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SUMMARY

The reliable forecasting of seismic sequences following a main shock has practical implications
because effective post-event response is crucial in earthquake-stricken regions, aftershocks can
progressively cause increased damage and compound economic losses. In the South Iceland
Seismic Zone (SISZ), one of two large transform zones in Iceland where earthquake hazard is
the highest, an intense seismic sequence took place during 17-24 June 2000, starting with a My,
6.4 main shock on 17 June 2000, followed by another M,, 6.5 main shock four days later and on
a different fault. Both earthquakes caused considerable damage and incurred heavy economic
losses. They were immediately followed by intense aftershock activity on the causative faults
and triggered earthquakes as far as 80 km away along the transform zone. To investigate
the feasibility of forecasting the progression of such complex sequences, we calibrated a
spatio-temporal epidemic-type aftershock sequence (ETAS) clustering model to the June 2000
seismic sequence in the framework of Bayesian statistics. Short-term seismicity forecasts
were carried out for various forecasting intervals and compared with the observations, the first
generated a few hours after the first main shock and followed by daily forecasts. The reliability
of the early forecasts was seen to depend on the initial model parameters. By using an adaptive
parameter inference approach where the posteriors from each preceding forecasting interval
served as informative priors for the next, the fast convergence of the parametric values was
ensured. As a result, the 16-84 percentile range of the forecasted number of events captured
the actual number of observed events in all daily forecasts, and the model exhibited a strong
spatial forecasting ability, even only a few hours after the main shock, and over all subsequent
daily forecasts. We present the spatio-temporal ETAS parameters for the June 2000 sequence
as ideal candidates of prior estimates for future operational earthquake forecasting of other
Icelandic aftershock sequences. Past seismic sequences need to be analysed retrospectively
to confirm the stability of the parameters of this study, effectively enable the application of
the Bayesian ETAS model as an operational earthquake forecasting system for aftershocks in
Iceland.

Key words: Probabilistic forecasting; Statistical methods; Earthquake interaction, forecast-
ing, and prediction; Bayesian inference; Operational earthquake forecasting.

1 INTRODUCTION

Iceland is the most seismically active region in northern Europe. The interplay of the mid-Atlantic ridge, an extensional boundary between
the Eurasian and North American tectonic plates, and the Icelandic hot spot, a localized upwelling of mantle material, is responsible for the
intense seismic and volcanic activity in Iceland. An eastward ridge-jump on land has formed two major transform zones, the South Iceland
Seismic Zone (SISZ) in the south and the Tjornes Fracture Zone (TFZ) in the north which also extends offshore (Fig. 1; Einarsson 1991, 2014;
Rognvaldsson et al. 1998; Stefansson et al. 2008). Historically, the most destructive earthquakes and intense seismic sequences in Iceland
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Figure 1. A map of Iceland’s topography and bathymetry, showing the spatial distribution of significant earthquakes (M > 3.3) in Iceland from 1904 to 2019
(coloured circles, with darker colours and larger symbols denoting relatively larger earthquakes; Jonasson et al. 2021) with emphasis on the two transform
zones of the country, the SISZ-RPOR and TFZ where strike-slip earthquakes dominate (see text). The location of the capital region of Reykjavik is also
indicated, along with the key southwest—northeast aligning volcanic zones where active tectonic extension dominates: the offshore Reykjanes Ridge (RR), the
Western Volcanic Zone (WVZ) and the Eastern Volcanic Zone (EVZ). The Northern Volcanic Zone (NVZ) is aligned from north to south primarily. The arrows
indicate the approximate direction of plate motions of the North American and (left-hand side) and Eurasian (right-hand side) tectonic plates, respectively.

have occurred in these transform zones, in particular the SISZ and TFZ (Einarsson 1991, 2010, 2014; Stefansson et al. 1993, 2008; Metzger
& Jonsson 2014; Einarsson et al. 2020; Steigerwald et al. 2020). Thus, the seismic hazard in Iceland is highest in these zones with design
peak ground accelerations of 0.50 g associated with 10 per cent probability of exceedance in 50 years (Standards Council of Iceland 2010).
The SISZ coincides with a relatively densely populated agricultural region that contains all critical infrastructure of a modern-day society
such as towns, roads, bridges, industrial companies, power plants (geothermal and hydropower) and lifeline networks. Notably, towards the
west the transform fault system of the SISZ extends all along the Reykjanes Peninsula Oblique Rift (RPOR, see Fig. 1; Steigerwald et al.
2020). The dense concentration of ~2/3 of the country’s population in the nearby capital region of Reykjavik exposes it to the hazard of
the seismogenic faults of the SISZ and RPOR, making this part of the country the region of highest seismic risk in Iceland [see Darzi et al.
(2022a) for detail seismic risk assessment for an earthquake scenario of M, 6.3 May 2008 in SISZ].

While historical earthquake catalogues for the entire Iceland indicate that the average annual frequency of occurrence of M,, 6 or larger
is ~0.06-0.07 (i.e. every ~15 yr), the fact is that the occurrence of strong earthquakes in Iceland is highly episodic and reveals significant
clustering in time (and space). For example, intense sequences of moderate-to-strong earthquakes repeatedly take place in the SISZ, with
multiple main shocks over a period lasting from a few weeks to a few years or a couple of decades (Einarsson 2014). One of the most recent
intense seismic sequences was the June 2000 sequence during which the two largest Icelandic earthquakes took place in SISZ with less than
4-d time interval. The June 2000 sequence started abruptly by the first main shock occurred on 17 June 2000 with M,, 6.4 and the second
one happened on 21 June 2000 with M,, 6.5. Both main shocks were followed by a period of intense aftershock activity on the causative
faults in addition to multiple dynamically triggered events larger than M,, 5 that occurred immediately after the first main shock on 17 June
(Arnadéttir er al. 2001, 2006; Pagli et al. 2003; Pedersen et al. 2003; Sigbjornsson & Olafsson 2004).

Over the last decade, the earthquake forecasting research has shown that it is becoming increasingly more feasible to forecast the
spatio-temporal evolution of seismic sequences, that is aftershocks triggered after a strong earthquake main shock (Zhuang et al. 2002; Ogata
& Katsura 2006; Console ef al. 2010; Llenos & Michael 2017; Marzocchi et al. 2017; Schorlemmer ef al. 2018; Taroni et al. 2018). This
has practical importance because the aftershocks can progressively cause increased damages and economic losses, and effective post-event
response is crucial to reduce such losses in the earthquake-stricken regions. For example, the 2011 A, 9.0 Japan earthquake and tsunami
was preceded by a M,, 7.3 earthquake 2 d earlier (Nanjo et al. 2013; Ogata et al. 2013). On a short timescale, earthquake sequences show a
high degree of clustering in space and time, meaning that the probability of triggering increases with initial shock’s magnitude and decays
with elapsed time. Understanding the clustering pattern and the statistical features observed in earthquake catalogues is expected to improve
forecasts indicating changes in the short-term earthquake probability (Jordan ez al. 2011).

2202 19quianoN gz Uo Jasn uopuoT 869]100 Ansieniun Aq G0ZES29/9€Z 1/2/ZEZ/a101e B W00 dno olwspeoe)/:sdjjy WoJj paPEOUMOQ



1238 A. Darzi et al.

Earthquake clustering and triggering models used in aftershock forecasting can be applied to short-term earthquake forecasting. The first
generation of operational earthquake forecasting (OEF) models used for short-term clustering of earthquakes was mostly based on statistical
evaluation of seismicity. For instance, Reasenberg & Jones (1989) introduced a seismicity model to forecast aftershock decay rate after a
large main shock based on a combination of two universal empirical laws, the Omori-Utsu (Omori 1894; Utsu 1961; Utsu & Ogata 1995)
and the Gutenberg—Richter (Gutenberg & Richter 1944) which are the strongest relations in statistical seismology. The so-called Modified
Omori (MO, Utsu 1961) model has been used widely to generate automated alerts following moderate earthquakes in California (Field et al.
2016). Recently, Jalayer et al. (2011), Ebrahimian et al. (2014), Page ef al. (2016) and Hardebeck et al. (2019) improved the performance
of MO seismicity model using the Bayesian updating of the model parameters. However, the MO model suffers from several deficiencies.
For example, the model assumes all aftershocks are triggered by the main shock which is not an accurate assumption (e.g. second-order
triggering), the model does not include spatial information (see Ebrahimian ez al. 2014 for including a spatial term to MO model) and performs
poorly for complex seismic sequences and swarms of multiple similar-sized events (Marzocchi et al. 2017).

Most OEF systems appear in recent years to be converging towards an Epidemic-Type Aftershock Sequence (ETAS) model (Harte 2014,
2017,2019; Marzocchi et al. 2014; Omi et al. 2014; Field et al. 2017) which is a space—time—magnitude clustering model, initially introduced
by Ogata (1998). According to several studies (Marzocchi & Lombardi 2009; Schorlemmer et al. 2018; Taroni et al. 2018; Nandan et al.
2019), the ETAS model ranks top amongst the best models of earthquake forecasting developed to date and particularly outperforms other
statistical and physics-based models of seismicity (Console e al. 2007; Taroni et al. 2018). Contrary to MO model, the ETAS model is
capable of forecasting the evolution of complex seismic sequences (e.g. 20162017 Amatrice-Norcia) and accounts for secondary aftershock
sequences, that is for sequences with large enough aftershocks that can trigger many of their own aftershocks (Ebrahimian & Jalayer 2017;
Llenos & Michael 2017; Marzocchi ef al. 2017; Nandan et al. 2019).

