principle that individuals 
maximise their overall schedule utility according to their preferences and constraints for per-
forming desired activities during one day. It represents all choices in the time dimension as 
continuous variables. The utility formulation is modular and preferences can be specified for 
each individual activity. The optimisation model is implemented as a MILP that can easily be 
extended by additional custom constraints. In their work, Pougala et al. (2022) take flexibility 
parameters from the literature without statistical estimation. Also, they demonstrate the frame-
work for small samples of individuals only and do not proof the applicability in the large-scale 
context with a detailed validation against empirical observations.

The current work fills the mentioned gaps in the literature by focusing on resolving sched-
uling conflicts in the temporal dimension, on estimating the individual flexibility parameters 
and on computational efficiency to scale the model to a real-world large-scale simulation. 
Stated succinctly, the contributions of our work are as follows:

•	 Flexibility parameters: An estimation routine is demonstrated that considers the tempo-
ral decision within the scheduling problem as a whole. In contrast to existing approaches 
(Bowman and Ben-Akiva 2001; Bhat et al. 2004; Hilgert et al. 2017; Scherr et al. 2020a) 
which consider trip- or tour-based parameters, this approach estimates schedule-based 
parameters (total daily utility). Our formulation considers time as a continuous variable 
and the resulting flexibility parameters are based on behavioural principles. In the liter-
ature, time has either been modelled as a discrete variable in combination with utility-
based principles (Bowman and Ben-Akiva 2001; Castiglione et al. 2015) or as a continu-
ous variable in combination with heuristic flexibility parameters (Javanmardi et al. 2016; 
Esztergár-Kiss et al. 2020; Pougala et al. 2022).

•	 Real-world Application: The implemented approach of coupling traditional discrete choice 
models with an optimisation model to reduce the number of decision variables targets to 
proof the applicability of the framework in a real-world large-scale case study, which is not 
done in Pougala et al. (2022). This work applies the scheduling model to all 50’000 full-
time workers of a synthetic population of Lausanne, Switzerland. The size is comparable 
to studies in the literature, which mostly simulate a certain percentage (e.g. 10 %) of the 
synthetic population for bigger cities (Ziemke et al. 2015; Briem et al. 2019).

Methodology

The presented work implements an approach that makes use of existing traditional discrete 
choice models and combines them with an adapted version of the mathematical model as 
proposed by Pougala et  al. (2022). This approach aims to reduce the complexity of the 
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problem and puts focus on parameter estimation and real-world application. To calibrate 
the individual flexibility parameters for a case study, we introduce an estimation routine 
that quantifies behavioural preferences based on empirically reported schedules in the 
Swiss mobility and transport microcensus (MTMC) (BfS and ARE, 2017). The choice 
set for the estimation routine is generated using existing sequential discrete choice models 
(Scherr et al. 2020a). Based on the flexibility parameters, an optimisation model solves all 
temporal scheduling decisions (start times and durations of each activity) simultaneously 
while considering travel times. The non-temporal elements of the scheduling problem (i.e. 
activity participation, number and type of tours, and considered destinations) are simulated 
using the traditional discrete choice models as introduced by Scherr et al. (2020a) outside 
of the optimisation. They are fed as static activity sets into the optimisation framework. 
The proposed framework can be summarised with the two following streams, as illustrated 
in Fig. 1: 

1.	 Parameter estimation: The first stream (top row in Fig. 1) aims to estimate individual 
preferences for a specific person group based on schedules reported in the MTMC (BfS 
and ARE 2017). In this work, we focus on the group of full-time workers. Individual 
preferences are flexibility parameters that express the loss of utility when either deviat-
ing from a desired starting time or duration for each given activity type. The procedure 
is described in more detail in Section "Estimation of individual flexibility preferences". 

2.	 Schedule simulation: The second stream (bottom row) optimises the utility of the daily 
activity schedule for each individual in the synthetic population. The methodology to 
generate a synthetic population is provided in Bodenmann et al. (2019) and goes beyond 
the scope of this paper. Each individual is assumed to choose an activity set that they are 
going to perform during a 24h-period. Based on the estimated flexibility parameters, the 
optimisation approach then resolves time conflicts that arise from overlapping desired 
timings in the activity set. More insights into the methodology are given in Section 
"Schedule optimisation".  

General definitions

The following definitions are important in the context of this work:

Activity: Each a ∈ A is defined by a specific type, a desired start time x∗ , a desired dura-
tion �∗ , and a set considered locations L . Also, each activity is assigned to a tour type 
and an activity can be defined to be a sub-tour activity.

Fig. 1   The two streams of the scheduling framework: estimation (top row) and simulation (bottom row)
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Activity set: An activity set A contains all activities that an individual needs or wishes to 
perform during a time period (e.g. a 24-hour day) in no sequential order.
It can contain multiple instances of activities of the same type (e.g. two leisure activities). 
An example for an activity set is A = {dawn, dusk, home, work, leisure_1, leisure_2} . 
In this case, leisure_1 and leisure_2 are both leisure activities, but may have different 
desired start times, desired durations and considered location sets. We differ between 
three subsets of A:
Home activity set: The set H ⊆ A contains the number of home activities an indi-
vidual is going to perform. It includes activity types home, dusk and dawn. H must 
contain exactly one dawn and one dusk activity, whereas the number home activities 
is not constraint. We assume that each person wants to spend a fraction of their daily 
time budget at home. Therefore, we define �∗

H
 as the desired home time budget, which 

is the sum of the durations of all in-home activities: 
∑

a∈H �a = �H . Each h ∈ H take 
place at the same location ( |L| = 1 ) as defined in the synthetic population data.
Primary activity set: The set P ⊂ A includes activity types work and education. 
Primary activities are defined as activities that take place at one long-term location 
(e.g. at the workplace). We assume that individuals are required to undertake pri-
mary activities for a total daily duration �∗

P
 , such that the sum of the duration of each 

scheduled primary activity is equal to the primary time budget: 
∑

a∈P �a = �P . The 
set P may be empty, if an individual does not need to spend time on any primary 
activity (i.e. �∗

P
=0).

