Downloaded viaUNIV COLLEGE LONDON on November 28, 2022 at 13:59:12 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

pubs.acs.org/jcim

HEe®

Open Binding Pose Metadynamics: An Effective Approach for the
Ranking of Protein—Ligand Binding Poses

Dominykas Lukauskis, Marley L. Samways, Simone Aureli, Benjamin P. Cossins, Richard D. Taylor,

and Francesco Luigi Gervasio™
I: I Read Online

Article Recommendations |

o0 %o

RMSD 6.3A RMSD = 0.6 A

g;@g\\l

RMSD = 6.4 A ‘openBPMD
& -

Cite This: https://doi.org/10.1021/acs.jcim.2c01142

ACCESS |

ABSTRACT: Predicting the correct pose of a ligand binding to a
protein and its associated binding affinity is of great importance in
computer-aided drug discovery. A number of approaches have been
developed to these ends, ranging from the widely used fast molecular
docking to the computationally expensive enhanced sampling molecular
simulations. In this context, methods such as coarse-grained
metadynamics and binding pose metadynamics (BPMD) use simu-
lations with metadynamics biasing to probe the binding affinity without
trying to fully converge the binding free energy landscape in order to
decrease the computational cost. In BPMD, the metadynamics bias
perturbs the ligand away from the initial pose. The resistance of the
ligand to this bias is used to calculate a stability score. The method has
been shown to be useful in reranking predicted binding poses from
docking. Here, we present OpenBPMD, an open-source Python
reimplementation and reinterpretation of BPMD. OpenBPMD is powered by the OpenMM simulation engine and uses a revised
scoring function. The algorithm was validated by testing it on a wide range of targets and showing that it matches or exceeds the
performance of the original BPMD. We also investigated the role of accurate water positioning on the performance of the algorithm
and showed how the combination with a grand-canonical Monte Carlo algorithm improves the accuracy of the predictions.
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B INTRODUCTION

The knowledge of the three-dimensional structure(s) of a
protein—ligand complex and the determinants of its

thermodynamic stability are fundamental ingredients for . ! 3 ; . .
rational drug design, both for the hit-discovery phase and the protein residues.” Docking generates multiple candidate poses

subsequent lead-optimization phase. From the computational and r'anks them in terms of interaction quality using a scoring
. L 14 function. An extensive study has shown that a typical docking

perspective, methods such as protein—ligand docking ~" are i
program can correctly rank a native pose (root mean square

widely used to address the two related subproblems, findin !
7 . p nding deviation, RMSD, of less than 2 A from the native pose) as the
the most favorable configuration of the small molecule in the s
. . . 1 top ranked one between 40% and 60% of the time.
target protein (pose generation) and evaluating the stability of X .
intermolecular complexes created during the pose generation Interestingly, it will find at least one pose that can be
P 8 pose & considered as native around 60% to 80% of the time,’

h ing). Si d is often of th
prase (p ose s.corlng) Sm'ce speed 15 often Of the essence, indicating that a key issue is the quality of the scoring function.
especially in virtual screening campaigns where large libraries . S )

Since docking is typically used to assess large numbers of

. . . hort ti
need. to be sc.reened against a protein farget in a short tlr}le, ligands, docking algorithms have been built with computational
docking algorithms usually trade accuracy for speed by using , N . o .

efficiency in mind. To this end, it relies on an empirically fitted

fast pose generation algorithms and approximate pose scorin
pose & gorrhums PPIe P & scoring function or a simplified physical model, often
functions. These approximations inevitably decrease the

predictive power of the algorithms, and increasingly more
accurate algorithms often based on molecular dynamics
simulations are introduced downstream to docking (or instead
of) in drug discovery pipelines to increase the number of
predicted true positive hit and lead molecules.

In docking, ligands are introduced into a protein site of
interest, and then their degrees of freedom (center-of-mass

translations, rotations, and free dihedral angles) are sampled to
find the optimal configuration according to an energy function
approximating the binding free energy. In the case of induced-
fit docking, the algorithm also allows for flexibility of nearby
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overlooking crucial contributions to the ligand-target binding
free energy. To achieve better pose ranking, a feasible approach
is to use methods that model the physics of macromolecules
more accurately.

