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Abstract
In recent years, the use of magnetic resonance imaging (MRI) for the diagnostic work-up of multiple sclerosis (MS) has 
evolved considerably. The 2017 McDonald criteria show high sensitivity and accuracy in predicting a second clinical attack 
in patients with a typical clinically isolated syndrome and allow an earlier diagnosis of MS. They have been validated, are 
evidence-based, simplify the clinical use of MRI criteria and improve MS patients’ management. However, to limit the risk of 
misdiagnosis, they should be applied by expert clinicians only after the careful exclusion of alternative diagnoses. Recently, 
new MRI markers have been proposed to improve diagnostic specificity for MS and reduce the risk of misdiagnosis. The cen-
tral vein sign and chronic active lesions (i.e., paramagnetic rim lesions) may increase the specificity of MS diagnostic criteria, 
but further effort is necessary to validate and standardize their assessment before implementing them in the clinical setting. 
The feasibility of subpial demyelination assessment and the clinical relevance of leptomeningeal enhancement evaluation in 
the diagnostic work-up of MS appear more limited. Artificial intelligence tools may capture MRI attributes that are beyond 
the human perception, and, in the future, artificial intelligence may complement human assessment to further ameliorate 
the diagnostic work-up and patients’ classification. However, guidelines that ensure reliability, interpretability, and validity 
of findings obtained from artificial intelligence approaches are still needed to implement them in the clinical scenario. This 
review provides a summary of the most recent updates regarding the application of MRI for the diagnosis of MS.
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Introduction

A diagnosis of multiple sclerosis (MS) requires a sympto-
matic demyelinating syndrome with objective neurologic 
findings, the demonstration of a pathological process dis-
seminated in space (DIS) and time (DIT) and the exclusion 
of alternative conditions [1].

Recently, the enhanced characterization of clinical and 
radiologic features associated with different inflammatory 
demyelinating disorders of the CNS [2, 3] and improve-
ments in neuroimaging and laboratory technologies have 
contributed to the refinement of the diagnostic work-up of 
patients with a suspicion of MS [4]. Subsequent iterations 
of the McDonald criteria have defined evidence-based 
imaging features typical of MS, facilitating earlier fulfill-
ment of the diagnostic criteria for MS [1].

Since a specific MS biomarker is not available, simpli-
fications and easier fulfilment of the diagnostic criteria 
(e.g., requiring fewer MRI lesions and substituting detec-
tion of intrathecal immunoglobulin G [IgG] synthesis for 
DIT) may increase the risk of MS misdiagnosis [5, 6]. 
These considerations have prompted extensive research in 
the field of neuroimaging to identify novel MRI features 
more specific to MS. Moreover, the use of artificial intelli-
gence (AI) has been recently suggested as a new promising 
tool for MS clinical practice [7].

An international meeting was held on the 3rd of Novem-
ber 2021, which involved neurologists and (neuro)radiolo-
gists with expertise in MS and its mimics (see Acknowledg-
ments for details) to summarize the most recent applications 
of MRI in the MS diagnostic work-up but also possible 
future innovations. The key aspects discussed in the meeting 
included the current evidence regarding the clinical applica-
tion of the 2017 McDonald criteria, promising novel markers 
to improve accuracy of diagnosis, and the potential contribu-
tion of AI for MS diagnostic work-up.

Experts provided a summary related to each topic 
(see Table 1 for search strategy and selection criteria). 
A group consensus was reached during the meeting and 
summarized in a first draft, which was circulated among 
the speakers and additional experts in the field for critical 
discussion and revision.

This review summarizes the current state-of-the-art and 
possible future applications of MRI technologies for the 
diagnostic work-up of MS.

Increasing attention is also given to the diagnosis and 
prognostication of subjects with brain MRI abnormali-
ties suggestive of MS, but lacking historical accounts of 
prior demyelinating events (i.e., “radiologically isolated 
syndrome” [RIS] or “prodromic phase of MS”). This is 
out-of-scope of the present review and it is described else-
where [8–10].

The 2017 McDonald criteria: 
from statements to clinical use

The diagnosis of MS is primarily based on clinical criteria. 
Since 2001, MRI has been included in MS diagnostic work-
up to support, supplement, or even replace some clinical 
criteria in excluding differential diagnosis and demonstrating 
DIS and DIT [1]. In patients with a typical clinically isolated 
syndrome (CIS) suggestive of MS, from their introduction, 
subsequent iterations of the McDonald criteria have sim-
plified MS diagnosis, improving sensitivity and preserving 
accuracy. The last revision of the McDonald criteria (i.e., 
the 2017 McDonald criteria) [1] included the removal of any 
distinction between symptomatic and asymptomatic lesions, 
and the combination of cortical lesions and juxtacortical 
lesions to expand the concept of juxtacortical involvement. 
Furthermore, in patients with a typical CIS suggestive of 
MS, the presence of CSF-specific oligoclonal bands (OCBs) 
supplants demonstration of DIT (Table 2).