Secondary activity set: The set S ⊂ A includes activity types leisure, shopping, escort, 
business, further training and other. Secondary activities are defined as activities with 
flexible locations. Hence, they may contain multiple considered locations, one of which 
is chosen in the optimisation model. In contrast to primary activities, the durations of 
secondary activities are treated individually rather than their daily sum. This comes 
with the assumption that people have individual activity duration budgets for secondary 
activity, but see the duration of primary activities as one daily objective. The set S may 
be empty, if an individual does not desire to take part at any secondary activity.
Schedule: Each schedule consists of a set of activities A . To form a daily schedule, the 
activities must be in a ordered sequence without overlapping in time, including travel 
episodes. For this purpose, an individual needs to make the decision about a realised 
start time x, a realised duration � , as well as a chosen location l for each a ∈ A . Loca-
tions and sequence of activities result in travel episodes with a mode � and a correspond-
ing travel time tt. Activities of the same type must not take place consecutively if there is 
no travel episode in between (i.e. both are at the same location). A schedule always starts 
with a dawn activity at midnight and ends with a dusk activity at the defined time period. 
An example for a schedule is dawn → work → leisure_2 → home → leisure_1 → dusk . 
We consider two types of schedules:
Realised schedule: In the choice set of the parameter estimation, it is the empirical 
schedule as reported in a survey. In the optimisation context, it is the output of the opti-
misation model.
Feasible schedule: Any possible deviation from a realised schedule can be feasible as 
long as it fits into the time period constraint and does not contain overlapping activities.
Tours: The set of tours T  contains all out-of-home tours in the daily schedule of an 
individual. Each tour t ∈ T  is defined to contain the subset of activities that take place 
between two home activities (e.g. home → work → shopping → home ). The number of 
tours in a schedule hence equals the number of home activities minus one ( |T| = |H| − 1).
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T  includes tour types work, education and secondary. Work and education tours include 
at least one and at most two primary activities of this type. Tours that include secondary 
activities only are referred to as secondary tours. The tour type is a static input in the 
optimisation context of this work.
Sub-tours: A sub-tour is a sequence of secondary activities between two primary activi-
ties without any home activity in between (e.g. work – lunch – work).

Estimation of individual flexibility preferences

This section explains the estimation of activity-specific flexibility parameters. Section   
"Choice set generation"   gives an insight into the methodology that is used to generate a 
competitive choice set. The model estimation uses the utility specification as given in sec-
tion "Utility specification"   and is described in section "Model estimation" 

Choice set generation

In discrete choice modelling, individuals evaluate, compare and select alternatives from 
a choice set of mutually exclusive alternatives (Manski 1977). In many applications, it is 
assumed that choice sets are fully known by the decision-makers and are fully or partially 
observed by the modellers. This assumption is unrealistic for applications in which the 
choice set is large such as location or route modelling.

The way we define the choice set in this paper is similar to the definition proposed by 
Shocker et al. (1991) in the context of marketing. We model the temporal dimension in the 
activity-scheduling process as the discrete choice between different combinations of activ-
ity timings and durations while also considering travel times between them. We assume 
that the decision-maker only possesses a partial knowledge of the available opportunities. 
The set of all available combinations is the feasible schedule set. This sample is finite but 
potentially very large. In addition, the sample of alternatives that the individual actually 
considers may neither be fully known by the modeller nor readily accessible from tradi-
tional data sources.

The utility-based framework described in Pougala et  al. (2022) requires the estima-
tion of the parameters of the utility function, namely the penalties for schedule deviations 
from desired activity start times and durations, and the cost for travelling. The estimation 
requires a sample of alternatives with a formal description of the sampling protocol. Given 
the difficulty of this task in this context, we propose a heuristic approach in which choice 
sets are generated using a combination of the following two methods: 

1.	 Random alternatives: We start with generating random schedule alternatives by ran-
domly modifying the activity start times and durations in a given set of activities A as 
observed in the realised schedule of the MTMC. As the outcomes are random and not 
based on any empirical distribution, many alternatives are likely to have low levels of 
utility compared to the observed schedule. Relatively low levels of utility imply that the 
generated alternatives differ substantially from the observed schedule.

2.	 Likely considered alternatives: We generate activity schedules with variations of activity 
start times, durations and travel times that are likely to be considered by the decision-
maker and hence biased towards high probability schedules. By likely considered activi-
ties we mean schedules that are observed by other individuals with similar character-
istics (e.g. employment rate, age, urban home, etc.). For this purpose, the sequential 
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activity-based demand model MOBi.plans as presented in Scherr et al. (2020a) is applied 
to draw distributions from the activities sets in the schedules as reported in the MTMC.

Utility specification

As the adapted version of the scheduling framework in this paper focuses on temporal 
scheduling decisions, it uses the temporal components of the comprehensive utility specifi-
cation as proposed in Pougala et al. (2022) including travel times that arise from travelling 
between activities. In our work, the intrinsic attraction of an activity is not modelled with a 
constant inside the optimisation, but as a discrete choice based on the utilities of all avail-
able alternatives prior to the optimisation (see Section "Activity set generation" ). Specifi-
cally, we include the utility terms relating to schedule deviations from timing and duration 
preferences for each activity a and the travel times between a and the consecutive activity 
in our optimisation model for the utility specification of schedule alternative i:

The components and the associated assumptions are defined as follows:

•	 Utiming(xa) indicates the impact for deviating from desired timings for each activity 
a ∈ Ai . The desired start time is defined as x∗

a
 and xa is the start time of activity a as 

stated in the choice set for alternative i. We introduce the two flexibility parameters 
�
early
a  and � late

a
 which penalise the difference |x∗

a
− xa| : 

•	 Uduration(�a) captures the impact of deviating from desired durations. In the case of 
desired duration budgets, we differentiate between home, primary and secondary activi-
ties (see definitions in Section "General definitions" ). For primary activities a ∈ P , we 
compare the sum of all scheduled primary activities (i.e. �a =

∑
p∈P �p ) to the desired 

daily duration, or primary time budget ( �∗
a
= �∗

P
 ). The same assumption applies to 

home activities. For secondary activities a ∈ S , we use the individual desired durations 
(i.e., �∗

a
≠ �∗

b
∀a, b ∈ S, a ≠ b ). �short

s
 and � longs  represent the loss in utility for deviating 

from a desired duration: 

•	 Utt,a(tta) is a disutility for the time spent travelling. Since the focus of this work lies on finding 
flexibility parameters, we fix �travel to be -1. Different travel times for different alternatives are 
generated using an existing destination and mode choice model (Scherr et al. 2020a): 

Model estimation

Given the proposed utility specification, there are six types of parameters for each activ-
ity a to be determined: (i) the desired start time x∗

a
 ; (ii) the desired duration �∗

a
 ; and the four 

(1)

Ui =
�

a∈Ai

Utiming(xa) +
�

a∈Si

Uduration(�a) +
�

O∈{Pi,Hi}

Uduration(
∑

a∈O �a) +
�

a∈Ai⧵{dusk}

Utt,a(tta)

(2)Utiming(xa) = �early
a

max (0; x∗
a
− xa) + � late

a
max (0; xa − x∗

a
)

(3)Uduration(�a) = �short
a

max (0; �∗
a
− �a) + � long

a
max (0; �a − �∗

a
)

(4)Utt,a(tta) = �travel tta
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penalty terms for deviations from the desired start time and duration (iii) �earlya  , (iv) � late
a

 , 
(v) �short

a
 , and (vi) � longa .