Atomistic molecular dynamics (MD) simulations with an
explicit solvent model aim to represent most of the relevant
factors needed to replicate the behavior of molecules at the
nanoscale. The most straightforward use of MD in binding
pose prediction is to simulate the protein and ligand for long
enough to observe multiple binding events and then
extrapolate the most populated conformation as the true
binding mode. Despite reported successes with this method,’
the required simulation times (on the order of tens to
hundreds of microseconds or more) are far too long to be
practical, without extremely specialized hardware.” Another
approach to rerank docked poses could be to run shorter
unbiased MD simulations of each candidate pose and then
rank them according to pose stability, usually measured as the
RMSD of the ligand from the pose in question. However,
many incorrect poses can be metastable in shorter simulations
and may not be reliably distinguished from the native pose.

More or less accurate and expensive enhanced sampling
algorithms, such as dynamic undocking (DUCk),® coarse
metadynamics,” or binding pose metadynamics'®'" can help
to overcome barriers between such metastable states.
Metadynamics (metaD) was designed to accelerate molecular
processes of interest by depositing Gaussian-shaped biases
along a set of collective variables (CVs) that approximate the
reaction coordinate.'”””'* This method applies a bias to
previously observed values of the reaction coordinate, such
that the system is “pushed” out of highly populated states into
conformations that are observed much less frequently. When
the deposited bias is added up, it forms an inverse free energy
surface (FES) along the CV, giving the differences between the
conformational states and the heights of the barriers separating
them. Many molecular phenomena have been successfully
studied using metadynamics, including the folding of small
proteins, protein conformational dynamics, and ligand binding
to proteins.”> "’

The first use of metadynamics for ligand binding was
reported by Gervasio et al,'® where they made use of
metadynamics to bias the distance of a ligand from the binding
cavity and its orientation in order to explore other metastable
states, the unbinding and rebinding paths, and reconstruct the
associated free energy profile.

However, this approach requires the definition of system-
specific CVs and long sampling times to compute a fully
converged free energy landscape associated with the binding,
limiting its generalizability. For this reason, various methods
have been developed to address these issues, ranging from
optimal CVs based on path-like variables,”” ** to machine
learning,23_25 confining boundaries,”**™*® and combination
with multiple replica algorithms or more efficient enhanced
sampling algorithms.””*® These approaches have been
successful, but they are still time-consuming and computa-
tionally expensive, making them more suitable for later stages
of lead optimization rather than the initial screen of multiple
ligands.

Coarse Metadynamics proposed by Masetti et al.” tried to
address this issue by using a combination of generalizable CVs
to bias docked poses and explore the unbinding path up to the
transition state, without trying to fully converge the binding
free energy. This approach was based on the observation that

the energy barrier for the binding is often similar across
different ligands and showed that the local depth of the free
energy basins as well as the AG* even when using only two
geometric CVs gives a clear, unambiguous indication of the
crystallographic docking geometry and an estimate of the
binding affinity of the ligands.

A more recent approach to pose reranking is binding pose
metadynamics (BPMD), as proposed by Clark et al. in 2016."°
Instead of running long metadynamics simulations until the
free energy surface has been fully converged, multiple
candidate poses are perturbed in short simulations. These
poses are then ranked by stability using the observed RMSD
(relative to the initial ligand coordinates) and the persistence
of hydrogen bonds during the metaD simulations. More
recently, BPMD has been used in conjunction with other
approaches, such as water analysis (via WScore),”' longer
unbiased MD simulations, and relative binding free energy
calculations to select native poses.''

Here, we present an open-source Python implementation of
binding pose metadynamics, called OpenBPMD. BPMD is
intended primarily to be used in conjunction with docking to
rerank candidate poses in terms of stability. The ligand atoms
are subjected to a metadynamics bias, and the ligand pose is
given a score according to its stability. OpenBPMD is a Python
script that uses the OpenMM molecular dynamics engine***
to run a metadynamics simulation and MDAnalysis,
together with MDTraj,*® to process and analyze the simulation
in a user-friendly fashion. To validate this implementation,
OpenBPMD was applied to the data set used by Clark et al."’
obtaining very similar results. We found that OpenBPMD can
identify the native pose (RMSD < 2 A) 88% of the time and
that equilibrating the solvent molecules with an advanced
water sampling method, based on GCMC/MD, was essential
in achieving good results. Our code is open-source and freely
available on GitHub (https://github.com/Gervasiolab/
OpenBPMD).