Several validation studies in different countries [11–16] 
showed that the 2017 McDonald criteria have higher sensi-
tivity, lower specificity and similar accuracy compared with 

Table 1  Search strategy and selection criteria

Sources Pubmed (https:// www. ncbi. nlm. nih. gov/ 
pubmed)

Period of time covered From January 1979 until October 2022
Search terms “Artificial intelligence”, “Chronic active 

lesions”, “Cortical lesions”, Deep 
learning”, “Diagnostic Criteria”, “Dif-
ferential Diagnosis”, “Inflammation”, 
“Iron Rim Lesions”, “Leptomeningeal 
Inflammation”, “Lesion/s”, “MRI”, 
“Machine Learning”, “McDonald cri-
teria”, “MOGAD”, “Multiple Sclero-
sis”, “NMOSD”, “Paramagnetic Rim 
Lesions”, “Primary Progressive”, “Spinal 
Cord”, “Subpial Demyelination”, “White 
Matter”

Selection criteria and 
review preparation

1. Only papers published in English
2. The final reference list was generated 

with the consensus of all co-authors of 
this review on the basis of originality 
and relevance to the broad scope of this 
review, with a focus on the most recent 
articles published in the last three years

3. Experts provided a summary during the 
meeting of the main findings related to 
specific topics of the review. For each 
topic, a group consensus was reached 
and summarized in a first draft, which 
was circulated among the co-authors for 
further critical discussion and revision. 
The review represents the final conclu-
sions reached by co-authors

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
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the 2010 criteria in predicting the second clinical attack not 
only in adults, but also in pediatric patients.

In a recent large multicenter study with 785 CIS patients 
suggestive of MS from 9 European centers, the 2017 vs 2010 
McDonald criteria had higher sensitivity (0.83 vs 0.66), 
lower specificity (0.39 vs 0.60), but similar area under the 
curve (AUC) values (0.61 vs 0.63) [11].

The inclusion of lesions in the symptomatic region in 
patients with CIS with a brainstem or spinal cord onset is 
likely to increase the sensitivity and to decrease specificity, 
without affecting the accuracy of diagnostic criteria [17]. 
Although cortical lesion assessment in the diagnostic algo-
rithm of CIS patients has been found to increase specific-
ity [18, 19], the combination of cortical and juxtacortical 
lesions to define juxtacortical involvement does not substan-
tially influence the performance of diagnostic criteria [17].

In addition to MRI modifications, CSF-derived data also 
influence the performance of diagnostic criteria since the 
evaluation of the 2017 McDonald criteria without CSF-spe-
cific OCB assessment decreased sensitivity (0.74), increased 
specificity (0.54), and preserved AUC values (0.64) [11].

Moreover, the 2017 McDonald criteria substantially 
shorten the time to MS diagnosis, with more CIS patients 
fulfilling a diagnosis of MS already at the time of the first 
clinical manifestation and with a single MRI scan [11–13]. 
The 2017 McDonald criteria shortened the median time 
to MS diagnosis by 4.6 years compared with the clinical 
criterion alone and by 10 months compared with the 2010 
McDonald criteria (median time to MS diagnosis: 2017 
McDonald criteria = 3.2 months) [11]. This earlier diagnosis 
is possible not only thanks to modifications of MRI criteria, 
but also to the relevant contribution of CSF-specific OCB 
evaluation (median time to MS diagnosis: 2017 McDonald 
criteria without OCBs = 11.4 months) [11].

An earlier MS diagnosis may facilitate earlier treatment. 
In a study of 1174 patients with CIS suggestive of MS [20], 
the median times from CIS to MS diagnosis and from CIS 
to treatment initiation were reduced by 77% and 82%, from 
the Poser [21] to the 2017 McDonald criteria [1] periods. A 
significantly lower risk of reaching an Expanded Disability 
Status Scale (EDSS) score ≥ 3.0 was also found for patients 
diagnosed with the most recent diagnostic criteria [20].

Up to 15% of MS patients experience a gradual clinical 
progression from disease onset (i.e., primary progressive 
[PP] MS) [1]. According to the 2017 McDonald criteria, 
PPMS can be diagnosed in patients with ≥ 1 year of disabil-
ity progression independent of clinical relapses who also 
fulfill at least two of the following three criteria: (1) ≥ 1 
lesion(s) in 1 or more topography including periventricu-
lar, cortical/juxtacortical, or infratentorial brain regions; 
(2) ≥ 2 lesions in the spinal cord; and (3) CSF-specific OCBs 
(Table 2). A recent study with 117 PPMS patients showed 
that sensitivity (89 vs 85%), specificity (100 vs 100%) and 

accuracy (91 vs 87%) of the 2017 and 2010 McDonald cri-
teria for progressive- and relapse-onset MS were similar, 
suggesting to apply a single set of MRI criteria for both 
relapse-onset and progressive-onset patients [22].