We use two different approaches to determine the parameter values for these parameters: 

1.	 For the desired start times and durations ( x∗
a
 and �∗

a
 ), we use the modal values from 

empirical distributions for the activity types as found in the MTMC. All activity types 
are grouped to have uni-modal distributions. Since persons in the MTMC only report 
on realised start times and durations ( xa and �a ), this requires the assumption that the 
desired timings can be approached by the empirical mode of the realised timings.

2.	 Once the desired start times and durations are defined, the penalty terms ( �earlya  , � late
a

 , 
�short
a

 , and � longa  ) are estimated from historic schedules using maximum likelihood esti-
mation.

Maximum likelihood estimates 𝛽  of the unknown model parameters are given by:

where L is the likelihood function, Pin is the choice probability of alternative i in the choice 
set C. yin = 1 if individual n chooses alternative i and yin = 0 otherwise (Train 2003). 
Assuming a multinomial logit model, the choice probability for each alternative i in the 
choice set Cn is defined as follows:

with a scale parameter 𝜇 > 0.
Note that the maximum likelihood estimation requires an enumeration of the alterna-

tives in the choice set. In the activity-travel context, the full choice set Cn of alternatives is 
combinatorial. The parameters are therefore estimated on a sample of alternatives C̃n . The 
maximisation of the likelihood function yields consistent parameter estimates if the uni-
form conditioning property is verified: Pn(i|C̃n) = Pn(j|C̃n) ∀i, j ∈ C̃n . This is achieved by 
introducing a correction term lnPn(C̃n|i) to take into account sampling biases (Ben-Akiva 
and Lerman 1985):

Schedule optimisation

Having defined the activity-specific flexibility parameters, we now introduce the optimisa-
tion model that targets to solve scheduling conflicts in the temporal dimension. Section 
"Activity set generation" gives an overview over the generated activity sets that are treated 
as static inputs in the optimisation model. Then,  sections "Optimisation model" and "Tour-
based indicators and constraints" explain the implementation of the MILP.

(5)𝛽 = argmax
𝛽

L =
∏

n∈N

∏

i∈C

P
yin
in

(6)Pin =
e�Vin

∑
j∈Cn

e�Vjn

(7)Pin = Pn(i�C̃n) =
e𝜇Vin+lnPn(C̃n�i)

∑
j∈C̃n

e𝜇Vjn lnPn(C̃n�j)
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Activity set generation

The optimisation framework used in this work needs an activity set A as an input for each 
individual in a synthetic population (Fig.  1). This activity set A contains the long-term 
decisions (i.e. primary locations) and non-temporal decisions (i.e. activity participation, 
number and type of tours, and considered destinations). This requires the assumption that 
an individual knows the number and type of the activities it desires or needs to participate 
during the day prior to the time-conflict resolution. In this work, we apply the following 
sequence of discrete choice models1 with the parameters as introduced and explained in 
more detail in Scherr et al. (2020a): 

1.	 Long-term decisions about primary locations such as a school- or workplace, which 
depend on the choice of possessing a mobility tool such as a driving license and public 
transport subscription (Hillel et al. 2020). Additionally, the discrete choice models for 
the long-term locations consider the attractions of the destination, e.g. the number of 
jobs in the case of a workplace. This allows for including the location size as a capacity 
constraint, as demonstrated and validated in Scherr et al. (2020a).

2.	 Decision about number and type of primary out-of-home tours (i.e. work and education 
tours) depending on the long-term decisions and their resulting commuting distances 
as well as number and type of secondary activities within the primary tours. Also, the 
number and type of sub-tour activities are generated during this choice step.

3.	 Decision about number of secondary tours as well as the number and type of secondary 
activities within each secondary tour.

4.	 Generation of a set of considered locations for each secondary activity based on 
weighted draws from given distributions. The weights consider location sizes, e.g. large 
shopping centres have higher attractions compared to a small shop.

Table 1 gives an example of an activity set A . The cells with sets in italic letters mean that 
these decisions are made in the optimisation model. Under consideration of these possible 
choice options, the activity sequence will be optimised as well. All other cells are static 
input for the optimisation model. It contains four home activities, which equals three pos-
sible out-of-home tours. At this stage, the tours are not fixed in their sequential order. This 
means that the tour with id = 1 may also take place at the end of the day and include the 
dusk activity. The tour with id = 1 is primary, including one sub-tour activity. Since the 
sub-tour activity is static, this lunch activity must always take place between the two work 
activities. However, the two work activities can still swap their sequential order. Also, it 
will be decided if the accompany activity takes place before or after the work in the opti-
misation model. Three activities take place within secondary tours ( id = 2 and id = 3 ) and 
cannot be moved to the work tour since the tour type is static. Their sequence is flexible, 
one shopping activity might end up in the same tour as the leisure activity if it fits best into 
in time and space preferences. Also, the secondary activities may have multiple considered 
locations, one of which will be chosen later in the optimisation model.

1  The discrete choice models include socio-demographic attributes as well as level of service indicators 
(e.g. accessibility or parking costs).
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The generation of the desired start times and durations for each activity in the context of 
this case study will be explained later in section "Definition of a desired timing and dura-
tion per activity type based on empirical distributions" 

Optimisation model

This section summarises our implementation of the MILP, which builds on the theoreti-
cal framework introduced by Pougala et  al. (2022). Compared to the work of Pougala 
et al. (2022), we modify the optimisation model in mainly three ways to make it appli-
cable in a real-world case study: first, we simulate the intrinsic attraction of an activ-
ity outside of the optimisation model. This allows us to remove the decision variable 
about activity participation. Second, the choices about activity locations and transport 
modes are modelled as decision variables for each activity in the activity set and not as 
separate activities. This is more efficient since we can minimise the size of the initial 
activity set. Finally, we introduce additional tour-based indicators and constraints to the 
optimisation model as described in "Tour-based indicators and constraints". Doing so, 
the search space in the optimisation model is reduced.

For each schedule alternative i, an individual has a predefined set of activities Ai con-
taining all activities a that are wished or needed to be performed by that individual within a 
bounded time period � (e.g. a 24-h day). In order to maximise the total schedule utility for 
each alternative i, each individual makes the decisions for each activity a ∈ Ai about: (i) 
the duration �a and the start time xa , which implies the activity sequence; (ii) the tour id �a ; 
(iii) the location �a ; (iv) the mode �a ; and (v) the travel time tta , which is an implication of 
the sequence, location and mode.

