
456  |   	﻿�  Epilepsia. 2023;64:456–468.wileyonlinelibrary.com/journal/epi

Received: 27 March 2022  |  Revised: 26 October 2022  |  Accepted: 15 November 2022

DOI: 10.1111/epi.17468  

R E S E A R C H  A R T I C L E

Machine learning for the early prediction of infants with 
electrographic seizures in neonatal hypoxic-ischemic 
encephalopathy

Andreea M. Pavel1,2   |   John M. O'Toole1,2   |   Jacopo Proietti1  |   Vicki Livingstone1,2  |   
Subhabrata Mitra3  |   William P. Marnane1,4  |   Mikael Finder5,6   |   Eugene M. Dempsey1,2  |  
Deirdre M. Murray1,2  |   Geraldine B. Boylan1,2   |   ANSeR Consortium*

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2022 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.

*Membership of the ANSeR Consortium is provided in the Acknowledgments.  

1INFANT Research Centre, University 
College Cork, Cork, Ireland
2Department of Paediatrics and Child 
Health, University College Cork, Cork, 
Ireland
3Institute for Women's Health, 
University College London, London, 
UK
4Electrical & Electronic Engineering, 
School of Engineering, University 
College Cork, Cork, Ireland
5Department of Neonatal Medicine, 
Karolinska University Hospital, 
Stockholm, Sweden
6Division of Paediatrics, Department 
CLINTEC, Karolinska Institutet, 
Stockholm, Sweden

Correspondence
Geraldine B. Boylan, Department of 
Paediatrics and Child Health, INFANT 
Research Centre, University College 
Cork, Paediatric Academic Unit, Cork 
University Hospital, 2nd floor, Wilton, 
Cork, Ireland.
Email: g.boylan@ucc.ie

Funding information
Health Research Board, Grant/Award 
Number: NEPTuNE CDA-2018-008; 
Wellcome Trust, Grant/Award Number: 
098983 and 209325

Abstract
Objective: To assess if early clinical and electroencephalography (EEG) features 
predict later seizure development in infants with hypoxic-ischemic encephalopa-
thy (HIE).
Methods: Clinical and EEG parameters <12 h of birth from infants with HIE 
across eight European Neonatal Units were used to develop seizure-prediction 
models. Clinical parameters included intrapartum complications, fetal distress, 
gestational age, delivery mode, gender, birth weight, Apgar scores, assisted ven-
tilation, cord pH, and blood gases. The earliest EEG hour provided a qualitative 
analysis (discontinuity, amplitude, asymmetry/asynchrony, sleep–wake cycle 
[SWC]) and a quantitative analysis (power, discontinuity, spectral distribution, 
inter-hemispheric connectivity) from full montage and two-channel amplitude-
integrated EEG (aEEG). Subgroup analysis, only including infants without anti-
seizure medication (ASM) prior to EEG was also performed. Machine-learning 
(ML) models (random forest and gradient boosting algorithms) were developed 
to predict infants who would later develop seizures and assessed using Matthews 
correlation coefficient (MCC) and area under the receiver-operating characteris-
tic curve (AUC).
Results: The study included 162 infants with HIE (53 had seizures). Low Apgar, 
need for ventilation, high lactate, low base excess, absent SWC, low EEG power, 
and increased EEG discontinuity were associated with seizures. The following 
predictive models were developed: clinical (MCC 0.368, AUC 0.681), qualita-
tive EEG (MCC 0.467, AUC 0.729), quantitative EEG (MCC 0.473, AUC 0.730), 
clinical and qualitative EEG (MCC 0.470, AUC 0.721), and clinical and quan-
titative EEG (MCC 0.513, AUC 0.746). The clinical and qualitative-EEG model 
significantly outperformed the clinical model alone (MCC 0.470 vs 0.368, p-value 
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1   |   INTRODUCTION

Neonatal encephalopathy caused by perinatal hypoxia-
ischemia is a worldwide health problem and a major 
cause of mortality and morbidity, with incidence ranging 
from 1.5–3 per 1000 live births in high-income countries 
to 14.9 per 1000 live births in low-income countries.1,2 
Brain injury following hypoxic-ischemic injury evolves 
over subsequent hours and days and is associated with 
changing clinical and electroencephalography (EEG) fea-
tures.3,4 Hypoxic-ischemic encephalopathy (HIE) is the 
main cause of seizures in full-term infants and more than 
half of those with moderate to severe encephalopathy 
develop seizures.5,6 The only treatment currently recom-
mended for moderate and severe HIE is therapeutic hypo-
thermia initiated within 6 h of birth.7–9 This intervention 
has been shown to improve long-term neurodevelopmen-
tal outcomes and decrease total seizure burden (TSB).10,11 
However, even after the introduction of hypothermia, the 
incidence of seizures in neonates with HIE was estimated 
by several studies to be between 30% and 65%.10,12,13 One 
study reported that high seizure burden in infants with 
HIE was associated with poor neurodevelopmental out-
come, independent of the severity of encephalopathy.14 In 
addition, regardless of the background etiology, the pres-
ence of seizures in neonates is associated with worse neu-
rodevelopmental outcomes and increased mortality.15,16

To improve outcomes in this population, prompt recog-
nition and treatment of seizures is vital.17,18 However the 
clinical diagnosis of seizures in neonates is challenging, 
due to the high frequency of electrographic-only seizures 
in HIE and the “uncoupling” phenomenon following 
anti-seizure medication (ASM).19–21 Even when clinical 
manifestations are present, it can be difficult to differen-
tiate seizures from normal neonatal behaviors.21 The gold 
standard for seizure diagnosis is continuous video-EEG 

monitoring, as recommended by the American Clinical 
Neurophysiology Society (ACNS) and the International 
League Against Epilepsy (ILAE).22,23 Unfortunately, con-
tinuous EEG monitoring requires specialized equipment 
and expert personnel, and is used only for short recordings 
in most neonatal centers, thereby reducing the likelihood 
of seizure detection. To overcome this and improve the 
allocation of scarce resources, a solution would be early 
identification of infants who are vulnerable to develop sei-
zures, which should also reduce the delays in treatment 
and lead to better outcomes.24

