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Abstract

Many practical machine learning tasks can be framed as Structured prediction problems,
where several output variables are predicted and considered interdependent. Recent theo-
retical advances in structured prediction have focused on obtaining fast rates convergence
guarantees, especially in the Implicit Loss Embedding (ILE) framework. PAC-Bayes has
gained interest recently for its capacity of producing tight risk bounds for predictor distribu-
tions. This work proposes a novel PAC-Bayes perspective on the ILE Structured prediction
framework. We present two generalization bounds, on the risk and excess risk, which yield
insights into the behavior of ILE predictors. Two learning algorithms are derived from
these bounds. The algorithms are implemented and their behavior analyzed, with source
code available at https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction.

Keywords: Statistical learning theory, PAC-Bayes theory, Structured output prediction,
Implicit Loss Embeddings, Generalization bounds

1. Introduction

Structured prediction (also referred to as Structured output prediction) is a widely studied
problem in machine learning of great theoretical and practical interest. Broadly, we de-
fine Structured prediction as the joint prediction of interdependent or constrained decision
variables.

Although we make this definition precise below, let us first present an example of a
recent application of Structured prediction: Scene Graph Generation. Given an image, a
goal can be to extract the semantic information that describes the depicted scene, that is, to
detect objects present in the image and the semantic relationships between them. Formally,
the task consists in predicting a graph of all entities and the relations between then from
an image (for example, the man is wearing a hat). Note that this graph is on the instance
level, so the man wearing the hat, is known to be the same one holding a bucket (which the
horse is known to be eating from).
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The decision variable for this task is the scene graph. Seen as a discrete object, its
domain is combinatorially large. Although it would be possible to first predict instances
independently, and then the relations between pairs of detected instances, this strategy
clearly appears sub-optimal.

Imagine for example that the entities predicted are, for whatever reason, a dog and a
lion. Jointly predicting the entities avoids predicting particularly improbable pairs. On the
other hand, even if not all entity and relation triplets are represented in the training data,
the correlations between objects should hopefully be taken into account. For example, even
if the particular configuration of a horse eating from a bucket is not in the training data,
all other domestic animal feeding situations are correlated with it (man feeding cow with a
bucket, man feeding a horse with another object, etc.). We refer the interested reader to Liu
et al. (2019) which provides a complete survey of the field of Visual Semantic Information
Pursuit.

Beyond practical applications, prediction of joint or constrained variables is of great
theoretical interest and encompasses tasks such as ordinal regression, multiclass classifica-
tion, multilabel classification, or manifold regression, to cite but a few. In fact, we will see
that most machine learning problems can be formulated as a form of Structured output
prediction problem, from binary classification to ordinal regression. Furthermore, many
theoretical and practical challenges of statistical learning are present in Structured output
prediction:

1. Both training and inference are NP-Hard in general, making large-scale (in problem
size, and dataset size) problems hard to solve. Indeed, many common approaches to
optimization rely on repeatedly performing inference on (part of) the training set (for
example, the Structured SVM algorithm, see Tsochantaridis et al., 2004).

2. Seen as a classification problem with a very large label space, Structured output
prediction has few statistical or algorithmic guarantees with respect to standard ap-
proaches. In fact, as highlighted by Nowak-Vila et al. (2019b), many algorithms are
known to be inconsistent.

In this work, we present a PAC-Bayes analysis of the Implicit Loss Embedding (ILE) ap-
proach to Structured prediction. In particular we concentrate of studying the generalization
and consistency properties of the ILE approach.

Generalization. The former is a central problem in statistical learning theory and quan-
tifies how well we can expect the performance of a predictor trained on a finite dataset to
generalize to the entire data-generating distribution. There would be too many seminal
contributions to the study of generalization to cite – we refer to Devroye et al. (1997) and
Vapnik (1998) and references therein.

In this work, we consider the PAC-Bayes learning paradigm to study generalization. A
generalization of the Probably Approximately Correct framework of Valiant (1984), PAC-
Bayes bounds originate in the seminal papers of Shawe-Taylor and Williamson (1997);
McAllester (1998, 1999) and further developed by Seeger (2002); Catoni (2004, 2007). In
this framework, instead of considering the generalization qualities of a given predictor, we
study that of a distribution of predictors, learned from the training data. The bounds we
aim to obtain make little to no hypotheses on the data-generating distribution. There has
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been a surge of interest in PAC-Bayes in the past few years, as it has re-emerged as a
promising framework for assessing generalization performance in several settings, such as
coherent risk measures (Mhammedi et al., 2020), deep neural networks (Dziugaite and Roy,
2017; Letarte et al., 2019), differential privacy (Dziugaite and Roy, 2018b,a), meta-learning
(Amit and Meir, 2018) or contrastive learning (Nozawa et al., 2020) to name but a few.
We refer to Guedj (2019) for a recent survey and to Guedj and Shawe-Taylor (2019) for a
recent tutorial on PAC-Bayes. We outline some contributions of PAC-Bayesian theory to
Structured prediction in the Prior work paragraph below.

Consistency. In statistical learning theory, much effort has been spent solving the in-
tractability of minimizing the empirical 0 − 1 loss. We will make the definition of consis-
tency precise in what follows. Broadly, a surrogate method is consistent for a given task
(for example, minimizing the empirical 0− 1 loss) if minimizing the surrogate loss (for ex-
ample, the quadratic loss) solves the task. For general treatments about consistency, see
for example Devroye et al. (1997) and Bartlett et al. (2006).

In the rest of the paper, we introduce and reason around Fisher consistency and its
implications in practice.

Prior work. There have been many attempts to tame the Structured output prediction
problem, both from a statistical and an algorithmic point of view. These include for example
many ad hoc approaches such as Structural Support Vector Machines (Tsochantaridis et al.,
2004) or Conditional Random Fields (Lafferty et al., 2001; Taskar et al., 2004). Nowozin
and Lampert (2011) provides a survey of applications of Structured prediction for Computer
vision. Wainwright and Jordan (2008) presents a unified approach to learning and inference
over graphical models. Many ensemble methods based on building efficient subgraphs over
graphical models have been developed: for example, Rakotomamonjy et al. (2008), Bach
et al. (2004), Argyriou et al. (2008), Marchand et al. (2014).

Several quadratic methods have focused on (consistently) training quadratic surrogate
methods for the Structured learning problem. These include Kernel Dependency Estimation
(KDE, see Weston et al., 2003; Cortes et al., 2007), Input-Output Kernel (for example,
Brouard et al., 2016) and ILE approaches (Ciliberto et al., 2016; Osokin et al., 2017; Rudi
et al., 2018; Nowak-Vila et al., 2019a; Ciliberto et al., 2019). Non-quadratic methods also
exist (Nowak-Vila et al., 2020). For instance, Nowak-Vila et al. (2019b) generalizes the ILE
framework to a more general class of surrogates.

Several authors have proposed PAC-Bayes approaches to Structured prediction. Let us
cite just three works which show the diversity of the PAC-Bayesian approach: Marchand
et al. (2014) uses PAC-Bayes arguments to justify an approximation strategy for graphi-
cal models, while McAllester (2007) provides generalization bounds with a focus on tasks
involving language models. Finally, Giguère et al. (2013) provides a PAC-Bayesian gener-
alization bound for the KDE algorithm, which we will return to. For completeness we also
mention recent works focusing on the decoding problem (that is, constructing a solution
to the task from the surrogate solution), even though this falls outside of the scope of this
paper (Mensch and Blondel, 2018; Blondel, 2019).

Contributions. In this work, we propose an original PAC-Bayes analysis of the ILE
framework in Ciliberto et al. (2020). For most of the paper, we concentrate on the multi-
label problem. In particular:
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• We provide a PAC-Bayes generalization bound using classic PAC-Bayes arguments
based on Zhang (2006).

• We extend the Comparison inequality in Ciliberto et al. (2020) to propose a new
bound on the expected excess risk that depends on the performance of the predictor
distribution on the training set. This result holds with high probability over the
training set, thanks to recent work on PAC-Bayes generalization bounds in Haddouche
et al. (2020) for unbounded loss functions, such as commonly used regression losses.

• We thoroughly analyze the bound and its behavior, allowing us to illustrate the im-
portance of using a structured loss (for example, the Hamming loss) instead of the
0 − 1 loss. This yields theoretical insights as well as practical advice for Structured
prediction.

• Finally, we present learning algorithms derived from our novel PAC-Bayes bound and
test their performance on Structured output prediction datasets. All our experiments
are reproducible from the associated GitHub repository1.

The rest of the paper is organized as follows: in Section 2, we introduce the Structured
learning formulation and the ILE framework. In Section 3, we present our PAC-Bayes
classification bound for ILE Structured output prediction. In Section 4, we derive and
analyze a novel PAC-Bayes generalization bound providing insights into the consistency of
ILE methodology. In Section 5, we solve the multi-label classification problem on Structured
output prediction datasets using the derived result, through two methods. In Section 6 we
put our results into perspective with respect to the ILE framework. Finally, we gather our
experimental results in Section 7.

