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A B S T R A C T   

The society has high concerns on the inequality that people are disproportionately exposed to ambient air 
pollution, but with more time spent indoors, the disparity in the total exposure considering both indoor and 
outdoor exposure has not been explored; and with the socioeconomical development and efforts in fighting 
against air pollution, it is unknown how the exposure inequality changed over time. Based on the city-level panel 
data, this study revealed the Concentration Index (C) in ambient PM2.5 exposure inequality was positive, indi
cating the low-income group exposed to lower ambient PM2.5; however, the total PM2.5 exposure was negatively 
correlated with the income, showing a negative C value. The low-income population exposed to high PM2.5 
associated with larger contributions of indoor exposure from the residential emissions. The total PM2.5 exposure 
caused 1.13 (0.63–1.73) million premature deaths in 2019, with only 14 % were high-income population. The 
toughest-ever air pollution countermeasures have reduced ambient PM2.5 exposures effectively that, however, 
benefited the rich population more than the others. The transition to clean household energy sources signifi
cantly affected on indoor air quality improvements, as well as alleviation of ambient air pollution, resulting in 
notable reductions of the total PM2.5 exposure and especially benefiting the low-income groups. The negative C 
values decreased from 2000 to 2019, indicating a significantly reducing trend in the total PM2.5 exposure 
inequality over time.   

1. Introduction 

Clear air is a basic human right, but many people are exposed to poor 
air quality that adversely affect human health. Exposure to air pollution 
has been documented to be closely associated with various respiratory 
diseases, cardiovascular diseases, and mortality (Deng et al., 2021; Dong 
et al., 2020; Lim et al., 2012; Shi et al., 2016). Globally, approximately 6 
million premature deaths were attributable to PM2.5 (particles with 
aerodynamic diameters equal to or <2.5 μm) exposure, with high 
mortalities in densely populated developing countries such as China and 
India (GBD, 2019). 

It has been concerned seriously that people expose to air pollution 
disproportionately (Jbaily et al., 2022; Mohai et al., 2009; Brulle and 
Pellow, 2006). Some studies found that the poor were more likely to 
work and/or live in places where the air quality was worse, for whom 

the exposure resulted in a high occurrence of many diseases and more 
premature deaths (Liu et al., 2017a; Jorgenson et al., 2021). Environ
mental inequality often discussed ambient exposure level or several 
specific health outcome disparities across the population of different 
race/ethnicity or socioeconomic status (e.g. income, occupation, and 
educational attainment). Early studies originated from field in
vestigations of the dwelling environments of different races/ethnicities 
in the U.S. and many other developed countries (Jbaily et al., 2022; 
Colmer et al., 2020). Many of such studies pointed out that PM2.5 ex
posures decreased with increasing incomes (Hajat et al., 2013, 2015; 
Milojevic et al., 2017), and the poorest were often subjected to the most 
serious environmental pollution, even though some studies showed a 
nonlinear relationship between air pollution and the income/depriva
tion index (Milojevic et al., 2017; Havard et al., 2009; Jiao et al., 2018; 
Keene and Deller, 2015). In recent years, environmental inequality in 
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developing countries such as China, India, Peru, and Mexico have 
received increasing attention (Cao et al., 2019; Zhao et al., 2019; 
Chakraborty and Basu, 2021; Huang et al., 2019; Rao et al., 2021; Lome- 
Hurtado et al., 2020; Yao et al., 2018), for example, in India, the PM2.5 
levels were found to be higher in districts with higher percentages of 
households with poor residential conditions and without toilets (Chak
raborty and Basu, 2021). The PM10 levels increased with an increase in 
the deprivation index in Mexico (Lome-Hurtado et al., 2020). Compared 
with that in developed countries, exposure inequality studies are much 
fewer in developing countries, and the inequality issue has been seri
ously underappreciated. 

Available studies on PM2.5 exposure inequality primarily relied on 
exposure estimations from ambient pollution levels. However, given the 
longer time spent indoors, when air pollution exposures were only based 
on the ambient concentrations, the exposure estimates would be sub
stantially biased and significantly underestimated especially for the 
populations working and/or living in microenvironments with severe 
indoor air pollution (Ouyang et al., 2018; Huang et al., 2019). The 
relationship between exposure and income, which is one important in
dicator of socioeconomic status, would be rather different between 
ambient exposure and total exposure, as indoor exposure can contribute 
greatly to the total exposure (Huang et al., 2021; Li et al., 2016; Shen 
et al., 2021; Yun et al., 2020). But, this has not been investigated leading 
to probable mis-interpretation of the exposure inequality. Moreover, 
under the socioeconomic development, it is unknown how the exposure 
disparity has changed over time and which factors drove the trend. 