34,35

B METHODS

Initial Structures. The 3D structures of the protein—ligand
poses employed in the present manuscript were obtained from
the Supporting Information of the publication by Clark et al.'’
All systems were prepared through BioSimSpace,”” para-
metrizing the protein and the ligand with the Amber ff14SB>®
and the GAFF2*° force fields, respectively. Ligand partial
charges were modeled using the AM1-BCC scheme.** A subset
of ligands was reparametrized with RESP partial charges,*'~*
to test the efficacy of AM1-BCC. This test led to results in
agreement between the two systems of partial charges (see
Figure S6). The N- and C-termini of the proteins were left
uncapped. The protein—ligand complexes were solvated using
the TIP3P water model,** and then Na* and/or Cl~ ions were
added until the systems were charge neutral. BioSimSpace uses
“gmx solvate” to set up the solute—solvent boxes.*> The
OpenMM MD engine was employed to run each simu-
lation.”>** The equilibration involved a potential energy
minimization of 10,000 steps (or convergence to the energy
tolerance of 10 kJ/mol), followed by S00 ps restrained
equilibration in the NVT ensemble with a 2 fs time step.
Nonwater heavy atoms were restrained to their initial
coordinates during equilibration, with a force constant of S
kcal/mol/A% All production simulations used a 4 fs time step
with hydrogen mass repartitioning (where the hydrogen mass
is set to 4 Da) in the NVT ensemble using a Langevin
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integrator, with the heat bath reference temperature set to 300
K and the heat bath coupling friction coefficient set to 1 ps™.
Periodic boundary conditions were applied, and the particle-
mesh-Ewald (PME) method was used to treat long-range
electrostatic interactions (cutoff at 10.0 A).*

Solvation and Equilibration of the Systems. The
solvation of the protein—ligand interface can have a great
impact on the stability of the complex, e.g., mediating long-
range electrostatic interactions. To overcome such an issue, we
employed grand, a Python module that allows us to perform
grand-canonical Monte Carlo (GCMC) sampling of the water
molecules during an MD simulation (GCMC/MD).*”~* In
this way, water molecules may be inserted or deleted within the
solvation shell of the ligand, a strategy that has recently been
shown to recover water networks seen in crystallographic
structures about 70—80% of the time.”’ The grand
equilibration process was executed in three stages. The first
stage of GCMC/MD is the equilibration of the water
distribution. It involves initial 10,000 GCMC moves, followed
by 1 ps of GCMC/MD (100 iterations, where each iteration
includes 5 MD steps of 2 fs each, followed by 1000 GCMC
moves). The second 500 ps NPT simulation was to equilibrate
the system volume. The final GCMC/MD stage was to
equilibrate the waters at the new system volume and involves
100,000 GCMC moves over 500 ps. To test the influence of
water networks on pose stability, solvated poses were simulated
with and without this additional grand equilibration.

Enhanced Sampling Simulations. The selected collec-
tive variable (CV) was the RMSD of the ligand heavy atoms
(using the coordinates at the end of equilibration phase as a
reference). The CV also incorporated the anchor atoms (which
are used to align the protein, such that the RMSD values are
calculated in the same frame of reference, irrespective of
protein motion), along with the heavy atoms of the ligand. The
selection of the anchor atoms was accomplished according to
previously published criteria.'” A flat-bottom restraint without
a force constant was employed between the anchor atoms and
the ligand to fix issues with periodic boundary conditions not
being taken into account when OpenMM calculated the
RMSD of the ligand during the simulation.

The hill height of the Gaussians is one of the most important
parameters in metadynamics. To test the effect of this
parameter on the stability of poses, simulations on the entire
data set were run twice, using hill heights of 0.3 and 0.05 kcal/
mol. An exception is the DPP4 system where only the 0.0S
kcal/mol hill height was used throughout, in accordance with
the original publication.'’

A Gaussian width of 0.002 nm was applied on the RMSD
CV. The bias potential was deposited every 100 ps, with a bias
factor of 4. All OpenBPMD simulations were carried out for 10
ns. The reported OpenBPMD scores are the average score of
10 independent metadynamics runs.

Scoring Function. Clark et al."> employed two metrics to
rank ligand poses in terms of stability, “PoseScore” and
“PersScore”. PoseScore is evaluated by computing the RMSD
for the heavy atoms of the ligands (obtained by first aligning
the simulations on the protein’s secondary structure C,
atoms). This metric is particularly efficient in handling
significant displacements of ligands’ scaffolds. Nevertheless, it
fails to monitor minimal translations of a ligand, even though
they may be sufficient to destabilize the protein/ligand
interaction network. For this reason, the PersScore metric
was selected, to oversee the fraction of long-lasting hydrogen

bonds through a metadynamics simulation. However, Pers-
Score is oblivious toward interatomic interactions different
from hydrogen bonds, leading to the failure of PersScore for
any ligand that does not form hydrogen bonds with the
protein.