2. Structured output Learning with Implicit Loss Embeddings

We now introduce our notation and the Implicit Loss Embedding (ILE) framework for
Structured output prediction.

2.1 Supervised Learning & Excess risk

Let X be an input space equipped with a kernel k(x, x′) = 〈φ(x), φ(x′)〉 for any x, x′ ∈ X.
Let Y be the label space for the training data, and Z denotes the output space. In many
cases, Y = Z, but the distinction is necessary, for example, in information retrieval. Indeed
in this setting, X can be for example the space of search engine queries with Z an ordering
over documents presented in response to a query and Y a relevance score for each result for
the query (instead of a ranking). Let ∆ : Z× Y→ R be a non-negative loss function.

We aim to solve the supervised learning problem, i.e., given a dataset {(xi, yi)}mi=1

drawn i.i.d. from a data-generating distribution ρ over X × Y, find a measurable function
fm : X→ Z that minimizes the expected task risk (or Bayes risk) defined by:

E(f) =

∫
X×Y

∆(fm(x), y)dρ(x, y). (1)

1. https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction
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Figure 1: Summary illustration of the different sets and maps in the ILE framework.

We define f∗ the optimal predictor given by:

f∗ = arg min
fm:X→Z

E(fm), (2)

where X→ Z denotes all measurable functions from X to Z.
We define the expected excess risk E(fm)−E(f∗) between fm and f∗, which characterizes

the sub-optimality of a predictor fm with respect to the task loss ∆ and data-generating
distribution ρ.

In what follows, we present the ILE framework of Ciliberto et al. (2020) as well as
some selected results. We refer to Ciliberto et al. (2020) and references therein for a more
complete treatise.

2.2 Implicit Loss Embedding

The central idea to the ILE framework is the existence of an embedding of the output and
label spaces such that the loss function ∆ is the dot product of the embedding functions to
this space (similarly to the idea behind the use of kernels). Formally, we define an Implicit
Loss Embedding for ∆ as follows. See Figure 1 for a summary illustration of the different
involved sets and maps.

Definition 1 (Implicit Embedding, ILE). A loss function ∆ : Z × Y → R has an Implicit
Loss Embedding (ILE) if there exists a Hilbert space H and two measurable maps ϕ : Y→ H

and ψ : Z→ H such that

∀(z, y) ∈ Z× Y, ∆(z, y) = 〈ψ(z), ϕ(y)〉. (3)

Let us motivate the introduction of this definition. First, notice that most structured
(and indeed unstructured) loss functions fall into this formalism. For example, if Y and Z

are finite, then the ILE is the matrix formed by the values of the loss function for (y, z)
pairs, encoded as one-hot encodings ey and ez. In Example 1, we show that the Hamming
loss for multi-label classification has an ILE. We offer a formal definition of the `-multilabel
binary classification problem.
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Problem 1 (`-multilabel binary classification problem). With ` ∈ N∗, let Y = {0, 1}`.
Within the formalism described in Section 2.1, the problem is to learn a predictor f : X→ Y

from training data sampled iid from the data-generating distribution ρ over X× Y.

Some generic examples of `-multilabel binary classification problems include for example
detecting several characteristics of input datum x (i.e. different objects present in an image,
topics of a text, presence of different defects). Using a similar example as in the introduction,
detecting several objects in an image should be easier if the objects are jointly predicted.

Example 1. In binary `-multi-label learning, the Hamming loss H is ILE where

H(z, y) =
1

`

∑̀
k=1

I(zk 6= yk) = 1− 1

`

∑̀
k=1

I(zk = 0)I(yk = 0) + I(zk = 1)I(yk = 1). (4)

Furthermore, |Y| = 2` and dim(H) = 2`+ 1.

Different authors have shown that a wide variety of machine learning problems fall into
the ILE framework. As a matter of fact, Ciliberto et al. (2020, Sec. 6) provide a collection
of simple sufficient conditions for a learning problem to admit an ILE (the finite cardinality
of Y and Z is the simplest of such conditions).

Second, the “separability” of ∆ as illustrated in Eq. (6) ensures that the learning problem
can be (Fisher-)consistently solved by solving a more computationally efficient quadratic
regression problem, approximating ϕ(y) from x. In particular, this ensures that, in struc-
tured contexts, the so-called pre-image problem is not solved during training as it is in
Structured SVM methods.

In what follows, we assume that ∆ is ILE with associated maps ψ and ϕ. We also
assume that Y and Z are finite sets, and that H is finite dimensional. In specific examples,
we will return to the `-multi-label binary classification problem with the Hamming loss, as
defined in Problem 1 and Eq. (4).

2.3 Quadratic surrogate and consistency

Under the assumptions that the task loss is ILE and that the data-generating distribution
ρ can be factorized as ρ(x, y) = ρ(x)ρ(y|x), Ciliberto et al. (2020) prove the following
results, which naturally lead to a consistent surrogate method (in a sense we define below).
We briefly survey this approach to set the context and demonstrate the utility of such a
framework, in theory and in practice.

Ciliberto et al. (2020) first prove that the pointwise conditionally optimal predictor is
identically equal to the minimizer of Eq. (1):

Lemma 1 (Ciliberto et al., 2020). Assume that the data-generating distribution ρ can be
factorized as ρ(x, y) = ρ(y|x)ρX(x), then

f∗(x) = arg min
z∈Z

∫
Y

∆(z, y)dρ(y|x). (5)

From this, because ∆(z, y) = 〈ψ(z), ϕ(y)〉 is linear in ϕ(y), the optimal predictor f∗ is
naturally written as a function of the conditional mean embedding of ϕ(y) given x, which
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we denote g∗(x) =
∫
Y
ϕ(y)dρ(y|x), i.e.,

f∗(x) = arg min
z∈Z
〈ψ(z), g∗(x)〉. (6)

Thus, in order to estimate f∗, it is natural to seek to estimate g∗ by g and “plug-in” g to
define f as

∀x ∈ X, f(x) = arg min
z∈Z
〈ψ(z), g(x)〉. (7)

It can be shown, see for example Grünewälder et al. (2012), that g∗ is the minimizer of the
following expected quadratic risk:

R(g) =

∫
X×Y
‖ϕ(y)− g(x)‖2 dρ(x, y). (8)

A consistent empirical counterpart of Eq. (8) for a given sample is:

Rm(g) =
1

m

m∑
i=1

‖g(xi)− ϕ(yi)‖2 + λ ‖g‖2 , (9)

where λ is a regularization parameter. There exist α1, . . . , αm n functions in X → H such
that gm minimizes Rm where gm is defined by

gm(x) =
m∑
i=1

αi(x)ϕ(yi). (10)

The associated classifier is thus defined by:

∀x ∈ X, fm(x) = arg min
z∈Z
〈ψ(z), gm(x)〉 (11)

= arg min
z∈Z

m∑
i=1

αi(x)〈ψ(z), ϕ(yi)〉. (12)

The above computation is called the “loss trick” by Ciliberto et al. (2020) in analogy to the
well-known “kernel trick”. This proves that the existence of the ILE embedding is enough
and that knowledge of ϕ and ψ are not required.

Efficiently solving the decoding problem. As we have outlined above, the general
structure of the ILE learning method is to solve a quadratic surrogate regression problem,
and then at inference solve a decoding problem (the arg min in Eq. (6)). A priori, this can
be solved in O(|Z|) time. Because |Z| is combinatorial in nature (for example |Z| = 2` for
the `-label binary classification problem) this can be costly and even impossible at large
scale.

In this work, we focus on the link between the plug-in classifier fm and the surrogate
regressor gm without worrying about how the arg min is computed. The problem of effi-
ciently solving the decoding problem is the subject of some recent work in, for example,
Blondel (2019); Mensch and Blondel (2018).
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Fisher consistency Ciliberto et al. (2020) show that estimating g is Fisher consistent,
i.e., that if the optimal regressor g∗ is found, then the associated predictor f∗ is optimal
for E. Formally, there exists a map d : H → Z (for example, the arg min function over Z)
such that E(f∗) = E(d ◦ g∗).

They prove a stronger result, upper-bounding the expected excess prediction risk E(f)−
E(f∗) as a function of the expected excess regression risk R(g) − R(g∗), their comparison
inequality. This result will be the basis for our own analysis in Section 4. For easy cross-
referencing, we present a stronger version of the inequality obtained by withholding the last
step in the proof of the inequality in Ciliberto et al. (2020).

Theorem 2 (Strong Comparison Inequality). Assume Z is compact and ∆ has an ILE. Let
g : X→ H be measurable, and f defined as in Eq. (7). Then,

E(f)− E(f∗) ≤ 2c∆

∫
X

‖g(x)− g∗(x)‖H dρX(x),

where c∆ = supz∈Z ‖ψ(z)‖ and ρX is the data-generating distribution marginalized over y.

In particular, this implies the Comparison inequality (Theorem 3).

Theorem 3 (Comparison inequality, Thm. 3, Ciliberto et al., 2020). Assume Z is compact
and ∆ has an ILE. Let g : X→ H be measurable, and f defined as in Eq. (7). Then,

E(f)− E(f∗) ≤ 2c∆

√
R(g)− R(g∗),

where c∆ = supz∈Z ‖ψ(z)‖.