In this study, we assessed the ambient and total exposure differences 
over the past two decades among populations with different income 
levels in China mainland. We demonstrated that the relationships be
tween ambient PM2.5 exposure and population income in China were 
different from those observed in many other countries, and the re
lationships were opposite when considering the total exposure that 
included both indoor and outdoor exposure. We further revealed that 
the spontaneous household energy transition from high reliance on 
traditional solid fuels to cleaner modern energies significantly reduced 
inequality in the total PM2.5 exposure. 

2. Materials and methods 

2.1. Ambient PM2.5 concentration 

The ambient PM2.5 concentrations were modeled using the WRF/Chem 
model (v3.5) which couples the atmospheric chemical transport module 
with the Weather Research and Forecasting (WRF) model in Kinetic 
framework and microphysical processes. The meteorological field data as 
model inputs were from the National Centers for Environmental Prediction 
Final Operational Global Analysis data and WRF-modeled meteorological 
fields were evaluated by observations (The National Center for Atmo
spheric Research, 2020; National Meteorological Information Center, 
2013). The simulation area covered China and its surrounding areas 
(latitude ranges 13–56◦N, longitude ranges 67–143◦E) with a spatial res
olution of 50 × 50 km2 and a time step of 300 s. Emission inventories of 
major air pollutants including primary PM2.5, black carbon, organic car
bon, NOx, CO, SO2, and NH3 were from PKU-FUEL inventory (http://inven 
tory.pku.edu.cn/). VOCs (volatile organic compounds) and non-residential 
NH3 emissions were from EDGAR-HTAP data set (Emission Database for 
Global Atmospheric Research-Hemispheric Transport of Air Pollution) 
(EDGAR, 2017; Janssens-Maenhout et al., 2015). Simulations were con
ducted for five-year intervals from 2000 to 2019. Based on wind fields and 
high-resolution emission inventories, the Gaussian downscaling approach 
was adopted to downscale the calculated PM2.5 concentrations to 1/120◦ in 
both longitude and latitude (Meng et al., 2021). The modeled concentra
tions were validated against observation data from the Ministry of Envi
ronmental Protection (https://www.cnemc.cn/) (Fig. s1) and a database 
developed from visibility records for those when ground monitoring was 
not available (Fig. s2) (Liu et al., 2017b; Shen et al., 2019). Normalized 

mean bias (NMB) and normalized mean error (NME) were calculated to 
quantitatively assess the model performance. The NME values were 57.8 
%, 49.0 %, 46.8 %, and 75.3 % for 2000, 2010, 2014, and 2019, respec
tively. It appears that the model overestimated ambient PM2.5 with the 
relative differences within 2 times for most sites. The differences are 
attributed to complex factors such as uncertainties and potential biases in 
model inputs like inventory and meteorology parameters, atmospheric 
chemistry in the model, and uncertainties in the AOD-retrieved data in 
which, for example, it often had lower estimates in high pollution areas. 
The spatial variations in ambient PM2.5 were generally captured by the 
model, as seen from the comparison of spatially resolved model outputs to 
the Aerosol Optical Depth (AOD) retrieved data (https://sites.wustl. 
edu/acag/datasets/surface-pm2-5/#V4.NA.03) (Fig. s3) and the ground 
observation concentrations (Fig. s4). Fig s5 further compared with time 
series of daily PM2.5 in Beijing and Shanghai, as examples of northern and 
southern cities, respectively. Daily variations in the ambient PM2.5 were 
also captured by the model simulation even though the NME values were 
58.3 % and 49.8 %, respectively. To address the overestimation of model 
outputs, we then calibrated the model PM2.5 against the ground observa
tion data for 2014 and 2019 when the ground observation data were 
available, and the visibility inversed data for year 2000 and 2010 when the 
ground observation network of PM2.5 was not built. The calibrated results 
were much closer to the monitoring results or visibility inversed data, with 
most data fell into the error range of 2.0 and few in the error range of 5.0 
(Fig. s6). The NME values were 44.2 %, 40.6 %, 26.2 %, and 30.9 %, 
respectively. The slopes were 0.71, 0.77, 0.91, and 0.87, respectively. The 
calibrated ambient PM2.5 was used in the follow-up analysis of exposure, 
health outcomes, and inequality. 