Previous attempts were made to develop seizure pre-
diction models using clinical, biochemical, and EEG 
markers, alone or in combination.25–33 A combination 
of Apgar score at 5  min, pH <7.0 and delivery room 
intubation,25,27 and EEG background analysis with or 
without other clinical parameters28–32 was previously 
investigated. All previous attempts were hampered by 
small, heterogenous neonatal populations, or by lack 

.037). The clinical and quantitative-EEG model significantly outperformed the 
clinical model (MCC 0.513 vs 0.368, p-value .012). The clinical and quantitative-
EEG model for infants without ASM (n  =  131) had MCC 0.588, AUC 0.832. 
Performance for quantitative aEEG (n = 159) was MCC 0.381, AUC 0.696 and 
clinical and quantitative aEEG was MCC 0.384, AUC 0.720.
Significance: Early EEG background analysis combined with readily available 
clinical data helped predict infants who were at highest risk of seizures, hours 
before they occur. Automated quantitative-EEG analysis was as good as expert 
analysis for predicting seizures, supporting the use of automated assessment tools 
for early evaluation of HIE.

K E Y W O R D S

machine learning, neonatal encephalopathy, neonatal seizures, neonates, prediction algorithm

Key points
•	 Early electroencephalography (EEG) back-

ground combined with clinical information can 
predict infants which later develop seizure in 
hypoxic-ischemic encephalopathy (HIE).

•	 Automated quantitative-EEG analysis was as 
predictive as an expert neurophysiologist analy-
sis for predicting seizures, supporting the use of 
automated assessment tools.

•	 The current machine-learning (ML) prediction 
models could be used as objective bedside tools 
to identify which neonates with HIE are at the 
highest risk of seizures.
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of prospective, detailed, and early EEG monitoring. 
Traditionally, logistic regression has been used to de-
velop predictive models for newborns with seizures.30,31 
However, in recent years, machine learning (ML) tech-
niques have allowed for a more robust analysis of com-
plex data, resulting in development of decision support 
tools for healthcare professionals.33–36

The aim of this study was to use ML techniques to as-
sess the ability of early clinical parameters and EEG back-
ground features, to predict those infants with HIE who 
later develop seizures, using a large multicenter data set. 
We hypothesized that an ML model combining early clini-
cal data and EEG background features would have the best 
ability to predict the infants with HIE at risk of seizures.

2   |   MATERIAL AND METHODS

2.1  |  Study setting and participants

This is a secondary data analysis of infants recruited for 
two prospective, multicenter, cohort studies (Clini​calTr​
ials.gov Identifier: NCT02160171 and NCT02431780) 
from eight tertiary-level neonatal intensive care units 
across Europe (Ireland, United Kingdom, Sweden, The 
Netherlands).6,36 Ethics committee approval from each 
recruiting site was obtained before recruitment com-
menced. Both studies included infants born at ≥36 weeks 
of gestation, requiring continuous conventional EEG 
(cEEG) monitoring because they were at high risk of de-
veloping seizures. For this analysis we included infants 
with a clinical and electrographic diagnosis of HIE who 
had cEEG recording within 12 h of birth and before the 
development of any electrographic seizures. The di-
agnosis of HIE was based on an antenatal history of a 
hypoxic-ischemic event and the presence of encepha-
lopathy on early neurologic examination (most severe 
modified Sarnat score within 24 h of life), corroborated 
with EEG background and/or magnetic resonance imag-
ing (MRI) changes consistent with HIE injury. Infants 
with encephalopathy from other causes, such as sepsis, 
meningitis, stroke, metabolic, or genetic, or a combined 
diagnosis, were excluded from the analysis. In the pri-
mary studies, an infant was considered to have seizures if 
experts identified at least one seizure lasting at least 10 s 
throughout the EEG monitoring. For this study, infants 
with only very brief seizures (<30 s) and a total seizure 
burden (TSB) <2  min throughout the EEG monitoring 
were excluded from the analysis on the basis that gener-
ally these seizures would not have been treated. A sub-
group analysis was also performed excluding all infants 
who received ASM before the EEG because of the known 
effect of ASMs on the background EEG pattern.37,38

2.2  |  Early clinical features

The following clinical parameters, available within 6 h of 
birth, were included in the prediction models: intrapar-
tum complications, suspected fetal distress in labor, gesta-
tional age, mode of delivery, gender, birth weight, Apgar 
scores at 1, 5, and 10 min, assisted ventilation at 10 min 
of age, lowest cord pH, first postnatal lactate, and first 
postnatal base excess. Any of the following were consid-
ered as an intrapartum complication: placental abruption, 
ruptured uterus, vasa praevia, intrapartum hemorrhage, 
cord accident or prolapse, shoulder dystocia, meconium-
stained liquor, or other (poor progression, HELLP syn-
drome [hemolysis, elevated liver enzymes, low platelet 
count]/eclampsia, complicated breech presentation, re-
duced fetal movements, fetal bradycardia, prolonged rup-
ture of membranes).

2.3  |  EEG monitoring and analysis

All infants had cEEG monitoring commencing as soon as 
possible after birth using NicoletOne ICU Monitor (Natus, 
USA), Nihon Kohden EEG (Neurofax EEG-1200, Japan), 
or XLTek EEG (Natus, USA). Personnel were trained at 
each study site to position disposable electrodes at F3, F4, 
C3, C4, Cz, T3, T4, O1/P3, and O2/P4, according to 10:20 
EEG electrode neonatal system. The EEG recording had a 
sampling rate of 250 Hz or 256 Hz, with a filter bandwidth 
between 0.5 and 70 Hz for review.

For each infant, we extracted the earliest 1-h epoch of 
good-quality EEG recording available before 12 h of age 
and at least 1 h before the onset of electrographic seizures. 
All epochs were reviewed, and artifacts were annotated 
and removed from the quantitative-EEG analysis. For 
each EEG epoch included in the analysis, we performed a 
qualitative (visual) and a quantitative analysis.

