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Abstract
Results from multiple diagnostic tests are combined in many ways to improve the
overall diagnostic accuracy. For binary classification, maximization of the empirical
estimate of the area under the receiver operating characteristic (ROC) curve has
widely been used to produce an optimal linear combination of multiple biomarkers.
However, in the presence of large number of biomarkers, this method proves to be
computationally expensive and difficult to implement since it involves maximization
of a discontinuous, non-smooth function for which gradient-based methods cannot
be used directly. Complexity of this problem further increases when the classification
problem becomes multi-category. In this article, we develop a linear combination
method that maximizes a smooth approximation of the empirical Hyper-volume
Under Manifolds (HUM) for multi-category outcome. We approximate HUM by
replacing the indicator function with the sigmoid function and normal cumulative
distribution function (CDF). With such smooth approximations, efficient gradient-
based algorithms are employed to obtain better solutions with less computing
time. We show that under some regularity conditions, the proposed method
yields consistent estimates of the coefficient parameters. We derive the asymptotic
normality of the coefficient estimates. A simulation study is performed to study the
effectiveness of our proposed method as compared to other existing methods. The
method is illustrated using two real medical data sets.
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1. Introduction

Statistical classification methods are widely used in various fields of science
such as economics, computer science, meteorology, medicine, and many others.
Specifically, in medicine, multiple diagnostic tests are combined in many
ways to discriminate diseased individuals from the non-diseased. Over the
last two decades, many research articles recommended combining multiple
diagnostic test results in order to increase the overall diagnostic accuracy.
Common approaches to combine multiple test results include the logistic
regression (LR), the linear discriminant analysis (LDA) and other model-
based approaches. Some authors ((1), (2), (3)) directly focused on the
maximization of the Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) to combine multiple test results. In brief, ROC curve for a
classifier h(X) is drawn through the set of points {(TPR(c),FPR(c)),−∞ <
c <∞}, where the true positive rate (TPR) and false positive rate (FPR) are
defined as TPR(c) = P (h(Xi) > c|i-th individual is diseased), and FPR(c) =
P (h(Xj) > c| j-th individual is non-diseased), respectively. An ROC curve is
often summarized by the area under the ROC curve (AUC) to estimate the
discrimination accuracy of a classifier. However, to the best of our knowledge,
there are limited developments for finding an optimal linear combination of
biomarkers in case of multi-category disease classification. Our objective here is
to develop a classifier for multi-category outcome based on the multi-category
version of AUC which is commonly known as the Hyper-volume Under the ROC
Manifold (HUM).

For binary classification, earlier works considered maximizing various non-
parametric estimates of AUC to obtain the best linear combination of the
features (see (1), (2), (3), (4), (5) and few others). In particular, (3) proposed
to maximize an empirical estimate of AUC in the form of a Mann-Whitney U-
statistic for obtaining an optimal linear combination. However, maximization
of the empirical AUC remains computationally challenging since the objective
function is discontinuous and non-differentiable. To reduce the computational
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burden, (4) proposed to maximize a smooth approximation of the empirical AUC
using the sigmoid function. (5) proposed the Min-Max method where only two
biomarkers with minimum and maximum values were combined by maximizing
the empirical AUC. Thus, irrespective of the number of biomarkers, Min-Max
method estimates only one coefficient parameter which makes it computationally
much less challenging.

When a disease outcome is multi-category, the Hyper-volume Under the
ROC Manifold (HUM) is often used as a diagnostic accuracy measure, a multi-
category extension of AUC ((6)). Like the binary classification, here also one
can directly maximize the HUM to combine multiple biomarkers. For a three-
category disease outcome, HUM is known as the Volume under the ROC
Surface (VUS), and has been used in a few real applications ((7), (8), (9)).
(10) maximized the empirical estimate of VUS to combine multiple biomarkers.
Due to non-differentiability of the objective function, maximization of empirical
VUS requires derivative-free optimization methods which are computationally
expensive, especially when the number of biomarkers is large. To overcome this
problem, (11) used a penalized and scaled stochastic distance method assuming
that biomarkers were normality distributed. Such method is computationally
less challenging. However, violation of the normality assumption of biomarkers
may lead to poor estimation performance. (12) constructed upper and lower
bounds of the HUM using Fréchet inequality and maximized these bounds to
combine multiple biomarkers. They showed that these bounds were functions of
AUCs of all possible pairwise adjacent categories, and hence computationally
the method is less challenging especially for large number of disease categories.
However, such approximations do not perform well for small sample size and/or
non-normal distributions (as is noticed in our simulation study). To study the
discrimination power of a single biomarker or multiple biomarkers, one may
adopt in-built R packages HUM (see (13)) and mcca (see (14)).

In this article, we propose to maximize a distribution-free Smooth
approximation of the empirical HUM (SHUM) to combine multiple biomarkers
in an effective way. In particular, the sigmoid function and the normal
cumulative distribution functions (CDF) are used to approximate the non-
differentiable indicator functions embedded in the definition of HUM. We
show that the proposed method yields consistent estimates of the optimal
coefficients and they are asymptotically normal. A major advantage with
the proposed method stems from the fact that SHUM is a continuous and
differentiable function; this allows one to adopt a variety of gradient-based
optimization algorithms. Maximizing the empirical HUM with derivative-
free optimization techniques, such as Nelder-Mead simplex method, genetic
algorithm (GA), and simulated annealing (SA), are computationally expensive.
However, gradient-based optimization techniques like Newton-Raphson and
Quasi-Newton methods can be applied to maximize the SHUM function; these
nonlinear solvers are much more stable with nice convergence properties. In
addition to the theoretical developments, we also carry out extensive simulations
to facilitate comparison with other existing methods, e.g., the min-max method
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((5)), the lower and upper bound methods ((12)), the empirical method ((10)),
and the parametric method with normal distribution ((15)).

As illustrative applications, we first consider data from the Effect of
Remote Ischemic Preconditioning on Clinical Outcomes in Patient Undergoing
Coronary Artery Bypass Graft Surgery (ERICCA) trial where a group of
patients participated in a cardiovascular surgery and were followed for one year
after the surgery ((16)). During the study period, some patients developed the
Acute Kidney Injury (AKI) disease which was recorded as a multi-category
ordinal outcome with four severity levels. In another application, we analyze
data on Alzheimer’s disease from the Alzheimer’s Disease Research Center
(ADRC) at the University of Washington. In this data set, the patients were
divided into 3 groups based on the level of disease severity and data on 14
biomarkers were collected. For both the datasets, we apply our proposed method
to combine the biomarkers and compare the results with existing methods.

The rest of the article is organized as follows. In Section 2, HUM and SHUM
are defined along with discussion on the large sample properties of the estimated
combination coefficients. In Section 3, existing methods are summarized as an
overview. In Section 4, we provide a discussion on computational issues. In
Section 5, we present results from the simulation studies. Section 6 describes
the findings from two real data analyses. Section 7 contains discussion and
concluding remarks. All the proofs of theoretical results appear in the Appendix.
R codes are publicly available at https://github.com/rajumaiti/SHUM.

2. Proposed Estimators and Their Theoretical Properties

In this section, we introduce the HUM, empirical HUM and SHUM methods for
combining multiple biomarkers to improve the multi-category discrimination
accuracy.

Hyper-volume Under Manifolds (HUM)

Consider a study where there are M classes of the outcome variable which are
assumed to be ordered in nature. We provide some practical suggestion later for
unordered classes. Suppose X1,X2, · · · ,XM are d-dimensional random selected
vectors representing the values of d biomarkers for M outcome categories where
Xj = (Xj1, Xj2, · · · , Xjd)

T and Xjk denotes the value of the k-th biomarker
from the j-th category, k = 1, 2, · · · , d and j = 1, 2, · · · ,M . Suppose Xj follows
a multivariate continuous distribution Fj . Consider a linear combination of these
biomarkers as

βTXj =

d∑
k=1

βkXjk, j = 1, 2, · · · ,M,

where β = (β1, β2, · · · , βd)T is a d-dimensional vector of parameters. Under
the assumption that larger values of βTX corresponds to more severe disease
categories, a discrimination accuracy measure can be defined by the following
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probability

D(β) = P (βTXM > βTX(M−1) > · · · > βTX1),

which is known as hyper-volume under the ROC manifold (HUM) ((7), (6)).
For multi-category ordinal outcomes, HUM can be considered as an extension
of the AUC which is widely used in binary discrimination accuracy studies.
Here our objective is to find the best possible value of β for which D(β) is
maximum. Ideally, if there exists a β for which D(β) = 1, then such a linear
combination perfectly separates all the classes. Letting β0 denote the optimal
coefficient parameter that maximizes D(β) over a restricted parametric space
B = {β ∈ Rd : βd = 1}, then we can write

β0 = arg max
β∈B

D(β).

Note that we assume the d-th component βd of the coefficient vector β to be 1
in order to avoid the identifiability problem. Denote θ = (β1, β2, · · · , βd−1)T to
be the first d− 1 components of β which are free to take any value in the d− 1
dimensional Euclidean space. Hereafter, for the simplicity of notation, we use β
in place of β(θ) = (θT , 1)T . If the biomarkers are non-informative in predicting
the outcome category then D(β) will be close to 1

M ! which is the probability of
a random sorting. Under the assumption that X1,X2, · · · ,XM are generated
from multivariate normal distribution and some mild regularity conditions, an
unique optimal solution of β, which has nice closed form expression, can be
derived ((1)). However, in general for non-normal data, there does not exist
any closed form expression of β0 and hence a numerical optimizer should be
employed to know the approximate true value with a very large sample size
and a large Monte Carlo size which is a standard practice often used in many
statistical problems to know the true parameter value.

Empirical Hyper-volume Under Manifolds (EHUM)

Now let us consider the problem of estimating β0 given an empirical sample.