Recently, Douglas & Azarbakht (2020) indicated that an OEF system could be cost-beneficial for high seismic hazard regions such as
Iceland through low-cost, short-term mitigation actions (i.e. costing less than 0.1 per cent of the mitigated losses) that can be performed
before a large impending earthquake (if the increase in the weekly forecasted seismicity is moderate). In general, OEF systems mainly find
application in seismic regions where dense regional earthquake monitoring network are in place and capable of real-time earthquake detection,
even during intense earthquake sequences, for example aftershocks after a strong main shock or triggered earthquakes in the region. The
national seismic network started in 1991 in the South Iceland Lowland (SIL) by the Icelandic Meteorological Office (IMO) and detects and
records earthquakes with a very low earthquake magnitude of completeness in the SISZ due to both its dense distribution of stations and its
effective phase correlation algorithm (Stefansson 2020). As a result, a complete high-quality SIL data set of seismic data for SW-Iceland exists
and thus provides a unique opportunity to explore the feasibility, limits and benefits of an OEF system for southwest Iceland by retrospectively
analysing its sequences in a systematic way.

While a prototype OEF system based on an ETAS model proposed by Eberhard (2014) has been run internally at the IMO since
December 2014 for the SISZ and RPOR, it has not found practical use. Moreover, it suffers from several shortcomings such as (i) covering
only southwest Iceland with a relatively large spatial grid size of 0.025°, (ii) use of earthquake catalogue from the broad range of 1991-2006
from the whole Iceland to determine the ETAS model parameters, thus ignoring the potential effects of different learning time intervals, (iii)
using constant model parameters and (iv) ignoring model parametric uncertainty (Eberhard 2014).

These are significant shortcomings as several studies have shown that the estimation of ETAS model parameters is both challenging
and is subjected to a large amount of uncertainty (Lombardi 2017; Shcherbakov et al. 2018). Nevertheless, majority of ETAS applications
run based on the plug-in estimates (i.e. using maximum likelihood point estimates for model parameters) and thus, provide the probability
of an upcoming large aftershock without considering the uncertainties in the estimation of the model parameters. Particularly, the large
model parameter uncertainty applies in the early aftershock period can be primarily caused by detection and recording problems and thereby
substantial deficiency of data (Omi et al. 2013; Seif et al. 2017). Therefore, it is critical to take heed of the uncertainty of the ETAS parameter
estimation and in that respect, the Bayesian statistical framework appears to be ideal as it allows the use of prior distributions of model
parameters to explicitly evaluate their posterior distributions and their uncertainty therefore to be explicitly quantified. There have been only a
few studies on the Bayesian-based ETAS model parameter updating (Jalayer & Ebrahimian 2014; Ebrahimian & Jalayer 2017; Kolev & Ross
2019; Shcherbakov et al. 2019; Convertito et al. 2021; Ross 2021). Then, Ebrahimian & Jalayer (2017) proposed a fully simulation-based
and robust framework for providing the spatio-temporal distribution of the events that are going to happen in a prescribed forecasting time
interval after the main shock. This method captures the uncertainties in the ETAS model parameters and simulates the seismic events that
can occur during the forecasting time interval of interest. They provided retrospective forecasting for 2016 Amatrice seismic sequence in
central Italy and illustrated promising results. This workflow was successfully applied to the earthquake sequences between 1995 and 2018
in Greece (Azarbakht ef al. 2022) as well as induced seismicity of St Gallen deep geothermal field in Switzerland (Convertito et al. 2021).
Most recently, in Iceland, Darzi et al. (2022b) assessed the forecasting capability of the method to predict the upcoming earthquakes in space
and different short time intervals during several stages that commenced with the damaging 29 May 2008 Olfus earthquake (M,, 6.3) in SISZ.

In this study, we calibrate a Bayesian spatio-temporal ETAS model to the June 2000 seismic sequence in the SISZ and RPOR in SW-
Iceland and present the model parameters along with their corresponding uncertainties. On that basis we explore the forecasting capabilities
of the model both for providing the spatial distribution forecasts as well as the total number of forecasted events larger than a specific cut-off
magnitude, for a range of short-term forecasting time intervals of various start times and durations. We present the corresponding distributions
of forecasted number of aftershocks and compare with the actual observations. We then assess the sensitivity of the posterior distributions
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Figure 2. Geographical distribution of the June 2000 earthquake sequence in the SISZ and RPOR. Earthquakes with A/ > 2.0 occurred from 17 June up to
25 June 2000 are plotted. Note that data are from the earthquake catalogue provided by Panzera et al. (2016). Red triangles depict Icelandic Seismic Network
(SIL) stations. The surface expressions of past transform faulting lines are reproduced, from Einarsson (2014), Einarsson et al. (2020) and Steigerwald et al.
(2020), in the RPOR and western SISZ. The straight north—south lines in the central and eastern SISZ schematically indicate the extents of large earthquakes,
inferred by Roth (2004).

of the spatio-temporal ETAS model to various initial prior values to scrutinize the reliability of the forecasts. We present the optimal set of
parameters that are recommended as informative priors for any spatio-temporal Bayesian seismicity forecasts of future seismic sequences.

2 THE JUNE 2000 EARTHQUAKE SEQUENCE IN THE SISZ

Instead of a long and narrow sinistral transform zone along the East to West axis of the SISZ and RPOR transform zones, the causative
faults of strong earthquakes in the zones are dextral, striking north to south. The faults form an array of densely spaced, short parallel and
near-vertical strike-slip faults (see Fig. 2). In addition, the strike-slip faults of the RPOR intersect several SW-NE striking volcanic fissure
swarms. The faults indicated in Fig. 2 by straight and long N—S black lines are the estimated surface fault projections of large historical
earthquakes in the SISZ (Roth 2004), while shorter lines indicate mapped surface fractures associated with transform faults in the SISZ and
RPOR (Einarsson 2014; Einarsson et al. 2020; Steigerwald et al. 2020).

The seismogenic potential of the SISZ and RPOR varies systematically, with the largest historical earthquake of M,, ~ 7.0 having
occurred in the easternmost part of the SISZ in 6 May 1912 (Bjarnason et al. 1993; Bellou et al. 2005; Jonasson et al. 2021). The plate
movement in SW-Iceland is thus considered capable of producing earthquakes in the magnitude range 6—6.5 with return periods of a few
decades (Einarsson 1991, 2010, 2014; Sigmundsson et al. 1995; Sigmundsson 2006; Einarsson ef al. 2020; Steigerwald et al. 2020). However,
the occurrence of strong earthquakes in Iceland is highly episodic as they are usually followed by a period of intense aftershock activity
and moderate-to-strong triggered earthquakes over the transform zones. An example is the major sequence that occurred during 18961912
resulting in six earthquakes that were distributed along the entire length of the SISZ. Then, over the last few decades, moderate-to-strong
tectonic earthquakes have taken place in the SISZ including the 25 May 1987 Vatnafj6ll (M,, 6.0), 4 June 1998 (M,, 5.5), 17 June 2000 (M,,
6.4, M, 5.7), 21 June 2000 (M,, 6.5) and 29 May 2008 (M,, 6.3) earthquakes.

Fig. 2 shows the June 2000 seismic sequence from 17 June 2000 to 25 June 2000 with M > 2.0 that occurred in the SISZ and RPOR. At
15:40 UTC on 17 June 2000, a M,, 6.4 earthquake occurred in the eastern part of the SISZ (shown with a yellow star in Fig. 2), immediately
followed by an intense aftershock sequence on and around the causative fault. Two M, 5.7 earthquakes in the SISZ (shown with green circles
in SISZ in Fig. 2) and one M,, 5.7 earthquake in eastern SISZ (the rightmost green circle in RPOR in Fig. 2 happened less than 2 min since the
17 June main shock. The aftershocks extended 80 km to the west in central RPOR (see Fig. 2). Three and a half days after the first main shock,
at 00:51 UTC on 21 June 2000, a M,, 6.5 earthquake occurred on a neighbouring fault (see the yellow star in Fig. 2) in central SISZ. These
two strong events took place on two separate but parallel near-vertical north-striking transform faults located approximately 18 km apart
and caused damage in the nearby towns and rural farmhouses (Sigbjornsson & Olafsson 2004). The seismicity increased significantly in the
whole of southwestern Iceland, with thousands of microearthquakes (i.e. having moment magnitude smaller than around 2) recorded by the
SIL network associated with the activation of ~90 km of the plate boundary (Hjaltadottir 2009), while the seismic triggering was attributed to
dynamic processes (i.e. wave propagation) (Antonioli ef al. 2006). Although both main shocks were followed by intense aftershock sequences,
the seismicity rate decayed considerably fast. It has been noted that the June 2000 earthquakes occurred after almost nine decades of relative
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quiescence since the major sequence of 18961912, but are estimated to only having released one-fourth of the strain accumulated across the
SISZ since then (Arnadéttir 2004; Einarsson 2014).

A complete parametric catalogue for southwest Iceland of earthquakes recorded by the SIL network from 1991 to 2013 has been
assembled and revised by Panzera et al. (2016). This catalogue forms the basis of the analysis carried out in this study. The recording sites of
the SIL network are shown as red triangles in Fig. 2.

Fig. 3(a) shows the magnitude-time progression for M > 1.0 of the entire catalogue starting from 10 June until 25 June 2000. Note that
no notable events preceded the M,, 6.4 earthquake at 15:40:41 UTC on 17 June 2000. Fig. 3(b) then shows the temporal evolution of the
daily number of earthquakes with M > 2.0 (left-hand axis) from 17 to 25 June (shown with blue circles) illustrating also the distribution of
their magnitudes lumped per day (right axis) which are depicted by red circles proportional in size to their corresponding moment magnitude.
A total of 280 earthquakes with M > 2.0 occurred on 17 June and more than 100 events occurred on 18 and 21 June 2000. The seismicity
decays rather fast as the sequence of significant aftershocks appears to last only a few days.

3 THE SPATIO-TEMPORAL SEISMICITY FORECASTING FRAMEWORK

3.1 Theoretical concept

The spatio-temporal ETAS model describes the earthquake occurrence rate by a non-homogenous Poisson point process as a function of
magnitude, space and time. This seismicity occurrence model is used herein to perform robust seismicity forecasting by using the Bayesian
parameter estimation technique (Ebrahimian & Jalayer 2017).