2.2. Indoor PM2.5 concentration 

A database of indoor PM2.5, at the county level in China, was built 
based on the updated household fuel and stove information (Tao et al., 
2018) and summarized results, including means, deviations, and ranges, 
of indoor PM2.5 for different households using dirty solid fuels or rela
tively clean fuels during the heating and non-heating seasons. For 
households burning solid fuels in indoor stoves, internal combustion 
source dominated the indoor air pollution, while for households using 
relatively clean fuels or where the stoves were located outdoors, indoor 
concentrations were mainly influenced by the outdoor air concentra
tions and infiltration factors (Xiang et al., 2019). The United Nations 
Environment Programme and World Health Organization had a similar 
database, and our database for China was updated from it by considering 
more recent data from available publications and field-based fuel and 
stove information from recent surveys in rural China (Tao et al., 2018; 
Shen et al., 2022). More details on the indoor PM2.5 database can be 
found in Chen et al., (2018) and Meng et al., (2021). Annual average 
values were used and analyzed in the present study. 

2.3. Integrated total exposure 

A database of the average annual ambient and indoor PM2.5 con
centrations in mainland China until 2019 was built at an interval of 
every 5 years (2000, 2010, 2014 and 2019), to reflect the historical 
changes in air pollution exposure throughout the country. The PM2.5 
issue in China received worldwide concern in 2013, when several 
extremely high-pollution episodes were widely discussed. Since then, 
the central and local governments have taken a series of strict air 
pollution prevention and control measures to control the ambient PM2.5 
concentrations, which resulted in a significant turning point in 2014 
(Zhu et al., 2019; Zhang et al., 2019). Ambient PM2.5 data in 2020 and 
beyond are available, but the indoor pollution characteristics are not yet 
available when we started this study; thus, 2019 was the most recent 
year here. 

The integrated total exposure was calculated as: Cin × Tin + Cam ×

Tam, Where Cin and Cam are the indoor and ambient PM2.5 concentration, 
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respectively. Tin and Tam are indoor and ambient residence time, 
respectively. Time-activity data for urban and rural residents in different 
regions are from Exposure Factors Handbook of Chinese Population 
(Duan, 2013). 

2.4. Calculation of PM2.5-related premature deaths and uncertainty 

Premature deaths associated with PM2.5 exposure were calculated 
based on background premature deaths and the corresponding popula
tion attribution fractions (PAFs). Five diseases including acute lower 
respiratory infections for children, lung cancer, ischemic heart disease, 
cerebrovascular disease (stroke), and chronic obstructive pulmonary 
disease were considered. Background premature deaths for different age 
(<5, 5–14, 15–65 and > 65 years), and gender groups were obtained 
from Global Burden of Disease (GBD) data (https://ghdx.healthdata. 
org/gbd-results-tool) (Wang et al.,2018; India S.L.D.B., 2019). The 
relative risk (RR) incorporated the latest integrated exposure–response 
(IER) function (Cohen et al. 2017). RR was calculated as follows 

RR =

{
1, z < zcf

1 + α × (1 − eβ(z− zcf )
γ
), z ≥ zcf  

where z is the PM2.5 exposure concentration, zcf is the minimum expo
sure concentration which follows a uniform distribution between 2.4 
and 5.9 μg/m3, and α, β, and γ are IER parameters with different values 
for different ages and genders. The corresponding health risk arises 
when PM2.5 exposure is above the zcf value. zcf shows a uniform distri
bution between 2.4 and 5.9 μg/m3. The GBD database provides referred 
values of α, β, γ, and zcf from 1000 sets of Monte Carlo simulations 
(Cohen et al., 2017), which were adopted in the calculation of RR and its 
uncertainty. PAF calculation formula is as follows: 

PAF =

∑
IPi(RRi − 1)

∑
IPi(RRi − 1) + 1  

where Pi is the population of each gender, age, year and cause, RRi is the 
corresponding relative risk of the population. 