Let {Xjij ; ij = 1, 2, · · · , nj , j = 1, 2, · · · ,M} be a sample of size n =
∑M
j=1 nj

observations where j = 1, . . . ,M denote outcome categories and ij = 1, 2, · · · , nj
denote the samples in the j-th category. Then, for a fixed β, the empirical HUM
can be written as

DE(β) =
1

n1n2 · · ·nM

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

I(βTXMiM > βTX(M−1)i(M−1)
> · · · > βTX1i1)

=
1

M∏
j=1

nj

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

I(βTXMiM > βTX(M−1)i(M−1)
) · · · I(βTX2i2 > β

TX1i1)

(1)

where I(·) denotes the indicator function. When the sample size n is large,
the empirical estimator DE(β) is a very close to the original function D(β).
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Therefore, an optimal coefficient vector can be estimated by maximizing the
empirical estimate DE(β) which can be written as

β̂E = arg max
β∈B

DE(β).

When the number of disease categories is 2 (i.e., M = 2), the empirical HUM
reduces to the empirical estimate of AUC (see (3)) given by

DE(β) =
1

n1n2

n1∑
i1=1

n2∑
i2=1

I(βTX2i2 > β
TX1i1),

and when M = 3, it reduces to the empirical VUS (see (10)) given by

DE(β) =
1

n1n2n3

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

I(βTX3i3 > β
TX2i2 > β

TX1i1). (2)

Under some regularity conditions, (10) established the consistency and

asymptotic normality of β̂E for three-category outcomes. Following their

argument, consistency and asymptotic normality of β̂E for more than three
categories can easily be established. However, upon close examination we notice
that DE(β) is discontinuous and not differentiable with respect to β, and hence
faster gradient-based algorithms are not useful to this optimization problem.
On the other hand, although derivative-free algorithms can be used for smaller
number of categories, say M = 2 or 3, such algorithms become computationally
prohibitive and unstable as the number of categories increases. To overcome
this problem, in the next section, we propose a new method based on a smooth
approximation of the empirical HUM.

Smooth Approximations of empirical HUM (SHUM)

In order to alleviate the computational burden of maximizing the empirical
HUM DE(β), we propose to maximize a class of smooth approximations of the
empirical HUM as an alternative approach. The basic idea is to approximate the
non-differentiable indicator function I(x > 0) by a smooth function. We consider
a class of all continuous distribution functions g(x) with support space (−∞,∞),
satisfying g(x) + g(−x) = 1 and g

′′
(x) is continuous. Replacing all the indicator

functions with this g(x) functions in theDE(β) makes the approximate objective
function solvable with the gradient-based optimization algorithms such as the
Newton-Raphson method and the Quasi-Newton method. In this paper, we
consider two smooth candidates from the above class to solve the computational
issue. The first one is the sigmoid function s(x) = 1

1+exp(−x) , and the second

one is the standard normal CDF denoted by Φ(x) = P (χ ≤ x) where χ follows
a normal distribution with mean 0 and variance 1.

Note that when x is close to 0, the absolute difference between s(x) and
I(x) is the highest and as x goes away from 0, s(x) gets closer to I(x). This
is also true for Φ(x). However, we can improve these approximations s(x)
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and Φ(x) by introducing a tuning parameter λ into these functions which
are given as follows: sn(x) = s(xλ ) = 1

1+exp(−x/λ) and Φn(x) = Φ(x/λ) where λ

satisfies limn→∞ λ = 0. The choice of the tuning parameter λ is very crucial in
approximating the indicator function I(x > 0) and hence the empirical HUM.

When λ is close to 0, the proposed SHUM estimator behaves similarly to the
empirical HUM with a very large value of derivative across a very small interval
around zero. This induces a greater variability on the resulting estimators. On
the other hand, if λ is chosen to be one, it suffers from biased approximation.
Therefore, we need to choose an optimal λ between 0 and 1 to strike a
balance between the bias and the variance issues. To illustrate the role of λ,
a graphical representation is displayed in Figure 2 where we consider a few
selected values of λn. We can see that as λ decreases to zero the approximation
becomes closer to the indicator function I(x > 0). As a rule of thumb, for
binary classification problem (17) and (4) recommended the value of λ for which
|βT (X1i1 −X2i2)/λ| > 5 for most of the pairs (i1, i2). In our case, λ should
satisfy

|βT (X1i1 −X2i2)/λ||βT (X2i2 −X3i3)/λ| · · · |βT (X(M−1)i(M−1) −XMiM )/λ| > 5

for most of the pairs (i1, i2, · · · , iM ). In this regard, a possible choice for λ is

1√
n(M−1)

, a general extension of the choice of λ =
1√
n

for binary classification.

We performed some simulation experiments to empirically find the best possible
value of the tuning parameter λn in the definition of SHUM given in equation (??).
We simulated samples from the multivariate normal distributions with M = 3 and
d = 4. We explored the samples of size n = (20, 20, 20) and n = (50, 50, 50). We
calculated the variance and bias for varying values of λn and presented the results in
Figure 1. As we can see, for total sample 60, variance increases as λn increases and

it gets stable after
1

λn
= 10 ≈

√
(3− 1)× 60 and for total sample size 150, the

varianace is stable after
1

λn
= 17 ≈

√
(3− 1)× 150. In case of bias, it decreases as

λn increases and it gets stable after
1

λn
= 10 for total sample size 60, and

1

λn
= 17

for total sample size 150.
Although DE(β) can be approximated using any of the smoothed functions

sn(x) and Φn(x), hereafter we only derive the results using the sigmoid function
sn(x) to save the space. The proposed sigmoid function based approximation of
DE(β) is given by

Dsn(β) =
1

n1n2 · · ·nM

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

sn(βT (XMiM −X(M−1)i(M−1)
)) · · · sn(βT (X2i2 −X1i1)),

(3)
where all the indicator functions are replaced by the sigmoid functions. We
propose to maximize Dsn(β) in order to estimate the optimal coefficient vector.
The optimal coefficient vector is then given by

β̂sn = arg max
β∈B

Dsn(β).
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Figure 1. Choice of λn using bias-variance trade-off.

We denote the optimal coefficient estimate obtained using the sigmoid smooth
approximation of the empirical HUM (SSHUM) as β̂sn and using the normal

smooth approximation of the empirical HUM (NSHUM) by β̂Φn
for the

simulation and data analysis.

Consistency and Asymptotic Normality of SSHUM

Under some regularity conditions, we establish the consistency and asymptotic
normality of β̂sn . These conditions are listed as follows.

A1. The support space of Xjij is not contained in any proper linear subspace
of Rd.

A2. There exist at least one component of Xjij that has positive density
everywhere conditional on the other components, almost surely.

A3. The true parameter value β0 is an interior point of B which is a compact
subset of Rd.

Theorem 1. Consistency. Suppose that assumptions (A1)-(A3) hold, then

β̂sn
p−→ β0

as n→∞, where “
p−→” denotes convergence in probability.

Prepared using sagej.cls



Maiti et al. 9

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid

x

s n
(x

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λn=1
λn=1/2
λn=1/3
λn=1/10

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normal CDF

x

Φ
n(x

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λn=1
λn=1/2
λn=1/3
λn=1/10

Figure 2. Sigmoid and normal CDF functions for different choices of tuning parameter
λn

The detailed proof of Theorem 1 is provided in Section A2 in Appendix.

In order to prove the asymptotic normality of β̂sn , we assume an
additional set of regularity conditions. Denote Ψ(X1i1 ,X2i2 ,XMiM ;β) =
∂

∂θ

[
sn(βT (XMiM −X(M−1)i(M−1)

)) · · · sn(βT (X2i2 −X1i1))
]
. Then assume

the following:

A4. A(β0) = E

(
− ∂

∂θT
Ψ(X1i1 ,X2i2 ,XMiM ;β0)

)
<∞ and is invertible.

A5. Ψ̃m1(Xm1;β0) = E

(
∂

∂θ
Ψ(X11,X21,XM1;β0)|Xm1

)
has a finite

variance-covariance matrix, i.e., Σψm
= V ar(Ψ̃m1(Xm1;β0)) <∞ for all

m = 1, 2, · · · ,M .

A6. limn→∞
n

nm
= ρ2

m <∞ for all 1 ≤ m ≤M .

Assumptions (A4)-(A6) ensure that the asymptotic variance exits and is finite.

Theorem 2. Asymptotic normality. Suppose that the regularity conditions
(A1)-(A6) hold, then

√
n(β̂sn − β0)

D−→ (WT , 0)T
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as n −→∞ where “
D−→” denotes convergence in distribution andW is a (d− 1)-

variate normal distribution N(0,A−1(β0)B(β0){A−1(β0)}T ), where

B(β0) =

M∑
m=1

ρ2
mΣψm

.

The proof is provided in Section A3 in Appendix.
Computation of variance of β̂sn using the asymptotic variance formula

given in Theorem 2 is very tedious and challenging, especially because of
the complicated nature of the smoothing function sn and its first and second
derivatives. Furthermore, it is observed that the U-statistic based asymptotic
variance formula are not generally reliable for small sample size (see (6)). In such
cases, bootstrap technique is commonly employed to compute the variances of
the coefficient estimators βsn .

3. Review of Competing Methods

In this section, we provide a brief summary of some existing combining methods
which are based on direct maximization of different versions of AUC in the multi-
category classification problem. In the simulation and data analysis sections, we
will compare our proposed method with these existing methods.

Parametric Method with Normality Assumption (Parametric)

(15) proposed to maximize the HUM D(β) under the assumption that biomarker
vectors Xj from the j-th category follow multivariate normal distribution with
mean vector µj and variance-covariance matrix Σj , j = 1, 2, · · · ,M . Note that
under muultivariate normal distributions any linear combination of biomarker
vectorXj , denoted by Vj = βTXj , follows a univariate normal distribution with

mean βTµj and variance βTΣjβ, i.e., Vj ∼ N(βTµj ,β
TΣjβ), j = 1, 2, · · · ,M .