The objective for each individual is to maximise its total schedule utility which is 
defined in Equation (1):

To this end, we introduce the following decision variables of the optimisation model:

Ω = max Ui(x, �, tt)

Table 1   Example for an activity set A with the possible decision options

Activity Tour id Tour type Primary activity Sub-tour activity Considered locations

Dawn {1, 2, 3} {Work, secondary} False False Home place
Work 1 Work True {True, false} Office
Lunch 1 Work False True Office
Work 1 Work True {Tue, false} Office
Escort 1 Work False False Kindergarten
Home {1, 2, 3} {Work, secondary} False False Home place
Shopping {2, 3} Secondary False False {Shop 1, shop 2}
Shopping {2, 3} Secondary False False {Shop 3, shop 4}
Home {1, 2, 3} {Work, secondary} False False Home place
Leisure {2, 3} Secondary False False Gym
Dusk {1, 2, 3} {Work, secondary} False False Home place
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where xa and �a represent start time and duration of activity a, respectively, and tta repre-
sents the travel time from a to the following activity.

Another important set of decisions variables are the activity sequence indicators:

where zab = 1 is equal to one if activity a takes place right before b. The travel time from a 
to b heavily depends on both trip origin and destination locations as well as the mode used 
for this trip. For this purpose, we introduce the location and mode choice variables:

where La is the set of all considered locations for activity a and M is the set of all available 
modes. The location and mode choice variables have a direct impact on the travel times. 
The travel time variable can now be set as follows:

where the travel time matrix Θ is exogenous and contains the travel times for all possible 
combinations of locations and modes within 

⋃
a∈Ai

La and M . In the implementation of 
the optimisation model, we use a linearised form of this multiplication by introducing aux-
iliary variables.

The optimisation problem implemented in this work is now subject to the constraints:

(8)
xa ∈ ℝ+ ∀a ∈ Ai

�a ∈ ℝ+ ∀a ∈ Ai

tta ∈ ℝ+ ∀a ∈ Ai

(9)zab ∈ {0, 1} ∀a, b ∈ Ai

(10)
�al ∈ {0, 1} ∀a ∈ Ai ∀l ∈ {1,… , |La|} =∶ La

�am ∈ {0, 1} ∀a ∈ Ai ∀m ∈ {1,… , |M|} =∶ M

(11)tta =
∑

b∈A, la∈La , lb∈Lb, m∈M

Θ(la, lb,m) zab�ala�blb�abm ∀a ∈ Ai

(12)
∑

a,b∈Ai

(�a + zabtta) = �

(13)� ≤ �a ≤ � ∀a ∈ Ai

(14)zab + zba ≤ 1 ∀a, b ∈ Ai

(15)za,dawn = zdusk,a = zaa = 0 ∀a ∈ Ai

(16)zab = 0 ∀a, b ∈ Pi orHi

(17)
∑

b≠a

zab = 1 ∀a ∈ Ai ⧵ {dusk}

(18)
∑

b≠a

zba = 1 ∀a ∈ Ai ⧵ {dawn}
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Constraint (12) ensures that the total sum of all activity durations and travel times is exactly 
equal to the predefined time period � the schedule should fill out. The next constraint (13) 
guarantees that each duration is between the minimal duration � and maximal duration � . 
Constraint (14) imposes that an activity takes place either before or after another activ-
ity, possibly neither but never both. The bundled constraint (15) assures that no activity 
takes place before dawn or after dusk and that an activity cannot follow itself. Constraint 
(16) enforces that two primary activities or home activities cannot take place consecutively 
since this would break the general schedule structure as described in section "General defi-
nitions". The two constraints (17) and (18) ensure that every activity is preceded by another 
activity (except for dawn) and is also followed by some other activity (except for dusk). 
To ensure that only one location and mode is chosen per activity, constraint (19) is set in 
place. Constraint (20) makes sure that – if activity b follows activity a – the start time of 
a plus duration plus the travel time from a to b is exactly equal to the start time of b. The 
last constraint (21) guarantees that every activity can only take place within its designated 
feasible time window (e.g., opening hours).

Tour‑based indicators and constraints

We extend the optimisation model by several indicator variables and constraints that capture 
a general schedule structure (e.g. number of primary activities per tour). These indicator vari-
ables are later used to constrain the decision options for certain variables such as tour type or 
sub-tour activity to the sets as introduced in Table 1.

The first introduced tour-related variable is a tour indicator:

where Ti is the set of all possible out-of-home tours that can occur in a given schedule 
alternative i. If activity a takes place in tour t, �at equals one. The corresponding tour con-
straints are:

where Hi is the set of all home activities. If zab = 1 , the two constraints make sure that 
�at = �bt . Or in other words, if activities a and b are executed in sequence, both must be in 
the same tour. An exception is made for home activities, as these functions are break points 
between out-of-home tours. The break points make sure that the tour indicator �at always 
changes at a home activity h.

We use this tour-indicator variable to assign a tour type to every tour, which is either work, 
education or secondary (see section "General definitions"). The type of the tour depends on 
the presence of a primary activity of a certain type within that tour. For the scope of this work, 
we keep the tour type fixed for each activity. Therefore, we add constraints that ensure that 

(19)
∑

l∈La

�al =
∑

m∈M

�am = 1 ∀a ∈ Ai

(20)(zab − 1)� ≤ xa + �a + zabtta − xb ≤ (1 − zab)� ∀a, b ∈ Ai

(21)�−
a

≤ xa ≤ �+
a
− �a ∀a ∈ Ai

(22)�at ∈ {0, 1} ∀a ∈ Ai ∀t ∈ Ti

(23)
�at ≤ �bt − zab + 1 ∀a ∈ Ai ⧵ {dusk} ∀b ∈ Ai ⧵Hi ∀t ∈ Ti
�at ≥ �bt + zab − 1 ∀a ∈ Ai ⧵ {dusk} ∀b ∈ Ai ⧵Hi ∀t ∈ Ti
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every activity a takes place in a tour with a type corresponding to the predefined activity tour 
type:

where Ti(a) is the set of tours with type equal to the tour type of activity a. With this con-
straint, it is ensured that a takes place in at least one tour, and this tour has the type as 
defined in the activity set Ai.

Furthermore, we use the tour indicator to fix the number of primary activities per 
tour. This is achieved with the following constraint:

where pt is the number of primary activities in tour t as predefined in the activity set Ai.
To add modelling capability depending on the position of activity a in the schedule, 

we next introduce a variable that functions as a sub-tour indicator:

together with the following constraints

where Pi is the set of all primary activities. Per definition, a sub-tour is not allowed to start 
or end at home. For this reason, we fix the sub-tour indicator for activities in the set Hi to 
be zero:

Sub-tours are constructed in a way that the first instance of the primary activity is part of 
the sub-tour. The second instance after the sub-tour is not part of the sub-tour anymore, 
since the following trip is going home-wards (possibly with another activity in between). 
We use the information about the number of primary activities in a tour pt as given in con-
straint (25) to introduce a minimum a amount of sub-tour activities:

which means that �a has to be at least one for primary activities in tour t if two primary 
activities are present ( pt = 2 ). This will always be the first instance of the primary activi-
ties since the second instance is directed towards a home activity at some point and hence 
forced to be zero because of constraint (28). Lastly, at least one secondary sub-tour activity 
must happen between them since the two primary activities are not allowed to take place 
directly after each other (16).