Note that such calibration functions exist for a wider range of surrogates, see Nowak-Vila
et al. (2019b) for a more general approach. These results are analogous to the ψ-transform
bounds in, for example, Bartlett et al. (2006).

In this section, we presented the supervised Structured learning problem and the ILE
framework. We also introduced the relevant results for the rest of the paper. We now
present the PAC-Bayes approach, as well as prove our first results.

3. A PAC-Bayes take on ILE classification

In this section, we offer a novel perspective on the learning problem described in Section 2
using tools from the PAC-Bayes framework. We first outline the main tenets of the PAC-
Bayes approach, and a classic PAC-Bayes bound. Using these tools we prove a generalization
bound for ILE classification.

Notation. In the rest of the paper, we define the empirical task risk as:

Em(f) =
1

m

∑
m
i=1∆(f(xi), yi). (13)

The expectation of the measurable function f of a random variable X with domain X under
distribution Q is defined as (when it exists):

E
X∼Q

f(x) =

∫
X

f(x)dQ(x).
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The Kullback-Leibler divergence between distributions Q and P is denoted K(Q,P) and
defined as

K(Q,P) =

∫
log

dQ(x)

dP(x)
dQ(x).

When there is no ambiguity, we identify linear maps between finite-dimensional vector
spaces, associated matrices in the canonical bases, and the vectors of matrix coordinates.

Finally, in the rest of the paper, we will make the slight notation abuse of writing f ∼ Q

when f is the structured predictor associated to stochastic regressor g ∼ Q.

3.1 Canonical PAC-Bayes bounds

We introduce the PAC-Bayes setting and present a canonical PAC-Bayes generalization
bound from Zhang (2006). In PAC-Bayes theory, one considers stochastic predictors sam-
pled from a distribution Q over the space of measurable maps {f : X→ Z}. Intuitively, this
can be understood as sampling a different predictor from a distribution Q for each inference
task, for example for each data-point in a dataset.

Thus, if learning is generally the process of estimating an optimal predictor, in the
PAC-Bayes approach, learning consists in estimating an optimal distribution of predictors.
Similarly to the general learning setting, the definition of “optimality” depends on the
performance of the predictor (distribution) on the training set and on regularization terms.

Because the optimized distribution Q depends on the training set used for “learning”:
in analogy to Bayesian statistics, this distribution is called the posterior. Conversely, we
consider a data-independent prior distribution over predictors P.

The result below bounds the expected risk over a posterior distribution Q of predictors
from the empirical risk over the dataset, with high probability over the training set. Note
that the bound holds for any data-generating distribution ρ. The generalization penalty
terms contain the Kullback-Leibler divergence between Q and P. Because the Exponential
information inequality presented in Zhang (2006) uses an alternative so-called one-sample
formulation, we refer to the corresponding result in Giguère et al. (2013):

Theorem 4 (Giguère et al., 2013, Thm. 10.3.). Let ζ be an arbitrary (in particular, not
necessarily bounded) loss function.

For any data-independent distribution P, δ > 0, and a > 0, with probability at least 1−δ
over the training set drawn from ρm, for any posterior distribution Q such that Q� P and
P� Q,

− E
g∼Q

log E
x,y∼ρ

e−ζ(g(x),y) ≤ 1

m

(
E
g∼Q

m∑
i=1

ζ(g(xi), yi) + K(Q,P) + log
1

δ

)
.

We use Theorem 4 to prove a first result below.

3.2 ILE generalization bound

In this section, we prove the following novel result, which applies Theorem 4 to ILE Struc-
tured prediction:

9
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Theorem 5 (Classification bound). Assume that ∆ admits an ILE defined by ∆(z, y) =
〈ψ(z), ϕ(y)〉. Let g : X→ H a measurable function, and f(x) = arg minz∈Z〈ψ(z), g(x)〉.

For any data-independent distribution P, for any δ > 0, for any λ > 0, with probability
at least 1 − δ over the training set sampled iid from ρm, for any posterior distribution Q

such that Q� P and P� Q,

E
f∼Q

E(f) ≤ ae

e− 1

(
1− exp

(
−1

a
E
f∼Q

Em(f)−
K(Q,P) + log 1

δ

m

))
. (14)

The proof of Theorem 5 is inspired by the proof of Theorem 10.4 in (Giguère et al.,
2013). We first prove an exponential bound on the identity, with a slack parameter a.
Figure 2 illustrates the bound.

Proposition 6 (Exponential bound on the identity, with slack parameter). For any a > 1,

∀x ∈ [0, 1], x ≤ ae

e− 1

(
1− e−

x
a

)
. (15)

Proof The function f defined by f(x) = e
e−1(1− e−x) on [0, 1] is concave. Since, f(0) = 0

and f(1) = 1, ∀x ∈ [0, 1], x ≤ f(x) (f is over its chords). The result follows because
1
a [0, 1] ⊂ [0, 1] (a > 1).

Proof (Theorem 5) Let P be a prior distribution on regression functions. Let δ > 0 and Q
be a distribution over regression functions.

Let a > 1. Denote: ζ(f(x), y) = ∆(f(x),y)
a . Then, by Theorem 4, with probability at

least 1− δ on the training set sampled iid from ρm, we have

− E
g∼Q

log E
x,y∼D

e−ζ(g(x),y) ≤ 1

m

(
E
g∼Q

m∑
i=1

ζ(g(xi), yi) + K(Q,P) + log
1

δ

)
.

Because x 7→ − log x is convex, by Jensen,

− log E
g∼Q

E
x,y∼D

e−ζ(g(x),y) ≤ 1

m

(
E
g∼Q

m∑
i=1

ζ(g(xi), yi) + K(Q,P) + log
1

δ

)
.

Because x 7→ − exp(−x) is non-decreasing,

− E
g∼Q

E
x,y∼D

e−ζ(g(x),y) ≤ − exp

(
− 1

m

(
E
g∼Q

m∑
i=1

ζ(g(xi), yi) + K(Q,P) + log
1

δ

))
. (16)

On the other hand, from Proposition 6 applied to ∆(f(x), y),

∆(f(x), y) ≤ ae

e− 1

(
1− e−∆(f(x),y)/a

)
. (17)

We conclude by combining Eq. (16) and Eq. (17).

It is important to note that the value of the bound depends on the performance of a
given distribution of predictors on the training set, independently of how the distribution
is obtained. We return to this discussion in Section 6.
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Figure 2: Illustration of Proposition 6 (the exponential bound on the identity) for different
values of a > 1.

4. PAC-Bayes analysis of consistency

In the previous section, we proved a PAC-Bayes bound on the expected risk of the stochastic
predictor E∆(f(x), y) (the expectation is taken with respect to f ∼ Q and x, y ∼ ρ). The
bound depends on the empirical risk of the stochastic predictor f E 1

m

∑
i ∆(f(xi), yi) (where

the expectation is taken with respect to f ∼ Q only) and a penalty term. This can give a
tight estimate of the generalization properties of a supervised classification problem.

However, minimizing the upper bound is at least as hard as solving the ILE Structured
prediction problem directly. Thus, it does not provide an efficient way of learning: we
cannot, given a model of posterior, estimate the parameters for which we minimize the
bound. Furthermore, the results introduced in Section 3 pertain to generalization and do
not quantify the sub-optimality of the predictor of f (compared to f∗) as a function of the
sub-optimality of g.

We propose an approach to solving the latter problem in this section. In Section 5 we use
these results to learn a posterior Q over predictors from a training set (x1, y1), . . . , (xm, ym).

In this section, we aim to bound the expected excess risk of a (stochastic) predictor f
using the empirical excess quadratic surrogate risk. Our contributions are original in several
respects: first, they incorporate the finite-sample performance of the predictor distribution
in true PAC-Bayes fashion, giving actionable insight into the value of a predictor distribu-
tion; second, in the case of finite-dimensional vector spaces, they formalize certain trade-offs
that are important in the practice of Structured prediction.

11
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4.1 Augmented learning problem

To this end, we introduce an augmented learning problem. Simply put, we consider the
learning problem of learning from the dataset (xi, g

∗(xi)) instead of learning from (xi, yi).
Note that g∗ depends on the data-generating distribution ρ but not on the iid samples
x1, . . . , xm. Thus, the pairs (xi, g

∗(xi)) are iid, just like (xi, yi).
This allows us to absorb the intractable R(g∗) in the Comparison inequality, and de-

compose R(g)−R(g∗), using the Strong Comparison Inequality. We introduce the absolute
deviation loss ‖g(x)− g∗(x)‖, naturally interpretable as the pointwise surrogate excess risk.
The empirical sum of these quantities can be seen as the L2,1 norm of the residuals of the
augmented regression.

Proving a PAC-Bayes bound for this augmented learning problem requires establishing
a concentration inequality over the absolute deviation regression problem (an unbounded
loss). In the following section, we present and adapt a result from Haddouche et al. (2020)
and establish our result.