Let φ and Φ denote the density function and the cumulative distribution function
of the standard normal distribution N(0, 1). Then, for M = 3, the HUM D(β)
can be written as

DN (β) =

∫ ∞
−∞

Φ


√
βTΣ2β√
βTΣ1β

u+
βT (µ2 − µ1)√

βTΣ1β

Φ

−
√
βTΣ2β√
βTΣ3β

u+
βT (µ3 − µ2)√

βTΣ3β

φ(u) du.

(4)

Maximizing DN (β) with respect to β, we can obtain the optimal coefficient
estimates as

β̂N = arg max
β∈B

DN (β).

Following the results of (1), it can be shown that if X1,X2, · · · ,XM are multivariate
normally distributed with mean vectors µ1, µ2, · · · , µM , respectively satisfying

µ2 − µ1 = µ3 − µ2 = · · · = µM − µM−1 = δ, (5)
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and common variance-covariance matrix Σ, then the optimal coefficient parameters
β̂N will be proportional to Σ−1δ, i.e., β̂N ∝ Σ−1δ. For M = 3, this result is
discussed in (10).

A major advantage of using normality assumption is that it is computationally
less challenging, especially when (5) holds true. When Σ and δ are unknown,
one needs to estimate those parameters from the data and plug-in them into the
above formula of β̂N . However, the main limitation with this method is that it
is fully parametric as it fully depends on the normality assumption. Violation
of normality of the data may result in poor estimate of β0.

Min-Max Method (Min-Max)

The Min-Max (MM) method is a more simplified non-parametric approach
to combine the multiple biomarkers. It was originally proposed by (5) in the
context of binary outcome. Instead of considering all the biomarkers, this
method considers the empirical AUC based on the linear combination of two
extreme biomarkers for each subject in the study. In this paper, to facilitate a
comparative study, we define the empirical HUM based on the combination of
the minimum and maximum biomarkers for each subject.

Let Xjij ,max = max1≤k≤dXjij ,k and Xjij ,min = min1≤k≤dXjij ,k and define
the linear combination of these two extreme observations as Vjij =
βmaxXjij ,max + βminXjij ,min, i = 1, 2, · · · , nj , j = 1, 2, · · · ,M . Then the
objective function to be maximized to obtain the optimal coefficient vector is
given by

DMM (β) =
1

M∏
j=1

nj

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

I(VMiM > V(M−1)iM−1
> · · · > V1i1).(6)

The optimal coefficient estimates by maximizing the above quantity can be
written as

β̂MM = arg max
β∈B

DMM (β).

A major advantage with this method is that it involves the optimization
of a single parameter as opposed to other competing methods that consider
several parameters depending on the number of biomarkers, and hence
it is computationally very efficient. Furthermore, it need not assume any
distributional assumption of the data and hence is more robust against the
parametric methods. So far, the method has been studied only for binary disease
outcome, in which case the method can achieve higher sensitivity over a certain
range of specificity. In other words, when one is interested in partial AUC, the
method works better. However, the main limitation with this method is that a
major portion of the information on the biomarkers are not utilized since only
maximum and minimum biomarker values are used.
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Upper and Lower Bound Approach using Fréchet inequality (Fréchet)

To reduce computational burden of the maximization of the empirical HUM,
(12) proposed to maximize the upper and lower bounds of the HUM which are
given as follows

max{0, (M − 1)PA(β)− (M − 2)} ≤ D(β) ≤ PM (β),

where PA(β) and PM (β) are defined as follows

PA(β) =

M−1∑
j=1

P (βTXj+1 > β
TXj)/(M − 1),

and
PM (β) = min

1≤j≤M−1
P (βTXj+1 > β

TXj).

For example, by maximizing the upper bound PM (β) with respect to β, we

obtain β̂Frechet = arg maxβ∈B PM (β) which can be considered as an alternative
optimal coefficient estimates. The above method is computationally efficient
against the direct maximization of HUM as it only considers pairs from the
adjacent categories and their corresponding AUCs. Hence the above method is
computationally less time consuming than the direct maximization of the HUM
especially when the number of outcome categories is relatively large. However,
when the discrimination accuracy for the pairwise categories are not significant
as compared to the overall discrimination, this method will fail to give good
results in terms of overall discrimination accuracy.

4. Computational Considerations: Step-down Algorithm

Step-down algorithm was originally proposed by (3) to combine more than two
biomarkers in case of binary disease outcomes. The main motivation of using
step-down algorithm is its ability to optimize the elements of the β vector
sequentially one at a time instead of optimizing them simultaneously. (11)
formalized the step-down algorithm in the context of three-category diagnostic
outcomes. Recently (12) used this algorithm to maximize upper or lower bound
of HUM, namely PM or PA and obtained an optimal linear coefficient estimates.
The algorithm to maximize a criteria function (e.g., EHUM) goes as follows:

Step 1. Compute the EHUM for each of the d biomarkers one at a time and arrange
covariates in decreasing order with respect to the computed EHUM values
such that X(1) and X(d) have the highest and the lowest individual EHUM
values respectively.

Step 2. Choose the first two biomarkers with highest EHUM values and combine
them as V2 = X(1) + λ2X(2).

Step 3. Maximize the EHUM for the combined biomarker V2 w.r.t. λ2 and obtain
V̂2 = X(1) + λ̂2X(2).

Step 4. For i = 3, . . . , d construct Vi = V̂i−1 + λiX(i) and maximize Vi w.r.t. λi

and obtain λ̂i.
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Thus at the end of step 4, the estimated optimal combination V̂d = X(1) +

λ̂2X(2) + · · ·+ λ̂dX(d) can be obtained. Note that the step-down algorithm
can be employed to find optimal coefficient parameters by maximizing any
function like EHUM, SHUM, PM , etc. However, in general, the algorithm can
be used to maximize any other function of multidimensional parameters. For
computational advantages, the step-down algorithm has been used throughout
the simulation studies and data analysis. We implement the numerical method
using the in-built function optim in the R software freely available in
https://cran.r-project.org/.

5. Simulation Study

In this section, we present results from simulation experiments to study the
performance of the proposed methods compared to a few existing methods such
as the Min-Max method, the Upper bound approach using Fréchet inequality,
and the direct maximization of empirical HUM. All these existing methods are
discussed in Section 3. Different simulation setups by varying the number of
disease categories and number of biomarkers along with different multivariate
distributions of biomarkers are explored.

Case 1: d = 3,M = 3

In this setup, three biomarkers (i.e., d = 3) and three disease categories (i.e.,
M = 3) are considered. Samples of sizes 60, 90 and 120 were used to perform
this study. The biomarkers’ values are generated from four different multivariate
distributions. First three distributions are multivariate normal distributions
with different covariance matrices, namely (1) independent, (2) exchangeable
and (3) AR(1); and the fourth distribution is Weibull distribution which
represents the family of skewed distributions.

Scenario 1 : For the i-th category, the values of the biomarkers are simulated
from three dimensional normal distributions with mean vector µi, and common
covariance matrix as identity Σ = I, i = 0, 1, 2. We set the parameter values
as µ0 = (0, 0, 0)T , µ1 = (1.0, 1.1, 1.2)T , and µ2 = (2.0, 2.2, 2.4)T for categories
i = 0, 1, 2, respectively. Since the correlation matrix is considered to be identity
with normal distributions, the biomarkers are independent to each other.

Scenario 2 : In the second scenario, the mean vectors are same as in
Scenario 1, however the covariance matrix Σ = ((σst)) is such that all the
diagonal elements are 1, i.e, σss = 1; and all the off-diagonal elements are 0.2,
i.e., σst = 0.2, s 6= t; s, t = 1, 2, 3. This covariance matrix is an example of an
exchangeable matrix. Since all the off-diagonal elements are non-zero and equal,
therefore the biomarkers are correlated.

Scenario 3 : In the third scenario, the mean vectors are same as the previous
scenarios. The covariance matrix has an AR(1) form, i.e., all the diagonal
elements are 1; and the off-diagonal elements are set as σst = 0.2|s−t|, s 6= t;
s, t = 1, 2, 3. Here all the mutual correlations are non-zero but it fades as the
distance between two biomarkers increases.
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Scenario 4 : In the fourth scenario, values of the biomarkers are simulated
from Weibull distribution. Specifically, the j-th biomarker from the i-th disease
category follows a Weibull distribution with shape parameter kj and scale
parameter αi and the probability density function is given by

f(x; kj , αi) =


ki
αi

(
x

αi

)kj−1

exp(−( xαj
)kj ) x > 0,

0 x ≤ 0,

i = 0, 1, 2 and j = 1, 2, 3. Values of the shape parameter k and scale parameter
λ are set as (k1, k2, k3) = (0.5, 1, 1.5) and (α1, α2, α3) = (1, 2, 3), respectively.
Here, we assume that biomarkers are independently distributed. This case
corresponds to non-normal and skewed distribution.

For each fixed sample size, we simulate samples from each of the above
scenarios and estimate the optimal coefficient vector β by maximizing the
different versions of HUM. The process is repeated for 500 times. Based on
that 500 results, we reported the mean and standard errors of HUM in Table 1,
whereas the mean values for the coefficient vector are reported in Table 2.

Under the first three scenarios where biomarkers’ values are generated from
normal distributions, the SSHUM and NSHUM methods perform as good as the
parametric method given in Section 3.1 and outperform the Fréchet bounds and
Min-Max methods with respect to the discriminating accuracy. In Scenario 4,
where biomarkers’ values are non-normally distributed, the parametric method
with normality assumption performs poorly compared to the proposed methods.
However, there is no observable difference in the accuracy measure between the
SSHUM and NSHUM methods suggesting that both the sigmoid and the normal
CDF approximations perform equally well for non-normal distributions.