(24)
∑

t∈Ti(a)

�at ≥ 1 ∀a ∈ Ai

(25)
∑

a∈Pi

�at = pt ∀t ∈ Ti

(26)�a ∈ {0, 1} ∀a ∈ Ai

(27)
�a ≤ �b − zab + 1 ∀a ∈ Ai ∀b ∈ Ai ⧵ Pi

�a ≥ �b + zab − 1 ∀a ∈ Ai ∀b ∈ Ai ⧵ Pi

(28)�a = 0 ∀a ∈ Hi

(29)pt ≤
∑

a∈Pt
�a + 1 ∀t ∈ Ti
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Case study

This section presents the city-scale application of the proposed framework to the full-
time workers in a synthetic population on a city-scale for Lausanne, Switzerland.  In   
section"Overview", we  give a general overview of the case study with the external 
inputs and general assumptions. In section "Definition of a desired timing and duration 
per activity type based on empirical distributions"  we defines the desired timings and 
durations for all activity types which are used for both parameter estimation and sched-
ule optimisation based on empirical data. In section "Flexibility parameter estimation", 
the estimation of the flexibility parameters is demonstrated and discussed. Finally, sec-
tion "Optimised schedules" gives an overview of the implementation of the optimisation 
model and shows the results of applying the flexibility parameters to a synthetic popula-
tion using our mathematical model.

Overview

The proposed framework is applied to a synthetic population of full-time workers living 
in the city of Lausanne, Switzerland. With more than 140’000 inhabitants (as of 2017), 
it is one of the biggest cities in Switzerland. Since behaviour depends on specific person 
attributes – for example, a student is likely to have a different behaviour compared to a 
full-time worker – the population must be divided into different groups and the flexibil-
ity parameters calibrated separately for each group. For demonstration purposes in this 
work, we focus on the estimation of the parameters for full-time workers (employment 
rate higher than 80 % and not primarily in education). As shown in Fig. 1, the frame-
work needs two static inputs: 

1.	 Reported schedules: We use the reported schedules from the Swiss Mobility and 
Transport Microcensus (MTMC) (BfS and ARE 2017). The computer-assisted tele-
phone survey takes place every 5 years, most recently in 2015. It contains a sample 
of 57’090 persons from all over Switzerland. Each person reports on their conducted 
mobility schedule during a full day. A cleaning procedure is applied to remove persons 
who have a reporting date on the weekend and persons with non-valid schedules. Non-
valid schedules include schedules that are not fully reported and schedules which do 
not comply with the constraints of the model (e.g. a person must always return home in 
the evening or primary and home activities must not take place consecutively). After 
the cleaning procedure, around 40’000 reported schedules remain in the observation 
set. For full-time workers in the whole country of Switzerland, the cleaned set in the 
MTMC contains 10’110 reported schedules.

2.	 Synthetic population: The nation-wide synthetic population of Switzerland for the year 
2017 is generated by Bodenmann et al. (2019). It contains a very detailed person data-
base with attributes such as age, employment rate, etc. as well as household structures 
and residences. In the synthetic population, almost 50’000 full-time workers are present 
in the city of Lausanne.

An additional third input for the model are travel times between different locations for 
all modes (see  section "Optimisation model"). We use static travel times which are 
derived from a network assignment using MATSim (Horni et al. 2016) and the Switzer-
land scenario from Scherr et al. (2020a). As a simplified assumption, we use constant 
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travel times over the day. The public transport travel times are averaged over one hour 
(i.e. 7:00-8:00 h). Since the service frequency and the travel times of public transport 
in Switzerland are fairly constant throughout the day, constant travel times over the day 
are assumed to be valid. Car travel times are defined as the maximum between the con-
gested state of the morning peak and the evening peak, which is a rather pessimistic 
assumption for car traffic. Travel times for the modes walk and bike are calculated based 
on the beeline distance between two locations, a detour factor and an average speed 
(walk: 4.7 km/h; bike: 13.0 km/h as reported in BfS and ARE (2017)).

For both choice set generation and schedule optimisation, the following model steps 
are generated based on existing discrete choice models (see section "Activity set genera-
tion") as proposed by Scherr et al. (2020a) and assumed to be given in this case study: 
(i) the set of tours T  ; (ii) the tour type of each activity �at ∀t ∈ T ∀a ∈ A ; (iii) the num-
ber of home activities |H| = |T| + 1 ; (iv) the set of primary activities P with a type and 
a number of primary activities per tour pt ; (v) the set of secondary activities S with a 
given activity type; (vi) the set of secondary sub-tour activities �a = 1 ; and (vii) the 
considered destinations La ∀a ∈ A.

Definition of a desired timing and duration per activity type based on empirical 
distributions

A crucial element of the proposed framework is the definition of activity types for a spe-
cific person group with corresponding desired timings x∗

a
 and durations �∗

a
 for each activity 

a ∈ A . As these terms are defined in the utility specification in Equation (1), they are a 
common requirement for both parameter estimation and schedule optimisation. We use the 
main activity types for home, primary and secondary activities as defined in section "Gen-
eral definitions". However, the flexibility of activity start times and durations might vary 
throughout the day (e.g. the flexibility of starting with a work activity might be different in 
the morning compared to starting with the afternoon work activity after lunch). Therefore, 
we split the main activity types into different behaviourally homogeneous sub-activities. 
By behaviourally homogeneous, we mean activities that have uni-modal distributions in 
the dimensions of both x∗

a
 and �∗

a
 in the reported schedules. This is based on the assump-

tion that activities with reported uni-modal distributions actually belong together and have 
the same meaning in terms of flexibility for specific desired timings and durations across 
all the individuals in a specific person group. As explained in section "Model estimation", 
x∗
a
 and �∗

a
 are then defined based on the modal values from empirical distributions in the 

MTMC. To find uni-modal distributions, the available information in the activity set A is 
used (e.g. number of primary activities or the number and type of tours).

Table 2 shows the empirical analysis of the activity types as observed in the MTMC. We 
divide activities into sub-activities by applying a manual cluster analysis based on visually 
observing the distributions for activity timings and durations. Our goal is to find uni-modal 
distributions while not splitting the activity type into too small clusters. In this work, all 
observations are assumed to be normally distributed. For each sub-activity distribution, we 
derive the normal distribution from the empirical distribution in the MTMC including the 
modal value and the standard deviation for both x∗

a
 and �∗

a
.