4.2 Absolute regression bound

In this section, we prove Theorem 9, which provides a finite-sample dependent consistency
guarantee with high-probability. We first state Theorem 9, then introduce and extend
results from Haddouche et al. (2020) needed to prove it.

In order to handle the unbounded absolute deviation loss, recall the following definition
from Haddouche et al. (2020):

Definition 7 (Hypothesis-dependent range (HYPE) condition). Let D = X×H be the data
space and G be the space of predictors. A loss function ` : H × G verifies the Hypothesis-
dependent range (HYPE) condition for a function K : G→ R∗+ such that ∀g ∈ G, supx,y∈D `(g, z) ≤
K(g). In this case, we say that ` is HYPE(K)-compliant.

The following theorem is extended to vector-valued regression from Haddouche et al.
(2020, Thm. 5.1.).

Theorem 8 (extended from Haddouche et al., 2020, Thm. 6.1). Let 1 ≥ α > 0 and N ≥ 6,
the dimension of the regression space G. We define ` as:

` : (h, (X(x), g∗(x))) ∈ G× (F ×H) 7→ ‖g∗(x)− h ◦X(x)‖ . (18)

Then, ` is HYPE(K) compliant for K(h) = B ‖h‖F +C with C = ‖g∗‖2,∞ and B = ‖X‖2,∞.

Moreover, let P = N(0, σ2IN ) with σ2 = tm
1−2α

B2 with 0 < t < 1, be a Gaussian prior.
We have with probability at least 1− δ over S ∼ Dm, for any posterior distribution Q such
that Q� P and P � Q:

E
h∼Q

R(h) ≤ E
h∼Q

Rm(h) +
K(Q,P ) + log(2/δ)

mα
+

C2

2m1−α
(
1 + F (t)−1

)
(19)

+
N

mα

[
log

(
1 +

C√
2F (t)m1−2α

)
+ log

(
1√

1− t

)]
. (20)

where F (t) = 1−t
t .

12
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Proof We first prove that ` is HYPE(K)-compliant for K(h) of the form K(h) = ‖g∗‖2,∞+
‖h‖op ‖X‖2,∞. Indeed,

‖g∗(x)− h ◦X(x)‖ ≤ ‖g∗‖2,∞ + ‖h‖op ‖X(x)‖2 .

Furthermore, we have ∀h, ‖h‖op ≤ ‖h‖F . Indeed, let h = UΣV T be the singular value
decomposition of h where U and V are unitary and Σ is diagonal with non-negative σi
singular values of A. Because U and V are unitary, ‖Σ‖F =

∥∥UThV ∥∥
F

= ‖h‖F . Thus,

‖h‖F = ‖Σ‖F =

√∑
i

σi(A)2 ≥ max
i
σi(A) = ‖h‖op .

Thus,

‖g∗(x)− h ◦X(x)‖ ≤ ‖g∗‖2,∞ + ‖h‖op ‖X‖2,∞ .

The second part of the result is a generalization of the original result. Because the HYPE

condition is verified with the same form as in the scalar case. See Haddouche et al. (2020,
Appendix F.2.) for a proof of the original result.

Finally, we specialize Theorem 8 into a PAC-Bayes generalization bound for the aug-
mented regression problem:

Theorem 9 (Augmented linear regression excess risk bound). Let α > 0 and dim(H⊗F) =

N ≥ 6. Let P = N(0, σ2
0IN ) with σ2

0 = tm
1−2α

κ2
= tσ2 be a Gaussian prior with 0 < t < 1. We

have with probability at least 1− δ over the training set sampled from ρm, for any posterior
distribution Q = N(W,σ′2IN ),

E
f∼Q

E(f)− E(f∗) ≤ 2c∆

[
E
g∼Q

1

m

m∑
i=1

‖g∗(xi)− g(xi)‖+
K (Q,P) + log 2

δ

mα
+ ε (m, t, α,P)

]
,

(21)
where

ε (m, t, α,P) =
‖g∗‖2

2m1−α
(
1 + F (t)−1

)
+

N

mα

[
log

(
1 +

‖g∗‖√
2F (t)m1−2α

)
+ log

(
1√

1− t

)]
,

(22)
and F (t) = 1−t

t .

Proof Recall the Strong Comparison Inequality (Theorem 2):

E(f)− E(f∗) ≤ 2c∆

∫
X

‖g(x)− g∗(x)‖H dρX(x)︸ ︷︷ ︸
=: R(g)

.

We can then apply the Augmented regression formulation and Theorem 8 to bound
the expectation of the lower-bound, by recognizing R(g). We also specialize the result for
Gaussian posteriors.
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Theorem 9 expands on the general PAC-Bayes approach to learning presented in Sec-
tion 3 and on the Comparison Inequality Theorem 3 by considering the consistency problem
from the point of view of finite sample concentration: how suboptimal is f with respect to
f∗ over the data-generating distribution given the suboptimality of g with respect to g∗ on
the finite, real-world dataset at hand.

In the rest of this section we focus on the analysis of the dependencies of the bound
in Theorem 9 in the different learning problem and bound parameters. By examining and
discussing the influence of these parameters on the value of the bound, we show that our ap-
proach yields practical guidance on the performance of learning methods and formulations,
in particular on the choice of loss for Structured prediction.

4.3 Posterior parametrization

We first examine the impact of the choice of posterior variance on the Kullback-Leibler
divergence term. Different parametrizations yield different regularization behaviors, we
present two alternatives here.

For completeness, we begin by recalling the Kullback-Leibler divergence of two multi-
variate Gaussian distributions, with a specialization for isotropic Gaussians.

Proposition 10 (Kullback-Leibler divergence of multivariate Gaussians). The Kullback-
Leibler divergence of two N -dimensional multivariate Gaussians P = N(µ2,Σ2) and Q =
N(µ1,Σ1) is:

K(Q,P) =
1

2

[
log

det Σ2

det Σ1
−N + tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

]
. (23)

In particular, if µ2 = 0, Σ2 = σ2
2IN and Σ1 = σ2

1IN , then Eq. (23) can be reduced to:

K(Q,P) =
1

2

[
2N log

σ2

σ1
−N +N

σ2
1

σ2
2

+
‖µ1‖2

σ2
2

]
. (24)

The proof can be found in many references, including in Petersen and Pedersen (2008).

General Kullback-Leibler variations. For ease of comprehension, we consider the gen-
eral case where the variance of P is fixed, and study the variations of the Kullback-Leibler
divergence as the variance of Q changes. In Figure 3, we illustrate the dependence of the
Kullback-Leilber divergence on posterior variance (especially relatively to the prior vari-
ance).

The main takeaway of such an illustration is that there is a global minimum of the
Kullback-Leibler divergence (even though the means do not coincide), which justifies that
the ensuing discussion in the section is justified.

Of course, the posterior variance can be optimized in all generality. However, simple
rules are interesting because they can be applied in practice. Furthermore, in PAC-Bayes
literature, it is common for the posterior variance to be fixed a priori, for example to 1. Two
a priori examples are interesting because they yield insight into the impact of the problem
parameters on generalization performance: the unit-variance model and the so-called, wide
posterior. We first present both models then compare them.
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Figure 3: Kullback-Leibler divergence as a function of posterior covariance σ, where the
prior covariance is unitary. Note the global minimum.

Unit variance posterior This posterior model is widely used in PAC-Bayes analysis.
Here, σ2

1 = 1 and σ2
2 = tσ2 where 0 < t < 1, as defined in Theorem 9. Denote KU (t) the

Kullback-Leibler divergence in this model, which has the following expression:

KU (t) = K(Q,P) =
‖µ1‖2

2tσ2
+
n

2

(
log t+ log σ2 − 1 +

1

tσ2

)
. (25)

Wide posterior In this case, we set the posterior variance to the supremum of the set of
admissible variances for the prior (i.e. corresponding to t = 1 in Theorem 9). Here, σ2

1 = σ2

and σ2
2 = tσ2, where 0 < t < 1, and the Kullback-L divergence, noted KW (t) becomes:

KW (t) = K(Q,P) =
‖µ1‖2

2tσ2
+
n

2

(
log t− 1 +

1

t

)
. (26)

Comparison We compare the two parametrizations, to better understand the implica-
tions of each hypothesis. The difference of the two divergences gives:

KU (t)−KW (t) =
n

2

(
log σ2 +

1

tσ2
− 1

t

)
. (27)

This gap depends on t but only through the prior variance. It is positive if and only if

log σ2 +
1

tσ2
− 1

t
> 0. (28)
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If σ2 < 1, this is always verified. If σ2 > 1, then there is a threshold behavior at t0(σ) =
1− 1

σ2

log σ2 .

In Theorem 9, σ is not arbitrary, but determined by the parameters of the learning
problem. Recall that σ = m1−2α

κ where κ2 = supx∈X k(x, x). In other words, the magnitude
of σ is inversely proportional to that of κ, with coefficient m1−2α.

In the special case of α = 1/2, the above discussion yields insight into the impact of the
magnitude of the input kernel on the generalization performance of the ILE method.