Simplification and liberalization of MS diagnostic cri-
teria raised concerns for an increased risk of misdiagnosis 
and inappropriate use of treatments [5, 6]. MS misdiagno-
ses mostly occur due to inappropriate application of the 
diagnostic criteria in patients with other inflammatory CNS 
disorders that can meet the DIS and DIT requirements, or 
erroneous interpretation of MRI abnormalities [5, 6]. To 
minimize misdiagnosis a careful exclusion of alternative 
diagnoses is necessary before applying the 2017 McDonald 
criteria since they should be applied primarily in patients 
with a typical CIS [1].

To this aim, standardized MRI protocols [23], careful 
determination of which imaging patterns constitute ‘typi-
cal’ or ‘atypical’ MS features and guidelines for a proper 
interpretation of imaging findings [4] are crucial.

In particular, small-vessel disease caused by chronic 
hypoxia represent the most common differential diagno-
sis for white matter (WM) lesions on brain MRI. This may 
occur as an age-related phenomenon and is found more 
commonly in smokers, patients with hypertension, diabetes 
and migraine and in various other vascular disorders [24]. 
Although often recognizable as small, rounded lesions in the 
deep WM, when becoming more numerous, they may also 
be periventricular. For this reason, the magnetic resonance 
imaging in MS (MAGNIMS) group recommended requir-
ing at least 3 periventricular lesions, especially in elderly 
patients or those with cardiovascular risk factors [1]. This 
criterion has been supported also by a recent multicenter 
study showing that three periventricular lesions improved 
the specificity and accuracy of the 2017 McDonald DIS cri-
teria, especially in patients with CIS aged ≥ 45 years [11].

Recent studies explored whether the inclusion of optic 
nerve involvement as a fifth region for DIS fulfilment in 
CIS patients who had visual-evoked potentials or optic nerve 
MRI evaluations influenced the performance of the diagnos-
tic criteria [17, 25, 26]. Such an addition slightly improved 
the diagnostic performance by increasing sensitivity without 
substantially losing specificity, both in CIS patients with 
and without optic neuritis as the first manifestation of the 
disease [17, 25, 26].

Moreover, more distinctive MRI features of MS need to 
be identified and validated. Among these, the central vein 
sign (CVS), leptomeningeal enhancement, subpial demyeli-
nation, and chronic active lesions have been focus of several 
recent lines of research and discussion.
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The central vein sign

Several recent studies have shown that the presence of a vein 
at the center of WM lesions, the so-called ‘CVS’ [27], can 
improve the differentiation between MS and its mimics [28]. 
The perivenular nature of MS lesions on ex-vivo histopathol-
ogy is well known since many years. Today, this MS specific 
histopathological feature can be detected in-vivo using sus-
ceptibility-weighted MRI [27, 28]. The percentage of WM 
lesions featuring a central vein on susceptibility-weighted 
MRI is substantially higher in MS compared to other MS 
mimics [28–30] such as migraine, small vessel disease, 
inflammatory CNS vasculopathies, Susac syndrome, neu-
romyelitis optica spectrum disorders (NMOSD), and myelin 
oligodendrocyte glycoprotein antibody disease (MOGAD).

In MS, most newly developing T2-hyperintense WM 
lesions or gadolinium (Gd)-enhancing lesions show the 
CVS. In a 2.8 years longitudinal study, 62/153 (40.5%) 
MS patients developed new WM lesions and 50 of them 
(80.6%) showed new lesions with the CVS [31]. Moreover, 
159/233 (68.2%) new T2-hyperintense lesions and 92/114 
Gd-enhancing lesions (80.7%) had the CVS, especially in 
MS patients with a younger age and a higher percentage of 
CVS-positive lesions at baseline [31].