With the aim of refining the PersScore, we devised a new
metric for tracking the persistence of nonbonded interactions
between the ligand and the protein during a BPMD simulation:
“ContactScore”. Instead of relying only on hydrogen bonds,
ContactScore is built on the more generic definition of a
“contact” between a ligand and its target, i.e., each couple of
heavy atoms belonging to the ligand or the protein within 3.5
A of each other. In this way, no distinction is made between
different kinds of noncovalent interactions, such as 77—z
stacking, 7-halogen interactions, or hydrogen bonds. Proce-
dure-wise, the number of contacts is measured every 100 ps
and compared to the amount at the beginning of the
OpenBPMD simulation. The final ContactScore is obtained
by averaging the number of contacts of the last 2 ns of a
simulation.

In order to merge the advantages of the old scoring systems
and the new metrics, a composite score was envisioned and
named “CompScore” (eq 1):

CompScore = PoseScore — 5 X ContactScore (1)

This equation is derived from the eq 3 presented in the SI of
Clark et al.'” in which we replaced the PersScore with the
aforementioned ContactScore. Both PoseScore and Contact-

34,35 @ .
> Simulation

Score were calculated using MDAnalysis.
trajectories were postprocessed using MDTraj,*° to place the
solute in the center of the box and account for any periodic
boundary conditions. The workflow described above is
summarized in Figure 1.

The scripts required to reproduce the results presented in
this work are made freely available at https://github.com/

Gervasiolab/OpenBPMD.

Parameterized
protein-ligand  —>

grand

water equilibration

structures
T ~MetaD
Set of protein- simulations
ligand poses,
ranked by docking RMSD Contact
T estimate persistence
: Combined
Docking el
Protein Set of Ligand poses
structure ligand reranked by
structures

OpenBPMD

Figure 1. Graphic of the OpenBPMD workflow. The left-hand side
part of the workflow can be done with any docking program of choice,
and protein—ligand structures can be parametrized using any force

field.
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B RESULTS AND DISCUSSION

BPMD vs OpenBPMD. Using an RMSD cutoff of 2 A for
the correct pose classification, with grand equilibration and the
same hill height of 0.3 kcal/mol for metadynamics, we achieve
nearly identical accuracy to Clark et al.'® (Figure 2).

OpenBPMD, grand equilibrated
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Figure 2. A comparison between the BPMD results obtained using
OpenBPMD+grand (top) and the previously published results by
Clark et al. (bottom). The red and the gray dashed lines demarcate
the 2 and 3 A cutoffs, respectively.

Clark et al." reported that BPMD was able to correctly rank
the top pose to be within 2 A RMSD of the native
(crystallographic) pose 88% of the time. OpenBPMD does
equally well, correctly finding a low RMSD pose for each
ligand with the same success rate. There were two outliers with
RMSD > 3 A for BPMD and one for OpenBPMD. This leads
to a top-ranking pose to be within 3 A RMSD 95% and 98% of
the time for BPMD and OpenBPMD, respectively. The pose
ranking power of OpenBPMD was also compared to induced-
fit docking (IFD). The null hypothesis states that OpenBPMD
will not be better at identifying the top pose as within 2 or 3 A
RMSD than IFD, which was correct 64% of the time. As shown
in Figure S1, using the two-sided Wilcoxon signed-rank test we
can reject the null hypothesis with greater than 95%
confidence, ie., p < 0.05. OpenBPMD also displayed a very
similar Pearson correlation coeflicient between the pose
RMSD and the CompScores to the original BPMD
implementation10 (SI Figure 3).