2.5. Calculation of the concentration index and its variations 

We calculated the concentration index (C) with 95 % confidence 
interval to quantitatively evaluate the level of inequality in PM2.5 ex
posures and followed the method recommended by the World Bank 
(O’Donnell et al., 2008). C was derived as follows: 

C =
2

Nμ
∑n

i=1
eiri − 1 − 1/N  

where ei is the PM2.5 exposure, μ is PM2.5 exposure mean, and ri = i / N is 
the fractional rank of individual i in the per capita disposable income 
distribution (weighted by city population), with i = 1 for the lowest and 
i = N for the highest. The concentration curves (CC) are usually matched 
with the C value to graphically represent inequality. In the CCs, the x- 
axis is the cumulative percentages of the population ranking by income, 
and the y-axis is the cumulative percentages of exposure for the corre
sponding populations. The absolute valve of C is twice the area between 
the CC and the 1:1 equality line. When the CC and the 1:1 equality line 
coincide, the C value equals zero, indicating that there is an absolute 
equality that an entire population experience equal PM2.5 exposure. 
When the CCs are above (below) the equality line, the C values are less 
(greater) than 0, suggesting that the exposures are concentrated among 
the poor (rich). Therefore, the C values range from − 1 to 1. The greater 
the absolute valve of C or the farther away from the equality line, the 
greater the inequality of exposure. 

2.6. Uncertainty analysis 

To address uncertainty in the estimates, we run 1000 times Monte 
Carlo simulations from emission estimations to premature deaths. The 
coefficients of variation (CVs) for activity intensities and EFs (log- 
transformed) for emissions were obtained from the PKU inventories. CVs 
of 5 % were used to calculate the amount of time people spent indoors. 
Chen et al. (2018) calculated the CVs of log-transformed PM2.5 con
centrations in households using solid fuels, and the mean and standard 
deviation of the CVs for various fuels-microenvironment-season com
binations were 14 ± 16 %, implying that the overall uncertainty of the 
calculated indoor PM2.5 concentrations. CVs of 20 % for gridded 
ambient air PM2.5 were adopted, based on the comparison of re- 
calibrated model outputs and observation data. The IER provided the 
parameter distributions in the dose–response curves of premature death 
models. 

2.7. Other materials and data statistical analysis 

The socioeconomic status is represented by the per capita disposable 
income data that were collected from Chinese statistical yearbooks (China 
Statistical Yearbook, 2020). Per capita disposable income is the sum of final 
consumption expenditure and savings available to the surveyed household 
during the survey period. Per capita disposable income = wage income +
net business income + net property income + net transfer income (China 
Statistical Yearbook, 2020). It is necessary to note that the income data in 
this study were obtained from the census and might not be as precise as 
those obtained from individual questionnaires in exposure assessments and 
socioeconomic status analyses. Although survey data can usually cover 
more detailed information that is important for analyzing exposure 
inequality and its potential influencing factors, census data have advan
tages in their representativeness and wide coverage of entire target pop
ulations. To examine the overall situation in China, prefecture-level data 
were analyzed here, but there could be different equalities within the 
prefecture cities (Guo et al., 2020; Yao et al., 2018). It would be interesting 
to use microdata to validate this country-level exposure equality to support 
well-directed strategies in reducing inequality. The population was divided 
into five quintiles according to the per capita disposable income from low 
to high (e.g., low, low-middle, middle, upper-middle, and high). The me
dians along with the interquartile ranges (IQR) of incomes and exposures 
were calculated. 

We analyzed the data by using Microsoft Excel 2019 and IBM SPSS 
Statistics 26 at a significance level of 0.05. We used Python 3.8 to create 
the figures. 

