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Abstract 

 

A Machine Learning approach to the problem of calculating the proton paths inside a scanned object in proton 

Computed Tomography is presented. The method is developed in order to mitigate the loss in both spatial resolution 

and quantitative integrity of the reconstructed images caused by multiple Coulomb scattering of protons traversing 

the matter. Two Machine Learning models were used: a forward neural network and the XGBoost method. A heuristic 

approach, based on track averaging was also implemented in order to evaluate the accuracy limits on track calculation, 

imposed by the statistical nature of the scattering. Synthetic data from anthropomorphic voxelized phantoms, 

generated by the Monte Carlo Geant4 code, were utilised to train the models and evaluate their accuracy, in 

comparison to a widely used analytical method that is based on likelihood maximization and Fermi-Eyges scattering 

model. Both neural network and XGBoost model were found to perform very close or at the accuracy limit, further 

improving the accuracy of the analytical method (by 12% in the typical case of 200MeV protons on 20 cm of water 

object), especially for protons scattered at large angles. Inclusion of the material information along the path in terms 

of radiation length did not show improvement in accuracy for the phantoms simulated in the study. A neural network 

was also constructed to predict the error in path calculation, thus enabling a criterion to filter out proton events that 

may have a negative effect on the quality of the reconstructed image.  By parametrizing a large set of synthetic data, 

the Machine Learning models were proved capable to bring - in an indirect and time efficient way - the accuracy of 

the Monte Carlo method into the problem of proton tracking. 

 

Keywords: Machine Learning, proton Computed Tomography, proton path tracking, multiple Coulomb scattering, 

Geant4 Monte Carlo, proton stopping power 
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1. Introduction 

Proton therapy takes advantage of the property of protons that they release a significant part of their energy towards the end 

of the path, creating compact and well-defined energy deposition profiles. The sharp dose fall-off of the proton beams allows 

the planning of highly conformal dose distributions to the treatment target, while at the same time sparing the surrounding 

healthy tissue. However, these desirable features of proton therapy make it vulnerable to uncertainties in the proton treatment 

delivery, including those in set up, patient motion and proton range, the latter being related to miscalculations on tissue 

inhomogeneity and patient stopping power estimation. 

Although proposed as early as x-ray CT, proton CT (pCT) is a relatively unexplored field, especially in its clinical 

aspects, with its own practical/theoretical challenges and image artefacts. Multiple Coulomb scattering is the major factor 

limiting the spatial resolution of pCT images. Passing through matter, protons undergo a large number of small angle 

deflections, ending up after exiting the imaged object with a lateral displacement of the order of few millimetres. While 

proton trackers are capable of recording, with satisfactory accuracy, the position and orientation before and after traversing 

the patient, the proton path inside the body is unknown, thus compromising clinically needed spatial resolution and tissue 

quantitative information. 

Theoretical approaches, based on Fermi-Eyges (Eyges 1948) and Molière (1947) multiple scattering theories, as 

well as empirical/phenomenological ones have been proposed to improve incomplete proton track information. The methods 

are based on the information that is recorded during the acquisition for each proton, regarding the position, motion direction 

and energy, before and after passing through the imaged object. Most of the methods attempt to fit the proton track to the 

measurements by means of maximizing likelihood and/or employing Bayesian inference schemes (Williams 2004, Schulte 

et al 2008, Wang et al 2010, Collins-Fekete et al 2017, Lazos et al 2020). The least action-based approach, which involves 

solving the Euler-Lagrange equation, has also been proposed (Erdelyi 2009, Krah et al 2019). Another category of solutions 

on a simpler theoretical base is the use of parametric curves. Collins-Fekete et al (2015) proposed an empirical cubic spline 

path model that is calibrated by parametrizing Monte Carlo data, without using any multiple scattering theory. Williams 

(2004), Li et al (2006) and Erdelyi (2009) proposed /utilised cubic parametric curves for the case where energy loss is not 

accounted for. 

Such theoretical tools however are based on simplifying assumptions, necessary for the analytical solution of 

typically complicated integral-differential equations. The Fermi-Eyges model for example, accounts for statistical 

correlation between angular and spatial coordinates, through a joint Gaussian distribution, but it underestimates large angle 

scattering. These sources of inaccuracy have a negative effect on the path estimation and subsequently on the pCT image 

numerical consistency. In addition, computational time in these typically inverse methods is a concern, since pCT 

reconstruction through an iterative method is by itself a time-consuming procedure. The stochastic nature of particle 

scattering and energy loss seems to set a barrier to the achievable accuracy, which is translated into pCT inherent spatial 

resolution limits. 

To overcome the inaccuracies of the underlying physics models and the computational burden of analytical 

solutions, we propose in this article a machine learning approach for the problem of proton path tracking inside the imaged 

object. Machine learning algorithms bring new possibilities to this problem due to their capability to model complex data 

dependencies and to learn from large sets of high-dimensional data through training. Machine learning tools such as artificial 

neural networks (NNs) have shown promising results in the problem of particle track reconstruction from accelerator data 

(Tsaris et al 2018) and due to their ability for parallelization have greatly reduced computation times. 

The proton tracking problem in pCT is characterized by smaller degree of complexity and lower dimensionality. 