Interestingly, we also identify that the same ligand, D42
from PDB ID 2b52, cross-docked into a CDK2 structure from
PDB ID lwcg, as an outlier. Despite using different force fields
and simulation engines, both BPMD and OpenBPMD rank a
non-native pose as the most stable one. As mentioned in the
Clark et al,'” this is most likely due to a missing set of
hydrogen bonds between the ligand and the backbone of the
protein (Figure 3). These hydrogen bonds were not formed at

Figure 3. Example low and high RMSD poses for CDK2 ligand D42
(PDB ID: 2b52). Pose 2 on the left (RMSD = 6.24 A) was predicted
to be more stable than Pose 4 on the right (RMSD = 1.39 A). This is
likely owing to the two hydrogen bonds between the pyrazole ring
and the backbone of the protein (Leu83 and Glu81). Conversely,
such interactions are present in Pose 2 (as indicated with dashed
yellow lines). The donor—acceptor atoms in Pose 4 are too far away
and at a poor angle for forming a hydrogen bond. The ligand
conformation found in the crystal structure is shown in translucent
white.

the beginning of the simulation and thus not counted toward
the persistence score. The same hydrogen bonds were often
formed during the metadynamics simulation, pointing out that
relying mainly on the initial protein/ligand interactions (i.e.,
PersScore) may lead to artifacts in the scoring functions.

As a comparison to OpenBPMD, MM-GBSA calculations
were run on 10 ns unbiased trajectories using the MMPBSA.py
script from Ambertools20.>"°* As shown in SI Figure S7, only
60% of the highest affinity poses were correctly ranked as
within the 2 A RMSD cutoff. We also show there is almost no
correlation between the MM-GBSA-derived binding affinities
and the pose RMSD (SI Figure S7).

The Need for Advanced Water Equilibration. The
initial goal of this work was to follow the protocol of the
original BPMD publication,10 in order to validate the
performance of OpenBPMD against an established data set.
The holo complexes were downloaded from the Supporting
Information of their publication,'’ and after preparation using
BioSimSpace,”” which uses the “gmx solvate” function to set up
the simulation boxes,** were evaluated with OpenBPMD. The
initial results were disappointing, with rather low success rates
of 69% and 71% in ranking the top pose below the 2 A
threshold, using hill heights of 0.3 and 0.05 kcal/mol,
respectively (top panels in Figure S), and a success rate of
86% in both cases, when using an RMSD threshold of 3 A
(bottom panels in Figure S).

While the original protocol included a short solvent
equilibration, it did not appear sufficient to sample the
bridging waters found buried between the protein and the
ligand, owing to the potentially very slow binding kinetics of
such waters.”> For such an example in this data set, refer to
Figure 4. GCMC/MD, a well-tested water equilibration
method, was used to address this issue, via the grand
module.”” =" With a thorough grand equilibration protocol
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Figure 4. Effect of grand equilibration on water positions. Initial water
placement (as carried out by the BioSimSpace protocol, see the
“Methods” section in the main text) and a short solvent equilibration
failed to converge the water networks for a few systems. This figure
shows the structure of pose 3 of the FXA ligand CBB found in PDB
ID 1lpk docked into a FXA receptor from PDB ID 1g2m before (left)
and after (right) grand equilibration. The water molecules from the
crystal structure are represented by spheres, while the waters from the
initial solvation (left) and post-grand simulation (right) are shown in
sticks. The structure on the left is missing the lower two water
molecules, which are present in the crystal and grand-equilibrated
structures. Without grand, pose 3 (RMSD of 1.17 A from the native
pose) was ranked third in stability, while after grand it was ranked as
the most stable out of the five candidate poses.

(described in the Methods section), the OpenBPMD results
improved substantially. With a hill height of 0.3 kcal/mol,
including grand equilibration increased the success rate of
OpenBPMD from 69% to 88% (with a threshold of 2 A). A
similar improvement is seen with a hill height of 0.05 kcal/mo],
where the success rate increases from 71% to 86%, when using
an RMSD threshold of 2 A. It is not clear why Clark et al."” did
not require extensive water equilibration to achieve com-

parable results. It could be due to differences in the force fields,
water models, or how the complexes were set up before any
dynamics.

Impact of the Hill Height Parameter. Clark et al.'” also
tested how the stability scores are affected by different
Gaussian hill heights. In short, larger hills will perturb the
ligand more. It is important that the bias force is large enough
to distinguish between different poses but not so large that the
ligands unbind too rapidly. In this work, the effects of a smaller
hill height were tested as well. OpenBPMD gives similar results
with the 0.05 kcal/mol hill height, with a success rate of 86%
below 2 A RMSD and 100% below 3 A RMSD. There is some
overlap in misclassifications, but this does not appear
significant. Three protein—ligand systems were common
among the five and six misclassified systems (using the 2 A
threshold) for the 0.3 kcal/mol and the 0.05 kcal/mol setups,
respectively.