The qualitative-EEG analysis was performed by two ex-
pert neurophysiologists (GBB and JP) blinded to the seizure 
status of the infant. The following features were assessed in-
dividually as present or absent as per the ACNS39: 1, any ab-
normal discontinuity; 2, discontinuity > 10 s; 3, continuous 
low voltage to isoelectric; 4, asymmetry and/or asynchrony; 
5, sleep-wake cycles (SWCs) in the first 12 h. Abnormal dis-
continuity was defined as persistent intervals (interburst 
intervals [IBIs]) of relatively lower amplitude lasting more 
than 6  s. Epochs with more marked discontinuity, with 
IBI >10  s were analyzed separately. A cutoff of 25 μV or 
less was used to define low voltage, and EEG activity below 
2.5 μV in amplitude was referred to as isoelectric activity. 
Asymmetry was defined as disparity in voltage (more than 
2:1) or background feature distribution between homolo-
gous areas of the two hemispheres. Asynchrony was defined 
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as noncoherent occurrence of EEG activities (≥1.5 s differ-
ence in onset of bursts) over regions on the same or opposite 
sides of the head. Any differences between neurophysiolo-
gists were discussed and a consensus was reached.

Electrographic seizures were defined according to Clancy 
et al. as at least one EEG channel with sudden, repetitive, 
and evolving waveforms for a minimum 10 s.40 For all in-
fants, electrographic seizures were identified by the same 
two neurophysiology experts, as described previously.6,36 
Seizure characteristics were calculated based on these anno-
tations: seizure number, TSB (all seizures during the entire 
EEG monitoring period, minutes), maximum seizure bur-
den (maximum seizure burden within an hour, minutes/
hour), status epilepticus (seizure burden of >30 min within 
1 h), seizure period (hours from the beginning of first elec-
trographic seizure to the end of last seizure).

Quantitative-EEG analysis was performed using the 
NEURAL software package (version 0.4.3), extracting a 
set of features described previously by our group: power 
from the 1-h cEEG epoch, discontinuity, spectral distri-
bution, and inter-hemispheric connectivity features.41 
The power features included absolute spectral power and 
range EEG (median, upper, and lower margin). The dis-
continuity features included range-EEG asymmetry, IBI 
analysis (maximum and median length, percentage, and 
number of IBIs), amplitude skewness, and kurtosis. IBIs 
were detected using an algorithm developed for preterm 
infants42 that was also validated in an HIE term cohort.43 
The spectral distribution features included spectral rela-
tive power, spectral flatness, spectral difference, spectral 
edge frequency, and fractal dimension. Inter-hemispheric 
connectivity analysis included connectivity brain sym-
metry index (BSI) and connectivity coherence. Spectral 
power (absolute and relative), amplitude skewness and 
kurtosis, spectral flatness and difference, and coherence 
and connectivity BSI were generated separately for four 
frequency bands: 1 to 4 Hz (delta), 4 to 7 Hz (theta), 7 to 
13 Hz (alpha), and 13 to 30 Hz (beta). Range EEG is gener-
ated for a 1 to 20 Hz band and fractal dimension is gener-
ated for 1 to 30 Hz.

Quantitative analysis was also performed using two-
channel EEG from F3-C3 and F4-C4. Due to increased 
usability of two-channel amplitude integrated amplitude 
EEG systems (aEEG) in neonatal units, we have developed 
predictive models separately using quantitative analysis 
from a reduced montage (F3-C3 and F4-C4).

2.4  |  Statistical analysis

Categorical variables were described using frequencies 
and percentages and continuous variables using means 
and standard deviations (SDs) when the variables were 

normally distributed, or medians and interquartile ranges 
(IQRs) otherwise. For comparisons of continuous vari-
ables between two groups (seizure vs nonseizure; moder-
ate HIE vs severe HIE) the independent-sample t test was 
used for normally distributed variables and the Mann-
Whitney U test for non-normally distributed variables. 
The chi-square test or Fisher's exact test (in the case of 
small, expected counts) was used for categorical variables. 
All tests were two sided and a p-value <.05 was considered 
statistically significant. IBM SPSS Statistics (version 24.0, 
IBM Corp., Armonk, NY, USA) was used for the statistical 
analysis.

2.5  |  Machine-learning (ML) analysis

ML models were developed (using Python 3.10.6) sepa-
rately and in combination for clinical features, and quali-
tative EEG and quantitative EEG features, to predict 
infants who later developed seizures. The models were 
developed using either bagging or boosting ensembles of 
decision trees. Random forests (a bagging approach) were 
used to develop models for clinical and qualitative EEG 
features. Gradient boosting was used for quantitative EEG 
features. These models were trained and tested using a 
leave-one-out cross-validation procedure. The depth of 
the decision tree was optimized from the data. This con-
trolled a level of regularization for the models: A deeper 
tree captures more information from the feature set but 
may cause the model to over-fit. The parameter was se-
lected from a grid search within a nested cross-validation. 
This nested scheme employed a 10-fold cross-validation 
repeated 5 times, with each repetition using a different 10-
fold random selection.

2.5.1  |  Clinical and qualitative EEG features

For the missing clinical data included in the ML model 
(suspected fetal distress, Apgar scores, assisted ventila-
tion, cord pH, postnatal lactate, and base excess), the mean 
value of each feature was used for imputation of missing 
values. Features with more than 50% missing data were 
excluded. For both clinical and qualitative models, the de-
fault number of iterations was used to grow 100 decision 
trees. The maximum depth of the decision tree was se-
lected in the nested cross-validation from the set {1,2,3,4}.