In our approach we calculate the sequence of the proton positions by employing a feed forward NN and an extreme gradient 

boosting (XGB) model (Chen and Guestrin 2016), trained over a large set of Monte Carlo simulated proton tracks in matter. 
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The input of the network consists of the position, direction and energy of each proton before and after the medium. The 

proposed NN is compared against another state of the art machine learning algorithm such as boosted decision trees. 

A critical question in path reconstruction in pCT is if the knowledge of the materials along the path can improve 

the accuracy of the estimation. This is because the theoretical cross sections of multiple scattering, such as those in Fermi–

Eyges or Molière theories, depend on the material through both density and atomic number, and the same is valid for 

compounds and mixtures. Such information can be extracted, with some degree of uncertainty, from the maps of the relative 

stopping power (RSP) that are given by pCT, thus potentially creating a positive feedback in accuracy. To test this 

hypothesis, we constructed a NN where the input, besides the measured variables (position, direction and energy), includes 

a number of radiation length values along the path. Being capable to detect and reproduce any observable dependency, 

artificial NNs can be used to test the validity of this hypothesis. Another NN is also constructed that attempts to predict the 

error of the reconstructed path, enabling a criterion to filter out proton tracks that may have a negative effect on the quality 

of the reconstructed image.  

In the following, we present a solution of the path reconstruction problem based on machine learning models 

(namely artificial NN and boosted decision tree) and compare their accuracy against a widely accepted theoretical approach, 

based on likelihood maximisation (Williams 2004, Schulte et al 2008). Geant4 Monte Carlo (MC) data from voxelized 

phantoms and simple phantoms have been used for training the models and evaluate their accuracy. We also utilise the same 

models to check if the knowledge of the radiation length of the material(s) of the imaged object can enhance the method 

accuracy.    
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2. Methods 

2.1. Problem definition 

We assume the proton enters and leaves the medium at points 𝐌0 = (𝑥0, 𝑦0, 𝑧0) and 𝐌1 = (𝑥1, 𝑦1, 𝑧1),  respectively (figure 

1(a)). Direction vectors at these points are P0= (u0,v0,w0) and P1=(u1,v1,w1), assuming ||P0||=||P1||=1. The direction vectors 

are measured by two pairs of trackers, one positioned at each side of the imaged object. The same trackers record the proton 

position, while the points M0 and M1 are calculated by projecting these positions on the object surface, the latter can be 

given by a simple filtered backprojection reconstruction, even without elaborated correction of proton path. The initial 

energy is known from the accelerator settings, while the final one is measured by the range telescope.  In this context, the 

problem of calculation of the path 𝑺(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))  can be written as a function of the known variables: 

  

𝑺(𝑡) = 𝐹(𝑡, 𝐌0, 𝐌1 , 𝐏0, 𝐏1, 𝐸0, 𝐸1),                                                                 (1) 

 

where 𝐸0 and 𝐸1 the proton energy before and after passing through the medium, while 𝑡 is a temporal variable so that  

0 ≤ 𝑡 ≤ 1, 𝑺(0) = 𝐌0 and 𝑺(1) = 𝐌1. Without loss of generality, for each proton we select a coordinate system so that P0 

= (1, 0, 0) and M0 = (0, 0, 0). Similar to the methodology followed in other path calculation approaches (Williams 2004, 

Schulte et al 2008), we assume that the proton moves independently along the y- and the z-axis, and so the motion along 

each axis can be treated separately. This simplifies the problem from 3D to 2D. Equation 1 can thus be rewritten for the y-

axis: 

    𝑦(𝑡) = 𝐹y(𝑡, 𝑥1, 𝑦1, 𝜃𝑦1, 𝐸0, 𝐸1),                                                                   (2) 

 

where θy1 is the plane exit angle (on xy plane), while the position variable 𝑡 has been set equal to x/x1. Similar equation 

exists for z-axis. In this study, we assume that this equation can be approximated by two ML models: a feed forward NN 

(denoted as N2D) and an extreme gradient boosting (XGB) decision tree. Proton track data for training and qualitative 

assessment of the proposed models was obtained by Geant4 MC simulation. It should be noted that for measured data 

(𝐌𝑖 , 𝐏𝑖 , 𝐸𝑖 , 𝑖 = 0, 1) of each proton there is an infinite multitude of paths 𝑺(𝑡) that can fit the measured values. Indeed, 

according to the Fermi-Eyges theory the proton position at each depth follows a Gaussian distribution, with energy- and 

depth-dependant spread. The resulting path 𝑺(𝑡) is estimated by our method, in the same way the Fermi-Eyges model gives 

the path that maximises likelihood. In our case the estimated path may be defined as the path that minimises the L2 norm 

between the NN predictions and the actual paths, produced by MC simulation.  

Another NN (denoted as NErr) is constructed to predict the error of the track given by the N2D, relative to the actual 

MC simulation path. The function this NN models is:  

   

NErr:    |𝑦N2D
(𝑡) − 𝑦MC(𝑡)| = 𝐹Err(𝑡, 𝑥1, 𝑦1, 𝜃𝑦1, 𝐸0, 𝐸1),   0 ≤ 𝑡 ≤ 1                                           (3) 

 

where  𝑦N2D
(𝑡) is the track estimated by the N2D and 𝑦MC(𝑡) is the path given by Geant4 simulation. In this modelling the 

absolute value of the error is set as the target value.  