Existing evidence from the literature (mainly based on 
cross-sectional studies) has shown that a 40% CVS posi-
tive lesion cut-off can accurately discriminate between 
MS and other WM diseases [28]. However, the number of 
CVS-positive lesions detected on a patient’s scan signifi-
cantly depends on the type of susceptibility sequence used, 
the MRI field strength and the injection of intravenous Gd 
(which itself is also paramagnetic, increasing the visibility 
of veins) [28]. For all these reasons, the percentage of MS 
CVS lesions and the optimal diagnostic cut-off threshold is 
higher when using optimized susceptibility-weighted MRI 
sequences at high and ultra-high field strength (3T and 7T) 
after Gd injection [28]. Among the different susceptibility-
weighted MRI sequences tested so far, the T2*-weighted 
three-dimensional echo-planar imaging (3D-EPI) has shown 
the highest capability to detect central veins in MS (Fig. 1) 
[28, 29]. This is probably due to the high isotropic spa-
tial resolution of the 3D-EPI sequence allowing to detect 
small intralesional veins in an acceptable scan time. Key 
challenges preventing the introduction of CVS assessment 
in clinical practice include: (1) the lack of a standardized 
imaging protocol (mainly because of the limited availability 
of optimized MRI sequences from scanner manufacturers), 
(2) the need of validated CVS-based diagnostic criteria and 
(3) the need of automated methods to detect the CVS. To 

Fig. 1  The central vein sign. Representative 3D-EPI T2*-magnitude 
images in A axial, B sagittal, and C coronal planes acquired at 3T 
during the injection of gadolinium-based intravenous contrast agent 
in a 24-years-old relapsing–remitting multiple sclerosis patient. A 
conspicuous central vein sign is present in the majority of white mat-

ter lesions. In the magnified views, a central vein running through the 
lesion (red arrows) is visible as a hypointense line (axial and coronal 
planes) or a hypointense dot (sagittal plane). Abbreviations: 3D-EPI 
three-dimensional echo planar imaging



 Journal of Neurology

1 3

overcome these limitations, different CVS-based diagnos-
tic algorithms, including simplified lesion-based diagnostic 
algorithms (not requiring the analysis of every single lesion) 
[32], are being tested on a large prospective multicenter set-
ting [33].

Concomitantly, existing statistical and deep-learning 
based methods for automated CVS detection [34, 35] are 
being tested on a large scale [33] and efforts to improve 
their performance are ongoing. Finally, although CVS 
could potentially be assessed in all scanner manufactures, 
the different scanner vendors should make optimized and 
standardized MRI sequences (like the 3D-EPI) available in 
all MS specialized centers. Given its promising diagnostic 
performance, the CVS is likely to be incorporated in the MS 
diagnostic criteria in the near future.

Chronic active lesions

Pathological studies have revealed that up to 57% of all 
chronic WM lesions show a peripheral ‘rim’ of iron-laden 
activated microglia/macrophages associated with ongoing 
demyelination and axonal loss, around an inactive core with-
out blood–brain barrier damage [36].

Chronic active lesions have been evaluated by looking at 
susceptibility-weighted MRI scans at high- and ultra-high 
field [37] (Fig. 2). On these sequences, chronic active lesions 
show a paramagnetic hypointense rim (i.e., ‘paramagnetic 
rim lesions’ [PRLs]), which corresponds to peripheral 
iron-laden microglia/macrophages [37]. Compared to iron 
negative lesions, PRLs have more severe myelin and axon 
pathology, a more limited lesional repair and a slow rate of 

increase in size, at least in the first years after their forma-
tion [37, 38].

A higher prevalence and/or number of PRLs have been 
found to be quite specific and clinically relevant for MS. 
They have been described in patients with radiologically 
isolated syndrome (RIS) (12% of all WM lesions, with 61% 
of RIS patients having ≥ 1 PRLs) [39] and CIS (19.9% of all 
WM lesions) [40], but not in MS-mimics [40–42], including 
NMOSD, Susac syndrome, and small-vessel disease.

In a large cohort of subjects with CIS/MS (n = 254), 
MS mimickers (n = 91) and old healthy controls (n = 271), 
the identification of ≥ 1 PRLs was the optimal cut-off to 
distinguish CIS/MS patients from MS mimickers and old 
healthy controls (specificity = 99.7%, sensitivity = 24.0%, 
AUC = 0.71, 95% confidence interval [CI] = 0.64–0.78). 
Of note, the fulfilment of ≥ 1 PRLs or ≥ 4 lesions with CVS 
improved specificity (90.6%), sensitivity (57.9%) and AUC 
(0.83, 95% CI = 0.79–0.87) [42].

In CIS patients, the presence of ≥ 1 PRLs and/or the 
fulfilment of ‘CVS’ criteria (≥ 3 lesions or 40% threshold 
of lesions with the CVS) predicted MS conversion after 
3 years with good sensitivity (70.2–90.4%) and specific-
ity (35.7–85.7%) [40]. Of note, none of the patients who 
remained CIS after 3 years had any PRLs [40].