2.5.2  |  Quantitative EEG features

To compensate for the high levels of discontinuous activ-
ity in some EEG records, we generated an extra feature 
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set weighted by the quantity of discontinuous activity. 
This extra feature set consisted of the existing features 
(excluding the IBI features) multiplied by the percent-
age of IBIs. We then combined both feature sets for use 
in building the ML model. ASM status (yes/no if admin-
istered before the start of the EEG epoch) and hypother-
mia status (yes/no if at time of EEG epoch) were also 
included as adjusting features in the quantitative model. 
In addition, separate ML models were developed on a 
subgroup of infants who did not receive any ASM prior 
to the EEG epoch used in the analysis. We selected the 
CatBoost implementation of gradient boosting to better 
manage over-fitting that can occur with boosting algo-
rithms.44 Because this is a small data set for ML (<200 
data points) and model variance within the leave-one-
out strategy can lead to poor performance, we reduced 
the number of iterations (number of trees) during train-
ing from 1000 (default value) to 40 and set the learning 
rate to 0.1. The depth of the decision tree was selected in 
the nested cross-validation from the set {2,3,…,6}.

2.5.3  |  Assessment and comparison of 
ML models

To account for the imbalanced classes of seizure and 
nonseizure, Matthews correlation coefficient (MCC) was 
used to assess and compare performance of the ML mod-
els.45 William's test for dependent correlations was used 
to compare MCCs. More standard metrics were also in-
cluded: area under the receiver-operating characteristic 
curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). Testing 
probabilities for the clinical and qualitative EEG models, 
clinical and quantitative EEG models, and clinical and 
quantitative aEEG models were then combined using 
a logit aggregation formula.46 For the combined models 
(clinical and EEG/aEEG models) we used a “late-stage fu-
sion” method. Agreement between the individual predic-
tion models (clinical, qualitative EEG, quantitative EEG) 
to quantify for the potential overlap between the models 
was assessed using Cohen's kappa (values ≤0 indicates no 
agreement, 0.01–0.20 none to slight, 0.21–0.40 fair, 0.41–
0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 al-
most perfect agreement).

3   |   RESULTS

From 504 infants recruited in both studies, 266 infants 
had a diagnosis of HIE, and of those 164 infants had at 
least 1 h of EEG monitoring before 12 h of age and before 
emergence of electrographic seizures. Two infants had 

individual seizures <30 s and a TSB <2 min and were ex-
cluded. Hence, 162 neonates with HIE of all grades—mild 
62 (38.3%), moderate 69 (42.6%), and severe 31 (19.1%)—
were included in the study analysis. Electrographic sei-
zures were present in 53 infants (32.7%) (seizure group). 
Demographic and clinical characteristics overall and by 
seizure status group are presented in Table 1. The median 
(IQR) age at start of the EEG monitoring was 4.7 (3.3–
7.7) hours and the median (IQR) age at the time the EEG 
epoch was analyzed was 6.4 (4.2–8.7) hours, and there 
were no significant differences in these measures between 
the seizure and nonseizure groups. Infants with seizures 
had lower Apgar scores at 1, 5, and 10 min; higher post-
natal lactate; and lower base excess; and they were more 
likely to be cooled and to require assisted ventilation at 
10  min of age compared with infants in the nonseizure 
group. Overall, 31 infants received ASM for clinical con-
cerns of seizures prior to the EEG epoch analyzed.

Electrographic seizure characteristics are presented in 
Table 2. The median (IQR) age at first electrographic sei-
zure was 14.4 (10.3–19.6) hours. Compared to infants with 
moderate HIE, infants with severe HIE had a significantly 
higher number of seizures (median (IQR) 39 (28–104) vs 
115–25 seizures, p-value <.001), individual seizures were 
of shorter median duration (94 (68–140) vs 163 (93–838) 
seconds, p-value .012), TSB was higher (median (IQR) 126 
(71–212) vs 59 (26–76) minutes, p-value .003), seizure pe-
riod was longer (median (IQR) 40.2 (25.3–69.3) vs 9.8 (3.2–
32.4) hours, p-value <.001), and they received more ASM 
(median (IQR) 33,4 vs 11,2 doses, p-value <.001). Eighteen 
infants (34%) had status epilepticus, and there were no 
significant differences between the moderate and severe 
HIE groups.

EEG features overall and by seizure status group are 
presented in Table 3 (see Table S1 for all EEG features in-
cluded in ML models). Low voltage to isoelectric pattern 
on EEG and absence of SWC were associated with seizure 
emergence. Several quantitative-EEG features were signif-
icant predictors of seizures. Compared to infants from the 
non-seizure group, infants with seizures had significantly 
lower power (spectral power, for each band and range 
EEG), lower amplitude kurtosis in the beta band, lower 
relative power in delta and theta bands, and lower spec-
tral difference in the delta and theta bands. The following 
features were significantly higher for infants with seizures 
compared to infants without seizures: range EEG asym-
metry, IBI length and percentage, amplitude skewness 
in delta and theta bands, amplitude kurtosis in the delta 
band, spectral relative power in alpha and beta band, spec-
tral flatness in beta, spectral difference in the beta band, 
spectral edge frequency and fractal dimension, connectiv-
ity BSI in delta and alpha bands, and mean connectivity 
coherence in the theta band.
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3.1  |  Machine learning (ML) models

Performance of the ML models are presented in Table 4. 
The MCC (95% CI) for the clinical model was 0.368 (0.219 
to 0.506), 0.467 (0.319 to 0.611) for the qualitative-EEG 
model, and 0.473 (0.337 to 0.612) for the quantitative-EEG 
model. No significance difference was found between the 
clinical and EEG models: clinical vs qualitative-EEG mod-
els (p-value .083), clinical vs quantitative-EEG models 
(p-value .074), and qualitative-EEG vs quantitative-EEG 

models (p-value .425). Cohen's kappa between the clinical 
model and the quantitative-EEG model was 0.47 and be-
tween the clinical model and quantitative-EEG model was 
0.45. The EEG models (qualitative-EEG vs quantitative-
EEG models) had a larger Cohen's kappa of 0.89, indica-
tive of the similarity of the models in predicting seizures.