While the functional form of the equation (2) is the most simple and transparent form of the problem, in practice 

it may be inefficient, since it requires the initial proton direction to coincide with the x-axis. This is achieved by 2D/3D 

coordinate system rotation. To avoid this computational burden, we attempt to approximate directly the function of equation 

(1) through a NN. In this way the 2D/3D rotations are essentially incorporated in the functionality of the NN and performed 

in a much faster linear fashion. To simplify equation (1) and reduce the dimensionality of the problem we apply the 
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computationally inexpensive parallel translation of the coordinate system, so that M𝟏′ = M1 − M0 and M𝟎
′ = M0 − M0 =

(0,0,0). In this way the entry point is omitted from the set of input variables. Another NN is constructed (N3D) to approximate 

equation (1) that now becomes: 

 

N3D:  𝑺(𝑡) = 𝐹(𝑡, M1
′ , 𝐏0, 𝐏1, 𝐸0, 𝐸1), 0 ≤ 𝑡 ≤ 1.                                                      (1a) 

 

The N3D has three outputs, one for each direction. The variable 𝑡 for a path point Mt is defined by 𝑡 = 𝐷𝐌𝑡
/𝐷𝐌1

, the ratio 

of the distances 𝐷𝐌𝑡
 and 𝐷𝐌1

 from the origin of the points M𝑡 and M1 projected on the line of the initial proton direction. 

To produce training and evaluation data we rotate the data used for N2D, at random directions, uniformly distributed over 

the 4π steradians. The vectors 𝐌1
′ , P0 and P1 and all the path points are rotated around y-axis by an angle a, determined by 

sampling uniformly for its cosine in (−1, 1) and subsequently around x-axis, by an angle uniformly sampled in [0, 2π).  

 

                                     (a)                                                                                                     (b)     

Figure 1. a) Diagram showing vectors M0, M1, P0 and P1. b) Demonstration of the concept of path 

averaging. Axes are not in scale.  

 

  
M0 

M1 
P1 

S(t) 

P0  

 
𝐷𝐌1  

Object contour 
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y 
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2.2. Machine Learning models 

The developed algorithms were based on feed forward NNs and XGB  which is a form of boosted decision trees (Chen and 

Guestrin 2016). A NN parametrises a function Y=Y(X), (not to be confused with coordinates x and y) by means of a grid of 

neurons, simple parametric functions that combine linear and non-linear features in their response. In a graphical 

representation of the feed forward NN (figure 2), the neurons lie in successive, hierarchically positioned layers, where the 

neurons input comes from the lower layers, including the first layer that contains the input variables. The connections 

between neurons are parameters called weights. The set Ω of the network parameters is optimised for a minimal error 

between model predictions 𝑌(𝑋𝑖; 𝛀)  and training data points 𝑌𝑖 : 

 

𝛀 = arg min
          𝛀

∑ [𝑌(𝑋𝑖; 𝛀) − 𝑌𝑖]
2𝑁

𝑖=1  .                                                                  (4) 

In the above a quadratic penalty function has been assumed. In our implementation, a feed forward NN with 2 hidden layers 

with 19 and 2 neurons respectively was assumed. The rectified linear unit (“ReLU”) activation function was used, and the 

“softmax” at the final layer (Gao and Pavel 2018). Training was performed by minimizing the L2 norm, using adaptive 

learning rate optimization (ADAM) (Kingma and Ba 2014). The learning rate was 0.001, weight decay of 0.0005 and 

training batch of 256. Training and evaluation of the NNs was performed in “Matlab” programming language (The 

MathWorks, Inc.), on a typical desktop computer (2.4GHz, 6GB of RAM).  

 

 

Figure 2. Schematic diagram of the 19×2 NN used in this study.  

 

XGB is a fast implementation of a gradient boosted decision tree. Decision trees are regression models in the form 

of a tree structure; however, they are prone to bias and overfitting. Boosting is a method of sequentially training weak 

classifiers (decision trees) to produce a strong classifier where each classifier tries to correct its predecessor to prevent bias-

related errors. Gradient boosting tries to fit the errors made in the initial fit and correct the corresponding errors in further 

training.  XGB run with maximum tree depth of 12, boosting learning rate 0.1, number of boosted trees to fit 1000, 

subsampling parameter of 0.9 and sampling level of columns by tree of 0.8. A “softmax” objective function was used, and 

L2 norm as an evaluation metric. Training and evaluation were performed by “sklearn’’ software machine learning library 

in “Python” programming language (Pedregosa et al 2011), and run on the “Kaggle” computation platform 

(www.kaggle.com).  
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2.3. Path averaging 

 

A more straightforward approach based on path averaging over a dictionary of Monte Carlo proton tracks was also 

implemented for comparison. The track for every proton was calculated by averaging a subset of tracks that share the same 

value with the proton in question, in terms of the following measured quantities: path length projected on x-axis (x1), lateral 

displacement (y1), plane angular deflection (θy1), entry and exit energy (figure 1(b)). The path 𝑺𝑖  of the i-th proton with 

measured data equal to (x1i, y1i, θy1i, E0i, E1i) was given by: 

 

𝑆𝑖(𝑥) = 𝑆𝑘
̅̅ ̅(𝑥 |[𝑥1, 𝑦1 , 𝜃𝑦1, 𝐸0, 𝐸1]𝑖), 𝑘 ∈ 𝑄𝑖 ,                                                                   (5) 

where 𝑄𝑖  is the subset of the library protons that match the proton in question. Practically this subset is populated with 

protons paths 𝑆𝑘(𝑥) that are in the vicinity of the i-th proton in the 5-fold space, defined by the input variables, by means 

of the tolerance values: 