Case 2: d = 4,M = 4

In this setup, we considered four biomarkers (i.e., d = 4) and four disease
categories (i.e., M = 4) to see how our proposed method performs for a larger
number of disease categories. Samples of sizes 20, 30, and 40 were explored
to perform this study. We consider lower sample size as compared to the
d = 3,M = 3 case owing to the increased computational burden in the present
case. The biomarkers are generated from three different multivariate normal
distributions with different correlation matrices as in Case 1. The mean vectors
for four disease classes are µ0 = (0, 0, 0, 0)T , µ1 = (0.1, 0.1, 0.1, 0.1)T , and µ2 =
(0.2, 0.2, 0.2, 0.2)T and µ3 = (0.3, 0.3, 0.3, 0.3)T , respectively.

Performance of the proposed SSHUM and NSHUM methods are compared
with the existing methods, namely the empirical method ((10)), the Fréchet
bounds method ((12)), and the Min-Max method ((5)). Since samples are
only generated from multivariate normal distribution with different correlation
structures, we do not include the parametric method in our comparison study.
By default, the parametric method outperforms the others. Summarized results
are presented in Table 3. As we can see from Table 3, the proposed SSHUM and
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NSHUM outperforms the others in terms of the HUM values. Also it is worth
noting that as the correlation between biomarkers gets weaker, the HUM value
for all the methods increase.

Case 3: d = 10,M = 4

In this setup, we considered 10 biomarkers (i.e., d = 10) and four disease categories
(i.e., M = 4). Samples of sizes 20, 30, and 40 were explored. The biomarkers
are generated from three different multivariate normal distributions with different
correlation matrices as in Case 1. The mean vectors for four disease classes are
µ0 = (0, 0, · · · , 0)T , µ1 = (0.1, 0.1, · · · , 0.1)T , and µ2 = (0.2, 0.2, · · · , 0.2)T and
µ3 = (0.3, 0.3, · · · , 0.3)T , respectively.

As in case 3, the proposed SSHUM and NSHUM methods are compared with
the empirical method ((10)), the Fréchet bounds method ((12)), and the Min-
Max method ((5)). Table 4 summarize the simulation results. We observe that the
proposed SSHUM and NSHUM methods outperform the others in terms of the
HUM values. The Min-Max method has the worst performance. The results suggest
that the proposed methods perform well even with a large number of biomarkers.

Table 1. Means and standard errors (in parenthesis) of obtained EHUM values at the
optimal coefficient vector estimated using the methods: the Empirical method ((10)), the
Fréchet bounds method ((12)), the parametric method ((15)), the Min-Max method,
SSHUM and NSHUM for simulation Scenarios 1, 2, 3, 4 with sample sizes
(60, 60, 60), (90, 90, 90), (120, 120, 120), based on 1000 Monte Carlo replications.

(n1, n2, n3) Empirical Min-Max Parametric Fréchet SSHUM NSHUM
Scenario 1

(60, 60, 60) 0.824 (0.032) 0.804 (0.035) 0.826 (0.032) 0.813 (0.034) 0.828 (0.033) 0.828 (0.033)
(90, 90, 90) 0.825 (0.026) 0.805 (0.028) 0.827 (0.027) 0.815 (0.026) 0.827 (0.026) 0.827 (0.026)
(120, 120, 120) 0.824 (0.022) 0.804 (0.023) 0.825 (0.022) 0.813 (0.022) 0.825 (0.022) 0.825 (0.022)

Scenario 2
(60, 60, 60) 0.747 (0.039) 0.734 (0.039) 0.752 (0.039) 0.744 (0.039) 0.754 (0.039) 0.754 (0.039)
(90, 90, 90) 0.748 (0.032) 0.735 (0.032) 0.750 (0.031) 0.744 (0.032) 0.752 (0.031) 0.752 (0.031)
(120, 120, 120) 0.749 (0.026) 0.736 (0.027) 0.751 (0.026) 0.745 (0.027) 0.752 (0.026) 0.752 (0.026)

Scenario 3
(60, 60, 60) 0.766 (0.037) 0.752 (0.038) 0.770 (0.037) 0.756 (0.039) 0.773 (0.037) 0.773 (0.037)
(90, 90, 90) 0.767 (0.030) 0.753 (0.031) 0.769 (0.031) 0.756 (0.031) 0.771 (0.030) 0.771 (0.030)
(120, 120, 120) 0.769 (0.026) 0.754 (0.026) 0.770 (0.026) 0.758 (0.026) 0.771 (0.026) 0.772 (0.026)

Scenario 4
(60, 60, 60) 0.452 (0.059) 0.412 (0.044) 0.436 (0.057) 0.391 (0.043) 0.521 (0.045) 0.521 (0.046)
(90, 90, 90) 0.474 (0.051) 0.412 (0.036) 0.425 (0.058) 0.391 (0.038) 0.515 (0.036) 0.515 (0.036)
(120, 120, 120) 0.484 (0.046) 0.411 (0.031) 0.420 (0.047) 0.392 (0.033) 0.512 (0.031) 0.512 (0.031)

Computation Time Evaluation

In the previous section it is noted that the proposed methods SSHUM and NSHUM
outperforms other existing methods while not much difference in performance is
noted between them. Also among existing methods, EVUS performs the best and
closest to the proposed methods. Here we compare the computation times required
for EVUS and SSHUM methods for one normal (Scenario 1) and one non-normal
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Table 2. Means (biases and standard errors) of (β1, β2)
T (based on 1000 replications)

by different methods for Scenario 1. All the methods were maximized using
Quasi-Newton method.

Sample size (β1, β2)T Empirical Parametric Fréchet SSHUM NSHUM
Scenario 1

n = (60, 60, 60) 1.2 1.045 (-0.155, 0.179) 1.230 (0.030, 0.294) 1.995 (0.795, 0.067) 1.275 (0.075, 0.367) 1.308 (0.108, 0.377)
1.1 1.018 (-0.082, 0.170) 1.124 (0.024, 0.284) 1.990 (0.890, 0.070) 1.182 (0.082, 0.382) 1.215 (0.115, 0.384)

n = (90, 90, 90) 1.2 1.050 (-0.15, 0.125) 1.230 (0.030, 0.229) 1.998 (0.798, 0.062) 1.274 (0.074, 0.297) 1.282 (0.082, 0.311)
1.1 1.010 (-0.09, 0.113) 1.125 (0.025, 0.219) 1.990 (0.890, 0.062) 1.175 (0.075, 0.289) 1.178 (0.078, 0.299)

n = (120, 120, 120) 1.2 1.074 (-0.126, 0.135) 1.219 (0.019, 0.200) 1.994 (0.794, 0.059) 1.256 (0.056, 0.238) 1.258 (0.058, 0.246)
1.1 1.013 (-0.087, 0.114) 1.117 (0.017, 0.184) 1.973 (0.873, 0.092) 1.144 (0.044, 0.215) 1.148 (0.048, 0.224)

Scenario 2
n = (60, 60, 60) 1.378 1.059 (-0.320, 0.180) 1.502 (0.124, 0.557) 2.000 (0.622, 0.066) 1.628 (0.25, 0.657) 1.670 (0.292, 0.658)

1.189 1.006 (-0.183, 0.139) 1.291 (0.102, 0.503) 1.994 (0.805, 0.068) 1.399 (0.21, 0.616) 1.446 (0.257, 0.598)
n = (90, 90, 90) 1.378 1.086 (-0.293, 0.218) 1.457 (0.079, 0.447) 2.003 (0.625, 0.087) 1.546 (0.168, 0.549) 1.577 (0.198, 0.526)

1.189 1.019 (-0.170, 0.174) 1.259 (0.070, 0.395) 1.986 (0.797, 0.081) 1.337 (0.148, 0.484) 1.369 (0.180, 0.479)
n = (120, 120, 120) 1.378 1.111 (-0.267, 0.237) 1.414 (0.036, 0.338) 2.006 (0.628, 0.102) 1.474 (0.096, 0.411) 1.485 (0.107, 0.409)

1.189 1.025 (-0.164, 0.185) 1.216 (0.027, 0.307) 1.977 (0.788, 0.132) 1.272 (0.082, 0.381) 1.282 (0.093, 0.382)

Scenario 3
n = (60, 60, 60) 1.256 1.058 (-0.199, 0.167) 1.299 (0.042, 0.345) 2.011 (0.754, 0.246) 1.400 (0.144, 0.490) 1.446 (0.189, 0.515)

0.903 0.964 ( 0.062, 0.137) 0.947 (0.044, 0.323) 1.983 (1.081, 0.068) 1.032 (0.130, 0.435) 1.086 (0.183, 0.471)
n = (90, 90, 90) 1.256 1.102 (-0.154, 0.255) 1.292 (0.036, 0.284) 2.003 (0.746, 0.073) 1.338 (0.082, 0.350) 1.362 (0.106, 0.370)

0.903 0.957 ( 0.054, 0.206) 0.932 (0.029, 0.253) 1.977 (1.075, 0.086) 0.974 (0.071, 0.318) 0.993 (0.091, 0.346)
n = (120, 120, 120) 1.256 1.122 (-0.135, 0.189) 1.284 (0.028, 0.240) 2.005 (0.748, 0.089) 1.324 (0.067, 0.301) 1.328 (0.071, 0.319)

0.903 0.940 ( 0.038, 0.144) 0.917 (0.015, 0.224) 1.965 (1.062, 0.105) 0.948 (0.045, 0.277) 0.951 (0.048, 0.291)

Scenario 4
n = (60, 60, 60) 0.047 0.695 (0.648, 0.368) 0.964 (0.917, 0.927) 1.960 (1.913, 0.233) 0.089 (0.042, 0.091) 0.100 (0.053, 0.130)

0.456 1.028 (0.571, 0.538) 3.237 (2.781, 4.707) 3.894 (3.437, 41.735) 0.530 (0.074, 0.225) 0.563 (0.107, 0.276)
n = (90, 90, 90) 0.047 0.440 (0.393, 0.387) 1.031 (0.984, 0.817) 1.641 (1.594, 8.895) 0.079 (0.032, 0.055) 0.080 (0.033, 0.061)

0.456 0.925 (0.469, 0.359) 2.450 (1.993, 1.572) 2.324 (1.868, 8.906) 0.505 (0.049, 0.159) 0.513 (0.056, 0.171)
n = (120, 120, 120) 0.047 0.306 (0.259, 0.345) 1.173 (1.126, 1.059) 1.888 (1.841, 0.308) 0.073 (0.025, 0.046) 0.073 (0.026, 0.046)

0.456 0.838 (0.382, 0.344) 2.548 (2.091, 1.893) 2.020 (1.564, 0.406) 0.492 (0.036, 0.140) 0.494 (0.037, 0.144)

Table 3. Means and standard errors (in parenthesis) of obtained EHUM values at the
optimal coefficient vector estimated using the methods: the Empirical method ((10)), the
Fréchet bounds method ((12)), the parametric method ((15)), the Min-Max method,
SSHUM and NSHUM for simulation Scenarios 1, 2, 3, 4 with sample sizes
(20, 20, 20, 20), (30, 30, 30, 30), (40, 40, 40, 40) and M = 4, based on 1000 repetitions.