Tend
N (X7)/,m|seq, Mcut) = Nb (X,y,m| Mcut) + .f )»ETAs(f,X,y,m|Seq7 Mcut)dt- (1)

start

The conditional number of earthquakes (denoted as N) is calculated based on two terms shown on the right-hand side of eq. (1).
The first term is the background seismicity (N,) which is often considered to be time-independent indicating the long-term seismicity; it
is assumed to be caused by the similar underlying process such as seismotectonic movement. The second term quantifies the number of
events with potential of triggering offspring of its own during a specific forecasting time interval, denoted as [Ty, Tena], based on the
aftershock triggering function. 7y, and T, are the starting and ending times of issuing forecast. Agras(?, x, y, m|seq, M.,) expresses the
conditional rate of occurrence of earthquakes with magnitude equal to or above m at time ¢ elapsed after 7, (where T is the origin time
of the seismic sequence of interest) within a spatial cell with the central location of (x, y) located within the aftershock zone using ETAS
model. This rate is conditioned on the lower cut-off magnitude, denoted as M., as well as the observation history, denoted as seq hereafter,
which indicates the sequence of events available at the time of forecast. Note that seq is comprised of N, number of events including
the main shock and series of aftershocks (or foreshocks) that took place in the time interval [7p, Ty,). The mathematical expression can
be seq = {(t;, xi, vi, M), To < t; < Tyart, M; > Moy, 1 = 1: Ny}, where ¢; is the arrival time for the ith event with magnitude M; and
location (x;, ;). M.y is the magnitude equal to or greater than the completeness magnitude of the seq. The calculation of the number of
events in eq. (1) will be further expanded and explained in Section 3.2 (see eq. 3). Thus, we have:

_ K K
Aetas (1, %, y, m|0, seq,, Me,) = e P —Mew Z |:Keﬁ(M/ o) (—1 t_*_C)P (2 +RdQ)q} ’ )
Y J

tp<t

As can be seen in eq. (2), Agtas represents the spatio-temporal ETAS triggering function which presents the influence of registered
seismicity with #; < ¢. It consists of three main empirical functions as follows: (1) the magnitude-dependent aftershock productivity by a
parent earthquake associated with the Gutenberg—Richter relationship, characterized by parameter §. It is noteworthy that in the ETAS model
used herein, the triggering ability coefficient, , with the dimension magnitude ™ is assumed to be equal to the parameter 8. This assumption
is discussed in detail in Papadopoulos et al. (2021). In summary, in case of spatio-temporal ETAS models (such as the present study), the
value of o can be significantly underestimated because of four possible reasons: (i) aftershock incompleteness (Hainzl et al. 2013), (ii)
excessive smoothing of the background distribution (Harte 2013), (iii) potential time-dependence of the background rate (Hainzl ez al. 2013)
and (iv) the adoption of an isotropic kernel for the aftershock distribution (Hainzl e al. 2008). As a result, a common practice to avoid any
of the above potential bias is to impose « = f which is the assumption taken in the current study that can also reduce the number of ETAS
parameters that are going to be updated through the Bayesian method. See Convertito et al. (2021) for an updated version of the same ETAS
model where the conditional aftershock triggering rate « is distinguished from Gutenberg—Richter seismicity parameter §; (2) the temporal
decay of aftershocks defined by the Omori—Utsu law, characterized by parameters ¢ and p and (3) the spatial decay of aftershocks relative
to the epicentre of the parent event, characterized by parameters d and ¢q. Parameters K, Kr and K satisfy the achievement of asymptotic
compatibility between ETAS predictions and the long-term seismicity. In total, the spatio-temporal ETAS model parameters, denoted as 6,
includes a vector of [, ¢, p, d, q, K, Kz, K{].

As mentioned above, seq, corresponds to the observed events in the catalogue with magnitude equal to or greater than M., that happened
up to the time 7. In other words, seq, = {(¢;,x;,y;, M;),t; <t, M; > M}, where j is the index for events in seq, with the arrival time ¢;,
the epicentre coordinates (x;, y;) and magnitude ;. The r; is the distance between each event j and the point (x, y). Note that events with
M; > M., are assumed to have the potential of triggering aftershocks of their own.
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3.2 Seismicity forecasting framework

The robust earthquake forecasting framework used herein is based on the ETAS model, and results in spatial distribution of seismicity as
well as the number of events with magnitudes larger than a desired threshold for a target forecasting time interval. It is used for a range of
short-term forecasting time interval (in order of hours to days) during the June 2000 seismic sequence.

To this end, the aftershock zone (the region affected by the main shock as well as its subsequent aftershocks) should be divided into
smaller cell units creating a mutually exclusive and collectively exhaustive subset of grid cells. Considering a specific short-term forecasting
time interval presented by [ Tyur, Tena] in €q. (2), the lower cut-off magnitude, M., is determined based on the completeness magnitude
of the subcatalogue of all events registered in the time window [7p, Ty.). Then, seq can be selected from this subcatalogue by segregating
events with M; > M. Afterwards, given known seq and M., a robust estimate of the average number of events (E[N]) in the spatial cell
unit centred at (x, y) with magnitude m > M., in the forecasting interval [ 7., Tena] i calculated over the domain of the model parameters
Qy as follows (eq. 2) is altered to eq. (3):

Tend
E [N (x,y, m|seq, M) = Ny (x,y, m|Me) + [ [ ] (Memas(t, x,y, m|seqq, 0, seq, My,)dr) .p(seqql0, seq, Mcut)dsqu}

Qp Qsqu Tstart

.p(0|seq, M,)do, 3)

where p(f|seq, M,,) is the conditional (posterior) probability distribution function (PDF) for @ given the seq and M,,. The robust estimate
for the average number of aftershock events also considers all the plausible sequences of events seq (with the domain €2cq, ) that can happen
during the forecasting time interval. Thus, p(seq,|@, seq, M.,) is the PDF for seq, given 6, seq and M., are known. We note that the
integral with respect to time in eq. (3) cannot be calculated analytically over the entire [ Ty, Zena], thus approximated by summing over the
subintervals of [#_;, #] within the generated sequence seq, (see eq. 10 in Ebrahimian & Jalayer 2017). The rate Agras is estimated over the
sequence of events that precede T.nq, that is { seq, seq, }, knowing that seq remains unchanged (observed data) among plausible samples.
Hence, a robust estimate for the average number of events can be obtained based on plausible model parameters € as per eq. (3) according
to the following steps:

Step 1: First and foremost, we define a prior distribution for the ETAS model parameters. There are two options for choosing the initial
estimates of the ETAS parameters: we can either use the ETAS parameters proposed by previous studies for the region under investigation if
available or use non-informative prior information.

It should be highlighted that although, the vector of ETAS model parameters 6 includes eight parameters, namely
[B, ¢, p, d, q, K, Kg, K], the first five parameters are ‘learned’ through Bayesian inference. In fact, parameters K, Kr and K, are
calculated directly as a function of the rest of the parameters (see eqs 4—6) satisfying three conditions to reach the compatibility that the
integral of Agras over infinite space and time needs to converge in limit to the number of earthquakes estimated by the Gutenberg—Richter
model with M > m (for detail information see Ebrahimian & Jalayer 2017). The K, and Ky are determined such that the integrating the
temporal decay term and spatial term of the ETAS, respectively, over infinite time and space, will in limit be equal to unity. Moreover, K is
calibrated such that the number of events with M > M., happened in [7j, Ty.] across the entire aftershock zone is equal to the total number
of events included in seq. Thus, five model parameters [8, ¢, p, d, ¢] are used in the updating framework herein.

Ki=(p—1D e p>1 “4)
—1
Ke=9—D = ) 240 g > 1 (5)
N
K = 0 . (6)

Tstart K‘.cﬂ(MfiMC“‘)
fTO |:er <t (t—tj+c)p dr

Step 2: In this step, having seq and M., samples of @ are generated from the posterior PDF p(0|seq, M.,) using an advanced simulation
technique. To this end, we use the Markov Chain Monte Carlo (MCMC) simulation routine (Beck & Au 2002) based on a Metropolis—Hastings
algorithm (Metropolis et al. 1953; Hastings 1970). It should be emphasized that the first 10 per cent of the entire MCMC samples during an
initial transition time are discarded. Hence, after accumulating a sufficient number of samples, the set of realizations of the model parameter
0 will reflect directly the posterior probability distribution p(0|seq, My).

Step 3: In this step, we generate a sequence of events taking place during the target forecasting interval of [ Ty, Tena] Which is denoted as
seq, in eq. (3). In order to generate seq, given the samples 0, seq and M., a stochastic procedure is adopted according to Ebrahimian &
Jalayer (2017). The procedure is illustrated by a flowchart in Fig. 4. The probability distribution p(seqg|@, seq, M.,) is given by eq. (7) as
follows:

D (seqq |0, seq, Mew) = I1; p(LAT;, x;, yi. Mi| seqy_y, 0, seq, Mcu), @)
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Figure 3. (a) Temporal evolution of the earthquakes with M > 1.0 during the June 2000 seismic sequence and (b) daily number of earthquakes with M > 2.0
shown by blue circles (left-side y-axis). Distribution of earthquake magnitudes per day shown by red circles (right-side y-axis), the diameter of red circles is
proportional to M.
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Figure 4. Generating sequences according to p(seqg |6, seq, Mcy) (see fig. S4 in Ebrahimian & Jalayer 2017). The M; shown in the flowchart is the same as
Myt used in this study.
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where seq,; = {squ[_l, (IAT;, x;, yi, ml-)} and /AT, = t; —t;_, stands for interarrival time for the ith event and implies the time
between two consecutive events. Using the probability product rule, the right-side term can be further expanded as follows:

PUAT;, x;, yi, mi|seqy_;, 0, seq, Mey) = p(m;|seqy_,, 0, seq, Mcu)
PLAT;|m;, seqq_,, 0, seq, M)
P, il l AT my, seqg;_y, 0, seq, Mey) ®)

where p(m;|seqy;_;, 0, seq, Mcy) is the marginal PDF for the magnitude m; given the earthquake sequence that precede the ith event, 6 and
Mew; p(LAT; | m; [seqy_;, 0, seq, M.,) is the conditional marginal PDF for interarrival time given the magnitude is equal to m;; and finally,
pxi, yill AT;, m;, seqg_;, 0, seq, | Mcy) is the conditional joint PDF for the spatial centre (x;, y;) given that / 47; and m; are known. In other
words, as shown in Fig. 4, in phase 1, we first generate the m; within seq, according to the truncated Exponential PDF with rate 8. Then,
in phase 2, given the m; is already generated in the previous phase, the / 47; is generated using the Thinning algorithm in which, first, the
temporal Poisson rate over the whole aftershock zone is computed (see eq. 9) for an earthquake with m; and time #;_; (denoted as pmay ). #i—1
is associated with the first earthquake that is going to happen in the target forecasting interval (i.e. fgen). Next, /4Ty, is generated from a
homogeneous Exponential PDF with the form fipaeXp(—/tmax! AT). We note that this term is equivalent to /ATy, = W
is a random number generated from a Uniform distribution from 0 to 1. By replacing #,., with #;_; in eq. (9), we calculate the Poisson rate at
time foen = ti—1 + 1 ATyen (denoted as figen). In case 14T, is accepted with the probability p = % , the phase 2 continues by producing

and 7ang

new [ ATy, until it exceeds the Teng. If #4en is rejected with probability 1 — p, a new /4Ty, is sampled from the homogeneous Exponential
PDF with rate ftmax.