Notably, the large outlier (where the ligand from the 2b52
PDB structure was docked into the CDK2 receptor from the
Iwce PDB structure), observed in the setup which used grand
equilibrated structures and a hill height of 0.3 kcal/mol, was no
longer an outlier when the smaller hill height was employed.
Since the added bias perturbs the system, a larger hill might
not be able to distinguish between two poses with similar
binding energy, especially if their stability is relatively low.
Indeed, in the case of the outlier 2b52, the high RMSD pose
had the CompScore of —0.35, while the low RMSD pose
showed the CompScore to be —0.66, which is very close. The
difference is indeed small, and only with smaller hills (and thus
a gentler bias) is OpenBPMD able to distinguish them. This
phenomenon has also been reported in the case of the original
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Figure S. Effects of grand equilibration on the accuracy of OpenBPMD scoring. The red and the gray dashed lines demarcate the 2 and 3 A cutoffs,
respectively. Without grand, OpenBPMD successfully classified 69% (86%) and 71% (86%) of the poses below the 2 A (3 A) threshold, with a hill
height of 0.3 and 0.05 kcal/mol, respectively. With grand, the success rates increase to 88% (97%) and 86% (100%) of poses correctly classified
below the 2 A (3 A) threshold, with a hill height of 0.3 and 0.05 kcal/mol, respectively.
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BPMD paper,10 and thus, based on these observations, we
advise to use the smaller hills.

Impact of the Charge Model. A subset of ligands, namely
the CDK2 subset, was reparametrized with REST, to compare
the effect of using ab initio derived partial charges versus those
obtained with the semiempirical AM1-BCC approach. The
results are reported in Figure S6. In most cases, the quality of
the predicted poses is equivalent. However, for the system that
was an outlier (2b52), running OpenBPMD with REST
charges and a hills height of 0.3 kcal/mol results in a more
accurate pose. Thus, it might be advantageous to use REST
charges when possible.

Performance. OpenBPMD simulations are short, and
when run with a high-performance molecular dynamics engine
and a 4 fs time step, they can be completed very quickly. For
example, a CDK2 protein—ligand system, set up in a triclinic
simulation box, typically amounted to around 44000 atoms.
On an NVIDIA GTX 2080Ti card, all 10 repeat simulations
launched serially would finish in about 5.5 h, running at 430 ns
per day. If all 10 simulations were run in parallel, they would
complete in around 30 min (Figure S4).

B CONCLUSIONS

Here, we have presented the OpenBPMD algorithm developed
as an open-source Python module, which allows users to
efficiently rerank docked poses. With the addition of an
advanced water equilibration method that employs GCMC/
MD (via the grand software),”’ ™" the protocol presented can
successfully predict which pose is within 2 A RMSD of the
crystallographic pose in 88% of the protein—ligand systems
investigated. In addition, OpenBPMD displayed a broadly
similar correlation between pose RMSD and the composite
stability score as reported previously.'® With these calculations
taking hours on moderate computational resources, we believe
OpenBPMD is well suited for integration into many computa-
tional pose prediction pipelines.

In this study, OpenBPMD was generally able to correctly
rank the top pose as proximal to the native structure; however,
the present data set only involved cross-docked poses
generated by Glide.” Future work will involve looking at how
well OpenBPMD works on poses generated by other docking
programs.”>>* Furthermore, the present data set only involved
drug-like molecules. It would be of interest to see how
OpenBPMD performs on ranking poses of smaller molecular
fragments.

The primary intended use case of OpenBPMD is the
reranking of docked poses. However, there are multiple other
potential use cases. In structural experiments, the electron
densities of ligands are often ambiguous. Sometimes ligands
can assume multiple potential conformations that fit the
electron density. In these cases, OpenBPMD may assist in the
proper assignment of the ligands’ coordinates. Similar
investigations have already been done using the proprietary
implementation of BPMD.>® Much like docking, OpenBPMD
could be applied not only for ranking poses but also to carry
out virtual screening of compound libraries. Cutrona et al.*®
showed that metadynamics was able to filter out most of the
false positives in a virtual screening campaign. It is possible that
pose stability scores have some correlation to ligand binding
affinities. Future work will investigate whether OpenBPMD
can help enrich libraries, discriminate between decoys and
actives, and potentially rank ligands by their affinity.

Bl DATA AND SOFTWARE AVAILABILITY

The results from the OpenBPMD simulations are included in
the three .txt files in the SI. The code that was developed and
validated in this project is freely available on GitHub (https://
github.com/Gervasiolab/OpenBPMD).
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