(n1, n2, n3, n4) Empirical Min-Max Fréchet SSHUM NSHUM
Scenario 1

(20,20,20,20) 0.846 (0.052) 0.799 (0.059) 0.837 (0.055) 0.871 (0.050) 0.870 (0.051)
(30,30,30,30) 0.848 (0.041) 0.801 (0.047) 0.835 (0.043) 0.871 (0.039) 0.864 (0.040)
(40,40,40,40) 0.847 (0.036) 0.798 (0.041) 0.835 (0.037) 0.859 (0.035) 0.859 (0.035)

Scenario 2
(20,20,20,20) 0.712 (0.065) 0.682 (0.067) 0.714 (0.064) 0.746 (0.063) 0.743 (0.064)
(30,30,30,30) 0.714 (0.054) 0.684 (0.055) 0.714 (0.054) 0.737 (0.052) 0.736 (0.053)
(40,40,40,40) 0.715 (0.046) 0.683 (0.047) 0.712 (0.046) 0.732 (0.045) 0.732 (0.045)

Scenario 3
(20,20,20,20) 0.765 (0.060) 0.732 (0.065) 0.763 (0.063) 0.798 (0.058) 0.796 (0.058)
(30,30,30,30) 0.766 (0.050) 0.732 (0.053) 0.763 (0.051) 0.789 (0.048) 0.788 (0.048)
(40,40,40,40) 0.767 (0.042) 0.733 (0.044) 0.763 (0.043) 0.783 (0.041) 0.784 (0.041)

(Scenario 4) simulation scenarios. Now both simulation Scenario 1 and 4 can also
be generalized for different dimensions of X. To have an idea regarding how the
computational time is dependent on the dimension of X and sample size, we consider
Scenario 1 and 4 for sample sizes (30, 30, 30), (60, 60, 60) and dimensions 2, 4, 8.
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Table 4. Means and standard errors (in parenthesis) of obtained EHUM values at the
optimal coefficient vector estimated using the methods: the Empirical method ((10)), the
Fréchet bounds method ((12)), the parametric method ((15)), the Min-Max method,
SSHUM and NSHUM for simulation Scenarios 1, 2, 3 with sample sizes (30, 30, 30, 30)
and M = 4, based on 1000 repetitions.

(n1, n2, n3, n4) Empirical Min-Max Fréchet SSHUM NSHUM
Scenario 1

(20,20,20,20) 0.650 (0.080) 0.411 (0.074) 0.594 (0.078) 0.706 (0.070) 0.697 (0.071)
(30,30,30,30) 0.656 (0.062) 0.415 (0.059) 0.611 (0.066) 0.687 (0.058) 0.682 (0.059)
(40,40,40,40) 0.658 (0.051) 0.411 (0.050) 0.620 (0.058) 0.678 (0.049) 0.674 (0.049)

Scenario 2
(20,20,20,20) 0.650 (0.080) 0.411 (0.074) 0.594 (0.078) 0.706 (0.070) 0.697 (0.071)
(30,30,30,30) 0.656 (0.062) 0.415 (0.059) 0.611 (0.066) 0.687 (0.058) 0.682 (0.059)
(40,40,40,40) 0.658 (0.051) 0.411 (0.050) 0.620 (0.058) 0.678 (0.049) 0.674 (0.049)

Scenario 3
(20,20,20,20) 0.650 (0.080) 0.411 (0.074) 0.594 (0.078) 0.706 (0.070) 0.697 (0.071)
(30,30,30,30) 0.656 (0.062) 0.415 (0.059) 0.611 (0.066) 0.687 (0.058) 0.682 (0.059)
(40,40,40,40) 0.658 (0.051) 0.411 (0.050) 0.620 (0.058) 0.678 (0.049) 0.674 (0.049)

Here we mainly consider two different optimization methods to maximize the
objective functions DE and Dsn , namely derivative-based Quasi-newton method
((18)) and derivative-free Nelder-Mead (N-M) algorithm ((19)). The Quasi-newton
(Q-N) algorithm and the Nelder-Mead algorithms are available under the function
options of fminunc and fminsearch respectively in MATLAB. All these codes have
been compiled in MATLAB2016b in a cluster with Intel(R) Xeon(R) CPU E5-2680
v3, 12 Core, 2.5 GHz, 64 bit machines with 256 GB RAM. Each above-mentioned
experiments are repeated 100 times and each time different starting points are
used. However within each repetition, same starting points are used for all the
considered methods. Mean and standard errors of starting point EHUM values,
obtained EHUM values (for EVUS and SSHUM) and computation times using both
derivative-based and derivative-free methods for simulation scenarios 1 and 4 have
been provided in Table 5 and 6 respectively. As mentioned earlier, it is noted that
derivative-based Q-N algorithm has completely failed to maximize DE . For all the
considered scenarios, final EHUM values obtained by maximizing DE using Q-N
algorithm are same as the initial point EHUM values. Therefore, we do not consider
the maximization of DE with Q-N algorithm in the following discussion. However,
Dsn being smooth, Q-N algorithm has successfully maximized it. In general, no
noticeable difference between the obtained EHUM values by maximizing Dsn with
Q-N algorithm and N-M algorithm is observed and both of them outperform (in
terms of obtained EHUM value) the maximization of DE with N-M algorithm.
But it is noted that maximizing Dsn with Q-N algorithm is in general faster than
maximizing Dsn with N-M algorithm which acknowledges the fact that in general
derivative-based algorithms are faster than derivative-free algorithms. Upto 2.4 times
improvement in computation time is achieved while maximizing Dsn with Q-N
algorithm compared to maximizing DE with N-M algorithm. Specifically, for higher
sample size scenarios, maximizing Dsn with Q-N algorithm saves comparatively
more computation time than maximizing DE with N-M algorithm. It should be also
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Table 5. Computation times (in seconds), starting values and the final EHUM values at
the solution obtained by maximizing DE (in EVUS) and Dsn (in SSHUM) functions
using Quasi-newton (derivative-based) and Nelder-Mead simplex (derivative-free)
algorithms for Scenario 1 with sample sizes (30, 30, 30), (60, 60, 60) and d = 2, 4, 8.

Dimension (n1, n2, n3) Methods
Starting

value
DE(EVUS)
(final value)

Dsn(SSHUM)
(final value)

DE(EVUS)
(time)

Dsn(SSHUM)
(time)

4*d = 2 2*(30,30,30)
Quasi-newton

(derivative based)
0.635(0.065) 0.635(0.065) 0.672(0.061) 1.86(0.36) 10.11(4.91)

Nelder-Mead
(derivative free)

0.635(0.065) 0.654(0.068) 0.674(0.059) 12.07(4.28) 11.61(3.94)

2*(60,60,60)
Quasi-newton

(derivative based)
0.635(0.050) 0.635(0.050) 0.671(0.043) 123.69(8.74) 749.81(302.32)

Nelder-Mead
(derivative free)

0.635(0.050) 0.668(0.045) 0.672(0.043) 987.51(252.85) 905.37(212.73)

4*d = 4 2*(30,30,30)
Quasi-newton

(derivative based)
0.802(0.053) 0.802(0.053) 0.850(0.041) 4.10(0.45) 25.69(8.51)

Nelder-Mead
(derivative free)

0.802(0.053) 0.833(0.055) 0.850(0.042) 39.00(9.34) 35.07(10.54)

2*(60,60,60)
Quasi-newton

(derivative based)
0.807(0.042) 0.807(0.042) 0.847(0.030) 406.69(133.25) 2087.83(702.20)

Nelder-Mead
(derivative free)

0.807(0.042) 0.843(0.032) 0.849(0.029) 5008.93(1193.61) 2817.54(677.12)

4*d = 8 2*(30,30,30)
Quasi-newton

(derivative based)
0.957(0.026) 0.957(0.026) 0.981(0.014) 8.43(0.82) 61.76(16.39)

Nelder-Mead
(derivative free)

0.957(0.026) 0.971(0.020) 0.983(0.012) 82.84(17.83) 79.72(13.14)

2*(60,60,60)
Quasi-newton

(derivative based)
0.958(0.022) 0.958(0.022) 0.979(0.009) 1041.12(153.43) 7496.95(2168.67)

Nelder-Mead
(derivative free)

0.958(0.022) 0.977(0.010) 0.98(0.008) 9630.98(2243.27) 8857.36(2582.59)

Table 6. Computation times (in seconds), starting values and the final EHUM values at
the solution obtained by maximizing DE (in EVUS method) and Dsn (in SSHUM
method) functions using Quasi-newton (derivative-based) and Nelder-Mead simplex
(derivative-free) algorithms for Scenario 4 with sample sizes (30, 30, 30), (60, 60, 60) and
d = 2, 4, 8.