HMmax = ff pETas (li-1, X, y, m;|seqy_;, 0, seq, Mc,)dxdy. ©)]
X,y
Finally, in phase 3, given m;, #; and seq,;_,(the previous events in the generated sequence) are already computed in phase 1 and 2,
the coordinates (x;, y;) are sampled. Sampling from p(x;, y;|I AT;, m;, seqy;_;, 0, seq, Mey) is described in detail in Ebrahimian & Jalayer
(2017).

Step 4: Finally, a robust estimate for N(x, y, m|seq, M.,) is obtained considering the associated uncertainties in the spatio-temporal
distribution of the sequence of events according to eq. (3). Various confidence intervals of N(x, y, m|seq, M), namely 2™, 16", 50, 84
and 98" percentiles, as well as the mean estimate are computed for each spatial cell unit and for various magnitude thresholds 7. Hence, at
this stage, the spatial short-term seismicity forecasting maps can be produced for earthquakes with magnitude equal to or above m including
their corresponding uncertainty in each cell.

Step 5: In this step, we sum the E[N(x, y, m|seq, M.,)] from eq. (3) over the entire cell units comprising the predefined aftershock zone to
obtain N(m|seq, M.,) (assuming that the integral of the spatial kernel over the aftershock zone is sufficiently close to unity). In this way, we
multiply N(x, y, m| seq, M.,) by the cell unit dimension dx dy and also the number of cell units ( = the whole aftershock zone area). The
probability that an event exceeding a given magnitude level m occurs within the aftershock zone in the forecasting interval can be calculated
by the exponential distribution as follows (Ebrahimian & Jalayer 2017):

Pr(M=m)=1— exp(—N (mlseq, M) = 1 — exp / / CE[N (v, y, mlseq, Me)] drdy | . (10)

x,yeAd

The inference of the ETAS parameters is adaptively updated, that is the posteriors of the ETAS parameters obtained from the previous
forecasting interval can be used as priors for the subsequent forecasting interval.

4. SHORT-TERM SEISMICITY FORECASTING RESULTS AND DISCUSSION

To appraise the forecasting skill of the calibrated model we attempt to replicate the progression of the June 2000 seismic sequence after the
17 June main shock over short-term forecasting intervals of various durations and starting times, both in terms of the expected number of
events and their spatial distribution in a defined aftershock region. This region is a zone that at minimum covers the geographical distribution
of the 2000 seismic sequence and here it is chosen as the entire SISZ and RPOR (see Fig. 2). For the purpose of spatial forecasting of
sufficient resolution, the aftershock zone is gridded into square approximately 1 km? cells (0.0227° longitude x 0.01° latitude). The short-
term seismicity rates for various magnitudes are estimated spatially for each grid cell. We note that the grid resolution is much higher than in
the previous study by Eberhard (2014).

We issue short-term spatio-temporal seismicity forecasts for aftershocks of magnitudes M., and larger over intervals with different start
times (7ya) after the main shocks and with durations (i.e. Teng—Tiart) ranging from 4 to 24 hr. The forecasted total number of events, their
spatial distribution and cumulative probabilities of earthquake occurrence by magnitude are reported for the defined aftershock zone. The
lower cut-off magnitude, M., is calculated using two methods explained in Section 4.1. Hence, seq (in eq. 3) is constructed by segregating
events with M > M, that occurred during [Ty, Tyuy) in the aftershock zone. Then, the Bayesian spatio-temporal ETAS model is applied
to the assembled seq available at the time of issuing forecast. In this regard, the first step is to sample values of # which are generated as a
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Figure 5. Magnitude of completeness calculation for 24-hr forecasting interval of 18 June 2000 using two methods conventional fitting (left-hand panel) and
Bayesian updating approach proposed by Ebrahimian ez al. (2014) (right-hand panel). The black dotted lines and red dashed lines show lower cut-off magnitude
(M ¢yt) and magnitude of completeness (M), respectively. The observed data points are plotted by blue circles and the maximum likelihood estimates for the
posterior probability distribution of h-value (bmpg) are depicted by black squares.

Markov Chain sequence from the posterior distribution of the ETAS model parameters, p(@|seq, M,), conditional on the M., and seq. The
MCMC samples of the ETAS parameters presented in this section are drawn from 220 iterations within the last simulation level considering
five consecutive simulation levels, which was found to be sufficient in terms of reliability of results and efficiency of simulations, in particular
for a potential OEF system for Iceland. To reach this, we thoroughly appraised the impact of number of MCMC samples of posterior PDF
p(@|seq, M.,) on the uncertainty of ETAS parameters, and consequently on the resultant seismicity forecasts based on detail convergence
diagnostic analyses (for detail, see Supporting Information S1). In the next step, seq,—simulated events that are going to take place during
the forecasting interval—is generated from the PDF p(seq,|0, seq, M.,) for the given samples of 6 (see Ebrahimian & Jalayer 2017, for
more details). It is worth noting that the effect of background seismicity is ignored in this work due to the low seismicity level prior to the
sequence (see Fig. 3). The resulting forecasted maps are shown in Sections 4.2 and 4.3.

4.1 Magnitude of completeness

The completeness of the seismic sequence, the progression of which is to be forecasted, requires the prior estimation of its magnitude of
completeness (M.) before applying the Bayesian ETAS model. Strictly speaking, M. should be estimated for each subsequent earthquake
catalogue registered at the time of issuing the forecast. The estimated M. is considered as a lower magnitude-bound of seismic sequences and
hence the desired lower cut-off magnitude, M., (see eqs 1-3) in subsequent forecasting intervals should be set greater than or equal to M..

We adopted two approaches to evaluate A,: (i) conventional linear regression analysis and (ii) the Bayesian b-value estimation method
(see Ebrahimian et al. 2014, 2019). The first approach is based on linear regression over the conventional magnitude-frequency distribution of
observed (registered) events occurred during [ 75, Ty, ). This procedure is a well-established and widely used method which is most effective
owing to the fact that our database includes a large number of small events (M < 4.0) and only a few numbers of medium-to-large magnitude
events (see Fig. 3).

In this procedure, the Gutenberg—Richter relationship is applied by fitting a linear relation to the logarithmic frequency versus magnitude
distribution log,,[N(M > m)] = a — bm of the events within [T}, Ty,r) corresponding to the desired forecasting interval. The parameters
a and b are the coefficients of linear regression, and M, is identified as the starting point of the linear attribute of log[ N(M > m)] versus m
data points. The second approach is based on Bayesian updating of the b-value against a set of magnitude thresholds. In this procedure, M. is
defined by visual inspection of the stability (invariability) of the maximum likelihood estimates (byy ) for the posterior probability distribution
of b. The magnitude threshold at which by g becomes roughly invariant represents the corresponding M, for the desired forecasting interval.
This method is similar to the b-value stability approach proposed by Cao & Gao (2002). For further explanation see Supporting Information.

We obtained M, for various subcatalogues associated with different short-term forecasting intervals evaluated in this work. For all
forecasting analyses, the M, calculation is performed automatically. For instance, Fig. 5 shows the M, calculation for the 24-hr forecasting
time interval with Ty,= 00:00 UTC of 18 June 2000 (all times UTC hereafter). The Fig. 5(a) displays log[ N(M > m)] versus magnitude m
distribution of the observed events with M > 1.0 (blue circles) that occurred during [ 7, i), Where 7y = 15:40 on 17 June 2000. The grey
line is the linear regression model. M, = 1.6 is the lowest magnitude above which log[ N(M > m)] versus m becomes linear, as indicated
with a red dashed line in Fig. 5.

The Fig. 5(b) illustrates the application of the second method, where by i is plotted against various magnitude thresholds. The magnitude
threshold at which the increasing trend in by g is stopped is M. = 2.0 (see the red dashed line). This figure reveals that b-value is not constant
but depends on a lower magnitude threshold. In this regard, Godano et al. (2014) observed three regimes: (1) Increasing b-value for M < M,
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which is attributed to catalogue incompleteness where many events are not recorded, (2) a magnitude interval where the b-value is a decreasing
function of threshold magnitude, followed by (3) a subsequent slight increase for large magnitudes. Fig. 5(b) illustrates similar attributes for
the June 2000 earthquake sequence for the 18 June forecasting interval. Furthermore, similar trends have been observed for the subsequent
forecasting intervals during the June 2000 sequence.

To comply with M., > M, while considering the time-consuming computational demand, the larger M, is chosen as M., for forecasting
analyses (i.e. M., = 2.0) and depicted by black dashed lines in Fig. 5. Similar observation was provided for the proceeding short-term
forecasting intervals and therefore, M = 2.0 is used for almost all the forecasting intervals studied herein. In general, due to lack of data in
the early aftershock period, the M, for the earlier forecasting intervals immediately after a main shock tends to be higher than the estimated
value for later forecasting intervals when more data is available. However, in this study, the incompleteness of the seismic catalogue for
early forecasts is not problematic because of the Bayesian inference enables training the ETAS model parameters during a seismic sequence
through the adaptive learning process of ETAS parameters (even in the presence of small number of registered events).