Recently, reliable methods have been proposed to auto-
matically detect PRLs [43, 44]. A fully automated method, 
which applied lesion-level radiomic feature extraction and 
machine learning on 3D T1-weighted, 3D T2-FLAIR and 
3D T2*-phase MRI sequences, showed a strong correlation 
(r = 0.91) with manual rating and an AUC of 0.80 in cor-
rectly classifying PRLs in MS patients [44].

Fig. 2  Chronic active lesions. Example of chronic active lesion vis-
ualization using susceptibility-weighted MRI. A On 3D axial fluid-
attenuated inversion recovery sequence in a 48-years-old secondary 
progressive multiple sclerosis patient (A–B), two confluent periven-
tricular T2-hyperintense white matter lesions and another subcortical 

T2-hyperintense white matter lesion (white arrows among red-coded 
lesion mask) show a hypointense rim on phase image derived from a 
multi echo gradient-echo T2* sequence (C), thus they represent ‘par-
amagnetic rim lesions’ (PRLs)
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By applying a multimodal patch-based convolutional 
neural network (CNN) (RimNet) on 3D T2*-EPI and 3D 
T2-FLAIR sequences, a recent study showed a sensitivity 
(70.6%), specificity (94.9%) and AUC (0.943) comparable 
to manual rating for PRL identification [43].

By applying a two-branch feature extraction network 
and a synthetic minority oversampling network (QSMRim-
Net) on quantitative susceptibility mapping (QSM) and 
T2-weighted FLAIR (T2-FLAIR), the proposed methods 
showed better sensitivity (68%), specificity (98.9%) and 
accuracy (97.6%) compared to other state-of-the-art methods 
applied to quantify PRLs on QSM [45].

Leptomeningeal enhancement

Mild, widespread perivascular inflammatory infiltrates in 
the meninges are a nearly ubiquitous autopsy finding in 
all forms of MS and approximately 40–50% of those with 
SPMS have focal areas of leptomeningeal ectopic lymphoid 
tissue (“meningeal follicles”) [46]. Gradients of neuronal 
loss and cortical demyelination emanating from these fol-
licles have been found at autopsy, suggesting a direct causa-
tive relationship to cortical lesion formation [47]. Further, 
intrathecal production of inflammatory cytokines associated 
with lymphoid follicle activity (i.e., CXCL13, IFN-γ) has 
been suggested to predict cortical damage on MRI [47, 48].

The potential importance of meningeal inflammation as a 
contributor to MS pathology led to the search for surrogate 
imaging biomarkers. Although meningeal pathology in MS 
does not cause post-contrast enhancement on T1-weighted 
imaging, it has long been known that this technique is not as 
sensitive to meningeal disease as post-contrast fluid attenu-
ated inversion recovery (FLAIR) MRI. FLAIR is > 10 times 
more sensitive to small concentrations of Gd in CSF and is 
more sensitive to the presence of leptomeningeal enhance-
ment (LME) in conditions such as leptomeningeal carcino-
matosis and infectious meningitis.

Although, at present, no study directly compared 3T 
and 7T images, a recent meta-analysis showed that, in MS 
patients, higher LME-proportions were found in studies 
imaging at 7T (0.79 [95%-CI 0.64–0.89]) compared to lower 
field strengths (0.21 [95% CI 0.15–0.29], p < 0.001) [49].

With this knowledge, post-contrast FLAIR MRI protocols 
were tested as a potential surrogate biomarker of menin-
geal inflammation in MS (Fig. 3). A large study of delayed-
acquisition, 3D FLAIR on 3T MRI showed Gd deposition in 
the leptomeningeal space in 25% of MS patients compared 
to 2.7% of controls [50]. Two patients from this study later 
went to autopsy and cellular inflammatory infiltrates were 
found in regions of leptomeninges correlating to locations 
of enhancing foci during life, supporting LME as a potential 
surrogate of meningeal inflammation in MS.

However, the finding of LME on post-contrast FLAIR 
is not specific to MS. A 7T study described two patterns of 
LME: “nodular” (i.e., discrete, spherical nodules at the pial 
surface or subarachnoid space) and “spread/fill” (appearance 
of contrast spread through the local subarachnoid space). 
Nodular foci were present in 15 of 29 (51%) MS patients 
and in 2 out of 3 (67%) of healthy controls, whereas spread/
fill foci were present in 22 of 29 (76%) MS patients [51]. 
In another study, LME was found in 5 out of 66 healthy 
controls (5.7%) [52].

Brain LME, either as a single or multiple nodular foci, is 
also frequently seen in patients with other inflammatory neu-
rologic conditions (18/51 cases [35.3%]), such as NMOSD 
(6/11 cases [54.5%]) and MOGAD (3/11 cases [27.3%]), 
non-inflammatory neurologic diseases (i.e., including 
small vessel disease, migraine, neurodegenerative diseases, 
and compressive myelopathy) (3/38 cases [7.9%]), revers-
ible cerebrovascular constriction syndrome (69/182 cases 
[37.9%]), and infectious conditions such as human T-lym-
photropic virus (HTLV) infection (17/38 cases [44.7%]) and 
human immunodeficiency virus (HIV) (13/61 cases [21.3%]) 
[52–55].