Combing the clinical models with the EEG models in-
creased performance: MCC (95% CI) for the combined clin-
ical and qualitative-EEG model is 0.470 (0.336 to 0.602) and 
0.513 (0.376 to 0.645) for the clinical and EEG model. Both 

T A B L E  1   Study sample demographics and clinical characteristics

n All infants n

Non-seizure 
group

n

Seizure 
group

p-valuen = 109 n = 53

Gestational age at birth (weeks), mean (SD)a 162 40.01 (1.32) 109 39.93 (1.29) 53 40.18 (1.37) .268b

Intrapartum complications (yes), n (%)a 162 140 (86.4) 109 91 (83.5) 53 49 (92.5) .118d

Suspected fetal distress (yes), n (%)a 145 107 (66) 102 76 (74.5) 43 31 (72.1) .762d

Mode of delivery, n (%)a

Unassisted vaginal delivery 162 46 (28.4) 109 30 (27.5) 53 16 (30.2) .962d

Assisted vaginal delivery 62 (38.3) 42 (38.5) 20 (37.7)

Elective cesarean section 8 (4.9) 5 (4.6) 3 (5.7)

Emergency cesarean section 46 (28.4) 32 (29.4) 14 (26.4)

Birth weight (g), mean (SD)a 162 3508 (606) 109 3508 (608) 53 3507 (609) .991b

Male gender, n (%)a 162 103 (63.6) 109 73 (67) 53 30 (56.6) .198d

Apgar at 1 min, median (IQR)a 157 2 (1–3) 106 2 (1–3) 51 1 (0–2) <.001c

Apgar at 5 min, median (IQR)a 157 4 (2–5) 106 4 (3–6) 51 3 (1–4) <.001c

Apgar at 10 min, median (IQR)a 144 5 (4–7) 98 6 (5–8) 46 4 (2–5) <.001c

Assisted ventilation at 10 min (yes), n (%)a 160 109 (67.3) 108 65 (59.6) 52 44 (83) .005

Lowest cord pH, mean (SD)a 137 7.00 (0.2) 94 7.01 (0.19) 43 6.99 (0.2) .694b

First postnatal base excess, mean (SD)a 121 −15.4 (5.8) 85 −14.8 (5.3) 36 −17.1 (6.4) .037b

First postnatal lactate, mean (SD)a 102 11.8 (4.32) 69 10.9 (3.9) 33 13.5 (4.7) .003b

HIE grade at discharge

Mild, n (%) 162 62 (38.3) 109 62 (56.9) 53 0 <.001d

Moderate, n (%) 69 (42.6) 39 (35.8) 30 (56.6)

Severe, n (%) 31 (19.1) 8 (7.3) 23 (43.4)

Therapeutic hypothermia (yes), n (%) 162 133 (82.1) 109 81 (74.3) 53 52 (98.1) <.001d

Age at start of therapeutic hypothermia (h), 
median (IQR)

133 2 (1–4) 81 2 (1–5) 52 1.5 (1–3) .070c

Age at start of EEG monitoring (h), median 
(IQR)

162 4.7 (3.3–7.7) 109 5.1 (3.4–7.7) 53 4.2 (2.9–7.1) .282c

Age at start of EEG epoch (h), median (IQR) 162 6.4 (4.2–8.7) 109 6.6 (4.2–8.6) 53 6.1 (4.2–9.5) .877c

Any AEDs given before EEG epoch 
analyzed (yes), n (%)

162 31 (19.1) 109 17 (15.6) 53 14 (26.4) .101d

Note: p-value <.05 was considered statistically significant.
Abbreviations: AED, anti-epileptic drugs; EEG, electroencephalography; HIE, hypoxic-ischemic encephalopathy; ML, machine learning.
aVariables included in ML model.
bp-Value from independent sample t test for parametric data.
cp-Value from Mann-Whitney test for nonparametric data.
dp-Value from chi-square test or Fisher's exact test for categorical data.
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models had statistically significant better performances 
than the clinical model alone: clinical and qualitative-
EEG vs clinical (MCC 0.470 vs 0.368, p-value .037); clini-
cal and quantitative-EEG vs clinical (MCC 0.513 vs 0.368, 
p-value .012). MCCs between clinical and qualitative-EEG 
vs qualitative-EEG models (p-value .475) and between 
clinical and quantitative-EEG vs quantitative-EEG models  
(p-value .100) did not differ significantly.

A calibration curve between the clinical model, the 
quantitative-EEG model, and the combined clinical 
and quantitative-EEG model is shown as Supplemental 
Material (Figure S1).

Performances for the ML models using the subgroup of 
infants with no ASM and aEEG monitoring are presented 
in Tables 5 and 6, respectively. The aEEG models included 
159 infants (due to artifacts on the raw aEEG channels we 
could not produce an output from 3 infants) and no ASM 
subgroup included 131 infants (31 infants received at least 
one dose of ASM before the EEG epoch analyzed). The 
quantitative-aEEG model (MCC 0.381) and the clinical and 
quantitative-aEEG model (MCC 0.384) had similar perfor-
mance. For the subgroup of infants without ASM, the clin-
ical and qualitative-EEG model had an MCC of 0.588.

4   |   DISCUSSION

In this large multicenter cohort of infants with HIE, 
53 of 162 infants developed electrographic seizures at 

a median age of 14.4  h. Using ML we investigated the 
ability of the early EEG (recorded at a median age of 
6.4  h) and relevant clinical data to predict which neo-
nates would later develop electrographic seizures. 
Several individual clinical parameters were associated 
with occurrence of seizures in HIE: low Apgar scores, 
need for resuscitation at birth, low base deficit, and high 
lactate. Visual EEG analysis revealed that low voltage 
and absence of SWC were predictive of seizures in addi-
tion to specific power, discontinuity, and spectral shape 
features on quantitative analysis. Of the individual ML 
models developed, the EEG models had similar per-
formance (MCCs of 0.467 for qualitative and 0.473 for 
quantitative), and both outperformed the clinical model 
alone (MCC 0.368), although these differences were not 
statistically significant. However, the combined clinical 
and qualitative-EEG model significantly outperformed 
the quantitative-EEG model alone and the clinical and 
qualitative-EEG model significantly outperformed the 
clinical model alone. Of interest, although the aEEG 
model did not perform as well as conventional EEG 
models, performance improved from the clinical model 
alone, highlighting the value of any EEG monitoring. 
The combined clinical and quantitative-EEG model 
developed exclusively from infants with no prior ASM 
(n = 131) had the best performance (MCC 0.588).