Dimension (n1, n2, n3) Methods
Starting

value
DE(EVUS)
(final value)

Dsn(SSHUM)
(final value)

DE(EVUS)
(time)

Dsn(SSHUM)
(time)

4*d = 2 2*(30,30,30)
Quasi-newton

(derivative based)
0.327(0.069) 0.327(0.069) 0.354(0.069) 1.72(0.18) 9.04(5.03)

Nelder-Mead
(derivative free)

0.327(0.069) 0.347(0.073) 0.358(0.067) 11.84(3.60) 10.22(3.16)

2*(60,60,60)
Quasi-newton

(derivative based)
0.330(0.053) 0.330(0.053) 0.352(0.050) 131.47(9.56) 775.72(363.94)

Nelder-Mead
(derivative free)

0.330(0.053) 0.357(0.051) 0.361(0.048) 941.9(257.68) 838.05(254.42)

4*d = 4 2*(30,30,30)
Quasi-newton

(derivative based)
0.551(0.123) 0.551(0.123) 0.908(0.036) 3.86(0.34) 35.77(10.08)

Nelder-Mead
(derivative free)

0.551(0.123) 0.888(0.093) 0.911(0.033) 43.14(9.48) 38.01(6.40)

2*(60,60,60)
Quasi-newton

(derivative based)
0.544(0.110) 0.544(0.110) 0.901(0.025) 269.97(18.86) 2679.7(661.86)

Nelder-Mead
(derivative free)

0.544(0.110) 0.901(0.026) 0.902(0.024) 2949.92(419.30) 3118.1(455.82)

4*d = 8 2*(30,30,30)
Quasi-newton

(derivative based)
0.773(0.124) 0.773(0.124) 1.000(0.004) 8.57(0.97) 33.56(13.08)

Nelder-Mead
(derivative free)

0.773(0.124) 0.994(0.016) 1.000(0.003) 87.22(21.43) 99.43(19.38)

2*(60,60,60)
Quasi-newton

(derivative based)
0.774(0.113) 0.774(0.113) 1.000(0.002) 564.66(39.54) 3240.6(1210.61)

Nelder-Mead
(derivative free)

0.774(0.113) 0.999(0.001) 1.000(0.000) 7194.59(1416.38) 6860.81(1034.17)

noted that the computation time required for maximizing Dsn with Q-N algorithm
method varies less compared to the computation time required for maximizing DE

with N-M algorithm.
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6. Data Analysis

The Alzheimer’s Disease Data Analysis

For illustration of our methodology, we analyze a subset of the longitudinal
cohort data on Alzheimer’s Disease (AD) from Alzheimer’s Disease Research
Center (ADRC) at the University of Washington. The dataset is available in
the R package DiagTest3Grp. In this data set, measurements of 14 neuro-
psychological markers were collected from 118 independent individuals of age
75 and above among which 44 individuals were labeled as non-demented,
43 were mildly demented, and 21 individuals were labeled as demented, i.e.,
Alzheimer’s disease. It is now commonly accepted that treatment for Alzheimer’s
disease is a rather complicated process and a more clinically useful strategy
is to apply appropriate interventions for earlier stage patients with relatively
mild conditions (see (20), (21)). Therefore it is meaningful to differentiate
three or even more categories of patients with ascending disease severity and
subsequently offer category-specific treatments.

Due to some missing observations, we delete 10 individuals from the data set
for our analysis. Note that values of these fourteen biomarkers can be negative.
Furthermore, as we can see from the boxplot in Figure 3 and density plot in Figure
4, there is a clear decreasing trend in the distributions of the neuro-psychological
markers across the dementia status, except for zbentd. This shows the potential
discrimination power of the other thirteen individual markers. This observation is
further reinforced by their individual discrimination power in terms of EHUM values
where factor1, ktemp and zpsy004 have the highest individual EHUM values ranging
from 0.70 to 0.78. However, the EHUM value for zbentd is 0.144, slightly smaller
than the lowest EHUM value for random guess which is 0.17 in this case. These
values are presented in Table 7. Recall that for random guess the HUM value
is 1/6=0.1667 when the disease outcome variable has three possible categories.
That is to say that a HUM value for any biomarker less than 0.1667 indicates
that the biomarker is weaker than random guessing in predicting the disease
outcome and should be avoided from the prediction model. As a result, we
excluded zbentd from the subsequent analysis.

To see the improvement in discrimination accuracy by combining these
individual markers over the individual markers and to facilitate comparison,
we employ all the six combining methods discussed in Section 3. For all the
six methods, the estimated EHUM values with their respective standard errors
are reported in Table 8. We also reported the coefficient parameter estimates
with their respective bootstrap standard errors. As we can see, SSHUM gives
the highest EHUM of 0.874, followed by NSHUM (0.849), empirical (0.832).
However, the Min-Max and the Naive method have the lowest EHUM values of
0.80 and 0.792, respectively.

In practice, the concerns about overfitting motivate us to select a subset of
biomarkers for subsequent combination. Cross-validation offers a simple way for
tuning the number of biomarkers. Here, we employed a 5-fold cross-validation
to compare the discrimination accuracy of varying number of biomarkers after
combination. For simplicity, we only implemented the SSHUM and NSHUM
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approaches. In the analysis, the biomarkers were ranked according to their individual
HUMs. For example, if the number of biomarkers were 2, then ktemp and FACTOR1
would be selected. Table 9 presents the EHUM values with different subsets of the
13 biomarkers. For the SSHUM method, combining the first 4 biomarkers (i.e.,
ktemp, FACTOR1, zpsy004, and kfront) gives the highest EHUM value, while for
the NSHUM method, combining the first 5 biomarkers (i.e., ktemp, FACTOR1,
zpsy004, kfront, and zassc) gives the highest EHUM value. These findings may
indicates the importance of selecting biomarkers before combination, which could
be a direction for future work.

The National Institute of Aging-Alzheimer’s Association (NIA-AA) published
research criteria for AD diagnosis in 2011 using biomarkers information. In
addition to dementia due to AD, other stages of interest include prodromal
AD (mild cognitive impairment) and preclinical AD (individuals with normal
condition with AD pathology). The markers evaluated in our analysis may also
offer useful insight for such mutli-stage diagnosis.
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Figure 3. Boxplot for individual and combined biomarkers for Alzheimer data set.
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Figure 4. Density plot for individual and combined biomarkers for Alzheimer data set.

Table 7. Empirical HUM values (with bootstrap standard errors) for the individual
biomarkers for the AKI and Alzheimer data sets.

Alzheimer data ERICCA data
Individual biomarkers HUM (se) Individual biomarkers HUM (se)

FACTOR1 0.774 (0.056) NGAL 0 hours 0.179 (0.029)
ktemp 0.784 (0.055) NGAL 6 hours 0.222 (0.034)
kpar 0.600 (0.065) NGAL 12 hours 0.273 (0.040)

kfront 0.654 (0.059) NGAL 24 hours 0.315 (0.042)
zpsy004 0.718 (0.058)
zpsy005 0.316 (0.064)
zpsy006 0.442 (0.069)

zinfo 0.643 (0.065)
zbentc 0.506 (0.060)
zbentd 0.144 (0.047)
zboston 0.590 (0.066)

zmentcon 0.367 (0.065)
zworflu 0.561 (0.066)
zassc 0.648 (0.066)

The ERICCA Trial Data Analysis

Here we analyze an acute kidney injury (AKI) dataset following a heart surgery
to illustrate our proposed method. We consider the data from the Effect of
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Table 8. Estimated coefficients and the HUM values (with standard errors in
parenthesis) for the Alzheimer’s disease data using Naive method, Empirical, SSHUM,
NSHUM, Fréchet, Parametric and Min-max methods.

Biomarkers βNaive βEmpirical βSSHUM βNSHUM βFrechet βParametric βMin−Max

FACTOR1 0.077 0.271 (0.004) -0.229 (0.248) 0.300 (0.238) 0.272 (0.002) 0.277 (0.041) -
ktemp 0.077 0.283 (0.012) 0.335 (0.144) 0.364 (0.133) 0.281 (0.011) 0.277 (0.075) -
kpar 0.077 0.251 (0.018) 0.013 (0.149) 0.090 (0.168) 0.249 (0.009) 0.277 (0.044) -

kfront 0.077 0.283 (0.017) -0.026 (0.143) 0.107 (0.140) 0.281 (0.012) 0.277 (0.062) -
zpsy004 0.077 0.283 (0.007) 0.469 (0.134) 0.461 (0.122) 0.281 (0.002) 0.277 (0.073) -
zpsy005 0.077 0.275 (0.006) 0.160 (0.145) 0.236 (0.152) 0.281 (0.003) 0.277 (0.053) -
zpsy006 0.077 0.283 (0.013) 0.469 (0.142) 0.465 (0.132) 0.281 (0.009) 0.277 (0.049) -

zinfo 0.077 0.283 (0.006) -0.454 (0.224) 0.008 (0.221) 0.281 (0.003) 0.277 (0.057) -
zbentc 0.077 0.269 (0.013) 0.312 (0.190) 0.401 (0.175) 0.271 (0.009) 0.277 (0.008) -
zboston 0.077 0.283 (0.005) 0.057 (0.223) 0.159 (0.195) 0.281 (0.003) 0.277 (0.027) -

zmentcon 0.077 0.283 (0.009) 0.194 (0.197) 0.290 (0.174) 0.281 (0.005) 0.277 (0.014) -
zworflu 0.077 0.283 (0.008) 0.091 (0.189) 0.058 (0.160) 0.281 (0.002) 0.277 (0.011) -
zassc 0.077 0.274 (0.007) -0.126 (0.221) -0.008 (0.223) 0.281 (0.003) 0.277 (0.009) -
HUM 0.799 0.801 (0.059) 0.851 (0.058) 0.823 (0.058) 0.801 (0.058) 0.799 (0.097) 0.804 (0.058)

Table 9. Empirical HUM values for the Alzheimer’s disease data with varying number of
combined biomarkers using the SSHUM and NSHUM methods.