3. Results and discussion 

3.1. Inequality in ambient and total PM2.5 exposure 

The national average population-weighted ambient PM2.5 exposure 
was 23.1 μg/m3 in 2019. In comparison with the WHO Interim Target-1 
(IT-1, 35 μg/m3) (WHO, 2021), which was also the Chinese National 
Standard, nearly 210 million (16 % of the total population) people in 
2019 were exposed to ambient PM2.5 pollution levels that exceeded 35 
μg/m3 (Fig. 1). Compared to that in 2000, ambient PM2.5 exposure was 
slightly higher in 2019. However, total exposure in 2019 was much 
lower than that in 2000, resulting from significant reductions in indoor 
air pollution associated with transitions to cleaner household energy 
mix especially in rural areas. The annual income for these people, whose 
ambient PM2.5 exposure exceeded 35 μg/m3, was 42,600 (IQR: 
37,900–46,600) RMB/capita in 2019, which was higher than the na
tional average of 33,400 (IQR: 16,900–42,100) RMB/capita. If 
comparing to the 10 μg/m3 or new AQG of 5 μg/m3, nearly the entire 
population of the country was exposed to severe ambient air pollution 
that exceeded the criteria (98.3 % exceeding 5 μg/m3 and 89.3 % 
exceeding 10 μg/m3). 
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The positive Concentration Index (C) value of ambient PM2.5 expo
sure (0.099, and 0.080–0.118 as 95 % confidence interval) indicated 
more concentrated ambient PM2.5 exposure among the rich. As seen in 
Fig. 2, the poorest group had the lowest exposure of 19.5 (IQR: 
13.0–24.2) µg/m3. The upper-middle group had the highest ambient 
PM2.5 exposure, which was significantly higher than the exposure level 
in the richest group (p < 0.05). The urban population with higher in
come was unsurprisingly exposed to higher ambient PM2.5 levels than 
the rural population (Fig. s7). The relative difference in ambient PM2.5 
exposures between the urban and rural populations was statistically 
significant, at 7.5 µg/m3. Within the urban population, an apparently 
inverted V relationship was also observed, with the richest group (22.3, 
16.3–34.7 µg/m3) and the poorest group (22.1, 13.7–28.0 µg/m3) being 
exposed to lower ambient PM2.5, but the highest exposure (31.7, 
17.6–37.1 µg/m3) occurring for the upper-middle group. For the rural 
population, the subgroup analysis revealed that the low-income popu
lation was exposed to the lowest ambient PM2.5 pollution levels, while 
the exposure levels for the other four groups were similar. 

As most people spend more time indoors, ambient exposure accounts 
for only a small part of the air pollution exposure. By taking both indoor 
and outdoor exposures into the consideration, the national-average total 
exposure of 48.4 (33.9–62.5) µg/m3 was much higher than the ambient 
exposure of 23.1 (15.5–31.2) µg/m3. 74 % of the population (nearly 1.0 
billion) in 2019 suffered from severe air pollution above 35 μg/m3. 
Differences between the total and ambient exposure was much smaller 
for high-income populations, as relative contributions of indoor 

exposure became small when clean household energies were used. In
door exposure accounted for a significant portion of the total exposure, 
ranging from 80 % to 95 % (Fig. s8), owing to high levels of indoor air 
pollution and lengthy periods of time spent indoors. Indoor exposure 
contribution exhibited a generally declining trend with the increase in 
income level. Relatively high contributions from indoor exposure for the 
low- and low-middle income groups were explained by the much more 
severe indoor air pollution associated with a high reliance on low- 
efficient burning of traditional solid fuels. Household fuel choices and 
switching to cleaner fuels are significantly affected by family income 
levels (Zhu et al., 2019; Shen et al., 2015; Stoner et al., 2021). Household 
energy sources are expected to be cleaner with increasing income 
(Sovacool 2011; Shen et al., 2022). 

For the total PM2.5 exposure across different income groups, different 
from that in the ambient PM2.5 exposure, the low-income population 
was exposed to higher total PM2.5 pollution levels (Fig. 2A). The total 
PM2.5 exposure level for the poorest population was 63.8 (56.2–79.6) 
µg/m3, approximately 2 times of the richest group at 33.0 (26.5–48.4) 
µg/m3. The negative C value of − 0.091 (95 %CI: − 0.110 to − 0.072) 
indicated that the total PM2.5 exposure concentrated in the poor. The 
urban population had significantly lower total PM2.5 exposure compared 
to the rural population (p < 0.05), with PM2.5 exposure levels of 44.7 
(30.1–53.0) µg/m3 for urban population and 60.0 (44.4–73.9) µg/m3 for 
rural population, respectively. This is inextricably associated with the 
widespread use of solid fuels in rural areas. For the rural population 
(Fig. s8), the poorest group had the highest total PM2.5 exposure, and 

Fig. 1. Cumulative percentage of population of the ambient and total PM2.5 exposure in 2000 and 2019 in China (A), and the income levels for the population with 
low PM2.5 exposure <35 μg/m3 or the 20 % population with the highest exposure levels (B). Note that data for Hong Kong, Macao, and Taiwan province are not 
available in this study. 