A straightforward example is the activity type work in Table 2. It is divided into the 
two clusters of the first occurrence in the activity set A and – if present – following occur-
rences of work activities in A . Our analysis shows that A contains at least one work activ-
ity in 80 % of the schedules (average occurrence 0.80). This means that on an average work 
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day in Switzerland, 80 % of all full-time workers go to their work place at least once. In 
that case, workers are observed to begin their work activity with a modal timing of about 
7:30 h. The observed distribution has a standard deviation of 0.9. The average occurrence 
of having more than one work activity in the activity set is 0.31, meaning that 31 % of 
the all individuals participate in at least one activity between the two work activities (e.g. 
returning home, or going out for lunch). The desired timing x∗

a
 for returning back to the 

work place is at 13:15 h and follows more pronounced peak (standard deviation of 0.3). 
The total duration budget �∗

a
 (sum over all work activity durations in A ) for full-time work-

ers is distributed around a modal value of 9.5 hours as observed in the survey.
Another notable example is the activity home. In the case of two work tours 

( |Twork| = 2 ), exactly one home activity must take place between the two out-of-home tours 
per definition. This home activity between two work tours has a modal start time at 12:00 h 
and shows a very strong peak. Additionally, full-time workers are returning back home 
in average between 17:00 and 18:00 h in the case of at least one work activity in A . The 
analysis indicates that there is a desire to be back home at around 18:00 h. The observed 
total home duration budget is distributed around a mode of around 13 h (sum over all home 

Table 2   Empirical analysis including desired timings and durations for activity types of full-time workers in 
the MTMC. Total number of observed schedules is 10’110

Activity Sub-activity Description Avg. occurrence Des. timing 
x∗ [h]

Des. duration 
�∗ [h]

Indicator Per schedule mode std mode std

Work p1 First in set 0.80 7.4 0.9
p2, ..., pn Following 0.31 13.2 0.3
∑

a∈P �a Duration budget 9.5 0.5
Leisure � = 1 Lunch 0.10 12.1 0.1 0.9 0.1

�work = 1 Work tour 0.11 18.0 0.5 0.8 0.3
�secondary = 1 Secondary tour 0.17 19.2 0.8 1.8 0.6
|P| = 0 No primary activity 0.16 13.0 4.0 1.5 0.7

Shopping � = 1 Between work 0.06 12.1 0.1 0.4 0.2
�work = 1 Work tour 0.16 17.2 0.5 0.4 0.2
�secondary = 1 Secondary tour 0.22 14.0 1.5 0.4 0.2

Escort x ≤ 12:00 h Drop off 0.08 7.5 0.3 0.3 0.1
x > 12:00 h Pick up 0.08 18.0 0.3 0.3 0.1

Business All day 0.03 10.0 1.0 4.0 2.0
Education All day 0.02 18.0 2.0 3.5 0.5
Other All day 0.19 10.0 1.0 4.0 2.0
Dawn 1.00 0.0
Dusk |T| > 1 Multi tours 0.41 15.4 1.0

|Twork| = 1 One work tour 0.12 18.0 0.5
|Tsecondary| = 1 One secondary tour 0.47 16.4 0.7

Home h1 ∧ |Twork| = 2 Lunch 0.14 12.0 0.1
|Twork| > 0 Work tour present 0.25 17.2 0.2
|Twork| = 0 No work tour 0.10 17.3 0.4
∑

a∈H �a Duration budget 12.9 2.0
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activity durations in A ), meaning that the group of the full-time workers in average spends 
more than half of the day at home.

Flexibility parameter estimation

Besides the desired timings x∗
a
 and duration �∗

a
 for each activity type, the estimation of flexi-

bility parameters relies on strategic choice sets containing alternatives that decision-makers 
are likely to consider, as explained in section "Choice set generation". In this case study, a 
choice set is generated consisting of the realised schedule as well as a sample of 100 ran-
dom alternatives and 100 likely considered alternatives. The alternative schedules are gen-
erated based on the realised schedules of all full-time workers as reported in the MTMC 
under consideration of the general schedule structure as explained in  section "Activity 
set generation". The choice set size has been chosen such that computational time of both 
choice generation and parameter estimation remain manageable (i.e. under one day). A 
sensitivity analysis to investigate the impact of the size must be conducted in future work.

Having generated a choice set and defined the desired timings x∗
a
 and durations �∗

a
 for 

each activity type (see Table 2),we estimate the flexibility parameters �earlya  , � late
a

 , �short
a

 , 
and � longa  of Equation (1). The aim of the flexibility parameters is to express behavioural 
preferences when it comes to resolving time conflicts between different types of activ-
ities. The parameters penalise deviations from desired timings and duration for each 
activity a ∈ A depending on the type of the activity. The higher the penalty compared to 
another activity, the less flexible or the more rigid the individual is when deviating from 
its desired timing or duration. In this case, it is more likely to reschedule another activ-
ity in a conflicting situation. To estimate these parameters, we apply the estimation rou-
tine as explained in section "Model estimation"   and use the software PandasBiogeme 
(Bierlaire 2020).

Table 3 shows the resulting flexibility parameters after applying the proposed estima-
tion routine to the generated choice set. Empty cells mean that these parameters are not 
part of the utility specification. Cells with a � that equals 0 are not significant at a 5% 
level. In terms of being earlier or later than the desired timing x∗ , the lunch activities 
(either at home or in a restaurant) show the highest penalties (or loss in utility). This 
means that people are less willing to deviate from the desired timing for lunch activi-
ties compared to other activity types and try to move other activity types in the case of 
a conflict. Therefore, the desired timing for lunch activities (around 12:00 h as shown in 
Table 2) is a rigid point in time in the daily schedule of a full-time worker. The param-
eter for being early ( �early ) at lunch is penalised by a factor of around two compared to 
being late ( � late ) at lunch. This means that full-time workers weight – in terms of utility 
– being early at lunch by 5 min equal to being late by 10 min.

Another interesting result is that full-time workers get a relatively high penalty if 
they do not start their first work activity at the desired time (around 7:30 h). They are 
not flexible with starting the first work activity, which highly affects the timing when 
people leave their homes in the morning. The home activity shows a high penalty for 
being late in the case of a work activity being present in the activity set. Hence, workers 
are also not flexible with returning back home in the evening when they have to work 
on that day. The flexibility parameters confirm that it is important for persons to be back 
home at a specific point in time (around 18:00 h), for example to have dinner with the 
other household members. Being more rigid with both starting and ending work activi-
ties compared to other activity types like leisure results in a constraint time frame for 
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work activities between the desired timing of the first work activity and the desired tim-
ing of the returning-home activity. The secondary activities show in general lower pen-
alties (like leisure or shopping) and are more likely to deviate from the desired timing, 
with some exceptions like the activity types escort in the morning or other that show 
higher penalties and therefore have more rigid timings.