• If the input kernel is bounded by 1, then σ > 1 and the choice of parametrization
(and the choice of t has an impact). In this case, t should be chosen larger than
the threshold value when the wide parametrization is chosen, and smaller when the
unitary parametrization is selected. This remark nuances the remark in Haddouche
et al. (2020) that the limitation on the choice of prior is not limiting: choosing a
smaller prior variance helps obtain good generalization bounds with a posterior with
smaller variance.

• If the input kernel cannot be bounded by 1, then σ < 1 and the gap is always
positive. In this case, the wide parametrization is better, whichever the choice of
t. Note however that if the known bound for a given kernel is not tight, then the
practitioner may find herself in the previous case without knowing it. This highlights
the importance of having informative bounds when controlling the different ingredients
to the learning problem.

The analysis in more subtle with α 6= 1
2 , because the prior variance depends on m.

• In the case where α < 1
2 , σ → +∞ when m→∞. So with enough data, we are in the

first case above. Note that as σ becomes large, the threshold value above becomes
small, meaning that the potential widening of the posterior is compensated by the
choice of a small t (in the unitary posterior parametrization).

• If 1 > α > 1
2 , the prior becomes tighter as the quantity of data grows. This seems

pathological in the large data limit: we want to maintain variance in the prior as the
quantity of data grows.

The above discussion gives insight into the choice of posterior parametrization, giving
simple rules of thumb for practical use (which eliminates a free parameter). Furthermore,
we have shown that having informative bounds on the different ingredients of the learning
problem has impact of the generalization guarantees we can obtain.

In the rest of this section, we qualitatively study the effect of different bound parameters
on the bound value. We consider the unit-variance posterior parametrization. Furthermore,
to evaluate the effects of the parameters on the bound values, we consider the mean regressor
ḡ = g∗. The discussion can be formulated in the following way:

If g∗ was known, what PAC-Bayes guarantees could we expect on the resulting
stochastic predictor?
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In the rest of this section, we adopt the following shorthand, where we have regrouped
terms in ε′ = K(Q,P)

mα + ε to highlight their effect on the bound:

ε′ =
N

mα

[
log

(
1 +

‖g∗‖√
2F (t)m1−2α

)
+ log

(√
F (t)−1

)
+

1

2
log

(
m1−2α

κ2

)
− 1

2

]

+
N

2m1−α

[
κ2

t

(
1 +
‖g∗‖22
N

)
+
‖g∗‖22
N

(
1 + F (t)−1

)]
. (29)

4.4 Penalty dependence on N

The bound’s dependence on N , the dimension of the regressor space, is a key contribution
of our work. It justifies the practitioner’s intuition in the choice of losses for Structured
output prediction is important.

We can see in Eq. (29) that N contributes greatly to the generalization penalty, in
O(N). However, as written Eq. (29) does not materialize the dependence of the penalty
on the “size” of the Structured output learning problem. We discuss below how the choice
of loss determines the penalty value through N . Recall that N = dim(H) × dim(F) is the
dimension of the regressor. Indeed, the choice of loss impacts the ILE which in turn impacts
the dimension of H.

To illustrate this effect concretely, let us return to the multi-label binary classification
problem in Example 1. For the 0 − 1 loss, ϕ(y) is a one-hot encoding of y, and dim(H) =
|Y| = 2`. For the Hamming loss, dim(H) = 2`+1� |Y|. This greatly reduces the number of
samples needed to attain good generalization performance and, by Theorem 9, consistency.

In other words, the choice of a “structured loss” harnesses the power of the frame-
work described above, instead of considering the Structured prediction problem as näıve
classification.

4.5 Penalty dependence over m

Eq. (29) shows that apart from a light logarithmic dependence in m, the penalty decreases
as O

(
1
mβ

)
, where β = min (α, 1− α). This gives an indication of a rate of convergence,

which we discuss more generally in Section 6, and echoes that in Section 4.3.

4.6 Penalty dependence over t

In Figure 4, we visualize the dependence of Eq. (29) on t for different values of κ. Note the
global minimum over t.

5. Learning from the Augmented Regression Bound

In this section, we present and analyze learning algorithms derived from Theorem 9. In PAC-
Bayes theory, learning algorithms are derived from a bound when the bound is optimized
with respect to the posterior for a given set of data. Because we use a fixed-variance
posterior model, we can reduce optimizing the bound in Theorem 9 to minimizing the
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Figure 4: Dependence of ε′ as a function of t, for different values of κ. For these curves:
N = 102, m = 104, α = 0.3 and ‖g∗‖ = 10. Note the global minimum over
0 < t < 1.

following objective function, where Q(ḡ) is the parameterized distribution with mean ḡ:

J(ḡ) = E
g∼Q(ḡ)

1

m

m∑
i=1

‖g∗(xi)− g(xi)‖+

∥∥h̄∥∥2

2σ2
0m

α
. (30)

Because g∗ is unknown, the above objective is intractable. By applying the Triangle
Inequality ‖g∗(x)− g(x)‖ ≤ ‖g∗(x)− ϕ(y)‖+‖ϕ(y)− g(x)‖, we separate the approximation
and estimation errors respectively and can concentrate on the latter.

Thus, we consider the optimization objective in Eq. (31) instead of in Eq. (30):

Ĵ(ḡ) = E
g∼Q(ḡ)

1

m

m∑
i=1

‖ϕ(yi)− g(xi)‖+

∥∥h̄∥∥2

2σ2
0m

α
. (31)

Although Ĵ is convex, because a practical closed-form expression of Ĵ does not exist2, we
present two approximate approaches: a deterministic relaxation strategy in Section 5.1, then
an estimation strategy using the so-called “log-prob” trick, and apply variance reduction in
Section 5.2.

2. Computing the above expectation reduces to computing the mean of the norm of an isotropic Gaussian
vector. The norm of a Gaussian vector follows a Generalized Rayleigh Distribution (see for example, Park
(1961) or Blumenson and Miller (1963)). Park (1961) shows that there exists a closed-form expression
of the moments of the Generalized Rayleigh distribution. However, these expressions depend on the
confluent hypergeometric function, which is not closed for in our setting: it is worth noting that in Park
(1961) the words closed-form are in quotes!
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5.1 Relaxation strategy

We can upper-bound the Ĵ with an expectation-free convex objective Ĵc. In this section,
after establishing the upper-bound, we discuss optimizing Ĵc.

5.1.1 Relaxation

In order to prove the relaxation in Eq. (34) we first bound the expected value of the norm
of the regression residual.

Proposition 11 (Expected deviation upper-bound). Let Q = N(W,σ2IN ) a multivariate
Gaussian distribution, where (by abuse of notation) W ∈ Rd×d′ and d×d′ = N . Let x ∈ Rd′

and y ∈ Rd. Then,

(a) EV∼Q ‖y − V x‖2 = ‖y −Wx‖2 + σ2d ‖x‖2,

(b) EV∼Q ‖y − V x‖ ≤
√
σ2d ‖x‖2 + ‖y −Wx‖2

Proof (a) is a classic result: a detailed proof is given for example in Giguère et al. (2013,
Appendix 10.7.2.). For (b), we successively apply Jensen’s inequality (Eq. (32)) then use
(a) (Eq. (33)), as detailed below:

E
V∼Q

‖y − V x‖ ≤
√

E
V∼Q
‖y − V x‖2, (32)

=

√
‖y −Wx‖2 + σ2d ‖x‖2. (33)

Remark 12. We note that there may in fact several interpretations of (b) in the previous
lemma, such as Jensen or the positivity of the variance.

We can apply this lemma to upper-bound Ĵ(ḡ) in Eq. (31):

Ĵ(ḡ) ≤ Ĵc(ḡ) :=
1

m

m∑
k=1

√
β(xk) +

∥∥ϕ(yk)− h̄ ◦X(xk)
∥∥2

+ λαm(t)
∥∥h̄∥∥2

, (34)

where β(x) = σ2 dim(H) ‖X(x)‖2 = σ2 dim(H)k(x, x) and regularization parameter λαm(t) =
1

2tσ2mα
= κ2

2tm1−2αmα
.

Remark 13 (Slackness of the relaxation). Is the upper-bound in Proposition 11 reasonable?
A first remark, is that Jensen’s inequality is known to be tight. However, we cannot quantify
what is lost before training using the bounds (see Section 7). We evaluated the slackness of
Proposition 11 (b) numerically in Figure 5.
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Figure 5: Relative gap in Proposition 11 (b). We plot |L(σ)−R(σ)|
R(σ) where L(σ) =

EV∼Q ‖y − V x‖ and R(σ) =
√
σ2d ‖x‖2 + ‖y −Wx‖2. Notice that the bound

is at least tight to 10%. The simulation methodology can be found documented
at https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction in the
source code associated to this paper (see Section 7).

5.1.2 Learning algorithm

In this section, we present a minimization method for Ĵc(W ) over W ∈ L(F,H). The
resulting algorithm, based on gradient descent, is presented in Algorithm 1.