4.2 Forecasting the aftershock sequence of the 17 June 2000 earthquake

The June 2000 seismic sequence started with a M,, 6.4 main shock on 17 June 2000 at 15:40:41 (= Tj). The first seismicity forecast was
defined with Ty = 19:00 and 7i,g = 24:00 of 17 June (i.e. approximately 3:20" after the main shock with a forecasting interval of 5 hr).
The delay is not a specific number, but we estimate it to realistically reflect the actual delay in preparing the catalogue of recently recorded
aftershocks and triggered events immediately following the onset of an intense seismic sequence. This would include, for example manually
checking the automatic earthquake locations of the SIL system to ensure the reliability of the catalogue for the Bayesian ETAS forecasting
from the main shock until the start time of the forecasting interval, that is [7p, Tya.r), the calculation of M., (which in this case was equal to
2.0) preparation of the subcatalogue with M > M., as seq. The Bayesian ETAS method is subsequently applied and the forecasted number
of events in the aftershock zone, N(x, y, m|seq, Mcy) in eq. (3), is estimated for each 1 km? spatial cell units in the region.

For the main five ETAS parameters, that is 8, ¢, p, d and ¢, an informative prior distribution is desired. As this is model dependent and
these parameters have not been estimated before for any sequence in Iceland, we selected the priors based on a thorough literature review
(Seif et al. 2017; Hardebeck et al. 2019; Shcherbakov et al. 2019) from other studies done in relatively similar tectonic environments around
the world. We note that the selected parameter values have been adjusted to account for potential differences, in particular, in terms of the
functional form. Thus, for each of the main ETAS parameters, normal priors with the following mean values of the generic parameters are
assumed: B = 1.25,¢ = 0.005,d = 1.0,¢g = 1.5and p = 1.5, all with a constant and sufficiently large value of the coefficient of
variation (CV = 0.3) to create prior distributions that cover the range of reasonable values (see first column of Table 1). It should be highlighted
that in this study, normal distribution for prior and lognormal distribution for proposal have been exploited for Bayesian prediction. This is
also consistent with Shcherbakov et al. (2019) demonstrating statistically equivalent Bayesian predictive distribution for different combination
of the prior and proposal distributions except for flat priors.

We have also explored the use of ETAS parameters estimates obtained from the previous study for Iceland conducted by Eberhard (2014)
as priors in Section 4.5. It should be noted that in our forecasting analysis, in particular, to forecast aftershocks following the first main shock,
the effect of background seismicity is negligible compared to the increased seismicity rate following the first main shock on 17 June ( M,, 6.4).
This can be attributed to the rapid decay of seismicity observed in previous sequences with available data (see Fig. 3a). Therefore, including it
into the forecasting process had no effect, and as a result we assumed Ny(x, y, m| M) to be equal to zero in calculations. For all forecasting
intervals, the mean, CV and 95 per cent confidence interval (CI) associated with the posterior distribution of the eight spatio-temporal ETAS
model parameters are listed in Table 1 all being associated with well-behaved unimodal and symmetric posterior distributions.

Fig. 6(a) shows the corresponding geographical distribution of the 98th percentile of the forecasted seismicity having M > My, = 2,
corresponding to Ty,= 19:00 UTC and forecasting interval duration of 5 hr. Presented as a heat map, the likely locations of the forecasted
events are represented by progressively intense colourmap. The distribution of the forecasted number of events with M > 2 in the aftershock
zone is given by a median value (in a grey box) along with bars indicating different percentiles: 16™ and 84™ percentiles (blue numbers) and
27 and 98" percentiles (black numbers). The percentiles are compared to the actual number of observed earthquakes with M > M., that
occurred during the forecasting interval within the aftershock zone is shown by the red star. The spatial locations of these aftershocks and
triggered events are given by symbols on the map. Finally, the probabilities of at least one earthquake with a magnitude greater than or equal
to 3.5, 4.5, 5.5 and 6.5, respectively, are denoted as Pr(M > m) (see eq. 10). The geographical location of the forecasted seismicity is seen
to be very consistent with the actual occurrence of aftershocks and triggered seismicity (symbols) during the first 5-hr forecasting interval
starting at 19:00 UTC. This is also the case for other forecasting intervals of different start times and durations shown in Fig. 6 (and discussed
below), indicating the strong spatial forecasting ability of the forecasting framework only few hours after the main shock.

However, we note that the forecasted number of events considerably overpredicts the number of observed earthquakes Ny,s = 67, which
is approximately the level at which the 2nd percentile of the forecasted number is. It is worth noting that the few numbers of moderate
magnitude events including three M, 5.7 earthquakes are included in seq as they occurred few minutes after the first main shock. Therefore,
we investigate the effect of having more data on the forecasting ability of the framework by providing a new seismicity forecast that starts
one hour after the first one, that is Ty,,= 20:00, for a 4-hr forecasting interval (see Fig. 6b). The resulting ETAS model parameter estimates
(mean and CV) have been updated based on progressively richer seismic observed data (i.e. seq), and listed in the 3 column of Table 1.
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Table 1. Statistics (mean, coefficient of variation, CV and 95 per cent confidence interval, CI) of Prior and marginal posterior distribution of ETAS parameters
for forecasting aftershocks of the 17 June earthquake (My, 6.4). The forecasting intervals correspond to Figs 5 and 6 maps. The forecasting intervals’ duration
and Tt are reported in the header of each column.

ETAS parameters ~ Prior Shr 4 hr 24 hr
19:00 UTC 20:00 UTC 20:00 UTC 0:00 UTC 0:00 UTC 0:00 UTC 0:00 UTC
17-June 17-June 17-Junex 18-June 19-Juness 20-June 21-June
B Mean 1.25 0.895 0.933 0.851 0.985 1.029 1.05 1.062
(&\% 0.3 0.047 0.042 0.033 0.034 0.021 0.016 0.013
95% CI [0.817,0.972] [0.862,1.025] [0.792,0.910] [0.923,1.045] [0.987,1.068] [1.019,1.084] [1.034,1.090]
c Mean 0.005 0.005 0.005 0.0057 0.005 0.005 0.005 0.005
(&\% 0.3 0.262 0.218 0.192 0.236 0.161 0.109 0.101
95% CI [0.003,0.007] [0.003,0.007] [0.004,0.008] [0.003,0.007] [0.004,0.007] [0.004,0.006] [0.004,0.006]
P Mean 1.5 1.113 1.152 1.117 1.234 1.21 1.204 1.201
CvV 0.3 0.076 0.079 0.070 0.057 0.028 0.024 0.019
95% CI [1.004,1.276] [1.010,1.382] [1.007,1.251] [1.065,1.337] [1.145,1.268] [1.145,1.256] [1.153,1.241]
d Mean 1 1.039 1.100 1.031 1.014 0.859 0.829 0.81
CvV 0.3 0.148 0.102 0.127 0.112 0.086 0.061 0.046
95% CI [0.815,1.314] [0.915,1.310] [0.817,1.257] [0.848,1.311] [0.696,0.999] [0.745,0.914] [0.733,0.878]
q Mean 1.5 1.563 1.598 1.605 1.581 1.605 1.602 1.604
CvV 0.3 0.045 0.033 0.036 0.036 0.021 0.017 0.014
95% CI [1.446,1.676] [1.513,1.700] [1.507,1.717] [1.502,1.751] [1.533,1.680] [1.554,1.652] [1.561,1.648]
K Mean 7.743 1.726 3.143 0.699 0.609 0.59 0.576
CvV 4.508 1.439 1.774 0.475 0.093 0.082 0.061
95% CI [0.724,32.521]  [0.553,10.137] [0.674,15.354] [0.502,1.524] [0.516,0.733] [0.515,0.700] [0.516,0.659]
K; mean 0.048 0.058 0.053 0.065 0.068 0.069 0.069
CvV 0.496 0.269 0.386 0.115 0.033 0.025 0.021
95% CI [0.004,0.073] [0.010,0.072] [0.006,0.076] [0.046,0.074] [0.064,0.073] [0.065,0.072] [0.066,0.072]
Kp Mean 0.194 0.217 0.205 0.192 0.161 0.154 0.149
CvV 0.289 0.208 0.255 0.247 0.136 0.098 0.069
95% CI [0.120,0.302] [0.157,0.315] [0.134,0.317] [0.141,0.360] [0.120,0.209] [0.128,0.181] [0.130,0.170]

«For all forecasting scenarios, the M, = 2.0, except this forecasting analysis in which M is set to 1.5.
sxAfter this forecasting interval, the mean and CVs of the posteriors from the preceding interval are used as priors for the subsequent one.

The same prior values as the previous forecasting analysis (i.e. first column of Table 1) are used. The Fig. 6 (b) exhibits the corresponding
seismicity forecasting map in terms of the 98" percentile of the estimated number of earthquakes with M > 2.0. We note that compared to
the first forecasting interval that started 1-hr earlier (see Fig. 6a), Pr(M > 6.5) decrease by about 25 per cent, that is as more time passes, the
probability of experiencing another strong earthquake decreases. Still, the same relative overprediction of the forecasted number of events
(their 2™ percentile is 42) is obtained versus the observed (Ny,s = 41).

To further examine the impact of larger dataset available to the Bayesian ETAS forecasting over the admittedly relatively short forecasting
interval, we manually pick a lower M., value of 1.5, in spite of the estimated M., value of 2.0 and run forecasting analysis again for the
same 4-hr forecasting interval with T,= 20:00, but now for a richer seismic catalogue of seq. The results are shown in Fig. 6(c). This time
the forecasting performs much better with the estimated distribution of the number of events of M > 1.5 (boxplot showing the forecasted
number of events with median of 151 (16-84™ percentile interval is 126-176) being remarkably consistent with the observed number of
events (Nops = 131). Thus, when issuing forecasts in the immediate aftermath of the 17 June earthquake, the quantity of smaller events has a
significant impact on the accuracy of the forecasted seismicity. We also note that now the exceedance probabilities of forecasted earthquakes
larger than 5.5 and 6.5 are back at high values. However, no events larger than magnitude 4 occurred over the (admittedly) short forecasting
interval.