Fig. 2. Exposure to ambient PM2.5 and total PM2.5 for populations with different income levels for the Chinese population in 2019 (A), exposure to ambient PM2.5 
and total PM2.5 for population with different incomes (B). Note that data for Hong Kong, Macao, and Taiwan province are not available in this study. The dot is for 
different income groups which was from the county level statistics and divided by the 1500 RMB/capita equal intervals. 
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the exposure decreased with increasing income, attributable to 
increasing use of cleaner household energy. The total PM2.5 exposures 
for the urban population across different income groups revealed a likely 
inverted U shape with the highest exposure for the low-middle income 
group (48.0, 37.6–53.8 µg/m3) and low exposure levels for the low- 
(42.9, 29.2–48.1 µg/m3) and high-income groups (33.9, 26.5–48.4 µg/ 
m3). The indoor exposure contribution for the urban population was 
approximately 90 %, which was lower than that for the rural population 
(92–95 %). High-income urban population were mostly living in the 
relatively developed eastern and coastal areas, where effective ambient 
air pollution controls efficiently reduced outdoor pollution, and conse
quently the total exposure. However, the middle-income urban popu
lation are largely from the less-developed or developing western areas, 
and did not receive such high benefits of reducing the ambient and total 
PM2.5 exposures. 

3.2. More PM2.5-associated premature deaths among the low-income 
population 

In 2019, the total exposure to PM2.5 was estimated to be responsible 
for ~1.13 (95 %CI: 0.63–1.73) million premature deaths nationally. The 
latest Global Burden of Disease (GBD) estimated that in China PM2.5 
exposure was associated with about 1.78 (95 %CI: 1.51–2.09) million 
premature deaths in 2019, and the number varied a little in the past two 
decades, resulting from the decrease in the HAP-associated mortality but 
an increase in the ambient PM2.5-induced deaths (GBD, 2019). This es
timate was higher than our present result partly due to an update esti
mate in the GBD, which for example used to be 1.12 million in 2014 but 
now re-estimated at 1.79 million (Yun et al., 2020). Zhao et al. (2018) 
estimated that PM2.5-related premature deaths in 2015 was about 1.22 
million. For only ambient exposure, Li et al. (2020) estimated 1.30 (95 % 
CI: 0.66–1.79) million premature deaths in 2016, and Wang et al. (2019) 
estimated 0.95 and 1.04 million in 2010 and 2020, respectively. Because 
of different methods (e.g. exposure-dose relationship and with or 
without indoor exposure considered) and basic datasets (e.g. pollutant 
concentration, activity data and mortality rates), the absolute number of 
premature deaths due to air pollution reported differed in literature 
(Yun et al., 2020; Li et al., 2020; Wang et al., 2019). Our results are 
generally within these estimates giving methodology differences and 
uncertainties into the consideration. 

Inequality in the PM2.5-relaetd premature deaths across different 
income group did exist. Of the 1.13 million premature deaths in 2019, 
about half (49.6 %) were the rural people, though the urbanization rate 
in China was 60.6 % (China Statistical Yearbook, 2020). The median 
value of per-capita income people died from PM2.5 exposure was 28,400 
RMB, lower than the national average income of 30,700 RMB/capita. 
Over half of people died from the PM2.5 exposure was low and low- 
middle income population (Fig. 3A), whereas only 14 % of peopled 

died from PM2.5 exposure were the high-income people. The premature 
death number per million people was significantly negatively correlated 
with the income per capita, as seen in Fig. 3B (p < 0.001), suggesting 
higher premature death fractions from the PM2.5 exposure in the lower 
income group due to much higher exposure levels. As mentioned, the 
estimated absolute number of PM2.5-related premature deaths may vary 
due to methodology difference, and the GBD updated global, regional, 
and country estimates using the latest exposure–response relationship, 
as well as updates on other parameters, resulting in a new estimated 
number. However, this is thought to less-likely affect the observed 
inequality issue in the PM2.5-premature deaths among different income 
groups, that is, more premature deaths were from the low-income 
population. The concentration curves were above the line of equality, 
and the C value in PM2.5-realetd death was negative, at − 0.129 (95 %CI: 
− 0.144 to − 0.114) (Fig. S9). 