Proposition 14 (Properties of Ĵc). Ĵc is differentiable and µ-strongly convex for any µ >
2λαm(t). Furthermore, ∇Ĵc is given by

∇Ĵc(W ) =
1

m

m∑
k=1

(ϕ(yk)−WX(xk))X(xk)
T√

β(xk) + ‖ϕ(yk)−WX(xk)‖2
+ 2λαm(t)W,

thus Ĵc is twice-differentiable.

Proof Let l(x) =
√
a+ x2 where a > 0. l is increasing and convex: l′(x) = 2x√

a+x2
>

0 and l′′(x) = 4a
2(a+x2)3/2

> 0. Furthermore, W 7→ ‖y −Wx‖ is convex. Thus, W 7→√
β(x) + ‖y −Wx‖2 is convex. The result follows by convex combination. Because the

regularization penalty is µ strongly convex for any µ > 2λαm(t).
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Algorithm 1: Gradient descent, Relax-GD

Input : Initial posterior mean W0.
Parameters: Step-size parameters: ν ∈ (0.5, 1], w ≥ 0.

1 Initialization W 0 ←W0.
2 Pre-compute β(xk).
3 while stopping criterion not met do
4 Compute ∇Jc(Wt) (see Proposition 14).
5 Compute step-size: γt = 1

(w+t)ν .

6 Gradient step: W t+1 ←W t − γt∇Jc(Wt).

7 end

Result: W final

Furthermore, if f(W ) = ‖Y −WX‖2, for small H,

f(W +H) =
∥∥Y T −XT (W T +HT )

∥∥2
,

=
∥∥Y T −XTW T

∥∥2
+
∥∥XTHT

∥∥2 − 2〈Y T −XTW T , XTHT 〉,

=
∥∥Y −XTW T

∥∥2
+
∥∥XTHT

∥∥2 − 2 Tr[(Y T −XTW T )TXTHT ],

= f(W )− 2 Tr[(Y −WX)XTHT ] + o(H),

= f(W )− 2 Tr[X(Y −WX)TH] + o(H),

where we used Tr(AB) = Tr(BA) and Tr(AT ) = Tr(A). The gradient expression follows by
composition.

Because Ĵc is L-smooth (for some L > 0), it is well-known that we can minimize it by
gradient descent Boyd and Vandenberghe (2004).

5.2 Stochastic Search Variational Minimization

In this section, we present a second approach to optimizing Ĵ . Instead of relaxing the
optimization problem, we seek to directly estimate ∇Ĵ . The intuition behind this approach
is that Ĵ is convex, thus estimating its gradient could be sufficient to minimize it in practice.
To this end, we apply the well-known “log-prob” trick. In order to reduce the variance of the
resulting estimator, we apply techniques presented in Mohamed et al. (2020) and Paisley
et al. (2012) with a well-chosen control variate.

These techniques are widely-used in different fields of mathematics and in particular
machine learning: stochastic optimization, reinforcement learning, extreme-value statistics,
among others. The interested reader can consult the recent survey Mohamed et al. (2020)
and references therein.
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5.2.1 Gradient estimation

Without loss of generality, we ignore the quadratic regularization in Ĵ and focus of the
expectation term, using the following notation:

Ĵ(W ) = E
Q(V |W )

[L(V )] ,

where L(V ) = 1
m

∑m
k=1 ‖ϕ(yk)− V X(xk)‖ and Q(V |W ) is the density of Q(W ) at V .

The following proposition provides an expression of ∇Ĵ at W and derives an unbiased
estimator of ∇Ĵ .

Proposition 15 (Score-function gradient expression). ∇Ĵ(W ) can be expressed as the ex-
pectation of a function of V ∼ Q(W ) over Q(W ):

∇Ĵ(W ) = E
V∼Q(W )

[L(V )∇ logQ(V |W )] .

Definition 16 (Score function estimator (SFE)). Let V1, . . . , VM be M iid copies of V ∼
Q(W ). The score function estimator is defined as:

ηM (W ) =
1

M

M∑
k=1

L(Vk)∇ logQ(Vk|W ). (35)

Proposition 17. ηM is an unbiased estimator of ∇Ĵ(W ).

The proof of Proposition 17 stems directly from Proposition 15. Given the importance
of the approach in our PAC-Bayes approach, we sketch out the main steps of the proof of
Proposition 15.

As highlighted in Mohamed et al. (2020), proving Proposition 15 reduces essentially
to interchanging the derivative and the expectation, and applying Lebesgue’s dominated
convergence theorem. Three conditions should be verified:

1. Q(v|W ) is continuously differentiable with respect to W

2. L(v)Q(v|W ) is integrable and differentiable with respect to W .

3. L(v)∇Q(v|W ) is dominated by an integrable function g of v.

Proof The first two points are straight-forward for the multivariate Gaussian distribution.
It is enough to verify the third over all bounded open sets of the space of linear functions.
Let C be such a set and C = max{‖W‖ ,W ∈ C}.

Ignoring the normalization constant of Q, we have:

‖L(V )∇Q(V |W )‖ = ‖Y − V X‖ ‖V −W‖ exp

(
− 1

2σ2
‖V −W‖2

)
. (36)

Noting that−‖V −W‖2 = −‖V ‖2−‖W‖2︸ ︷︷ ︸
≥ 0

+2〈V,W 〉 ≤ −‖V ‖2+2C ‖V ‖ and ‖V −W‖ ≤

‖V ‖+ C, we have:

‖L(V )∇Q(V |W )‖ ≤ ‖Y − V X‖ (‖V ‖+ C) exp

(
− 1

2σ2

[
‖V ‖2 − 2C

])
=: γ(V ).
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Algorithm 2: Näıve score estimator gradient descent, SF-GD

Input : Initial posterior mean W0.
Parameters: Step-size parameters: ν ∈ (0.5, 1], w ≥ 0.

1 Initialization W 0 ←W0.
2 while stopping criterion not met do
3 Sample M predictors from Q: V1, . . . , VM .
4 Estimate intractable gradient: ηM ← 1

M

∑
k f(Vk)∇ logQ(VK |W t).

5 Compute step-size: γt = 1
(w+t)ν .

6 Gradient step: W t+1 ←W t − γtηM .

7 end

Result: W final

Because ‖V ‖2 γ(V )→ 0 when ‖V ‖ → ∞, γ is integrable.

Remark 18. In Proposition 15, L is not required to be differentiable.

With this estimator of the gradient of Ĵ , we can then minimize Ĵ using gradient descent.
We present the associated algorithm in Algorithm 2.

The algorithm described above does not have the same theoretical guarantees as gradient
descent, as the gradient estimate, while unbiased, can have large variance. There are several
approaches to controlling the gradient’s variance. We present an approach in Section 5.2.2.

5.2.2 Variance reduction

A general method of reducing the variance of an estimator is to introduce a control variate.
The main ingredient to this approach is the construction of a function B(V ) highly

correlated with L(V ), so as to guarantee that B(V )∇ logQ(V |W ) and L(V )∇ logQ(V |W )
will also be correlated.

Let B(V ) be such a function, highly correlated with L. We define, for a ∈ R,

L̃(V ) := L(V )∇ logQ(V )− a
(
B(V )∇ logQ(V )− E

q
B(V )∇ logQ(V )

)
. (37)

Note that EQ L̃(V ) = EQ L(V )∇ logQ. The goal is thus to choose a such that the
variance of L̃(V ) is minimized.

Choice of a & estimation of a∗

Proposition 19 (Optimal baseline coefficient, Paisley et al., 2012). Given L and B, define
L̃ as in Eq. (37). Then, V(L̃) is minimized for a∗ ∈ R given by:

a∗ =

∑N
k=1 Cov

(
L∂ logQ

∂Wk
, B ∂ logQ

∂Wk

)
∑N

k=1 V
(
B ∂ logQ

∂Wk

) . (38)

Of course, a∗ is intractable in general. We use a plug-in estimator of it â, by sampling
from Q, independently from the gradient samples. As recommended in
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Figure 6: Numerical evaluation of correlation for L(V ) = 1
m

∑m
i ‖yi − V xi‖ and B(V ) =

1
m

∑m
i ‖yi − V xi‖

2. The correlation coefficient is given over M = 500 predic-
tors sampled from a isotropic multivariate normal distribution. The coefficients
are averaged over 100 experiments in order to estimate the variance of the esti-
mate (which is materialized by the envelope and dotted lines). To reproduce, see
https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction.

Definition 20 (Optimal baseline coefficient estimator â). Let V 1, . . . , VM ′ be M ′ iid sam-
ples from Q(V |W ). Then,

â =
α

β
, (39)

where

α =
1

M ′

M ′∑
j=1

N∑
k=1

Cov

(
L
∂ logQ(V j)

∂Wk
, B

∂ logQ(V j)

∂Wk

)
, (40)

β =
1

M ′

M ′∑
j=1

N∑
k=1

V
(
B
∂ logQ(V j)

∂Wk

)
. (41)

This is in particular the estimator proposed by Paisley et al. (2012) and Mohamed et al.
(2020, associated code)3.