We expand the forecasting intervals from few hours to daily forecasts for the subsequent days of 18 June to 21 June with the arbitrary
starting times of midnight (7,,«= 00:00), the first one being for the entire 24 hr of 18 June 2000. The same ETAS model parameters as in the
immediate forecasts are used as priors for the first daily forecast with their prior mean and CV listed in the first column of Table 1. During
each forecasting interval, the ETAS model parameters are adaptively updated with new posteriors, that in turn serve as priors for the next
forecasting interval (i.e. the next day). The posterior statistics (mean, CV and 95 per cent CI) of all parameters computed for all forecasting
intervals are listed in subsequent columns of Table 1. The results are presented in map format in Fig. 7. They show that for the daily forecasts
from 18 to 20 June 2000, the observed number of events with M > M, = 2 are very well predicted by the robust forecasting framework
lying in the range of 16" to 84™ percentiles of the forecasted number of events.

The exception however is, as expected, the daily forecast for 21 June as it severely underpredicts the total number of observed events
(Ngbs = 118), mainly due to the fact that M,, 6.5 (at 00:51 UTC on 21 June) was not preceded by any notable increase in the seismicity.
Also, the forecast assigned only a 15 per cent probability of an earthquake larger than M,,5.5 occurring on 21 June according (Fig. 7). The
forecasting interval starting 51 min before the second main shock essentially rendered it useless as fundamental assumptions had changed.
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Figure 6. Early seismicity forecasting maps for earthquakes with M > M, across the aftershock zone following the 17 June 2000 main shock at 15:40
UTC (M6.4). The aftershock zone includes the SISZ and RPOR in SW-Iceland and outlined by the grey lines in the maps. The starting time and duration
of the forecasting time interval corresponding to each seismicity forecasting map are reported on the top of each panel. The observed earthquakes with M >
M ¢yt occurred during the target forecasting interval are depicted by different symbols w.r.t their corresponding M. Pr(M > m), m = 3.5, 4.5, 5.5and 6.5,
listed on the top left-hand corner of each map, represent the probabilities of having at least one earthquake exceeding the defined magnitude threshold across
the aftershock zone in the forecasting interval. The right-hand side error-bar illustrates the forecasted number of earthquakes with M > My for the whole
SW-Iceland for the interval: the median value (50™ percentile) is reported within the grey-filled square and the blue numbers present the 16™ and 84
percentiles and the black numbers indicate the 2" and 98™ percentiles. The number of actual observed earthquakes with M > My occurred during the
forecasting interval within the aftershock zone is shown by a red star. We note that for the first two forecasts, the Myt is equal to 2.0, while for the last early
forecasting map, the My is assumed 1.5, thereby the forecasted and observed seismicity distributions are presented for M > 1.5.

It is thus a clear indicator that an operational earthquake forecasting framework needs to use an adaptive approach to assign forecasting
intervals, essentially resetting when there is a significant change in the seismicity that was not forecasted by the preceding sequence, for
example the occurrence of a main shock event.

4.3 Forecasting the aftershock sequence of the 21 June 2000 earthquake

The M,, 6.5 earthquake on 21 June at 00:51 struck the central part of the SISZ on a different fault than the 17 June earthquake. It therefore
marks the beginning of a new seismic sequence as shown in Fig. 3, confirmed also by the rapid decay of seismicity of the previous sequence.
We therefore adjust our forecasting time intervals to start shortly after the second main shock, in a similar manner as for the first one. The
two forecasting intervals considered are (1) a 20-hr forecasting interval starting at 4:00 am UTC, approximately 3 hr after the main shock,
(see Fig. 8a) and (2) an 18-hr forecasting interval starting at 6:00 am, both ending at 24:00 of 21 June 2000 (see Fig. 8b). In the same way
as before, the corresponding seismicity forecasts for aftershocks with M > M., ( = 2.0) over the aftershock zone are shown in Fig. 8. The
box plot and error-bars show the good agreement between the forecasted number of events with A > 2.0 for both early forecasting periods
and the observed number of aftershocks (red star). Table 2 lists the corresponding mean, CVs and 95 per cent CI of the posterior distributions
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Figure 7. Daily seismicity forecasting maps for earthquakes with M > 2.0 (denoted as M2 in the colour bar label) across the aftershock zone following the
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17 June 2000 main shock at 15:40 UTC (M6.4). See the caption to Fig. 6 for more information.
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Figure 8. Early seismicity forecasting maps for earthquakes with M > 2.0 (denoted as M27 in the colour bar label) across the aftershock zone following
the 21 June 2000 main shock at 00:51 UTC (M6.5). The aftershock zone includes the SISZ and RPOR in SW-Iceland and outlined by the grey lines in
the maps. The starting time and duration of the forecasting time interval corresponding to each seismicity forecasting map are reported on the top of each
panel. The observed earthquakes with A/ > 2.0 occurred during the target forecasting interval are depicted by different symbols w.r.t their corresponding M.
Pr(M >m), m = 3.5, 4.5, 5.5and 6.5, listed on the top left corner of each map, represent the probabilities of having at least one earthquake exceeding the
defined magnitude threshold across the aftershock zone. The right-hand side error-bar illustrates the estimated number of earthquakes with A > 2.0 for the
whole SW-Iceland corresponding to the forecasting interval: the median value (50 percentile) is reported within the grey-filled square and the blue numbers
present the 16" and 84™ percentiles and the black numbers indicate the 2" and 98™ percentiles. The number of observed earthquakes with M > 2.0 occurred
during the forecasting interval within the aftershock zone is shown by a red star.

of the ETAS model parameters. We note that the priors for the key ETAS parameters for these first forecasting intervals are also listed, being
initially the same ones as for the first sequence (see Table 1). We also note that seq starts from the first main shock (=7 ) until the start time
of the above forecasting intervals.

Both early forecasts show that the observed number of events lies within the 16-84™ percentile range of the forecasted number of events.
Similarly, the spatial distribution of the seismicity forecast in the aftershock zone is consistent with the actual aftershock occurrence while
also impacted by the elevated seismicity areas associated with the first sequence following the first main shock (see the leftmost dark areas in
RPOR).

Daily seismicity forecasts for the second sequence were then generated for Ty« = 6:00 on 21 June and then again at 7y, = 6:00 on
22 June (using the priors starting from the last forecast). The corresponding forecasts are shown in Fig. 9. Both forecasts show excellent
performance with the median of 45 and 22, effectively matching the observed number of events of with M > 2.0 equal to 48 and 22,
respectively. In SISZ, the epicentral locations of the actual events are in great agreement with the forecast expectations while over western
RPOR, the forecasted dark area which is mainly influenced by the strong cluster of aftershocks occurred following the first main shock up to
19 June 2000 is not quite consistent with observation. Essentially repeating the forecasts but now for the 22", 23" and 24" of June with start
time at midnight (Ty,= 0:00), the forecasted number of events matches well the observed number of events, apart from 24" of June where
the model overpredicts considerably the number of evens (not shown). Further forecasts were not made due to the rapid decay of seismicity
with time and few if any events larger than M., = 2.0.

Compared to the second sequence, higher seismicity, that is in terms of number of events, was forecasted couple of hours after the first
main shock while both main shocks have almost similar M,,. The reason is the significantly larger and intense number of observed events
that was registered immediately following the 17 June large earthquake, in particular considering aftershocks with moderate-to-large M, (see
Fig. 3).

4.4 The ETAS model parameters’ posterior distributions

The posterior mean, CV and 95 per cent CI of the ETAS model parameters in Tables 1 and 2 were obtained from MCMC simulations
for various short-term forecasting intervals following the two large earthquake of 17 and 21 June 2000, respectively. The mean and CV of

2202 J9qWISAON §Z UO Jasn uopuoT 969]100 Aisiaalun Aq G0ZES29/9€Z1/2/2€g/a10MeB/woo"dno-oiwepese//:sdny Wwoly papeojumoq



1250 A. Darzi et al.

Table 2. Statistics (mean, coefficient of variation, CV, and 95 per cent CI) of prior and marginal posterior distribution of ETAS parameters for forecasting
aftershocks of the 21 June earthquake (My, 6.5). The forecasting intervals correspond Figs 8 and 9 maps. The forecasting intervals’ duration and Ty are
reported in the header of each column. Note that the seq starts from the origin time of the 17 June earthquake occurrence.