 

𝑘 ∈ 𝑄𝑖    if   Δ𝑥1 ≤ |𝑥1𝑘 − 𝑥1𝑖|, Δ𝑦1 ≤ |𝑦1𝑘 − 𝑦1𝑖|, Δ𝜃𝑦1 ≤ |𝜃𝑦1𝑘 − 𝜃𝑦1𝑖|, Δ𝐸0 ≤ |𝐸0𝑘 − 𝐸0𝑖|, Δ𝐸1 ≤ |𝐸1𝑘 − 𝐸1𝑖|,        (6) 

 

where the tolerances Δ𝑥1, Δ𝑦1, Δ𝜃𝑦1, Δ𝐸0  and Δ𝐸1 are set to 5 mm, 0.05 mm, 0.05 deg, 5 MeV and 2MeV respectively. The 

method is sensitive to these tolerance values, since large values reduce accuracy, while small ones affect statistics by 

diminishing sample size. The values above provided the best trade-off between accuracy and statistics in voxelized 

phantoms. To reduce the probability of solving for unmatched paths, we applied this method to paths after 5% filtering of 

the path library. The filtering cuts the 5% of the paths with the higher exit plane angle 𝜃𝑦1, thus reducing the appearances 

of extreme values of lateral displacement also, since the latter is highly correlated to the angle 𝜃𝑦1. A minimum sample size 

of 70 tracks is set. However even after filtering, there are cases that the sample size is less than 70 paths. In such cases, the 

most restrictive tolerance is repetitively increased by 5%, until the sample size exceeds the minimum value. The root mean 

square error (RMSE) measured by the method is not sensitive on the selection of this limit (the difference in error between 

sample sizes of 70 and 10 is 5 µm for 200 MeV protons incident on 20 cm of water). Since the training data was not enough 

to support the required accuracy, a set of at least 2×106 tracks was produced by MC simulation for every phantom and 

energy the method was evaluated. To further reduce the size requirements, the following property that comes out of space 

symmetry was applied: 

 

𝑆𝑘
̅̅ ̅(𝑥 |[𝑥1, 𝑦1 , 𝜃𝑦1, 𝐸0, 𝐸1]𝑖), = −𝑆𝑘

̅̅ ̅(𝑥 |[𝑥1, −𝑦1 , −𝜃𝑦1, 𝐸0, 𝐸1]𝑖).                                              (7) 

 

No other form of symmetry (such that between the y- and z-axis) were utilised in this method, or elsewhere in the study 

for the purpose of data augmentation.     
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2.4. Inclusion of material information 

To test the hypothesis that the accuracy of the path calculation can be improved if material information along the proton 

path is added in the input, the NRL was constructed that incorporated such information in terms of inverse radiation length 

LR. With this addition, the function the NN approximates becomes:  

 

NRL:  𝑦(𝑡) = 𝐹𝑦(𝑡, 𝑥1, 𝑦1 , 𝜃𝑦1, 𝐸0, 𝐸1, {1/𝐿R(𝑡𝑘)}).                                                                  (8) 

 

The input variables 𝐿R(𝑡𝑘) are given at an equidistant grid of K points, 𝑡𝑘 = Δ𝑡/(𝑘 + 1/2), where  k = 0, 1, …, K-1 and  Δ𝑡 

= x1/K.  Radiation length information of the materials along the path is provided by the Geant4 output at distances of 0.2mm.  
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2.5. Detector effects  

The performance of the proposed method is evaluated in more realistic scenarios where the detector limited spatial and 

energy resolution reduces the accuracy of the track measurements (Bodd et al (2014)). The case of a pencil beam 

perpendicularly incident on 20 cm water is considered (figure 3). As shown in the figure, passing through the detectors, 

protons are detected with errors ∆𝑦0A, ∆𝑦0B, ∆𝑦1C and ∆𝑦1D, respectively.  

Except from the positional errors in determining the points 𝐌0
"  and 𝐌1

" , these errors result also in parallax errors in the entry 

and exit angles 𝜃0 and 𝜃1. We study the effect of these detector errors on the path prediction of the N3D. Assuming that the 

detector errors follow Gaussian distribution, we sample their values from such distribution (the values of 0.10 mm, 0.15 

mm and 0.20 mm as the standard deviation 𝜎Δ𝑦 of the distribution were simulated). A second variable in the study is the 

distance d between adjacent detectors, while the gap between the inner detectors and the object is assumed constant at 10 

cm. After applying the detector error on 400k MC proton tracks, the proton paths are calculated by the N3D network: 

 

𝑺(𝑡) = N3D(𝑡, 𝐌1
′′ −  𝐌0

′′, 𝐏′0, 𝐏′1, 𝐸0, 𝐸1), 0 ≤ 𝑡 ≤ 1,                                                      (9) 

 

where  𝐏′0 and 𝐏′1 the normalized direction vectors, determined after the errors on the detection points are applied. Also 

studied is the case of error in the measurement of the exit energy 𝐸1, assumed it Gaussian with a standard deviation 𝜎E 

between 0.05 MeV and 10MeV. In this case, paths are calculated by the N2D network, without assuming positional errors. 