Choice of B Of course, the variance reduction virtues of this approach rely on having
a function B strongly correlated with L and for which we can compute the gradient of its

3. See: https://github.com/deepmind/mc gradients/blob/master/monte carlo gradients/control variates.py
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expectation in closed form. Mohamed et al. (2020) present several alternative methods for
choosing such a B. In particular, B does not need to be an upper-bound of L (contrary to
the relaxation approach above).

We define B(V ) as:

B(V ) =
1

m

m∑
i=1

‖yi − V x‖2 . (42)

The intuition behind such a choice is that we have a closed-form expression of the
gradient of B, and the norm and squared-norm are correlated as one is a non-trivial de-
terministic function of the other. Of course, L (B) are linear combinations of the norms
(squared-norms) of residuals (respectively). However, the (x, y) pairs are drawn iid and
because x, y 7→ ‖y − V x‖ is deterministic, ‖y − V x‖ and ‖y′ − V x′‖ are independent. Con-
ditioned on the dataset, the correlation of L and B should remain strong.

Remark 21 (Numerical evaluation of correlation). We numerically evaluated our hypoth-
esis that L and B as defined in Eq. (42) are well correlated, even when the correlation is
reduced by summing over the dataset. We present the results in Figure 6. The correlation is
strong, including for large datasets. The experiment is detailed in the associated codebase:
https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction.

To summarize, the different approximations are as follows (again, ignoring the regular-
ization term):

∇Ĵ(W ) = E
q

[L(V )∇ logQ(V ) +∇`(W )] ,

= E
q

[
L(V )∇ logQ(V )− a

(
B(V )∇ logQ(V )−∇E

q
B(V )

)]
,

= E
q

[(L(V )− aB(V ))∇ logQ(V )] + a∇E
q
B(V ),

≈ E
q

[(L(V )− âB(V ))∇ logQ(V )]︸ ︷︷ ︸
Sample

+â∇E
q
B(V )︸ ︷︷ ︸

Tractable

,

≈ 1

M

M∑
k=1

(
L(V k)− âB(V k)

)
∇ logQ(V k)︸ ︷︷ ︸

η̂M (W )

+â∇E
q
B(V )︸ ︷︷ ︸

ηB(W )

. (43)

where V1, . . . , V
M are iid and independent from the M ′ samples used to estimate â.

5.2.3 Algorithm

We present the complete algorithm using Stochastic Search Gradient Descent Paisley et al.
(2012). To the best of our knowledge, this is a novel application of Stochastic Search
Gradient Descent, the applications in the Paisley et al. (2012) being logistic regression and
Hierarchical Dirichlet processes.
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Algorithm 3: Quadratic Stochastic Search Gradient Descent iteration, Q-SSGD.

Input : Previous W t.
Parameters: Step-size parameters: ν ∈ (0.5, 1], w ≥ 0, M , M ′.

1 Sample M ′ predictors V1, . . . , VM ′ from Q(W t).
2 Estimate â according to Eq. (39).
3 Sample M predictors from Q(W t), V1, . . . , VM .
4 Estimate intractable gradient η̂M ← 1

Ms

∑
k(L(Vk)− âB(Vk))∇ logQ(Vk|W t).

5 Compute ηB = ∇EB(V ) under Q(W t) according to Eq. (44).
6 Compute ηP the gradient of the penalty term.
7 Compute step-size γt = 1

(w+t)ν .

8 Update W t+1 ←W t − γtη̂M (W t)− γtâηB(W t)− γtηP .
Result: W t+1

As described above, two intractable quantities are sampled in order to estimate the
gradient: the stochastic search correction η̂M and â (as shown in Eq. (43)). Let M and M ′

be the number of samples used for each estimation, respectively4.
We summarize the Stochastic Search Gradient Descent algorithm with the control vari-

ate described above in Algorithm 4. It repetitively calls Algorithm 3.
Proposition 22 provide expressions of the closed form gradients that are needed in the

algorithm.

Proposition 22 (Control variate gradient ηB).

∇EQ(W )B(V ) =
2

m

m∑
k=1

(ϕ(yk)−WX(xk))X(xk)
T . (44)

Proof

∇EB(V ) = ∇

[
1

m

m∑
k=1

‖ϕ(yk)−WX(xk)‖2 + σ2 ‖X(x)‖2 dim(H)

]
,

=
1

m

m∑
k=1

∇
[
‖ϕ(yk)−WX(xk)‖2

]
=

2

m

m∑
k=1

(ϕ(yk)−WX(xk))X(xk)
T .

In this section, we presented two approaches to learning with Theorem 9 – bringing
additional evidence that PAC-Bayes bounds are a principled way to derive new algorithms
(see e.g. the ICML 2019 tutorial Guedj and Shawe-Taylor, 2019). In Section 7, we provide
experimental results of to support theoretical results and discussion in Sections 3 to 5.

6. Discussion

In this paper, we provide a theoretical analysis of the properties of estimators in the Implicit
Loss Embedding framework. Our analysis is theoretical and methodological in nature. On

4. Note that Paisley et al. (2012) consider M ′ � M .
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Algorithm 4: Quadratic Stochastic Search Gradient Descent algorithm.

Input : Initial regressor W 0.
Parameters: Step-size parameters: ν ∈ (0.5, 1], w ≥ 0, M , M ′.

1 while stopping criterion not met do
2 W t+1 ← Q-SSGD(W t)

3 t← t+ 1

4 end
Result: W t

one hand, we prove PAC-Bayes generalization bounds for ILE losses. These seek to upper-
bound the task risk and the excess task risk, from the performance of a given predictor
distribution on the dataset. In turn these theoretical results yield two important method-
ological contributions.

In this section, we briefly summarize our main contributions at a high-level, tying to-
gether the different sections and approaches presented therein. Furthermore, we put our
results into perspective with respect to those presented in Ciliberto et al. (2020).

6.1 Generalization

In Theorem 5, we prove a generalization bound for the ILE problem stemming from a classic
PAC-Bayes bound from Zhang (2006). It is important to note that in Theorem 5, the loss
function ∆ is ILE but the bound hold irrespective of how the predictor (distribution) Q is
obtained. This differs from the approach adopted in Ciliberto et al. (2020) which consider
convergence rates of specific algorithms.

The bound offers methodological guarantees. In the case where m is very large, the
generalization penalty term is small, so with probability 1− δ, the generalization gap (i.e.
the difference between EQ E(f) and EQ Em(f)) reduces to the gap induced by exponential
bound on the identity (Proposition 6). For small values of EQ Em(f), this bound is tight
(see Figure 2). This is expected: in the infinite data limit, we expect the empirical loss to
be close to the distribution loss.

Furthermore, generalization performance is limited by a penalization term formed of the
Kullback-Leibler divergence of the posterior and prior distributions. In practice, this yields
a sound way of penalizing predictor (distributions) that do not generalize well. Indeed,
in the simple multivariate normal case, if the distributions have the same variance, the
penalization coincides with the widely used Tikhonov regularization.

6.2 Comparison with KDE generalization bounds

Ciliberto et al. (2020) offers insight into the links between the Kernel Dependency Esti-
mation approach and the ILE framework. In this section, we tie together the PAC-Bayes
approach to generalization and the ILE approach to consistency, by recalling some results
from Giguère et al. (2013).

We consider an output space Y associated to the reproducing kernel kY defined by
kY(y, y′) = 〈Y (y), Y (y′)〉, ∀y, y′ ∈ Y2. We assume the task loss is defined from the output
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kernel kY as follows:

L(y, y′) =
1

2

∥∥Y (y)− Y (y′)
∥∥2

=
1

2
kY(y, y) +

1

2
kY(y′, y′)− kY(y, y′). (45)

The KDE predictor fk is the decoded linear regressor, defined by:

fk(x) = arg min
y∈Y
‖Y (y)−WX(x)‖2 . (46)

One key insight in the KDE approach is to notice that:

L(y, fk(x)) ≤ 2 ‖Y (y)−WX(x)‖2 , (47)

where W ∈ L(F,H). In this sense, the KDE framework is a quadratic surrogate approach,
without any consistency guarantees as is.

Giguère et al. (2013) establishes a PAC-Bayes generalization bound in the KDE setting.
The bound is based on the pointwise quadratic upper-bound of the KDE loss we presented
in Eq. (47) and bounds the expected risk of the mean KDE predictor by the empirical
regression risk of the mean regressor, Rm(ḡ) = 1

m

∑m
i=1 ‖Y (yi)− ḡ(xi)‖2 and ḡ = w̄ ◦ X

where w ∈ L(F,H).
Recall that we assume F (the RKHS associated to k) and H (the Hilbert space associated

to the ILE) to be finite-dimensional. We consider regressors g = w ◦X where w ∈ L(F,H).

Theorem 23 (Giguère et al., 2013). Assume k is such that k(x, x) = 1, ∀x ∈ X. For
any δ > 0, with probability at least 1 − δ over training set sampled iid from ρ, for any
w ∈ L(F,H), with g = w ◦X,

E(d ◦ g) ≤ 5e

e− 1

[
1− exp

(
−2Rm(g)−

9
8 ‖w‖

2 + log
(

1
δ

)
m

)]
. (48)

Notice that in the above bound, the predictors are deterministic and not stochastic.
Indeed, using Gaussian distributions for w, the expectations in Theorem 4 were explicitly
computed, making the bound only depend on the mean predictor associated to w = w̄.