A recent meta-analysis evaluated the presence of LME 
in neoplastic neurological (n = 2392 cases), neuroinfectious 
(n = 1890 cases) and primary neuro-inflammatory diseases 
(n = 4038) [49]. The LME proportions for these disease 
classes were 0.47 (95% confidence interval [CI] = 0.37;0.57), 
0.59 (95% CI = 0.47;0.69), and 0.26 (95% CI = 0.20;0.35), 
respectively. In a subgroup analysis for MS (n = 1605 cases), 
LME proportion was 0.30 (95% CI = 0.21;0.42) with lower 
proportions in RRMS (0.19 [95% CI = 0.13;0.27]) compared 
to progressive MS (0.39 [95% CI = 0.30;0.49], p = 0.002) 
[49].

Accordingly, brain LME on post-contrast FLAIR lacks 
the specificity necessary for use as a diagnostic biomarker 
in MS. Moreover, although LME could become a surrogate 
of meningeal inflammation in MS, a direct relationship is 
not yet established. Recent work showed that post-contrast 
FLAIR MRI may also directly visualize brain lymphatic 
vessels and glymphatic clearance [55, 56], suggesting that 
focal blood-meningeal barrier breakdown may not be the 
only source of enhancement.

Subpial demyelination

Cortical demyelinating lesions are an established patho-
logical feature of MS, can develop from the earliest disease 
stages and represent one of the main substrates of disease 
progression [4]. Detection of cortical lesions by MRI can 
be used in clinic as evidence of DIS to aid the diagnosis 
of MS. Clinical MRI protocols at 1.5 and 3T are, however, 
hampered in their ability to visualize and characterize the 
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full extent of cortical demyelination in vivo and most of the 
knowledge on cortical MS lesions derives from post-mortem 
studies. Neuropathological examinations have identified dif-
ferent types of cortical lesions in MS based on their loca-
tion within the cortical laminae: type I leukocortical lesions 
located at cortical-subcortical junction; type II, intracortical 
plaques, very small lesions completely enclosed in the cortex 
without reaching its margins; type III–IV subpial lesions, 
extending downwards from the juxtameningeal pial surface 
through different cortical laminae or across the full cortical 
depth. Subpial lesions represent the most common type of 
cortical MS lesions and is vastly underdetected by conven-
tional MRI.

Ultra-high field 7T MRI provides several advantages 
over lower field MR strength in imaging cortical lesions in 
MS (Fig. 3). The increase in signal-to-noise ratio (SNR) 
achieved at ultra-high field can be translated into a resolu-
tion in the sub-millimeter range and exquisite contrast for 
imaging details within both gray matter (GM) and WM. 
Although we are still far from revealing the true number 
of cortical lesions in vivo, correlative histopathological 7T 
MRI assessments have shown ultra-high field MRI can more 

than double cortical lesion detection relative to 3T MRI [57]. 
The gain in resolution and delineation across cortical layers 
allows the identification at 7T of same cortical lesion sub-
types observed in histopathological examinations [58, 59].

Increased cortical lesion detection achieved at 7T is of 
high interest because subpial lesions are a typical finding 
in MS [60] and their visualization could, therefore, improve 
the MS diagnostic sensitivity and specificity. However, corti-
cal lesions and subpial demyelination are also not fully spe-
cific for MS since they have been also described in patients 
with acute disseminated encephalomyelitis (ADEM) [60] 
and MOGAD [53].

Different pulse sequences have been optimized at 7T, 
including T2*-weighted gradient-echo, T2-weighted, 
FLAIR, double inversion recovery (DIR), and T1-weighted 
magnetization-prepared rapid-acquisition gradient-echo 
(MPRAGE/MP2RAGE), to image cortical lesions in differ-
ent MS stages [57–59, 61]. As different sequences seem to 
favor the identification of different cortical lesion subtypes 
(e.g., T2*-weighted gradient-echo for subpial lesion detec-
tion [57]; MP2RAGE for small intracortical lesions) [62], 
the information provided by different contrasts is frequently 

Fig. 3  Leptomeningeal enhancement, cortical lesions and subpial 
demyelination. A, B Example of 7T FLAIR MRI of the brain in 
a 49-years-old woman with relapsing–remitting multiple sclero-
sis before (A) and after (B) the administration of gadolinium-based 
intravenous contrast agent. A focus of post-contrast pial/subarach-
noid enhancement highlighted by white arrow. Examples of focal 