 

 

  

 

  

                                                                                    

                            𝐌0
"  

                                                                     𝐌1
"  

 

 

Figure 3. Diagram showing the MC track and the track estimated by the N3D network, after applying the 

Gaussian –assumed detector error.  
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2.6. Training data acquisition and performance evaluation 

2.6.1. Monte Carlo simulation  

Geant4 Monte Carlo code, version 10.2.1 (Agostineli et al 2003) has been utilized to create a large number of proton tracks 

in anthropomorphic voxelized phantoms and homogenous water phantoms, for initial proton energies ranging from 180 

MeV to 350 MeV. The training dataset was composed from proton tracks in water layers with thicknesses varying for 15 

cm to 35 cm, as well as voxelized ones (CIRS Head, CIRS Pelvic and CIRS Lung, Table 1). Evaluation of the accuracy of 

the proposed models was performed on water phantoms as well as on a paediatric head phantom, the CIRS pelvic and an 

abdomen phantom. A pencil beam, perpendicular to the surface was assumed in the simulation of water phantoms and a 

parallel beam for the voxelized ones, covering the entire phantom area (table 1). Proton position, direction and energy, 

before and after passing through the media were recorded (similar to experimental pCT measurements), to serve as the input 

parameters of the proposed models. Positions of the protons along their path were also recorded every 0.2 mm to be used 

as the output training data. The following physics lists were enabled in Geant4: the standard electromagnetic option 3 for 

electrons and ions tracking in the absence of magnetic field, the ions elastic model (G4HadronElasticPhysics) and both the 

QMD (G4IonQMDPhysics) and Bertini/Ion cascade (G4HadronInelasticQBBC) models for elastic and inelastic scatter. The 

simulation of multiple Coulomb scattering was based on the Lewis model (Goudsmit and Saunderson 1940) along with the 

Urban model (Urban 2006).   

 

Table 1. Composition of the training dataset.  

Phantom Initial Proton 

Energy (MeV) 
Number of  

proton tracks 

Beam  

Dimensions  

(cm × cm) 

 

CIRS Head 180-350  1.4 M 17 x 35  

CIRS Pelvic >> 1.5 M 23 x 44  

CIRS Thorax >> 1.2 M 23 x 44  

Water  

15, 19, 23, 27, 31, 35 cm 
>> 6 x 150 k Pencil Beam  
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2.6.2. Training data and accuracy index   

The training set of the N2D, N3D, NRL and XGB consisted of 5×106 proton tracks. For every path the target variable (lateral 

displacement) was evaluated at one value of the temporal variable 𝑡 randomly selected in the interval (0, 1). The training 

set of NErr consisted of 4.2×106 tracks, different from those used for the training of N2D. The target value in this case was 

the absolute value of the error in displacement of the path reconstructed by the N2D network. The proposed models calculated 

the paths on an equidistant grid of 100 points, determined by the 𝑡𝑘 variable. The performance of the 2D models and path 

averaging was evaluated in terms of the RMS error in lateral deviation on y-axis, according to the following: 

 

 RMSE(𝑡) = {
1

𝑁
 ∑ [𝑦𝑖(𝑡) − 𝑦MC,𝑖(𝑡)]

2𝑁
𝑖=1 }

1/2

,                                                         (10) 

 

The error of N3D was evaluated in similar fashion in 3D space. The maximum - along the path - RMS error is presented, as 

accuracy index, occurring after the middle point of the path. The evaluation set of the protons tracks created by the 

simulation, consisted of at least 100k tracks for every case statistics are presented.  

The proposed ML models were compared against a likelihood maximisation method, based on the Fermi-Eyges 

multiple scattering model and commonly referred as most-likely-path (MLP) (Williams 2004, Schulte et al 2008). We used 

the proposed (Schulte et al 2008) polynomial fit to evaluate the factor 1 𝛽2𝑝2⁄  as a function of depth (up to 20 cm) for a 

beam of 200 MeV in 20 cm water medium. We applied the same technique to calculate this factor for proton beams of 230 

MeV and 250 MeV on water media of 30 cm and 20 cm respectively (in the case of 30 cm a 9 th degree polynomial was 

necessary for accurate fitting). For application of the MLP method on inhomogeneous media, such as the voxelized 

phantoms, the proton energy E at depth x is approximated by:   

𝐸(𝑥) = 𝐸1 − ∫ (
d𝐸

d𝑥′)
𝑥

0
d𝑥′,                                                                                      (11) 

where d𝐸/d𝑥′ the energy- and material-dependant stopping power. 

 

2.6.3. Data filtering  

In pCT reconstruction many recorded events are not considered for calculation, since they display large deviation from the 

expected averages and may result in large position errors on the calculated path. We present statistics for the case of filtering 

out the 5% of the tracks of the evaluation set with the larger angular deviation and when no such filtration is applied. For 

the N2D, NRL and XGB models and path averaging method the filtering criterion is the absolute value of angular deflection 

|θy1| projected on xy-plane (plane angle). Another filtering scheme is applied to remove 5% of protons with larger positional 

error, predicted by the NErr network. No filtration has been applied on the training data. 