In terms of deviating from the desired duration �∗ of an activity, some activity types 
show strong penalties � late and �short . For example, the full-time workers get a high pen-
alty �short for a short lunch activity. As a result, they are not willing to take a lunch break 

Table 3   Flexibility parameter 
values and summary statistics for 
full-time workers. All parameters 
are significant at 5.0 % level

Activity type Parameter values

�
early
a

� late
a

�short
a �

long
a

Work:first in set − 0.518 − 0.401
Work:following − 0.317 0
Work:duration budget −0.022 0
Leisure:lunch −1.587 − 0.760 −7.614 −1.314
Leisure:work tour − 0.189 0 −0.842 −0.085
Leisure:secondary tour − 0.058 0 − 3.087 −0.693
Leisure:no primary activity − 0.096 0 −1.505 −0.649
Shopping:between work − 0.623 −0.472 0 −2.279
Shopping:work tour − 0.143 − 0.280 0 −0.387
Shopping:secondary tour − 0.229 − 0.468 − 6.003 −0.746
Escort:drop off − 1.106 0 0 − 4.171
Escort:pick up − 0.152 0 0 −0.651
Business:all day − 0.182 − 0.263 −0.345 −0.884
Education:all day − 0.281 − 0.405 −0.361 −0.913
Other:all day − 0.737 − 0.530 0 0
Dawn 0 0
Dusk:multi tours − 0.662 0
Dusk:one work tour 0 0
Dusk:one secondary tour 0 − 0.047
Home:lunch −2.189 − 1.067
Home:work tour present −0.072 − 0.397
Home:no work tour −0.048 0
Home:duration budget 0 − 0.373
Summary statistics
Number of parameters 68
Sample size 10’110
Initial log-likelihood −57’443.43
Final log-likelihood −48’548.23
𝜌̄2 0.154
Estimation time (h) 12:20
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shorter than the desired duration (0.9 h, see Table 2). Also, it is an interesting result that 
full-time workers do only apply a small penalisation to a short work duration and do not 
penalise a long work duration. A possible interpretation is that they are in general flexi-
ble with their work duration, but the duration is determined by other factors like specific 
office hours. The flexibility parameter for a longer total time spent at home compared to 
the desired duration (12.9 h) indicates that the group of the full-time workers penalise 
being too long at home during the day. This means that they actively have the need or 
the desire to participate in activities outside of the home for a certain time (around half) 
of the day.

Optimised schedules

For the simulation of the schedules in this case study, we implement the MILP as described 
in  sections "Optimisation model" and "Tour-based indicators and constraints" and in the 
open-source optimisation framework OR-Tools2 for Python. This general-purpose library 
allows for applying multiple solvers. The open-source SCIP-solver (Achterberg et al. 2008) 
is employed using default settings. These settings include a relative optimality gap of 0%, 
which guarantees that the solution is optimal. The SCIP-solver employs a mix of Branch-
and-Bound (Lawler and Wood 1966) and Cutting-Plane (Marchand et al. 2002) generation 
techniques. Additionally, the Ray3 library is implemented to provide an efficient way for 
parallel computing. The simulation greatly benefits from parallel computing since we can 
– assuming a computer with an infinite number of cores – parallelise the simulation by the 
number of individuals. The computer used for the simulation is a physical server with 48 
cores and the operating system is Microsoft Windows Server. Using 42 cores, 50k sched-
ules are optimised in around 1 hour. The computation time scales linearly by the amount 
of cores, which results in an average processing time of 3 seconds per schedule and core.

With this implementation of the optimisation model as well as all the inputs including 
flexibility parameters from Table 3, the framework is applied to each full-time worker as 
of the synthetic population of Lausanne, Switzerland. Firstly, we generate an activity set A 
for each individual, as described in section "Model estimation". For each activity a ∈ A , 
we then take a random draw from a normal distribution to assign a desired timing x∗

a
 and 

duration �∗
a
 based on its activity type as given in Table 2. The output of the optimisation 

model is a realised schedule with a final choice for each decision variable as given in sec-
tion "Optimisation model" for the individual of the synthetic population.

A minority of the full-time workers (around 7 %) makes the decision of not participat-
ing in any activity outside of the home during the day ( |A| = 0 ). After removing them 
from the optimisation model, around 45’000 schedules are simulated. In the optimisation 
model, the individuals may choose among the transport modes walk, bike, public transport 
(buses, trains, and all other means) and car as a passenger. If the individual owns a driving 
license and there is a car available in the household, the mode alternative car as a driver is 
also listed in the set of modes M . The mode has to remain the same throughout an out-of-
home tour. The time period � is 24 hours, meaning that every person must be back home at 
midnight. The feasible time window �−

a
 and �+

a
 for each activity type is 4:00 h to 23:00 h, 

respectively. The only exception is the activity type leisure, with a �+
a

 of 23:50 h.

2  https://​devel​opers.​google.​com/​optim​izati​on, last accessed: 29.08.2021
3  https://​ray.​io/, last accessed: 29.08.2021

https://developers.google.com/optimization
https://ray.io/
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Figure 2 depicts the final aggregated results of the application of the proposed frame-
work to each full-time worker in Lausanne. It shows the relative frequency of individu-
als who are participating at a certain activity type at a given time of the day (i.e. activity 
profiles). The figure compares the results of the framework (left Fig. 2a) to the empiri-
cally observed activity profiles in the MTMC (right Fig . 2b). Overall, the results of our 
framework fit the curve of the MTMC nicely. Everyone starts the day at home (light 
grey area). Between 7:00 h and 17:00 h, the work activity (red) is dominating. The work 
activity shows a steep peak in the morning and at 10:00 h, between 60 and 80 % of all 
full-time workers are staying at their work place. At 12:00  h, there is a sudden dis-
continuity, when people are going to have lunch. This is also indicated by an increas-
ing participation in lunch/leisure (green) and home activities. In the evening, the end 
time of work activities follows a less steep distribution compared to the morning. After 
19:00 h, the dominated activity (besides home) is leisure, which typically ends between 
21:00 h and 22:00 h. Only few persons in MTMC are participating at leisure activities 
after 24:00 h, which is not captured by the model since we constrain the time period to 
be 24 hours.

In general, travelling (dark grey) consumes a small percentage of the day of a full-
time worker. But steep transitions from one activity type to another mean that a lot of 
persons are travelling during that time period, which causes the traffic peaks. Compared 
to the profile in the MTMC, the model tends to underestimate the travel episodes. This 
can be explained by the simplified assumption of a constant travel penalty �travel = −1 
(see section  "Model estimation") across all modes of transport. Due to this assumption, 
the individuals are just minimising travel time in the optimisation model and do not 
consider mode choice aspects such as costs or personal preferences.