(C) or more extensive (D, E) subpial multiple sclerosis lesions (black 
arrows) with expansion within white matter/confluence with a juxta-
cortical lesion (E) in patients with multiple sclerosis as seen on ultra-
high resolution T2* gradient echo images at 7 Tesla. A white mat-
ter lesion is also visible in (E) (white arrow). Abbreviations: FLAIR 
fluid-attenuated inversion recovery, MRI magnetic resonance imaging
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complementary and, when used jointly, can only increase 
the definition of cortical lesions. Cortical lesion identifica-
tion and segmentation, however, strongly rely on readers’ 
training and experience, and the attempts to automatize this 
process are still far from a clinically acceptable performance 
[63, 64]. Further improvements in the standardization of 
both acquisitions and processing methods across Centers 
are still needed for a translation of these techniques in clinic.

The increase in accuracy of cortical lesion detection at 
7T could also be used to guide selective characterization of 
the different pathological components of cortical lesions, 
including demyelination and inflammation, in MS through 
complementary techniques such as PET, which are able to 
estimate the distribution of specific molecules or processes 
of interest. Investigations combining 7T MRI and PET 
imaging of neuroinflammation have revealed an association 
between cortical demyelination and glial activation [65] as 
well as heterogeneity in levels of inflammation within corti-
cal lesions [66]. This approach could be used in the future 
to stage cortical lesion inflammatory activity in vivo and, 
potentially, to improve MS diagnosis.

The contribution of AI

Recent improvements in technologies and the availability 
of large amount of data have promoted the application of 
AI algorithms for the diagnostic-work up of MS [7]. Using 
CNN, a model of deep-learning (DL) tool able to automati-
cally select the best problem-solving features, recent AI stud-
ies were able to discriminate between MS patients and HC 
with an accuracy between 70.2 and 98.8% from T2-weighted 
[67, 68], FLAIR [69], or susceptibility-weighted MRI 
sequences [70]. Machine learning (ML) algorithms, used to 
learn from specific predefined data features and then make 
decisions and trained on quantitative [71–73], diffusion-
weighted [74], and resting state functional [74, 75] MRI 
sequences, were also able to correctly identify MS patients 
with an accuracy ranging from 83.7 to 90.0%.

AI algorithms can contribute discriminating MS from 
mimics. Using random forest, a supervised learning algo-
rithm, on a set of brain GM imaging measures, lower tha-
lamic volume together with other measures of brain GM vol-
umes and cortical thickness obtained from high-resolution 
T1-weighted sequences were found to discriminate NMOSD 
from MS with an accuracy of 74% [76]. A multiparametric 
approach including data from FLAIR, diffusion-tensor imag-
ing, resting state functional MRI plus clinical and neuropsy-
chological information improved the diagnostic performance 
to 88% [77].

A CNN algorithm applied on brain FLAIR sequences and 
patients’ clinical information (age at disease onset, age at the 
time of MRI, disease duration, time from the last relapse) 

discriminated AQP4-positive NMOSD from MS patients 
with an accuracy similar to expert neurologists (accu-
racy = 71.1% vs 65.9–60.7%), but higher reliability (human 
intra-rater reliability of 0.47–0.50) [78]. In another study, a 
CNN algorithm trained on brain FLAIR and T1-weighted 
sequences showed a higher accuracy compared to that of 
two expert neuroradiologists in correctly discriminate MS 
(98.8% vs 72.8–81.8%) from other MS mimics, including 
NMOSD (88.6 vs 4.4%), migraine (92.2% vs 53–64.8%) 
and CNS vasculitis (92.1% vs 45.5–54.6%) [79]. Other ML 
and DL algorithms trained on conventional MRI sequences 
(FLAIR, PD, T2-weighted and T1-weighted) or proton mag-
netic resonance spectroscopy were also able to discriminate 
between MS, non-inflammatory WM disorders (hereditary 
diffuse leukodystrophy with spheroids and cerebral microan-
giopathy) [80, 81], or low-grade brain tumors [82].

ML algorithms applied on baseline demographic (age, 
sex), clinical (EDSS score and type of onset), and brain 
MRI features (including WM lesion count, radiomic fea-
tures, regional GM atrophy and cortical thickness) predicted 
also conversion from CIS to MS with an average accuracy 
between 71.4 and 92.9% at 1 year [83, 84], between 67.6 and 
70.4% at 2 years [85] and between 68.0 and 85.0% at 3 years 
follow-up [83, 86].