  

2.6.4. Effect on pCT image resolution  

An estimation of the modulation transfer function (MTF) was also performed to quantify the effect of the limited path 

accuracy in pCT image resolution. Calculation was done for the center of a cylindrical water phantom, 20 cm in diameter, 

and was based on the statistics of the residuals for the 20 cm water layer, presented in figure 5(a). We used the following 

equation proposed by Plautz et al (2016): 

 MTF(𝑓) = exp (−2𝜋𝜎0
2𝑓2),                                                                                    (12) 

where 𝑓 is the spatial frequency in units of lp/mm and 𝜎0
2 the error in  lateral displacement, assumed Gaussian-distributed, 

at the depth of 10 cm on the 20 cm water phantom for 200 MeV protons. Values of MTF10% and MTF50% for the four path 

reconstruction methods were calculated for the case of 5% filtration on proton paths.  
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3. Results 

Training times ranged between 57 min (N2D, 306 iterations) and 160 min (XGB, 3843 iterations), on the platforms specified 

in section 2.2. Computation times per 106 paths were 2sec and 10 sec for N2D and XGB respectively. Table 2 presents the 

maximum - along the path - RMS error for 200 MeV, 230 MeV and 250 MeV protons passing through the paediatric head, 

the abdomen and the pelvis phantoms, respectively. Because this error depends on the path length inside the object, errors 

are presented for three values of such lengths (17±0.5cm for head phantom, 22±0.5 cm for pelvis and 31±0.5cm for abdomen 

phantom). When 5% of the paths with the highest angular deflection are filtered out, N2D and XGB present errors, ranging 

from 0.35 mm for the head phantom for proton initial energy of 200 MeV, up to 0.9 mm for abdomen phantom, for 230 

MeV protons. Statistics are presented for sets of 100k proton paths, in each class, identical for all methods. Figure 4 plots 

the 5%, 25%, 75% and 95% percentiles of the (near half-normal) distribution of the absolute value of the path error at mid 

depth, for 200 MeV and 250 MeV protons passing through the pelvis phantom (unfiltered data). Except of the short path 

lengths where all four methods seem to converge in error, both N2D and XGB perform better than the analytical method that 

is based on likelihood maximisation. The figure also shows that the error increases with the path length and can reach or 

exceed 1.5 mm.  

Table 2 shows also that when radiation length, evaluated on 100 points along the path is included in the input of 

the NRL model, the RMS error is the same as N2D (which does not include such information). The same is observed for 

different numbers of evaluation points. Table 2 shows the error of the network N3D that gives the coordinates of the path 

points directly in the coordinate system assumed in the reconstruction. For the case of no filtering these 3D error values are 

divided by √2  in order to be comparable with the 2D errors given by the other methods, assuming motion independence 

along y- and z-axes. In the case of 5% filtering the N3D is applied to the same data as N2D (with initial direction along the 𝑥-

axis), but reported is the error along y-axis.   

 

Table 2. Maximum, along the path, RMS error in lateral displacement (mm) for protons incident on paediatric head 

phantom, abdomen phantom and pelvis phantom. 

 Track Reconstruction 

Method 

Data filtering Pead. Head 
200MeV 

Path length: 

17±0.5cm 

Pelvis  

 200MeV 

Path length:  

22±0.5cm 

Abdomen   

230MeV 

Path length: 

 31±0.5cm 

N2D 
0% 0.42 0.73 1.03 

5%  0.35 0.63 (0.60)* 0.88 

 

NRL, k = 100 

0% 0.45 0.73 1.06 

5%  0.35 0.63 0.90 

N3D ** 
0%  0.43 0.74 1.05 

5%  0.36 0.64 0.90 

XGB 
0%  0.41 0.72 1.00 

5%  0.35 0.62 (0.60)* 0.86 

Path Averaging 
0% 0.43 0.76 1.05 

5%  0.35 0.63 (0.60)* 0.88 

Likelihood Maximization 

(Schulte et al, 2008) 

0% 0.49 0.90 1.44 

5%  0.37 0.71 (0.67)* 1.03 

( )* : values after 5% filtering based on NErr error prediction. 
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Figure 4. Diagram comparing the 5%, 25%, 75% and 95% percentiles of the maximum along the path absolute 

error, for the four methods considered in this study. No data filtration is applied.   

 

Table 3 presents the maximum along the path RMS error in lateral displacement for 200 MeV and 250 MeV protons 

travelling through a 20 cm in thickness water layer. It shows a significant advantage of the N2D and the XGB over the 

likelihood maximization method. For 200 MeV protons paths after 5% filtering the accuracy improvement is 12.3% for 

both. Maximum - along the path - RMS errors by path averaging method are slightly higher than those of N2D and XGB 

when a set of 2×106 paths is used for path searching. Figure 5(a) presents the histogram of errors in lateral displacement at 

depth of 10 cm, for paths calculated by the XGB model, showing a deviation from the Gaussian distribution, even after 5% 

filtering. Figure 5(b) shows the correlation between the XGB– predicted and actual MC values at depth of 10 cm, while 

figure 5(c) compares the error distributions of the studied methods in terms of cumulative density function. 

 

 

 

 

 
 

 

 

 

Table 3. Maximum (along the path) RMS errors (mm) for 200 MeV, 230 MeV and 250 MeV protons incident on 

water layers. 