Several previous studies have investigated the predic-
tive value of clinical and EEG parameters for seizure oc-
currence in neonates. Apgar scores, need for respiratory 

T A B L E  2   Seizure characteristics by HIE severity (n = 53)

All infants with 
seizures Moderate HIE Severe HIE

p-valuean = 53 n = 30 n = 23

Age at start of EEG monitoring (h), median (IQR) 4.1 (2.9–7.1) 4.3 (3.2–6.6) 4.1 (2.4–7.4) .566

EEG total monitoring (h), median (IQR) 94.5 (86.4–108.1) 93.6 (86.4–102.6) 95.9 (85.8–120.8) .44

Age at first electrographic seizure (h), median (IQR) 14.4 (10.3–19.6) 13.5 (8.6–19.4) 14.6 (13.5–19.8) .229

Number of seizures, median (IQR) 21 (8–51) 11 (5–25) 39 (28–104) <.001

Median seizure duration (s), median (IQR) 109 (79–355) 163 (93–838) 94 (68–140) .012

Total seizure burden (min), median (IQR) 71 (33–140) 59 (26–76) 126 (71–212) .003

Maximum seizure burden (min/h), median (IQR) 23 (15–32) 22 (16–37) 25 (13–32) .816

Status epilepticus, n (%) 18 (34) 9 (30%) 9 (39.1) .487b

Seizure period (h), median (IQR) 25.3 (8.4–42.7) 9.8 (3.2–32.4) 40.2 (25.3–69.3) <.001

Received AED treatment at any time (yes), n (%) 49 (92.5) 26 (86.7) 23 (100) .124b

AED before EEG monitoring, n (%) 12 (22.6) 7 (23.3) 5 (21.7) .891b

Total AED doses after EEG start, median (IQR) 2 (1–4) 1 (1–2) 3 (3–4) <.001

Note: p-value <.05 was considered statistically significant.
Abbreviations: HIE, hypoxic-ischemic encephalopathy; EEG, electroencephalography; AED, anti-epileptic drugs; IQR, interquartile range.
ap-Value from Mann-Whitney test for nonparametric data unless otherwise stated.
bp-Value from chi-square test for categorical data.
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support, and degree of metabolic acidosis were not found 
to be reliable predictors of seizures in neonates with 
HIE.25,27,28 Our clinical model included antenatal and 

postnatal clinical information available within 6 h of birth 
(the window to start therapeutic hypothermia). The per-
formance of our clinical model (AUC 0.681) was very 

T A B L E  3   Qualitative and quantitative-EEG features by seizure status

Non-seizure group (n = 109) Seizure group (n = 53) p-valuea

Qualitative-EEG analysis n (%) n (%)

Discontinuity (yes) 67 (61.5) 26 (50.9) .134

Discontinuity >10 s (yes) 31 (28.4) 22 (41.5) .096

Low voltage to isoelectric (yes) 22 (20.2) 36 (67.9) <.001

Asymmetry and/or asynchrony (yes) 5 (4.6) 3 (5.7) .767

SWC in the first 12 h (yes) 16 (14.7) 1 (1.9) .013

Quantitative-EEG Features Median (IQR) Median (IQR)

Power features

Spectral power delta band 41.8 (19.3–66.9) 5.32 (2.18–29.6) <.001

Spectral power theta band 8.01 (3.96–11.3) 0.934 (0.427–5.55) <.001

Spectral power alpha band 3.29 (1.78–4.76) 0.648 (0.316–2.60) <.001

Spectral power beta band 1.55 (0.95–2.97) 0.727 (0.253–1.75) <.001

Range EEG lower margin 15.5 (8.20–19.7) 5.61 (4.35–11.4) <.001

Range EEG median 28.8 (17.3–34.5) 8.94 (6.26–21.5) <.001

Range EEG upper margin 55.3 (45.2–68.0) 26.0 (14.1–48.7) <.001

Discontinuity features

Range EEG asymmetry 0.321 (0.277–0.443) 0.471 (0.295–0.644) .004

IBI length maximum 4.84 (3.27–12.3) 50.9 (8.02–473.0) <.001

IBI length median 1.88 (1.59–4.12) 16.2 (2.66–48.0) <.001

IBI percentage 5.37 (1.03–51.6) 90.5 (33.0–98.1) <.001

Amplitude skewness delta band 0.140 (0.120–0.183) 0.208 (0.135–0.313) .001

Amplitude skewness theta band 0.011 (0.009–0.017) 0.019 (0.011–0.031) <.001

Amplitude kurtosis delta band 4.95 (4.44–6.82) 6.22 (4.49–12.1) .027

Amplitude kurtosis beta band 4.88 (4.04–5.98) 4.20 (3.34–5.03) .006

Spectral shape features

Spectral relative power delta band 74.9 (70.4–78.9) 69.5 (58.1–76.1) <.001

Spectral relative power theta band 13.1 (11.0–15.5) 12.0 (9.80–14.0) .039

Spectral relative power alpha band 6.36 (5.18–7.65) 7.96 (5.58–10.5) .002

Spectral relative power beta band 3.44 (2.51–5.45) 8.44 (3.59–17.7) <.001

Spectral flatness beta band 0.757 (0.674–0.814) 0.846 (0.766–0.884) <.001

Spectral difference delta band 0.010 (0.008–0.013) 0.007 (0.003–0.013) .009

Spectral difference theta band 0.021 (0.013–0.025) 0.015 (0.006–0.022) .009

Spectral difference beta band 0.009 (0.006–0.012) 0.011 (0.007–0.015) .032

Spectral edge frequency 10.4 (8.75–13.0) 17.4 (10.0–22.7) <.001

Fractal dimension 1.44 (1.40–1.52) 1.65 (1.48–1.76) <.001

Connectivity features

Connectivity BSI delta band 0.215 (0.173–0.272) 0.257 (0.216–0.324) <.001

Connectivity BSI alpha band 0.218 (0.185–0.274) 0.254 (0.213–0.327) .017

Connectivity coherence mean theta band 0.052 (0.040–0.089) 0.072 (0.045–0.154) .025