3.3. Reduced inequality under spontaneous transition and intervention 
measures 

Though exposure inequality was common and is not expected to be 
eliminated soon, it is found that the degree of inequality did change 
substantially over time. From 2000 to 2019, the national average 
exposure to ambient PM2.5 increased firstly till 2013 attributed to 
increased air pollution problem in the country under rapid economic 
growth and industrialization, and then declined to 23.1 μg/m3 in 2019. 
For all five income groups, the exposure to ambient PM2.5 increased 
gradually from 2000 to 2010 (Fig. s10), but the increasing rates, ranging 
from 3 % to 19 %, were different across different income groups. Much 
greater increases were observed for the relatively high-income groups, 
in both urban and rural areas. Since the late 2013 and early 2014, a 
series of strict countermeasures to address PM2.5 were efficiently 
implemented, especially in several heavily polluted regions, such as 
Jing-Jin-Ji in the North China Plain (NCP), Yangtze River Delta (YRD) in 
East China, and Pearl River Delta (PRD) in Southeast China, where the 
ambient air quality has improved significantly since then (Cheng et al., 
2021; Jiang et al., 2015; Lu et al., 2020; Ma et al., 2019; Tong et al., 
2019). Compared to 2014, the ambient PM2.5 exposure levels in 2019 
decreased by 34–50 %, but also varying in different income groups. The 
concentration curve clearly lies below the equality line and confirms a 
disproportionate exposure distribution across the population (Fig. 4A). 
The positive Concentration Index (C) values of ambient PM2.5 exposures, 
namely 0.071 (0.053–0.090), 0.100 (0.083–0.117), 0.104 
(0.084–0.124), and 0.099 (0.080–0.118) in 2000, 2010, 2014 and 2019, 
respectively, confirmed more concentrated ambient PM2.5 exposure 
among the rich, and it is clearly evident that the exposure inequality in 
ambient PM2.5 exposure reduced in 2019 compared to that in 2014 when 
the toughest-ever air pollution countermeasures were issued. 

Meanwhile, the total PM2.5 exposure decreased gradually from 

Fig. 3. The total PM2.5-associated premature deaths and the proportions from different income groups in China (A), and the relationship between the premature 
deaths per million people and the per-capita income (B). Note that data for Hong Kong, Macao, and Taiwan province are not available in this study. 
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139.4 μg/m3 in 2000 to 48.4 μg/m3 in 2019. The total exposures 
dropped substantially, especially notable for the low and lower-middle 
income groups (Fig. s11). The concentration curves were above the 
line of equality, and negative C values of both the total PM2.5 exposure 
and PM2.5-associated premature deaths suggested that the total expo
sure and associated premature deaths concentrated among the poor 
(Fig. 4A). The C value of the total PM2.5 exposure, namely − 0.203 
(-0.219 to − 0.186), − 0.182 (-0.196 to − 0.168), − 0.071 (0.088 to 
− 0.054), and − 0.091 (-0.110 to − 0.072) in 2000, 2010, 2014, and 
2019, respectively, indicated that the level of exposure inequality was 
declining (Fig. 4B). The rapid reduction in total PM2.5 exposure 
(Fig. s11) was explained by the clean household energy transition, with 
more people utilizing clean energy sources such as gas and electricity to 
replace traditional solid fuels in their daily lives (Tonne et al., 2018; 
Stoner et al., 2021; Shen et al., 2022). Note that the C values of the 
PM2.5-associated premature deaths, namely − 0.120 (-0.132 to − 0.108), 
− 0.145 (-0.155 to − 0.135), − 0.099 (-0.111 to − 0.086), and − 0.129 
(-0.144 to − 0.114) in 2000, 2010, 2014, and 2019, respectively, were 
significantly different from zero, and did not show a decreasing trend as 
that in the total PM2.5 exposure. 

The decline in the total PM2.5 exposure from 2000 to 2019 was much 
more apparent for the rural populations in all income groups (Fig. s10); 
while for the urban residents, the temporal changes had distinct char
acteristics for the different income groups. The total exposures were 
high in 2000 and low in 2019, but did not linearly decline. The high 
exposure levels in 2000 were attributed to high indoor exposures, while 
the high exposures in 2010 were mainly due to severe outdoor air 
pollution, as many urban residents already switched to clean household 
energy. For the high-income urban population, as the indoor exposures 
contributed less than outdoor exposures to the overall total, the total 
exposure increased from 2000 to 2014 and then declined, with the 
exposure level in 2019 being close to that in 2000. 

3.4. Discussion and implications 

The present study found that in China, exposure to ambient PM2.5 
was generally high in the high-income group. This was different from 
many observations in developed countries (Tonne et al., 2018; Hajat 
et al., 2013; Milojevic et al., 2017). Poverty- and race-related environ
mental inequality studies in the U.S. have highlighted the severe 