As Ciliberto et al. (2020) point out, under certain hypotheses, we can show that KDE
is a special case of ILE and transfer consistency guarantees of ILE predictors to KDE
predictors. Thus the surrogate method in the ILE framework can also be seen as the
minimization of a PAC-Bayes bound. Even though this is the case, minimizing the upper
bound in Theorem 23 does not yield the same rate guarantees as in Ciliberto et al. (2020)
which hold for a regularization parameter equal to 1√

m
.

6.3 Consistency

Existing approaches do not yield results about the gap between E(d ◦ g) − E(f∗), from a
given predictor and a finite sample of data.

Indeed, Theorem 24 provides tight bounds of E(fm)−E(f∗) for finite m. However, these
results depend on how fm is obtained from the data sample. For example, kernel ridge
regression can be used (with regularization parameter λm = 1√

m
, see Caponnetto and Vito,

2006). For completeness we recall the (abridged) result:
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Theorem 24 (Ciliberto et al., 2020, from Theorem 5). If Z is compact and ∆ admits an
ILE. Assume that k is continuous and bounded by κ2 = supx∈X k(x, x). Let ρ be a data-
generating distribution such that g∗ ∈ H ⊗ F where H is associated to the ILE and F to
k. Let δ > 0 and m0 large enough, then with probability at least 1− δ over the training set
sampled from ρm for fm (KRR with the same regularization as above),

E(fm)− E(f∗) ≤
c∆Mq log 4

δ

m1/4
, (49)

where M = 16

(
κ (1 + κ ‖g∗‖) + κ

√
1 + ‖g∗‖2 + ‖g∗‖

)
and q ≤ 3.

In constrast, in Theorem 9, we bound a stochastic predictor analog to E(fm) − (f∗).
This approach is complementary to that of Ciliberto et al. (2020). It provides a theoretical
guarantee bounding the suboptimality of a given predictor distribution, and dependent on
the finite sample performance of the bound. In particular, Theorem 9 holds with high
probability, independently of the learning method used.

Theorem 9 also yields methodological insight into the Structured prediction problem.
Indeed, it materializes the gain obtained using “structured” losses such as the Hamming
loss, over the 0 − 1 loss, theoretically validating practitioner intuition. Furthermore, we
show how prior information such as the bound on the input kernel κ can have an impact of
the chosen learning method.

Theorem 9 is of particular interest because the upper-bound is differentiable. In Sec-
tion 5, we derive two learning algorithms that minimize the bound. The experimental
results of this approach is presented in Section 7.

7. Experimental results

In this paper, we prove a PAC-Bayes bound for Structured prediction using ILE losses. The
bound provides an excess risk certificate that holds with high probability. Furthermore,
we derive two learning algorithms from the bound, which both stem from minimizing a
surrogate of the bound.

In this section, we present experimental results of three algorithms, on multi-label binary
classification datasets. All experiments can be reproduced with source code available5.

7.1 Algorithms

First, we recall the different implement algorithms and their variants. We compare three
families of algorithms:

• ILE(λ): minimize Eq. (9) by Kernel Ridge Regression with regularization parameter
λ.

• Relaxed-PB(α, t): minimize Eq. (34) with gradient descent (with constant learning
rate γ). This is described in Algorithm 1.

5. https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction
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• MC-PB(α, t): minimize Eq. (30) with score-function gradient descent (with constant
learning rate γ).

For Relaxed-PB and MC-PB, α and t are parameters of the prior P so are, in general,
data-independent. See Section 7.3 for more details on the choice of α and t.

7.2 Implementation

In our work, we consider the PAC-Bayes framework: predictors f are sampled from a
posterior distribution Q, itself learned from dataset S = {(x1, y1), . . . , (xm, ym)}. Recall
that prior to learning, we define a prior distribution over predictors P, which is independent
from S. The main difference between the PAC-Bayes approach and more general approaches
is thus that we do not learn a predictor through empirical risk minimization but seek to
estimate an optimal posterior distribution which minimizes a bound. In Section 5 we showed
how this can be reduced to minimizing a data-dependent penalized empirical risk objective.

Furthermore, in the ILE setting, learning a predictor f : X→ Z (or predictor distribution
Q) is equivalent to learning a regressor g : X→ H (or Q). See Figure 1 for an overview. In
Section 5, we present two alternative ways of learning Q over regressors : g : X→ H.

The combination of the ILE and PAC-Bayes settings in materialized in our implemen-
tation. Indeed, two main objects are implemented:

• Regressor encodes data in X to H, akin to g (and to the mean of the posterior
distribution Q). The encoding is learned using one of the three families of algorithms
mentioned above: ILE, Relaxed-PB and MonteCarlo-PB. As expected, in the case
where ILE is employed, Regressor coincides with a Kernel ridge regressor.

• StochasticPredictor is a complete predictor from X to Z, akin to f ∼ Q. It has
a Regressor attribute and uses it to learn (stochastic predictor.regressor.fit

is called) and perform inference. However, inference can be performed in one of two
ways: deterministically from the mean of the posterior distribution Q (this reproduces
the behavior of an ordinary predictor) or stochastically by sampling M predictors
f1, . . . , fm from Q and returning the M corresponding predictions. Similarly, inference
can be performed on regression by sampling g1, . . . , gm from Q.

Remark 25. Given x ∈ X, our stochastic predictor returns f1(x) = d ◦ g1(x), . . . , fM (x) =
d ◦ gM (x) where g1, . . . , gM are sampled iid from Q. It is important to note that it does
not return 1

M

∑
k fk(x) (in the structured setting, this quantity is not defined) nor d ◦(

1
M

∑
k gk(x)

)
.

Remark 26 (Decoding). Recall that given an ILE loss ∆(z, y) = 〈ψ(y), ϕ(y)〉 and a regres-
sor g, the ILE framework defines f by f = d ◦ g where:

d(g(x)) = arg min
z∈Z
〈ψ(z), g(x)〉.

We mentioned in Section 2 that this decoder (or arg min step) can be solved efficiently in
certain cases. See for example Nowak-Vila et al. (2019b); Blondel (2019); Mensch and
Blondel (2018). In our implementation, d is a näıve arg max over all possible labels in Z.
Note however, that d is not used during training.
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Both of these objects are implemented so as to be compatible with the popular scikit-learn
library (Buitinck et al., 2013; Pedregosa et al., 2011), in order to maximize their familiarity.

In our implementations of gradient descent and score-function gradient descent, we make
use of automatic differentiation and safe pseudo-random number generation from the jax

library (Bradbury et al., 2018). This presents several advantages: (i) our code is entirely
written in Python, meaning it can be easily read and extended all the whilst being fast and
memory efficient; (ii) reproduction is easy despite multiple, nested sampling steps that take
place at training and at inference; (iii) although not currently implemented, our code can
be compiled to XLA and run on a GPU.

We use the emotions dataset from scikit-multilearn, a multi-label learning library
for Python (Szymański and Kajdanowicz, 2017). The dataset presents m = 593 examples
(we concatenate the training and test folds for our experiments), dim(X) = 73 and ` = 6
binary labels. We use the linear kernel so F = H.

7.3 Choice of the prior P(α, t)

It is well-known that the choice of prior can help or hinder algorithm performance. In our
case, the prior variance (we consider its mean to be 0), which varies with α and t determines
the behaviors of the bound and derived algorithms.

Bound behavior We examined the variation of the penalty term ε′ in Section 4. Here
we consider the behavior of empirical risk term for the PAC-Bayes predictor associated to
the ILE regressor. In this case, the mean of Q is independent of α and t. However, its
variance σ2 is chosen as a function of α and t. This impacts the bound value. Note that we
cannot compute it explicitly (it depends on intractable quantities such as g∗). In Figure 7,
we illustrate the dependence of the empirical risk part of the risk certificate Ĵ , defined in
Eq. (31), on α and t. Figure 7 helps to illustrate the behavior of the ILE predictor in our
PAC-Bayes setting, and gives an idea of how α and t can impact the bound. Note that we
are not offering this grid search experiment as a method of model selection. Indeed, the prior
is assumed to be data independent and thus cannot be, without additional considerations,
be optimized using bound values or predictor performance on the training set.

Algorithm behavior The choice of prior also impacts the behavior of the algorithms
presented in this work: gradient descent on a relaxed objective or Monte Carlo gradient
descent. Indeed, the relaxed objective presents terms which depend on the posterior vari-
ance. In the Monte Carlo approach, predictors are sampled from the posterior in order to
optimize its mean. The behavior varies when σ is large or small.

Figures 8 and 9 illustrates bound surrogate values (Ĵ is computed for all three algo-
rithms) for different values of t and α. A complementary picture is given by the dependence
of σ and λαm(t) on α and t, see Figures 10 and 11.
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Figure 7: Ĵ as a function of α and t for the ILE algorithm. Ĵ is defined in Eq. (31). The
regularization parameter λ is chosen to minimize Ĵ .
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