ETAS parameters  Priors 20 hr 18 hr 24 hr
4:00 UTC 6:00 UTC 6:00 UTC %6:00 UTC #x0:00 UTC 0:00 UTC 0:00 UTC
21-June 21-June 21-June 22-June 22-June 23-June 24-June
B Mean 1.25 1.09 1.085 1.089 1.09 1.069 1.075 1.08
CcvV 0.3 0.025 0.024 0.027 0.018 0.012 0.009 0.007
95% CI [1.038,1.147] [1.027,1.142] [1.036,1.152] [1.053,1.126] [1.046,1.093] [1.056,1.093] [1.064,1.096]
c Mean 0.005 0.0033 0.0036 0.0037 0.0036 0.005 0.005 0.005
(6\% 0.3 0.208 0.250 0.258 0.186 0.092 0.095 0.095
95% CI [0.002,0.005] [0.002,0.006] [0.002,0.006] [0.002,0.005] [0.004,0.006] [0.004,0.006] [0.004,0.005]
¥ Mean 1.5 1.139 1.156 1.156 1.157 1.199 1.197 1.197
(6\% 0.3 0.027 0.035 0.033 0.019 0.015 0.012 0.011
95% CI [1.079,1.199] [1.090,1.243] [1.090,1.223] [1.115,1.204] [1.161,1.230] [1.171,1.224] [1.175,1.227]
d Mean 1 0.783 0.724 0.777 0.766 0.798 0.793 0.784
(6\% 0.3 0.075 0.106 0.081 0.057 0.039 0.037 0.029
95% CI [0.675,0.880] [0.595,0.840] [0.645,0.891] [0.675,0.853] [0.736,0.853] [0.736,0.851] [0.742,0.827]
q Mean 1.5 1.582 1.551 1.581 1.584 1.603 1.602 1.604
CcvV 0.3 0.027 0.032 0.025 0.017 0.013 0.011 0.01
95% CI [1.502,1.658] [1.486,1.639] [1.517,1.643] [1.528,1.639] [1.557,1.641] [1.562,1.635] [1.570,1.633]
K Mean 0.662 0.636 0.627 0.602 0.564 0.553 0.544
(0\% 0.139 0.164 0.155 0.084 0.048 0.038 0.032
95% CI [0.527,0.894] [0.485,0.869] [0.496,0.879] [0.513,0.711] [0.514,0.622] [0.518,0.596] [0.508,0.579]
K; Mean 0.062 0.063 0.063 0.064 0.069 0.068 0.068
(0\% 0.075 0.082 0.082 0.044 0.018 0.019 0.018
95% CI [0.049,0.068] [0.052,0.070] [0.051,0.071] [0.058,0.069] [0.067,0.072] [0.066,0.071] [0.065,0.070]
Kg Mean 0.140 0.125 0.139 0.136 0.146 0.145 0.143
(0\% 0.129 0.170 0.133 0.088 0.064 0.057 0.043
95% CI [0.110,0.172] [0.093,0.163] [0.106,0.171] [0.114,0.164] [0.130,0.164] [0.129,0.161] [0.131,0.155]

+The priors for this forecasting interval are the mean and CV of the marginal posteriors from the previous one
+#The priors for this forecasting interval are those in the last column of Table 1. Then, after this forecasting interval, the mean and CVs of the marginal
posteriors from the preceding interval are used as priors for the subsequent one
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Figure 9. Daily spatio-temporal seismicity forecasting maps for earthquakes with A > 2.0 (denoted as M2* in the colour bar label) across the aftershock
zone following the 21 June 2000 main shock at 00:51 UTC (M, 6.5). See the caption to Fig. 8 for more information.
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Figure 10. Marginal posterior probability distributions of six ETAS parameters (i.e. [8, ¢, p, d, g, K]) used for daily seismicity forecasting along with the
daily updated prior distributions (blue curves) for seven 24-hr forecasting intervals with Tiare = 0:00 UTC from 18 June up to 24 June 2000.

the marginal posterior distributions of the ETAS model parameters from the previous forecasting interval were used as priors for the next
forecasting interval while providing the daily seismicity forecasts for the period 18-24 June with each interval starting at midnight (see
Tables 1 and 2 when this operation was undergone for each sequence).

For each daily forecasting interval with Ty, = 0:00 UTC, Fig. 10 shows the corresponding normal distributions used as priors (blue
curves) for the six ETAS parameters, 0 = [B, ¢, p, d, g, K] along with the resulting marginal posterior probability mass function of the
Markov chains (grey bar plots). We note that the blue curve (prior) for a subsequent day corresponds to the posterior histogram from the
day before. That is, for each parameter, the mean and CV from previously generated marginal posterior distribution is used to generate a
new normal prior distribution for the next forecasting interval. The daily updated priors illustrate how well the Bayesian-based seismicity
forecasting framework adapts to the seismic sequence daily, especially during the first two days. In general, unimodal and symmetric posterior
densities are observed, in particular for the latter forecasting intervals after the second main shock. The mean posteriors are thus shown to
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Figure 11. Comparison of three approaches of initial prior information (see legend) incorporated in the Bayesian ETAS parameter estimation procedure for
daily forecasting intervals with Tt = 0:00 UTC from 18 June up to 24 June 2000. Mean values (symbols) and standard deviations (shaded area) are plotted
by similar colours for each scenario. The blue dashed lines represent the optimal June 2000 sequence ETAS parameter set. The vertical red dotted line depicts
the start point of the second sequence at 00:51 UTC on 21 June 2000.

converge towards a stable set of parameters with very low CVs, that progressively become smaller with time. Parenthetically we note that the
distribution of K, Ky and K, are derived from the other main five parameters.

4.5 Effects of different initial ETAS values on the posterior estimates

For the daily seismicity forecasts that start at every midnight from 18 to 24 June we used the mean and CV of the posterior distribu-
tions from the previous forecasting interval as prior information for each subsequent interval. The initial prior values for the main ETAS
parameters are reported in the first column of Tables 1 and 2, also see Sections 4.2 and 4.3. In this way, the first forecasting interval is
based on the best available estimates of model parameters and then the natural progression of the seismic sequence is allowed to pro-
gressively inform the Bayesian ETAS model for each subsequent forecasting interval. We show this progression as red lines in Fig. 11
for each parameter. As a reference, we show constant blue dashed lines in blue shaded areas (i.e. the posterior mean and standard de-
viation) for each parameter that were estimated via a retrospective inference using the entire seismic sequence from 17 to 24 June as
seq. These values are 8 = 1.108 (CV = 0.0226), ¢ = 0.0046 (CV = 0.174), p = 1.20(CV = 0.0225),d = 0.765 (CV = 0.077),
g = 1.588(CV = 0.0264) and K = 0.51 (CV = 0.14). As expected, the daily updated values converge to values very close to those
obtained by the analysis of the entire aftershock sequence (i.e. the last points of the red lines in Fig. 11 shown in the last column of Table 2
and the last row of posteriors in Fig. 10). Stating this differently, the red line is seen to converge towards the values of the blue dashed lines
as the daily forecasting progresses, which was to be expected as progressively more information (both data and informed priors) are being
used for later forecasting intervals. Correspondingly, the CV of the red line decreases rapidly with time. Overall, the reference mean values
(blue dashed lines) can be considered as the optimal June 2000 sequence ETAS parameters and thereby, with reasonable CVs (e.g. 0.3), can
be used as informative priors for Bayesian updating of seismicity forecasts during future seismic sequences.

We contrast this rapid parametric convergence of daily updates with that when using less than ideal starting values of unknown
uncertainties, that is using the initial priors from the previous ETAS study for SW Iceland (Eberhard 2014). As they were presented without
uncertainty measures, two scenarios have been considered: (1) we allow both the mean values and CVs to be updated daily while we assign
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large values of CV to the first prior values allowing them to cover a wide range of probable values (black lines), on the other and (2) only
allow the mean values to be update and keeping CV constant at 0.3 (green lines).

We observe that in both cases, despite the incredibly large differences between the initial values estimated in previous study and the
more ideal initial parameters (see values associated with 18 June, especially for parameters §, ¢ and ¢), the model learns effectively from the
sequence through the Bayesian updating process incorporating updating prior estimation and consequently, the parameters reach convergence
with the values from the other approaches. The 8, ¢, p and d parameters tune themselves only over the first couple of forecasting intervals
and converge towards the proposed sequence-based parameters. The temporal parameters (¢ and p) converge slower when the CV of the prior
distribution is updated based on the previous posterior PDF than forcing a constant large CV throughout, in particular when the initial prior
value is poor.

Overall, the result shows that as long as the prior values are selected in a reasonable range, the Bayesian updating procedure works
perfectly towards well-determined posterior distributions which are generated gradually by increasing the amount of data. However, if the
initial values are too far from the ideal values despite allowing for a large CV, the tuning process of the parameters during the MCMC routines
are likely to be decelerated during an ongoing seismic sequence or/and they might trade-off with one another and as a result reach unrealistic
estimate.

We observe that to attain reliable forecasts as fast as possible for future seismic sequences in the immediate aftermath of a strong
earthquake, it is important to use an already established and informative set of Bayesian ETAS priors, and to update the priors for the next
forecasting interval based on the posteriors of the previous one. According Fig. 11, the updates are especially important over approximately
the first three days after a large main shock, the updating prior estimation can be stopped as the prior estimates are stable with trivial difference
with the proposed optimal ETAS parameter set while maintaining their accuracy sufficiently.

4.6 Likelihood-based tests for evaluating forecasted seismicity

In this section, we thoroughly quantify the incorporated model assessment in the Collaboratory for the Study of Earthquake Predictability
(CSEP) framework (Zechar et al. 2010; Taroni et al. 2014; Schorlemmer et al. 2018). To this end, we apply likelihood-based testing procedures
such as L- and N-tests that isolate the spatial and magnitude component of a space-rate—magnitude forecast (Zechar et al. 2010).

N-test: The N-test verifies (in a probabilistic manner) whether the overall forecasted number of earthquakes is consistent with the
observed number of target events over the entire region. According to this test, we fit a Poisson distribution to the forecasted number of target
events Np with magnitude greater than a threshold, which is actually the expected number of events in the forecasting interval that we have
estimated [see E[N(x, v, m|seq, M.,)] in eq. (3)]. Then, we measure if the observed number of events N,,s with magnitude greater than a
threshold over the entire aftershock zone is not located in the tails of the Poisson distribution. To this end, the N-test results is presented by
two quantile scores that should be greater than a critical threshold value of P.g:

Nobs—1 n _—Nj
(Nfore) e~ ore

=P (}’l > Nobs|Nfore) =1-P (n < Nobs — lleore) =1- Z | (113)
"0 n:
Nobs n _—Nreor,
(N r) e~ Nfore
Hh=Pr (}’l = Nobs|Nfore) = Z foci'a (llb)
n.

n=0

If one of these scores is below P, the forecast is deemed to be underpredicting (§; << Per) or overpredicting (8, << Pegr). The P is
set to 0.025 corresponding to the 95 per cent confidence interval.

It is worth noting that the Bayesian-based methodology performs already an advanced N-test in the sense that instead of assigning a
Poisson distribution to the forecasted number of events, it directly estimates the distribution of the forecast and computes its percentiles (i.e.
501, 16%, 84" 27 and 98™) which are presented as error bars in each forecasting maps presented in Sections 4.2 and 4.3. In this way, one
can realize how well the forecasted number of earthquakes matches Nyps.