Track Reconstruction 

Method 

Data filtering 200 MeV 

20 cm 

250 MeV 

20 cm 

230 MeV 

30 cm 

N2D 
0% 0.58 0.43 1.05 

5% 0.50 (0.46)* 0.36 0.95 

XGB 
0% 0.57 0.43 1.02 

5% 0.50 (0.46)* 0.35 0.93 

Path averaging 5% 0.50 (0.46)* 0.37 0.96 

Likelihood Maximization 

(Schulte et al, 2008) 

0% 0.97 0.75 1.52 

5% 0.57 (0.53)* 0.44 1.13 

( )* : values after 5% filtering based on NErr error prediction.  
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                                        (a)                                                                                        (b)                         

 

                                      (c)   

 
Figure 5. a) Distribution of the XGB- path error in lateral displacement at depth of 10 cm for 200 MeV protons 

on 20 cm of water. (b) Correlation between the XGB- predicted lateral displacement at depth of 10 cm vs the 

actual MC value. Correlation coefficient is 0.95. (c) Cumulative density function of the maximum along the 

path error distributions of paths reconstructed by XGB, N2D, path averaging and likelihood maximization.    

 

 

Table 4 presents the MTF10% and MTF50% given by the four path calculation methods, at the center of a cylindrical water 

phantom, 20 cm in diameter, scanned by 200 MeV protons. Filtration of 5% on angular deflection has been applied.  

 

Table 4.  Values of MTF10% and MTF50% at the center of a cylindrical water 

phantom, 20 cm in diameter. Proton energy: 200 MeV, data filtration on 

angle: 5%.  

Track Rec. Method MTF10% (lp/mm) MTF50% (lp/mm) 

N2D 0.74 0.41 

XGB 0.74 0.41 

Path averaging 0.74 0.41 

Likelihood Max/ion 0.65 0.36 

 

 

Figure 6 compares absolute values of the actual path error (of the paths reconstructed by N2D) with the error predicted by 

the NErr for 200 MeV protons passing through the pelvis phantom. The RMS discrepancy between the above errors is 0.34 
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mm, with correlation coefficient of 0.49 (figure 6). Despite the suboptimal correlation, the NErr offers a better filtering 

criterion than the deflection angle. We applied this (based on NErr) criterion to filter out the 5% of the tracks that are expected 

to give the larger errors in position in the cases of pelvic phantom and 20 cm thick water object, for proton energy of 200 

MeV. As Table 2 and 3 show (values in parentheses), the remaining tracks, reconstructed by N2D give a maximum along the 

path error that is about 4.8% and 8.0% respectively lower than that given by filtration based on the angle. This accuracy 

improvement is also observed for the other three methods of path calculation. 

 

 
 

 
Figure 6. Correlation between the NErr path predicted error in lateral displacement at the middle of the path and 

the actual error, equal to the difference between the N2D -calculated path and the MC path. Data are from pelvis 

phantom, for proton energy of 200 MeV.   

 

 

Figure 7(a) shows the dependence of the average- along the path- RMSE on the distance between detectors 𝑑 for three 

values of standard deviation of the Gaussian – assumed detector position error. Average RMSE increases with the detector 

error 𝜎Δ𝑦 and is maximised for small gaps between detectors, due to the increase of the angular error. Figure 7(b) shows the 

error in lateral displacement at the middle of the path (𝑥 = 10 cm), calculated by the N2D, as a function of the standard 

deviation 𝜎𝐸 of the Gaussian error in measurement of the proton exit energy 𝐸1. The error is almost constant for 𝜎𝐸 < 5 

MeV, and rapidly increases for 𝜎𝐸 > 10 MeV. The path error is smaller when an energy measurement error of 𝜎𝐸=3 MeV 

has been applied on the training dataset. Also marked in the figure is the error when exit energy 𝐸1 is not included in the 

training dataset, as well as the error of the path calculated by likelihood maximization, which does not depend on the energy 

error since the model is based on average energy profile along the path.    
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                                        (a)                                                                                        (b)                         

Figure 7. a) Dependence of the average- along the path- RMSE on distance between detectors for three values 

of standard deviation of the Gaussian – assumed detector position error. B) Escalation of the RSME at depth 

of 10 cm (middle point of the 20 cm water layer) as a function of the Gaussian- assumed error in measurement 

of the exit energy, for noiseless and noisy data.  
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4. Discussion 

Our work shows the ability of ML to provide a simple, easy to implement, time effective and accurate solution for proton 

tracking in pCT, a problem characterised by the typically complicated mathematics of the transport equation. Analytical 

models provide solutions of adequate accuracy, leaving however a margin for improvement. In the typical case of 200 MeV 

protons on 20 cm of water, likelihood maximisation based on Fermi-Eyges gives  RMS error of 0.57 mm (table 3, column 

of 5% filtration), while that based on Molière’s model gives RMS error of 0.53 mm (Lazos et al 2020). These values are 

14% and 6% respectively, higher than what the error of the N2D (0.50 mm). On the other hand, ML does not rely on an 

analytical model and its respective assumptions and is able to reproduce the accuracy of the training data. ML also reduces 

the computational time, as analytically estimating the proton path is very time consuming but computing it from a trained 

model is rapid. As table 4 shows, the improved track accuracy has a direct effect on the resolution in terms of MTF. Our 

results also show that the NErr predicts better the path error, enabling a criterion for filtering out paths that may affect the 

quality of the reconstructed image. Combining deflection angle, lateral displacement and exit energy and incorporating a 

more accurate high angle single scattering model, this criterion is more comprehensive than one based only on the deflection 

angle, or build upon Fermi-Eyges model (Williams 2004) that (criterion) does not account for deflection angle and 

displacement. Figure 7 shows that the path error significantly increases with the measurement error on the trackers, while 

energy error affects calculations to a lesser degree. The latter error reduces when random errors in energy are incorporated 

in the training data.   