SSHUM NSHUM
Number of biomarkers HUM Number of biomarkers HUM

1 0.879 1 0.879
2 0.912 2 0.898
3 0.913 3 0.913
4 0.927 4 0.899
5 0.927 5 0.918
6 0.885 6 0.877
7 0.810 7 0.860
8 0.810 8 0.835
9 0.799 9 0.851
10 0.860 10 0.843
11 0.887 11 0.903
12 0.748 12 0.767
13 0.798 13 0.810

Remote Ischemic Preconditioning on Clinical Outcomes in Patient Undergoing
Coronary Artery Bypass Graft Surgery (ERICCA) trial where a group of 1612
patients participated in a cardiovascular surgery and were observed for one
year after the surgery ((22; 16)). All the patients were randomized to two
different methods of surgeries namely Remote Ischemic Conditioning (RIC) or
Sham Preconditioning. During the study period, some patients developed AKI
along with few other diseases post-surgery. The AKI was recorded as a multi-
category ordinal outcome with four levels based on the severity level. The data
also includes cardiovascular death and all-cause mortality at 1 year (binary),
non-fatal Myocardial Infarction (MI) (binary) and coronary revascularization
or stroke at 1 year (binary). In the literature, studies on prediction of AKI after
cardiac surgery has been performed in several occasions. Assuming AKI as a
binary outcome, (23) found that the serum Neutrophil Gelatinase Associated
Lipocalin (NGAL) measurements taken at 0 (before surgery), 6, 12 and 24 hours
after surgery are significant influential biomarkers in the development of AKI. In
addition, they showed that for the risk-stratification of patients prior to cardiac
surgery for AKI may be improved by adding pre-oprative levels of NGAL to
existing risk scores where existing risk score was calculated based on age, gender,
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diabetes mellitus, hypertension, peripheral vascular disease, previous Coronary
Artery Bypass Graft type of surgery planned, use of intra-aortic ballon pump
and few other baseline covariates. However, the main limitation of their study is
that they did not consider the multiple categories of the AKI outcome. Instead,
they converted it to a binary outcome where level 0 stands for no AKI and level
1 stands for any of the 1, 2, 3 levels of AKI in the data.

To illustrate the proposed method, we consider the AKI within 72 hours of
surgery as our multi-category outcome which are leveled as 0 (none), 1, 2, 3 as
per the international Kidney Disease: Improving Global Outcomes classification
(KDIGO) criteria on serum creatinine. Since level 3 has only a few observations,
we combine the levels 2 and 3 into a single category denoted as the highest risk
group. Therefore, in the following analysis, the AKI has three categories. Our
biomarkers of interest in predicting AKI are individual NGAL at 0 (before
surgery), 6, 12 and 24 hours after surgery and their different combinations
using different methods. In a previous analysis, (23) observed that there is a
significant increase in AKI as the individual’s pre-operative NGAL increases
from the first to the third tertile (>220 ng/L). Hence they considered only the
individuals from the third tertile and concluded that the pre-operative NGAL
is a significant predictor in predicting binary AKI. There are 305 individuals in
our sample after discarding all the missing observations. Among these subjects,
172 patients did not develop AKI within the 72 hours of surgery (AKI=0), 99
patients developed level 1 AKI, and 34 developed level 2 (i.e., combined levels
2 and 3 in original scale) AKI.

Note that larger values of the NGAL measurements indicate higher levels of
severity of AKI. Since the NGAL measurements are highly skewed-distributed
and large in number, we transform them into the logarithm scale to scale down
those high numbers and make the distributions close to normal distributions.
Considering logarithmic transformation of the biomarkers is a common strategy
for this type of data analysis (see e.g., (2)). To see the visual discrimination
power of these individual log of NGAL measurements, the box plots and
the density plots are shown in Figures 5 and 6, respectively. The estimated
empirical HUM values for the individual NGAL at four different time points
are 0.179 (at 0 hours), 0.222 (at 6 hours), 0.273 (at 12 hours), and 0.315 (at
24 hours), respectively, clearly much larger than the lowest EHUM value for
random guess which is 0.17 in this case. Recall that for random guess the
HUM value is 1/6=0.1667 when the disease outcome variable has three possible
categories. These values are also reported in Table 7, along with their respective
standard errors. In this case, all the NGAL measurements can be included in
the prediction model. Further, it is worth noting that as the time of NGAL
measurement increases from 0 hours to 24 hours, the HUM value increases to
almost two times that of the 0 hours. It indicates the strong discrimination power
of the NGAL biomarker in predicting AKI as time progresses after surgery.

Further, we treat the four NGAL measurements as four biomarkers and apply
our proposed SSHUM method to combine these markers. As comparison, a naive
linear combination approach with equal weights on the four markers is also
constructed. The distributions of these combined markers are also displayed in
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Figure 5. Boxplot for individual and combined NGALs for ERICCA data set. The top 4
plots represents the NGAL levels at 0, 6, 12 and 24 hours after the surgery for 3 levels of
AKI. Bottom left diagram shows the boxplots for Naive method (i.e., linear combination
of covariates with equal positive coefficients) and the bottom right diagram shows the
boxplots for SSHUM method.

Figures 5 and 6. It is noted that SSHUM separates the three class in the most
effective way.

Further, we obtain the HUM values for other existing methods along with
their respective optimal linear combination estimates. The estimates along
with their bootstrap standard errors are reported in Table 10. We note that
all the linear combining methods yield larger HUM values than that of the
individual biomarkers and the naive equal weight method. The proposed sigmoid
approximation yields the highest HUM value compared to the other existing
methods. Although the proposed method combines the time-varying NGAL
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Figure 6. Density plot for individual and combined NGALs for ERICCA data set.

measurements in a more effective way than the others, further research may
be required to support the effectiveness of such NGAL measurements and their
combining factor in predicting AKI.

Table 10. Estimated optimal coefficients and the HUM values (with standard errors in
parenthesis) for the ERICCA dataset using naive method, empirical method, SSHUM,
NSHUM, Fréchet, parametric and Min-Max methods.

Biomarkers naive Empirical SSHUM NSHUM Frechet Parametric Min−Max
NGAL 0 hours 0.5 0.412 (0.2869) -0.208 (0.3078) -0.097 (0.3142) 0.234 (0.0798) 0.236 (0.3636) -
NGAL 6 hours 0.5 -0.050 (0.4074) -0.660 (0.3201) -0.387 (0.3196) -0.382 (0.1083) 0.593 (0.3659) -
NGAL 12 hours 0.5 0.594 (0.2098) 0.360 (0.3320) 0.176 (0.3377) 0.566 (0.0426) 0.590 (0.2563) -
NGAL 24 hours 0.5 0.688 (0.1917) 1.508 (0.2570) 0.900 (0.2665) 0.692 (0.0462) 0.494 (0.1762) -

HUM 0.281 0.317 (0.0154) 0.326 (0.0140) 0.325 (0.0135) 0.312 (0.0054) 0.287 (0.0182) 0.303 (0.0079)

7. Discussion

Improving diagnostic accuracy by combining multiple biomarkers has been
studied for binary and multi-category outcomes. In this article, we have extended
the idea of direct maximization of the empirical HUM, specifically the VUS
proposed by (10), to a smoothing approximation using a class of smooth CDFs
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which can be further controlled by a tuning parameter λ. In particular, we
have considered the logistic CDF (sigmoid function) and normal CDF (probit
function) to operationalize our proposed method. We have also discussed about
the choice of the tuning parameter λ using bias-variance trade-off. Consistency
and asymptotic normality of the coefficient estimators using the proposed
method have been established. Through simulation studies we have observed
that the proposed method is computationally less challenging than the direct
maximization of the empirical HUM which is non-smooth and non-differentiable.
We also noted that the performance of the proposed method heavily depends on
the choice of the tuning parameter λ, with lower values of λ leading to results
very similar to the empirical method with less bias but large variability. This is a
problem of bias-variance trade-off which we have discussed in considerable detail
in Section 2.3. Results from our simulation study have shown that the proposed
method outperforms the other existing approximation methods including the
empirical HUM method because of the computational issue. We see several future
directions for this article. First, within this work we have employed the step-down
algorithm to maximize our objective functions. A limitation with this algorithm is
that it maximizes the objective function with respect to a single parameter at a time
which might result in local optimal solution rather than the global optimal solution.
However, in future, coming up with advanced computational tools and fast global
optimization algorithms for simultaneous estimation of the whole coefficient vector
(instead of estimating one at a time using step-down algorithm) maximizing the
objective function might further improve the solutions. In addition, there might be
ties in the markers under study. Considering the possibility of ties can potentially
reduce the number of coefficient parameters and lead to a more efficient estimator.
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Appendix

A1: Proof of Theorem 1

Assuming (A1)-(A3), (10) proved the consistency of β̂E , an empirical HUM
based estimator of β for three-category ordinal outcome, using the result of

Prepared using sagej.cls



Maiti et al. 29

maximum rank correlation type estimators by (24) . In fact, it can be shown

that β̂E is a consistent estimator of β for any number of categories. The above
result is equivalent to

sup
β∈B

DE(β)−D(β) = op(1),

i.e., supβ∈B DE(β)−D(β) converges to 0 in probability.

Similarly, to prove the probability convergence of β̂sn , the proposed SSHUM
based estimator, we have to show that

sup
β∈B

Dsn(β)−D(β) = op(1).

Note that, using the triangular inequality, we can write

sup
β∈B

Dsn(β)−D(β) = sup
β∈B

Dsn(β)−DE(β) +DE(β)−D(β),

≤ sup
β∈B

Dsn(β)−DE(β) + sup
β∈B

DE(β)−D(β)

= sup
β∈B

Dsn(β)−DE(β) + op(1). (7)

Hence, to prove the consistency of β̂sn , it is sufficient to prove the following
lemma.

Lemma 1. Under the assumptions (A1)-(A3),

sup
β∈B

DE(β)−Dsn(β)
p−→ 0

as n→∞.

Proof of Lemma 1

For binary outcome, (4) proved the consistency of βsn by showing that

sup
β∈B

Dsn(β)−DE(β) = op(1).