Although AI methods have been showing increasingly 
promising results in MS diagnostic work-up, several limita-
tions should be taken into account. First, it may be chal-
lenging to interpret neural network decisions. For instance, 
AI methods (especially DL algorithms) may follow “short-
cut” strategies, which, while superficially successful (i.e., 
differentiation between MS patients from HC based on the 
presence/absence of lesions), typically fail under different 
circumstances (i.e., differentiation between MS patients 
from others with WM lesions due to cerebral small vessel 
disease). Moreover, possible selection bias and overfitting 
may overestimate the performance of AI algorithms. AI 
approaches also need large datasets, which may be chal-
lenging to obtain due to system availability, high costs, and 
heterogeneous acquisition methodologies. To overcome such 
limitation and to allow their use in the clinical scenario, AI 
algorithms should be cross-validated in multicenter, pro-
spective and longitudinal real-world cohorts, to overcome 
challenges due to variability of image acquisition parameters 
and scanner models and the presence of heterogeneous dis-
tribution of data between an algorithm's training dataset and 
validation. Furthermore, AI algorithms should be integrated 
into existing information technology infrastructures and the 
access to the required computing power should be guaran-
teed. Finally, guidelines that ensure reliability and validity of 
findings obtained from AI approaches, and standard thresh-
olds for the accuracy of models required for publication, 
which are lacking at present.
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Conclusions

Accurate criteria in the diagnostic work-up of patients with 
a suspicion of MS are crucial not only to enable an early 
diagnosis, thus allowing treatment to start sooner, but also to 
minimize the risk of misdiagnosis and overdiagnosis.

The 2017 McDonald criteria are validated and evidence-
based criteria that show high sensitivity and accuracy in 
predicting the occurrence of a second clinical attack, sim-
plify the clinical use of MRI criteria, and allow an earlier 
diagnosis and treatment of MS. Some concerns have been 
raised due to their low specificity. However, their application 
is recommended only after alternative diagnoses have been 
carefully excluded.

To further improve the diagnostic process, novel candi-
date imaging biomarkers, such as CVS and chronic active 
lesions have been proposed to increase the specificity of MS 
diagnostic criteria, thus reducing the risk of misdiagnosis 
(Table 3).

However, they should be further validated and standard-
ized before being implemented in the clinical setting. In par-
ticular, future studies should ascertain their role to exclude 
alternative diagnoses but also to diagnose MS in patients 
with both relapse- or progressive-onsets.

Subpial demyelination is highly specific for MS but 
hardly visible at standard field strengths (i.e., 1.5 and 3.0 

Tesla scanners), whereas leptomeningeal enhancement is not 
MS-specific, since it can be detected in other inflammatory 
CNS diseases [52] and with ageing [87].

In the near future, AI approaches may represent a compli-
mentary tool for neurologists and neuroradiologists. Beside 
visual-pattern recognition performed by experienced cli-
nicians of lesional features typical for MS, which may be 
time-consuming and hardly reproducible, AI may allow to 
identify textures and patterns on MRI sequences that are 
beyond the human perception and may further improve the 
diagnostic work-up and patients’ classification.
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Table 3  Summary of newly proposed MRI markers for the diagnostic work-up of MS

3D-EPI three-dimensional echo-planar imaging, DIR double inversion recovery, FLAIR fluid-attenuated inversion recovery, Gd gadolinium, 
MP2RAGE magnetization prepared 2 rapid gradient echoes, MPRAGE magnetization-prepared rapid gradient echo, MRI magnetic resonance 
imaging, MS multiple sclerosis, PSIR phase-sensitive inversion recovery, SWI susceptibility weighted imaging

MRI marker MRI 
sequence(s)

Pathological 
substrate

Specificity in 
differential 
diagnosis

Prediction of 
MS conver-
sion

Overall 
contribution 
for early MS 
diagnosis

Prediction 
of disability 
progression

Feasibility in 
the clinical 
setting

Associations 
with brain 
damage

Central vein 
sign

SWI
(T2*-weighted 

3D-EPI)

Perivenular 
inflamma-
tion

 +  +  +  +  +  +  + ?  +  +  + ?

Paramagnetic 
rim lesions

SWI
(T2*-weighted 

3D-EPI)

Chronic active 
lesions

 +  +  +  +  +  +  +  +  +  +  +  +  +  + 

Leptome-
ningeal 
enhancement

Post-Gd 
T2-weighted 
FLAIR

Meningeal 
inflamma-
tion

 + ?  ±  +  +  +  + 

Cortical 
lesions

DIR;
3D 

T1-weighted 
MPRAGE/
MP2RAGE

PSIR

Cortical 
demyelina-
tion

 +  +  +  +  +  +  +  +  +  +  +  +  +  + 

Subpial demy-
elination

T2*-weighted 
gradient-
echo

Cortical 
demyelina-
tion

 +  +  +  +  + ?  +  +  +  +  +  + 
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