exposure and adverse health impacts among low income or low socio
economic status populations (Bell and Ebisu, 2012; Brochu et al., 2011; 
Jones et al., 2014; Paolella et al., 2018; Tessum et al., 2021). Hajat et al. 
(2013) showed that in the U.S., per unit increase in the z score of family 
income was associated with a drop of 0.03 μg/m3 in the PM2.5 concen
trations. In China, the high-income population are mostly living in 
relatively developed regions, e.g. the eastern and coastal areas, where 
ambient air pollution was also serious. Consequently, high ambient 
PM2.5 exposures, mainly from sources such as industry and trans
portation sectors, were observed for the high-income groups, especially 
before 2013 when a series of strict tough-ever PM2.5 control counter
measures were taken (Tong et al., 2019; Jiang et al., 2015; Lu et al., 
2020). A measure-by-measure evaluation showed that actions like up
grades on industrial boilers, phasing out outdated industrial capacities, 
strengthening emissions standards in power plants and emission- 
intensive industrial sectors effectively reduced ambient PM2.5 (Zhang 
et al., 2019). However, the present study revealed that these control 
policies appeared to be more effective in reducing the ambient PM2.5 
exposure for the richest group. These populations are mostly located in 
central China and in the relatively developed urban areas in the west. 
The air pollution issues in these areas should be given more attention, in 
addition to the well-known NCP, YRD and PRD areas. People are 
disproportionately receiving benefits from the air pollution control 
policy. These areas should have a highly responsible spirit and use their 
wisdom to balance economic development with ambient air quality 
improvement. 

Most people spend more time indoors. If impacts of indoor com
bustion emissions on ambient air and exposure were considered, relative 
contributions of indoor emissions would be more significant. For 
example, it was found that, on the national average, even though resi
dential energy use (mainly solid fuels combustion) accounted for only 8 
% of total energy consumption, residential emissions contributed to 23 
% of outdoor PM2.5 and 71 % of indoor PM2.5, resulting in relative 
contributions to population-weighted exposure and premature deaths of 
~70 % (Yun et al., 2020). By considering indoor exposure, our study for 
the first time clearly demonstrated a rather distinct inequality concern 
regarding the total PM2.5 exposure relative to the ambient PM2.5 expo
sure. Indoor exposure contributed to ~90 % of the total exposure, and 
because of the high reliance on traditional solid fuels, such as coal and 
biomass fuels for daily cooking and heating in the low-income groups, 

Fig. 4. Concentration curves for the ambient and total PM2.5 exposure from 2000 to 2019 in China (A), and the calculation means of the Concentration Index values 
(B). Note that data for Hong Kong, Macao, and Taiwan province are not available in this study. If the concentration curve coincides with the 1:1 line, it indicates that 
PM2.5 exposure is equal across different income levels and the concentration index is zero. If the concentration curve is below (above) the 1:1 line, it indicates that 
exposure is concentrated among the rich (poor) and the concentration index is positive (negative). 
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severe indoor air pollution results in high PM2.5 exposure among them. 
The negative C values indicated concentrated total PM2.5 exposure 
among the poor. The most past studies so far on exposure inequality on 
air pollutant primarily focused on ambient pollutants like particles and 
SO2. Indoor exposure was ignored or simply assumed to be equal to that 
outdoor. With strong internal sources, indoor air pollutant concentra
tions in most cases are higher than the outdoor air pollution, therefore, 
ignoring indoor exposure would result in high underestimation of the 
total exposure. As the low-income population or those with relatively 
low social-economic statues, on the global scale, had high reliance on 
traditional solid fuels, and suffered from severe household air pollution, 
their exposure and consequently adverse health outcomes would be 
obviously underestimated, and the observation in exposure inequality 
might be biased. 

The study highlighted that clean household energy transition effec
tively reduced the exposure equality. Changes in household fuels were 
identified to be a major driver in reducing PM2.5 exposure and prema
ture mortality associated with air pollution in China. A nearly sponta
neous transition to clean energy has occurred in cooking activity during 
the past three decades, but for heating, the clean transition is not as 
significant as that for cooking, and official interventions can make 
notable progress in heating energy switching, especially in the northern 
areas. It was recently estimated that nearly-one in three people around 
the world still rely on traditional solid fuels, and residential emissions 
are a major source that contribute to air pollution-associated premature 
deaths (McDuffie et al., 2021). If the equality in PM2.5 exposures and 
adverse health outcomes are high priority concerns, the poor suffering 
from high total PM2.5 exposure and indoor air pollution should be 
addressed; but unfortunately, many studies and policies still have only 
discussed ambient air pollution. 

The study revealed contrasting exposure disparities between the 
ambient and total PM2.5 levels across the different income groups in 
China and the importance of indoor air pollution controls in protecting 
human health by reducing exposure to air pollution. There might be very 
similar issues in other developing countries, that is, the exposures 
concentrated among the poor, and household energy transition signifi
cantly reduced the exposure equality. 
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