Here, we use the same idea to prove that supβ∈B Dsn(β)−DE(β) = op(1) for
multi-category ordinal outcome. Define an equivalent definition of DE(β) as

DE(β) = C
∑

i1 6=i2 6=···6=iM

I(YMiM > · · · > Y1i1)I(βTZiM iM−1
> 0)I(βTZiM−1iM−2

> 0) · · · I(βTZi2i1 > 0),

where C =
1

n(n− 1) · · · (n−M + 1)
, Zij+1ij = X(j+1)ij+1

−Xjij , and Yjij , j =

1, 2, · · · ,M are defined as Yjij = j if the ij-th observation belongs to the j-th
category, otherwise 0.
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Similarly, we define an equivalent definition of SSHUM as

Dsn(β) = C
∑

i1 6=i2 6=···6=iM

I(YMiM > · · · > Y1i1)sn(βTZiM iM−1
)sn(βTZiM−1iM−2

) · · · sn(βTZi2,i1)

For any δ > 0, we can write

DE(β)−Dsn(β) ≤ Tn1 + Tn2

where

Tn1 = C
∑

i1 6=i2 6=···6=iM

I(YMiM > · · · > Y1i1)

I(βTZiM iM−1
> 0) · · · I(βTZi2i1 > 0)− sn(βTZiM iM−1

) · · · sn(βTZi2i1)

I

(
max

1≤j≤M−1
βTZij+1ij ≥ δ

)

and

Tn2 = C
∑

i1 6=i2 6=···6=iM

I(YMiM > · · · > Y1i1)

I(βTZiM iM−1
> 0) · · · I(βTZi2i1 > 0)− sn(βTZiM iM−1

) · · · sn(βTZi2i1)

I

(
max

1≤j≤M−1
βTZij+1ij < δ

)
.

(4) showed that on the set {x ≥ δ}, sn(x)− I(x > 0) ≤ exp (−x/σn) <
exp (−δ/σn)→ 0 uniformly as σn → 0. Following this, it can be shown that

sn(x1)→ I(x1 > 0) uniformly on the set {x1 ≥ δ},

sn(x2)→ I(x2 > 0) uniformly on the set {x2 ≥ δ},

...

and sn(xM−1)→ I(xM−1 > 0) uniformly on the set {xM−1 ≥ δ}.
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It implies that on the set {max1≤i≤M−1 xi ≥ δ}, sn(xi)→ I(xi > 0) uniformly
for all i = 1, 2, · · · ,M − 1. Following this, we can write

sn(x1)sn(x2) · · · sn(xM−1)− I(x1 > 0)I(x2 > 0) · · · I(xM−1 > 0)

≤ sn(x1)− I(x1 > 0)sn(x2) · · · sn(xM−1) +

I(x1 > 0)sn(x2) · · · sn(xM−1)− I(x2 > 0) · · · I(xM−1 > 0),

≤ sn(x1)− I(x1 > 0)sn(x2) · · · sn(xM−1) +

I(x1 > 0)sn(x2)− I(x2 > 0)sn(x3) · · · sn(xM−1) +

I(x1 > 0)I(x2 > 0)sn(x3) · · · sn(xM−1)− I(x3 > 0) · · · I(xM−1 > 0),

...

≤ sn(x1)− I(x1 > 0)sn(x2) · · · sn(xM−1) +

I(x1 > 0)sn(x2)− I(x2 > 0)sn(x3) · · · sn(xM−1) + · · ·+
I(x1 > 0)I(x2 > 0) · · · I(xM−2 > 0)sn(xM−1)− I(xM−1 > 0),

= op(1) + op(1) + · · ·+ op(1) = op(1).

Now replacing xj by βTZij+1,ij in the above derivation, we can see that Tn1

converges to 0 uniformly on set B. The second term can be bounded above as

Tn2 ≤ C
∑

i1 6=i2 6=···6=iM

I

(
max

1≤j≤M−1
βTZij+1ij < δ

)
.

Again by the uniform convergence of the U-process, the right hand side of the

above equation converges to P
(

max1≤j≤M−1 β
TZij+1ij < δ

)
almost surely on

B. Further, using order statistic result, we can write

P

(
max

1≤j≤M−1
βTZij+1ij < δ

)
= P

(
βTZiM iM−1

< δ,βTZiM−1iM−2
< δ, · · · ,βTZi2i1 < δ

)
≤ P

(
βTZij+1ij < δ

)
for all j = 1, 2, · · · ,M − 1 over B. Under the assumptions (A2) and (A3), it can

be shown that P
(
βTZij+1ij < δ

)
converges to 0 uniformly over B as δ goes to

0. Hence, it proves that supβ∈B Dsn(β)−DE(β) = op(1).

A2: Proof of Theorem 2

For simplicity, we denote β(θ) = β and β(θ̂) = β̂. Note that

β̂sn = arg max
θ

Dsn(β).
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Define

Gn(β) =
∂

∂θ
Dsn(β)

=
1

M∏
j=1

nj

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

∂

∂θ

[
sn(βT (XMiM −X(M−1)i(M−1)

)) · · · sn(βT (X2i2 −X1i1))
]

=
1

N

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

Ψ(X1i1 ,X2i2 , · · · ,XMiM ;β)

where

Ψ(X1i1 ,X2i2 , · · · ,XMiM ;β) =
∂

∂θ

[
sn(βT (XMiM −X(M−1)i(M−1)

)) · · · sn(βT (X2i2 −X1i1))
]
,

=
∂

∂θ

M−1∏
j=1

sn(βTZi(j+1)ij )


=

M−1∑
l=1

M−1∏
j=1

sn(βTZi(j+1)ij )

(1− sn(βTZi(l+1)il)
)
Z

(−d)
i(l+1)il

= κn(X1i1 ,X2i2 , · · · ,XMiM ;β)

M−1∑
l=1

(
1− sn(βTZi(l+1)il)

)
Z

(−d)
i(l+1)il

with Zij+1ij = X(j+1)ij+1
−Xjij , Z(−d) = (Z1, · · · , Zd−1)T and N =

M∏
j=1

nj . By

definition of β̂sn ,

Gn(β̂sn) = 0,

and β0 is such that

E(Ψ(X1i1 ,X2i2 , · · · ,XMiM ;β0)) = 0.

Since Gn(β) is a differentiable function, and
√
n(θ̂sn − θ0) = op(1) (result from

Theorem 1), hence using Taylor’s series expansion we can write

0 = Gn(β̂sn) = Gn(β0) + G
′

n(β0)(θ̂sn − θ0) + Rn

where G
′

n(β0) =
∂

∂θT
Gn(β) |β=β0

is a d× d matrix.

Assuming (A4), we can write

√
n(θ̂sn − θ0) =

[
−G

′

n(β0)
]−1√

nGn(β0) +
[
G
′

n(β0)
]−1√

nRn. (8)
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Note that following Theorem 1 where we have (θ̂sn − θ0) = op(1), we can
write √

nRn
p−→ 0.

Following the large sample distribution of multivariate U-statistic (see (25)),
it can be shown that

√
nGn(β0)

d−→ Nd−1 (0,B(β0))

where

B(β0) =

M∑
m=1

ρ2
mΣψm

,

Σψm
= V ar(Ψ̃m1(Xm1)),

Ψ̃m1(Xm1) = E(Ψ(X11,X21, · · · ,XM1)|Xm1),

ρ2
m =

n

nm
, m = 1, 2, · · · ,M.

Similarly, using the weak law of large numbers, it can be shown that

−G
′

n(β0) =
1

N

n1∑
i1=1

n2∑
i2=1

· · ·
nM∑
iM=1

− ∂

∂θT
Ψ(Xi1 ,Xi2 , · · · ,XiM ;β)

p−→ A(β0)

where

A(β0) = E

(
− ∂

∂θT
Ψ(Xi1 ,Xi2 , · · · ,XiM ;β) |β=β0

)
.

Using Slustky’s theorem in equation (8), we can write

√
n(θ̂n − θ0)

d−→ Nd−1 (0,Σ(β0))

where Σ(β0) = A(β0)−1B(β0)[A(β0)−1]T , known as sandwich variance
formula.

Explicit form of the first derivative of Ψ(Xi1 ,Xi2 , · · · ,XiM ;β) is given as
follows:

∂

∂θT
Ψ(Xi1 ,Xi2 , · · · ,XiM ;β) =

∂2

∂θ∂θT

M−1∏
j=1

sn(βTZi(j+1)ij )


=

 ∂2

∂θu∂θv

M−1∏
j=1

sn(βTZi(j+1)ij )

 , u, v = 1, 2, · · · , d− 1,

where

∂2

∂θu∂θv

M−1∏
j=1

sn(βTZi(j+1)ij )

 =

M−1∑
l=1

κn(β)δn;v(β)
(

1− sn(βTZi(l+1)il)
)
Zi(l+1)il;u −

M−1∑
l=1

κn(β)sn(βTZi(l+1)il)
(

1− sn(βTZi(l+1)il)
)
Zi(l+1)il;uZi(l+1)il;v,
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κn(β) =

M−1∏
j=1

sn(βTZi(j+1)ij )

and

δn;v(β) =

M−1∑
k=1

(
1− sn(βTZi(k+1)ik)

)
Zi(k+1)ik;v

Ψ(Xi1 ,Xi2 , · · · ,XiM ;β)Ψ(Xi1 ,Xi2 , · · · ,XiM ;β)T

=

[
κn(β)

M−1∑
l=1

(
1− sn(βTZi(l+1)il)

)
Z

(−d)
i(l+1)il

][
κn(β)

M−1∑
l=1

(
1− sn(βTZi(l+1)il)

)
Z

(−d)
i(l+1)il

]T

= κn(β)2
M−1∑
l=1

M−1∑
k=1

(
1− sn(βTZi(l+1)il)

)(
1− sn(βTZi(k+1)ik)

)
Z

(−d)
i(l+1)il

Z
(−d)T
i(k+1)ik

.
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