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Advanced statistical models for predicting adverse clinical events have become omnipresent 

in the literature and we often hear that concepts like artificial intelligence or machine learning 

(ML) are going to disrupt medicine. Given the amount of data generated during surgical 

procedures and intensive care admissions, these clinical areas are prototypical for the 

application of ML. Yet, in the face of massive attention and enormous research output, there 

are so far few clinically validated and implemented algorithms.1 Within the anaesthesia and 

intensive care area, we are familiar with few compelling sepsis prediction studies, yet they 

are either small2 or not designed as a randomised controlled trial.3 In this editorial, we 

broadly discuss some of the reasons why ML struggles with real-world implementation. 

Some of these reasons relate to methodology, others to clinical context.  

 

Framing the question 

Few machine learning researchers are intimately familiar with the clinical environment, and 

so it should be no surprise that many machine learning studies are not carried out in a way 

that allows for easy translation to the bedside. Framing a machine learning study 

appropriately – that is, properly defining the clinical event and the prediction task – requires 

interdisciplinary knowledge and detailed discussion of methodology. For a prediction task, 

for example, framing would include identifying the clinical outcome, specifying when exactly 

the prediction is made, selecting the observation window, and so on. These details are 

sometimes poorly considered, sometimes poorly described. Framing forms the very 

backbone of the machine learning model being developed, and evaluation takes place within 

the context of the framing.4 Consequently, without clear and clinically relevant framing a 

seemingly high-performing model may still not be clinically usable.5 Many machine learning 

studies seek to address clinically relevant problems, but oversimplify the problem to the point 

where clinical relevance is eventually lost. The ubiquitous case-control framing/design in 

machine learning studies is a good example of designs where researchers seek to solve a 

clinically relevant problem, which is not aligned with clinical reality. The evidence level of a 

classic case-control study is weak and the caveats of this design, such as selection bias, 

does not disappear just because a study applies machine learning techniques. In relation to 

creating models that can make predictions and update them over time, applying the case-

control design in a “validation study” is often creating a temporal bias that should be 

avoided.6 When releasing a black box prediction algorithm that is developed this way, the 

result is often that the positive predictive value declines dramatically6 and that it is 

impossible for users to know which event alarms to trust.  

 

The nature of observational data 

Many studies are based on analyses of large retrospectively collected datasets, where 

missing data is a frequent and natural phenomenon. The treatment of missing data is often a 

major issue, given that data is rarely missing at random. One could think of the simple 

physiological example of SpO2 becoming unmeasurable in shock/hypotension. A clinical 

example is the difference between the patient who had an arterial blood gas taken in the 

emergency department (ED) versus the patient who did not. A clinician decided to obtain 

that blood gas. This presence or missingness of an observation tells us something important. 

Taking this a step further: Where and when was the blood gas taken? If taken in the first 

postoperative hours in the cardiac surgery recovery unit, that lab test result could well be 

obtained to inform FiO2 adjustment, indicating a different “lab presence risk” than in the ED 

patient. A large retrospective study found that the mere “presence of a laboratory test order, 

regardless of any other information about the test result, has a significant association with 



the odds of survival in 233 of 272 (86%) tests. Data about the timing of when laboratory tests 

were ordered were more accurate than the test results in predicting survival in 118 of 174 

tests (68%).”7 Observational studies, whether retrospective or prospective, are in general 

prone to this missingness bias. While imputation techniques and use of auxiliary variables 

may help to mitigate these issues, there should be no expectations of generalisability given 

that missingness patterns likely reflect a specific ward’s clinical culture.8,9 

 

Algorithm performance 

In machine learning research, often the goal is to outperform previous literature on 

benchmark tasks, rather than to truly consider how models might perform in practice. Many 

studies that use large datasets are focused on the applied methods and algorithms,10 as well 

as fine-tuning of performance metrics such as area under the receiver operating 

characteristics curve (AUROC), sensitivity and specificity. This focus on algorithms and 

classification performance often comes at the expense of basic epidemiologic principles and 

clinical interpretations11 and it is characterised by vague basic descriptions of the data and 

its origin, often indicating a limited domain knowledge among authors. 

Oversimplified Methods sections and lack of code sharing often result in the inability of the 

community to even reproduce a study cohort, let alone the study outcome.12 The unfortunate 

consequence is that algorithms become useless to the research community, contributing to 

research waste.10 

Fortunately, the unfavourable events that are typically the goal of prediction tasks occur 

rarely. Metrics such as AUROC, sensitivity and specificity are important features of an 

algorithm, but they do not address clinical usefulness and may be less informative in cases 

of rare events. For “imbalanced” datasets, a metric such as the area under the precision-

recall (PR) curve - plotting the positive predictive value (precision) against sensitivity (recall) 

- is often more informative, particularly in order to quantify the presence of false alarms. For 

the clinician at the bedside, a model with a high false alarm rate is unlikely to be a useful 

model. In addition, if a false positive decision causes greater harm than a false negative 

decision, a model with high specificity may be preferable to a model with high sensitivity and 

lower specificity, although the latter model might have, say, a higher AUROC. In general 

terms, a model is clinically useful if the use of its decisions for patients leads to a better ratio 

between benefits and harms than not using the model.11,13 

The decision for converting a predicted probability into a binary label (positive or negative) is 

governed by a decision threshold in the range between 0 or 1. For example, with a decision 

threshold of 0.5, probabilities less than 0.5 are assigned to class 0 and values greater than 

or equal to 0.5 are assigned to class 1. ROC and PR curves are all diagnostic plots that 

evaluates a set of probability predictions at varying decision threshold. In the case of a ROC 

curve, a set of different thresholds are used to interpret the true positive rate and the false 

positive rate of the predictions on the positive. In this sense, the ROC is a useful tool to 

understand the trade-off in the true-positive rate and false-positive rate for different 

thresholds. 