Even though average track is conceptually different with the most likely path, given by other methods that are 

based on likelihood maximization, the approach of path averaging provides paths completely in line with the requirements 

of pCT. Despite the lack of practicality, since a sufficient number of matching paths must be available for every path in 

question, thus preventing its use in practice, the method is found useful in the framework of this study, particularly for 

providing a baseline for evaluation. This way also of calculation does not require any assumption regarding the shape or the 

form of the solution, however its accuracy maybe affected by the non-zero tolerance values regarding the selection of the 

subset of the paths, that match the one in question.   

Our study shows that there is no benefit in accuracy from including the along-the-path material information in the 

NN-based model for the inhomogeneities found in the head, pelvis and abdomen phantoms, as long as the exit energy is 

included in the input variables. Since the phenomenological base the NNs work on, makes it difficult to generalize on 

findings, it should be mentioned that this conclusion may not be valid for conditions other than the specific ones assumed 

in the study. These conditions include the inhomogeneities of the simulated phantoms (thus excluding metal implants, and 

high- or low-density materials, often used in clinical practice in contact with the patient), the specific material parameter 

(radiation length) along the actual MC track and the accuracy that the studied NNs can achieve. Our study does not exclude 

the possibility of improved accuracy if such material information, but lateral to the path, is included in a ML model (Kellaf 

et al 2019). This finding may seem controversial, since in scattering problems, the depth of inhomogenities is expected to 

have an effect on the lateral spread of scattered particles. As Eyges mentioned (Eyges 1948), this comes out directly from 

the mathematics of the Fermi-Eyges model. However our findings are in agreement with the literature. In a likelihood 

maximisation approach, Lazos et al (2020) found no accuracy improvement when RSP values from the reconstructed pCT 

images were included in the likelihood calculation. On the same theoretical concept, Collins-Fekete et al (2017) found also 

no or little benefit from utilization of information (along the track) from pre-existing x-ray CT images, while Brook and 

Penfold (2020) found no improvement for a head phantom. It should be also noted that although the exit energy 𝐸1 

summarises the effect of the SPR along the path, there is not redundancy by including SPR values in the input variables, 

since the energy loss is a statistical process and subsequently deviations from the average energy loss are expected.   
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Even the proton tracks have fine details, because of the stochastic nature of the scattering, paths reconstructed by 

heuristic methods, such as NN, XBG and path averaging, without making any assumption regarding their shape, are found 

to be smooth curves. This supports the evidence that 3rd degree parametric curves such as cubic splines or cubic Bezier 

curves can be used to represent paths, without reduction in accuracy because of their limited flexibility. 

We conclude this discussion by reviewing the major limitations of our approach. Being an ad hoc solution based 

on synthetic data, the ML models are subjected on any limitation, inaccuracy and systematic error of the training data. The 

accuracy of the proposed ML models is questionable outside the area they are trained, due to incomplete formation of the 

mapping function. This is particularly important in the proton tracking problem because three of the input variables (angular 

deflection, lateral displacement and exit energy) follow uneven density distributions that also allow rare occurrences of 

extreme values. Considering that the number of proton events, collected in a pCT scan is in the order of 108, far exceeding 

the about 5×106 size of the training set, it is certain that extreme values outside the limits of the training set will appear. In 

this case the accuracy of the ML models will be challenged without any data filtering. We selected the size of 5×106 tracks 

to ensure diversity and adequately represent anatomical sites, energy values and path deviations. However, increasing the 

training set to address the above concern is not a practical solution.   

Another concern is that we use the same source of data (Geant4 simulation) to train and evaluate the ML models, 

as well as to compare their performance against other methods, committing the so called “inverse crime” (Wirgin 2004). If 

there is a systematic error in our implementation of the MC simulation, the proposed ML models will reproduce it and in 

comparison with a third method - likelihood maximization in this case - it will be attributed as error of the latter. However, 

accuracy of the Geant4 is widely manifested, while the code has been extensively used for testing methods in radiation 

transport, including the ones in proton tracking in pCT. In this context, our approach can be seen as an efficient 

parametrization of the output of the Geant4 code in the setting of the pCT that attempts to bring - under the limitations 

discussed above - the MC accuracy into the problem. 
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5. Conclusions 

Our study succeeded to show that ML can provide us with accurate, time effective, practical and easy to implement solutions 

to the proton tracking problem in pCT, thus giving the possibility of further improving spatial resolution, which closely 

depends on the precision proton tracks are determined. By incorporating a comprehensive MC–based stochastic multiple 

scattering model, the proposed methods are proved more accurate than the likelihood maximization that utilizes either 

Fermi-Eyges model or Molière theory to analytically describe proton scatter. In agreement with the literature, our study also 

finds that material information along the proton tracks, in terms of either RSP or radiation length does not improve the 

accuracy of the path calculation, for the inhomogeneities found in a head and a pelvis phantoms. Furthermore, ML enables 

the prediction of the track error, thus providing a more comprehensive and sensitive criterion for removing tracks that may 

harm the reconstructed image. 
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