L-test: The L-test verifies whether the spatial occurrence of observed earthquakes is consistent with the forecasts of the model. In
other words, it measures how well the forecast in a single spatial cell matches the observation in that spatial cell. According to this test, we
calculate the joint log-likelihood of observations Nyps , given the forecasts Neore ,, Where n = 1: Nyiq, denoted as Loy herein, in all cell units
as follows:

Negrid Nerid

I -1 (Nfore,n)NObs‘" e~ Nore.n _ N, N In (N, In(N. | 12
obs = 1N l_[ T _Z[_ fore,n + obs,n n( fore,n)_ n( obs.n~)] . ( )

n=1 n=1

The L-test is basically consisted of two stages: (1) sample N, from a Poisson distribution with mean value equal to Ny.; (2) for each
Nyim simulated in the previous step, we sample a number between zero and unity (assuming a uniform distribution) in order to locate the event
in the corresponding spatial cell according to the proportion of Niy. in the cell units (i.e. using the inverse cumulative distribution function).
These two stages (repeated N times) lead to the construction of N simulated catalogues of events. Finally, for each of these N simulated
catalogues, we calculate the joint log-likelihood of N, , simulations given the forecasts Nfore ,, Where n = 1: Ng;iq, denoted as L, herein,
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Table 3. N- and L-test results for forecasting intervals during the June 2000 sequence.

Forecasting
Intervals Duration 5hr 4 hr 24 hr

Tstart 19:00 UTC 20:00 UTC 20:00 UTC 0:00 UTC 0:00 UTC 0:00 UTC 0:00 UTC

17-Jun 17-Jun 17-Junex 18-Jun 19-June 20-Jun 21-Jun

N-test (81) 1 0.99 0.95 0.0027 0.39 0.516 0
N-test (52) 9.6e-07 0.0002 0.05 0.997 0.66 0.568 1
L-test (y) 0.98 0.99 0.92 0.31 0.303 0.68 0
Forecasting Duration 20 hr 18 hr 24 hr
intervals

T start 4:00 UTC 6:00 UTC 6:00 UTC 6:00 UTC

21-June 21-June 21-June 22-Jun

N-test (81) 0.344 0.351 0.458 0.577
N-test (82) 0.705 0.705 0.59 0.507
L-test (y) 0.22 0.348 0.39 0.41

* For all forecasting scenarios Mq,; = 2.0, except this forecasting analysis in which M is set to 1.5.

in all cell units as follows:

Nows . N
grid (Nfore,n)Nsm"n e—Nfore.n o

Lsim =In 1_[ N | = Z [_Nfore,n + ]vsim.n In (Nfore.n) —1In (Nsim.n ')] . (13)

n=1 n=l1

Repeating the above procedure for each simulated catalogue (generated based on the procedure described above), we have a vector of
joint log-likelihood Ly, It is to note that the log-likelihoods L s and also L, has a negative value, and values that are closer to zero indicate
a more likely observation. Let us estimate the probability that the log-likelihood L is smaller than L s, P(L < Lgpbs). If Loy falls in the lower
tail of the distribution, this indicates that the observation is not consistent with the forecast in each cell; thus, the forecast is not accurate. This
probability can be estimated as follows:

N (Lgim < Lops)
y = P (L =Los)= Nlo) (14)
where the numerator indicates the number N of the components in the vector L, that are equal to or smaller than L s, and the denominator
is the total number of elements in L, which is equal to the number of simulated catalogues in the reliability framework. If ¢ is below the
critical threshold value that is usually adopted by the CSEP experiments, that is 0.05 corresponds to 5 per cent significance, the forecast is
deemed to be inconsistent with the space-rate distribution of the observation. More technical details can be found in the study of Zechar et al.
(2010).

In Table 3 we present the results of the N- and L-test for all forecasting intervals over the June 2000 seismic sequence investigated in
Section 4.2 (Figs 6 and 7) and Section 4.3 (Figs 8 and 9) after the first and second main shocks, respectively. Bold underlined values
indicate that the observed distribution is inconsistent with the forecast.

From the table, it can be seen that no forecast fails L-test indicating strong spatial forecasting ability of the Bayesian ETAS model, even
in early aftershock period and over all following forecasting intervals. The §; and 8, greater than 0.025 guaranty that the real case of Ny
will not be within the tails of our forecast. We note that all forecasts following the second main shock succeeded. In early forecasts after the
17 June main shock, 8, is estimated too small indicating an overprediction. This observation is apparent from their corresponding forecasts
maps displayed in Figs 6(a) and (b) (see the error bars). In addition, an underprediction is exhibited for the first daily forecasting on 18 June
which is consistent with the Fig. 7(a) forecasting map’s result. Based on the §; values, 21 June daily forecasts with T, = 00:00 significantly
underpredicted the total number of target earthquakes. This is expected as the second main shock with A,, 6.5 happened ~1.0 hr after the
time of issuing the forecast.

5 CONCLUSION

A spatio-temporal ETAS model has been calibrated to the 17-24 June 2000 seismic sequence in southwest Iceland. It uses a Bayesian
parameter estimation technique that enables estimation of the ETAS model parameters while accounting for their uncertainties in a robust
manner using MCMC simulation. The model has been used to generate maps of short-term seismicity forecasts of various start times and
durations for the June 2000 seismic sequence with the purpose of investigating the reliability of the forecasts with respect to the observations,
and the sensitivity of the model parameter estimates to initial assumptions. The seismicity forecasting maps were studied in the context of an
OEF manner that monitoring agencies are faced with in practice and immediately after a main shock.

Starting with initial values from the literature as best prior estimates of the model parameters their inference was carried out over various
forecasting intervals of maximum 24-hr duration, each resulting in new parametric estimates in the form of their posterior distributions. The
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first forecasting intervals were set to start a few hours after the first main shock and were of relatively short duration, with later intervals
each starting at midnight, set admittedly arbitrarily. Adaptive inference was used, that is where the posteriors from each preceding forecasting
interval served as informative priors for the next one. The statistics of the posterior joint probability distribution of the ETAS model parameters
sampled by the MCMC simulation algorithm along with the Markov chains were studied to evaluate the reliability and convergence of the
inference. Reliable estimates confirmed by unimodal and symmetric posterior distributions for each ETAS parameter were observed for all
forecasting intervals.

The forecasted spatio-temporal seismicity distribution of aftershocks larger than the cut-off magnitude M., = 2.0 was compared with
the actual observations during each forecasting interval. The forecasting with respect to the total number of forecasted events improved
remarkably when M., was manually lowered to 1.5 to allow the use of a richer parametric catalogue while the model exhibited a strong spatial
forecasting ability, even only a few hours after the main shock, and over all subsequent intervals. The daily forecasts for successive interval
then improved steadily using the adaptive inference approach manifested by the 16-84 percentile range of the forecasted number of events
capturing the actual number of observed earthquakes. The exception is the 21 June forecasting interval where essentially a new sequence
commenced after the occurrence of a second main shock of M, 6.5, less than 1 hr after the start of the corresponding forecasting interval. By
resetting the forecasting to start a few hours after the second main shock the 16-84 percentile levels of the forecasted number of events were
again able to capture the observed number of earthquakes.

After adaptive inference progressively over all forecasting intervals, the final parametric values were obtained. They are in very good
agreement with the model parameters inferred when retroactively analysing the 17-24 June 2000 sequence in its entirety. We present these
sets of parameters as the representative ETAS parametric values for the June 2000 sequence. While they are slightly different compared with
the parametric values found in the literature and that served as the initial values for the modelling, the model parameters converged very fast
to these final values. We note that much slower convergence was observed when using less ideal initial values affecting the reliability of the
first forecasting intervals. It is therefore important for any seismicity forecast of future sequences in the aftermath of a strong earthquake to
use the best possible initial parametric values to ensure the reliability over the first forecasting intervals, with the adaptive inference ensuring
the continued reliability over the latter intervals.

This study has provided us with a unique opportunity to gain more insight and understanding of the short-term earthquake fore-
casting capabilities of a seismicity forecasting framework for SW-Iceland, in the form of a calibrated spatio-temporal Bayesian ETAS
model. Other Icelandic seismic sequences need to be analysed in a consistent manner and retrospectively, to evaluate the stability of
the Bayesian ETAS parameters by seismic sequence, seismic region and then nationally. In addition, a quantitative comparison of the
Bayesian ETAS forecasting model with forecasts of other conventional ETAS models calibrated to the same data need to be performed.
Their focus would be the evaluation of the models’ respective benefits and limits, along with proving an estimate of the epistemic un-
certainty involved in ETAS seismicity forecasts—an important prerequisite for the operational application of ETAS seismicity forecasts
in Iceland (e.g. Jalilian 2019; Ross 2021). We envision that the Bayesian ETAS model along with the optimal parameter set could thus
potentially be applied as a regional operational earthquake forecasting system for aftershocks, enabled by the real-time magnitude and
location capability of the SIL seismic system and its low magnitude of completeness. In turn, that would enable a short-term spatio-temporal
probabilistic seismic hazard assessment for aftershocks which has practical importance as aftershocks can progressively cause increased
damages and economic losses after a main shock, and effective post-event response is crucial to reduce such losses in an earthquake-stricken
region.
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Figure S1. Prior (blue curves) and histogram of sampled posteriors of the main ETAS parameters associated with 10000 MCMC iterations.
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Figure S2. From left to right: Trace plots of posterior samples of the main ETAS model parameters, [8, ¢, p, d, q], using 220 (top panel),
2000 and 10000 (bottom panel), and five chains within MCMC simulations (left) with the initial 10 per cent of iterations during the burn-in
period indicated in grey colour. The corresponding posterior histograms (grey bars) and their associated statistics (red solid and red dashed
lines). The Gelman—Rubin convergence statistics w.r.t sampling iterations (3" column from left). The autocorrelation function plots are
depicted by dark grey bars (right-hand panels). The results correspond to the 24-hr forecasting interval of 21 June 2000.
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