Note: p-value <.05 was considered statistically significant. Frequency bands: delta: 0.5 to 3 Hz; theta: 4 to 7 Hz; alpha: 8 to 12 Hz; beta: 13 to 30 Hz.
Abbreviations: SWC, sleep-wake cycle; EEG, electroencephalography; IBI, interburst interval; BSI, brain symmetry index.
ap-Value from Mann-Whitney test for nonparametric data and chi-square test for categorical data.
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close to the model reported previously by Sansevere et al.32 
(AUC 0.662) and outperformed the model reported by Jain 
et al.30 In addition, we have shown that these models work 
equally well in the first hours after birth when important 
therapeutic decisions need to be made.

Given the increasing use of EEG monitoring in neona-
tal units worldwide, EEG background features have also 
been investigated to assess their ability to predict seizures 
and outcome and have been shown to outperform clinical 
parameters. Early abnormal EEG background (disconti-
nuity and low voltage features) has been associated with 
seizure development.28,32,47,48 Consistent with the liter-
ature, in our study, early low voltage to isoelectric EEG 
background was more frequently present in the seizure 
group compared to the non-seizure group (67.9% vs 20.2%, 

p-value <.001). Early SWC was absent in almost all infants 
with seizures (in our cohort only one infant with later 
seizures developed SWC before 12 h). In the non-seizure 
group, 16 infants had some evidence of early SWC, and 
all except one were diagnosed with mild encephalopathy. 
These findings might suggest that when early SWC is pres-
ent, seizure occurrence is unlikely in the setting of mild 
HIE, and this could be reassuring for the bedside neona-
tologist. Quantitative-EEG analysis is an objective and re-
producible analysis of the EEG background activity that 
does not require expert interpretation by a neurophysiolo-
gist. Low EEG power has been correlated previously with 
a poor neurodevelopmental outcome in neonates.49,50 
A more recent study has demonstrated that total EEG 
power < 10  μV2 had a specificity of 98%, a sensitivity of 

T A B L E  4   Performance of machine-learning models (n = 162)

ML model MCC (95% CI) AUC (95% CI) Sensitivity Specificity PPV NPV

Clinical model 0.368 (0.219 to 0.506) 0.681 (0.605 to 0.759) 60.4 77.1 56.1 80.0

Qualitative-EEG model 0.467 (0.319 to 0.611) 0.729 (0.669 to 0.815) 67.9 79.8 62.1 83.7

Quantitative-EEG model 0.473 (0.337 to 0.612) 0.730 (0.671 to 0.811) 69.8 78.9 61.7 84.3

Clinical and qualitative-EEG model 0.470 (0.336 to 0.602) 0.721 (0.681 to 0.813) 79.2 70.6 56.8 87.5

Clinical and quantitative-EEG model 0.513 (0.376 to 0.645) 0.746 (0.700 to 0.833) 75.5 78.0 62.5 86.7

Note: Statistical significance between models performance (MCC) using William's test for dependent correlations: clinical vs qualitative-EEG models, 
p-value  .083; clinical vs quantitative-EEG models, p-value .074; qualitative-EEG vs quantitative-EEG models, p-value .425; clinical and qualitative-EEG vs 
qualitative-EEG models, p-value .475; clinical and qualitative-EEG vs clinical models, p-value .037; clinical and quantitative-EEG vs qualitative-EEG models,  
p-value .100’ clinical and quantitative-EEG vs clinical models, p-value .012. Probability threshold was calculated from the receiver-operating characteristic 
curve as the point of equal sensitivity and specificity.
Abbreviations: ML, machine learning; MCC, Matthews correlation coefficient; AUC, area under the receiver-operating characteristic curve; PPV (NPV), 
positive (negative) predictive value.

T A B L E  5   Subgroup analysis of infants with no ASM given prior to the EEG epocha (n = 131)

ML model MCC AUC Sensitivity Specificity PPV NPV

Clinical model 0.461 0.732 64.1 82.6 61 84.4

Qualitative-EEG model 0.504 0.706 64.1 85.9 65.8 84.9

Quantitative-EEG model 0.475 0.806 71.8 78.3 58.3 86.7

Clinical and qualitative-EEG model 0.519 0.782 76.9 78.3 60 88.9

Clinical and quantitative-EEG model 0.588 0.832 66.7 90.2 74.3 86.5

Abbreviations: ML, machine learning; MCC, Matthews correlation coefficient; AUC, area under the receiver-operating characteristic curve; PPV (NPV), 
positive (negative) predictive value.
aSubgroup analysis of 131 infants (excluding 31 infants who received ASM before the EEG epoch analyzed).

T A B L E  6   ML models using aEEGa monitoring (n = 159)

ML model MCC AUC Sensitivity Specificity PPV NPV

Quantitative-aEEG model 0.381 0.696 71.2 69.2 52.9 83.1

Clinical and quantitative-aEEG model 0.384 0.720 61.5 77.6 57.1 80.6

Abbreviations: ML, machine learning; MCC, Matthews correlation coefficient; AUC, area under the receiver-operating characteristic curve; PPV (NPV), 
positive (negative) predictive value.
aaEEG = two-channel EEG (F3-C3 and F4-C4) analysis included 159 infants.
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50%, and a PPV of 90% for seizure prediction.30 We de-
veloped a seizure prediction model for infants with HIE, 
using a more extensive quantitative-EEG analysis includ-
ing several power, discontinuity, spectral distribution, and 
inter-hemispheric connectivity features (sensitivity 69.8%, 
specificity 78.9%, PPV 61.7%, NPV 84.3%). A combination 
of all these features into a quantitative-EEG model had 
better prediction compared to the clinical model and a 
prediction similar to that of the qualitative-EEG model 
(the neurophysiologist's assessment). These findings sug-
gest that quantitative-EEG analyses can be as accurate as 
expert interpretation to predict the likelihood of seizures 
and could augment the neurophysiology service, espe-
cially during out of hours periods, to guide the frequency 
of remote reviewing.