Similarly, decision curve analysis (DCA)14 assesses the clinical usefulness of a prediction 

model by evaluating the so-called net benefit at varying decision thresholds for the model. In 

practice, this means that the decision threshold is used to control the exchange ratio 

between the number of false positives that is acceptable in exchange for one true positive. 

This interpretation is important, because it is informative of how the clinician weights the 

harm of a false decision over the benefit of a true decision. The harm/benefit exchange ratio 

is subjective and will vary across clinicians. A decision curve in DCA illustrates the 



consequence of an arbitrary choice by evaluating the net benefit for the binary decision of 

opting into the intervention or not across a range of different decision thresholds – or 

equivalently, for a range of different harm-benefit exchange ratios.15 

Another key aspect of model performance that is often overlooked is algorithmic bias. Does 

the model exhibit behaviour that might reinforce inequalities? Strong overall performance of 

a model can be misleading, concealing poor performance in patient subgroups. 

 

Validation and trust 

If a new model is being proposed then there is almost no reason not to provide one or more 

reference models for comparison. These might include a classic regression model and 

clinical scores of disease severity (e.g. APACHE, SOFA, etc.). Yet, reference models are 

often missing, which makes it impossible to determine if a new and less transparent model is 

adding any predictive value (at the expense of direct interpretability).16 In low-risk-of-bias 

studies, where an interpretable logistic regression model is reported, more advanced 

machine learning models rarely outperform logistic regression.17 Methodological issues such 

as this may become less common once reporting guidelines are established for diagnostic 

and prognostic prediction model studies based on artificial intelligence,10 and their 

subsequent uptake into the reviewing process of scientific journals. While developing 

approaches that enable the reasoning of complex machine learning models to be explained 

is an active research area, it is fair to say that this is still in its infancy. Interpretable models 

are likely to be preferred by clinical teams, even at the expense of performance, favouring 

traditional modelling approaches over the “black box” of state-of-the-art models such as 

neural networks. 

 

Deployment at the bedside  

There are also crucial contextual and technical reasons why so few artificial intelligence 

algorithms (even well-validated ones from a scientific point of view) have been deployed 

successfully.18 Arguably, studies that explore translation of algorithms to the bedside are 

scarce, at least in part because the academic system provides greater reward to the lower-

hanging fruits of fast, successive publications that are unencumbered by the realities of the 

clinical environment. Technically, there is a huge gap between the data infrastructure 

needed to train an algorithm on a retrospective dataset, extracted once from a setup 

optimised for collecting and storing data, and using the algorithm in a prospective, and 

maybe real-time, setup. There is also the issue of dataset shift. The clinical environment and 

its patient population is not static. A model that works now may catastrophically fail when a 

laboratory reagent is switched, a protocol is updated, or patient demographics change.  

 

In conclusion, a number of challenges, summarised in Table 1, have inhibited widespread 

adoption of machine learning models at the bedside, but there has been progress 

nonetheless. This progress includes movement towards collaborative approaches for 

machine learning in health research; public datasets that are more representative of the 

clinical environment; more holistic metrics for assessing performance; and establishment of 

guidelines for reporting machine learning studies.  
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Table 1: Issues and challenges often present in the exiting prediction model studies and possible 

ways to handle them 

Issues to address or handle Possible ways to handle the issues in future studies 

Insufficient reporting of design 
and framing 

Always align the framing and design with the clinical question/unmet need 
The classic case-control design is rarely aligned with a clinically relevant 
question. 
Report details about observation window, prediction window, lead time, window 
shift, preferably with a supporting figure 

Missing values  Quantify the presence and its implications 
Possibly apply imputation if deemed meaningful 
Possibly model the missingness pattern to inform the prediction model 

Insufficient reporting and 
clinical assessment of 
discrimination metrics 

Thoroughly report discrimination metrics 
Discuss the presence and implications of a possibly unbalanced design/dataset 
Discuss perceived clinical benefits of the prediction model (compared with the 
reference model), e.g. using concepts of net benefit and decision curve analysis 

Lack of a clinically meaningful 
reference model 

Always report a reference model that could be considered current practice for 
predictions. 
Example of short-term outcomes: Predicting eminent hypotension or tachycardia: 

Blood pressure or heart rate itself, respectively, should always be (part of) a 
reference model. Preferably a transparent regression model if multivariate. 

Example of Longer-term outcomes: Predicting sepsis or mortality: 
Clinical scores of disease severity, such as EWS, SOFA or APACHE scores, 
can be relevant or a multivariate regression model based on the underlying 
variables used for such scores in order to calibrate better 

Obstacles for actual 
implementation 

Discuss why and where the prediction model could realistically be implemented 

 