Another aim of the proposed framework is to capture the interactions in the temporal 
dimension. The temporal dimension mainly includes the choices of activity start times 
and durations. Travel episodes play a minor role in average as shown in Fig. 2. Figure 3 
demonstrates the correlation of start times and durations for work and leisure activi-
ties. The darker the area, the higher the number of observations that are made within 
this time frame. The figure compares the realised schedules of the optimisation model 
(left) to the observed schedules in the MTMC (right). Again, there is an excellent fit 
between the simulation and the empirical observation. Work activities (Fig. 3a and 3b) 
show two different types of behaviour: (i) the work activities which are starting early in 
the morning and take place for around 9 hours; and (ii) the ones which are divided into 
two separate activities starting in the morning for 4 hours and than starting again in the 

(a) (b)

Fig. 2   Simulated activity profiles of the simulation compared to the Swiss microcensus
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afternoon for another 4 hours. The model slightly overestimates the number of persons 
who are working for the full 9 hours.

The leisure activities (Figs. 3c and 3d) are also captured well by the model. The dis-
tribution shows a peak at lunch time for 30 to 60 minutes. In the evening, both short and 
longer leisure activities are taking place, and both types of leisure activities are well repre-
sented in the model. During the day, the model underestimates the participation at leisure 
activities of short duration (i.e. under 30 minutes).

Discussion

The presented work proposes a framework with a deep behavioural realism for the tempo-
ral scheduling decisions in activity-based modelling. Using this framework, time-of-day 
relevant studies can be modelled. One example is the global COVID-19 pandemic, which 
may cause a higher prevalence in working from home. The increased flexibility in work-
scheduling decisions likely influence how people organise their day. It will be interesting to 
investigate how sensitive the proposed framework responds to questions such as (i) do peo-
ple extend the time spent at home? (ii) do they travel longer distances to the work place? 
(iii) do they extend the duration of their leisure activities? The answers may help practi-
tioners to understand mobility behaviour and to plan future infrastructure, e.g. with regards 
to the peak hour problem.

(a) (b)

(d)(c)

Fig. 3   Simulated correlation between start times and durations for selected activity types compared to the 
Swiss microcensus
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To achieve this, the framework must be coupled with a traffic assignment model. At 
the moment, it cannot predict network loads, e.g. the number of rail passengers boarding a 
train at a certain time. For this purpose, the optimised schedules must be fed into a traffic 
assignment, e.g. using the software MATSim (Horni et al. 2016). With the results of the 
traffic assignment, transport planners can assess policy studies and the need for future net-
work capacity based on network loads.

Additionally, network loads per transport mode are needed. The focus of this work lies 
on activity timings and not on estimating a mode choice model. A mode choice model 
would require an extension of the estimation routine to find mode choice parameters that 
express behavioural preferences and that quantify the influence of level of service indica-
tors (e.g. parking costs, travel time or service frequency). Also, constant travel times are 
assumed over a 24h-day for all modes of transportation. Particularly the car travel times 
are depending on the time of the day as travel times differ a lot between peak and off-peak 
times. For this reason, time-of-day dependent travel times would be an enhancement of this 
framework when focusing on mode choice.

Household interactions are another relevant modelling aspect that goes beyond the 
scope of this work. In the current work, we optimise the daily schedules for each individual 
separately. However, it must be assumed that in reality, many individual decisions are influ-
enced by the decisions of other household members (Gupta and Vovsha 2013). Introducing 
household constraints or maximising the utility over an entire household is an important 
avenue for future research in order to achieve more behavioural realism.

The main objective of this work is implementing a working and feasible solution to 
the activity-based scheduling problem with a general utility specification. To express the 
problem more comprehensively, further research needs to investigate more advanced utility 
specifications. For example, all flexibility parameters in this work are defined to be linear 
penalties. Balać et al. (2018) suggest a non-linear utility function to score the activities in a 
schedule. It would be interesting to investigate if non-linear (or piece-wise linear) penalties 
are able to improve the model statistics. Particularly piece-wise linear penalties would be a 
desirable extension of the utility specification. They would allow for adding an extra pen-
alty to large deviations from desired timings compared to smaller deviations.

Within the optimisation model, the decisions about activity locations are only made for 
secondary activities such as leisure or shopping. The long-term locations for primary activ-
ities (e.g. the workplace) are simulated outside of the optimisation using existing choice 
models from Scherr et al. (2020a) and treated as static input. Also, the attraction of a loca-
tion (e.g. the number of jobs) is neglected in the proposed utility specification. For a better 
representation of the size or the capacity of a location as well as for simulating the decision 
about long-term locations, the utility specification should be extended by an attraction fac-
tor for each individual location.

In the presented case study, the optimisation model constrains opening and closing 
times for each activity type, but the data is not collected for each specific location. Open-
ing times play an important role in daily scheduling decisions as they are hard constraints. 
Future work should address this limitation by collecting data for location-related opening 
times and simulating it within the optimisation model.

We assume that people have preferences for activity start times and durations, but not 
for activity end times. In reality, it might be the end time that is significant for certain 
activity types. It goes beyond this work to justify which timing is important for each indi-
vidual and each activity. Future research should investigate the mentioned behaviour in 
more detail to find the most relevant variable for each activity.
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Additionally, our approach uses fixed desired activity timings and durations, which are 
found by statistical and visual investigation of the empirically reported schedules (modal 
values). In the future, a possible improvement of the estimation routine is implementing 
a mixed logit model (Ben-Akiva et al. 2001) to estimate distributed values for the desired 
timings and durations.

Lastly, we introduce the heuristic method of combining an existing activity-based model 
with a random alternative generator to generate the choice set for the parameter estimation. 
This relies on already having a fully operational activity-based model. Since this is often 
not the case, a choice set needs to be generated from scratch containing alternatives that a 
decision-maker is likely to have considered for a reported schedule. A possible direction to 
design a choice set from scratch is to apply a Metropolis Hastings algorithm (Pougala et al. 
2021; Yamamoto et al. 2001).

Conclusion

In this work, we demonstrate the capabilities of the presented framework to solve the 
activity-based scheduling problem and to reproduce empirical observations from the Swiss 
MTMC (BfS and ARE 2017). Methodologically, this is accomplished by combining two 
modelling components: (i) an estimation routine to quantify individual flexibility param-
eters based on maximum likelihood estimation; and (ii) a simulation approach that uses the 
flexibility parameters to resolve temporal conflicts (i.e. activity timings and durations) in 
order to maximise the schedule utility for each individual as part of a synthetic population. 
The simulation of the temporal choice dimensions is implemented as a MILP and extends 
the work of Pougala et  al. (2022). For the non-temporal choice dimensions (i.e. activity 
participation, tour bundling, and considered locations), we simulate a sequence of tradi-
tional discrete choice models as introduced by Scherr et al. (2020a).

Our proposed method provides a holistic representation of the scheduling process and 
uses continuous temporal variables within a utility-maximisation framework. It allows for 
behavioural realism especially in the temporal dimension, which is often modelled based 
on simplified assumptions in the literature (Bhat et al. 2004; Auld et al. 2009; Saadi et al. 
2016). The method is demonstrated to estimate flexibility parameters that produce close-to-
reality results in a real-world application on a city level.
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