Sansevere et al. developed a combined neonatal sei-
zure prediction model, including clinical information 
and qualitative-EEG background features, with an AUC 
(95% confidence interval [CI]) 0.830 (0.776–0.884).31 In 
comparison, we developed different combined prediction 
models: clinical and qualitative-EEG model (AUC (95% 
CI) 0.721 (0.681 to 0.813)) and clinical and quantitative-
EEG model (AUC (95% CI) 0.746 (0.700 to 0.833)). The 
addition of clinical parameters to qualitative-EEG and to 
quantitative-EEG analyses significantly improved the pre-
dictive ability of clinical model alone. These results em-
phasize the value of combining clinical and EEG analysis. 
However, a direct comparison with Sansevere's model is 
difficult because of several differences between the two 
studies: We used a more homogeneous population of term 
infants with HIE; timing of the EEG epochs included in 
our analysis was standardized to before 12 h of age and 
before the emergence of electrographic seizures; qualitive 
analysis was based on the selected epoch and performed 
by an expert in neonatal EEG blinded to seizure occur-
rence; the proposed models were tested using a leave-one-
baby-out cross-validation strategy, an unbiased estimator 
of the generalization performance. This testing process 
inherently incorporates variance of the models, a likely 
problem for small data sets such as this, which again min-
imizes potentially inflated estimates of performance when 
training and testing with the same data set.

Because many neonatal units worldwide use aEEG 
monitoring, we also developed a seizure-prediction model 
using two-channel EEG (aEEG – F3-C3 and F4-C4).51–53 
Although, the quantitative-aEEG model was less predic-
tive than the multichannel EEG models, performance 
improved compared to the clinical model alone. Similarly, 
adding clinical information to the quantitative-aEEG 
analysis improved performance slightly.

The effect of ASM on EEG background was evident 
in this study by the difference in performance when ex-
cluding all infants treated with ASMs prior to the EEG, 

resulting in models with a superior performance (clinical 
and quantitative-EEG model MCC 0.588). However, in 
clinical practice it would be difficult to exclude these in-
fants, as clinical seizures are often treated before the EEG 
monitoring is started, especially for those infants that are 
outborn. Due to the relatively small sample size for this 
subgroup analysis (n = 131 infants), more studies are war-
ranted to account adequately for the effect of ASM.

Several limitations should be considered when inter-
preting these results. Although this study used a large 
study sample of infants with HIE, the numbers are small 
for ML analysis (<200 data points), limiting the ability to 
build complex ML models and potential bias toward over-
fitting. However, cross validation can limit this bias in 
performance assessment. In addition, there are different 
ways to combine ML models. The method chosen for this 
study was a late-stage fusion method, as we found this to 
be a better strategy than early-stage fusion for including 
all features (clinical + EEG) into one model. Due to miss-
ing data for blood gas analyses (ranging from 15%–37%), 
we used mean values to account for this, and included 
these parameters in the models, even if previous studies 
have demonstrated no significant change in the predic-
tive value by adding them.27 The presence of artifacts in 
the EEG trace is a limitation when performing quantita-
tive analysis. However, for this analysis we used the first 
good quality hour of EEG recording, each hour was visu-
ally inspected, and artifacts were annotated and removed 
from the analysis. Unlike detecting seizure events, we are 
uncertain as to the specific EEG patterns that might be 
associated with the later development of seizures, other 
than low power, which is non-specific. Future work 
should focus on looking for specific patterns, waveforms, 
and features in the EEG background associated with later 
development of seizures. The confounding effect on the 
EEG background of therapeutic hypothermia and ASM 
administration in our analysis was reduced by adjusting 
the quantitative-EEG model analysis. The presented mod-
els were developed for term and near-term newborns with 
HIE (36–44 weeks of gestation); therefore new ML models 
would need to be developed to investigate the likelihood 
of seizures in other subgroups of newborn infants.

Despite these limitations, this is the first study to use a 
large cohort of infants with HIE from multiple European 
neonatal units with early, conventional multichannel EEG 
monitoring to predict the later development of seizures. 
The predictive performance of these models included a ho-
mogeneous cohort of infants with HIE, as this group rep-
resents the main cause of seizures in term newborns and 
the main reason for EEG monitoring in neonatal units.5,6 
The EEG background visual analysis and seizure detection 
were performed by experts in neonatal EEG interpreta-
tion, giving more strength to the qualitative-EEG analysis. 

 15281167, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17468 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [26/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



466  |      PAVEL et al.

EEG analysis was based on an eight-channel EEG mon-
tage, which allowed us to assess cerebral activity across 
all cortical regions and to detect seizures that might be 
missed with more limited aEEG monitoring. In addition, 
a comprehensive quantitative-EEG analysis was included 
in the ML analysis as an objective and reproducible quan-
tification of the cerebral activity. Predictive models were 
developed separately using the eight-channel EEG and 
two-channel EEG aEEG. These models are research fo-
cused and will therefore need real-time clinical validation.

5   |   CONCLUSION

To summarize, early qualitative and quantitative-EEG 
features alone can predict infants who will later develop 
seizures in HIE, hours before seizure onset. Adding avail-
able clinical information augments the predictive value of 
these models. We demonstrated that ML analysis using 
quantitative EEG is as reliable as an expert (qualitative-
EEG analysis) in predicting the likelihood of seizures. 
Automated EEG analysis may be useful to individual-
ize the neurophysiology review frequency of continuous 
EEG monitoring, which may have a significant impact 
for units with less neurophysiology support. This study 
opens the door for the implementation of automated ML 
seizure-prediction algorithms, as objective bedside tools 
to identify which neonates with HIE are at highest risk 
of seizures.
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