
MNRAS 505, 4847–4856 (2021) https://doi.org/10.1093/mnras/stab1513
Advance Access publication 2021 May 29

Benchmarking and scalability of machine-learning methods for
photometric redshift estimation

Ben Henghes ,1‹ Connor Pettitt,2 Jeyan Thiyagalingam,2‹ Tony Hey2 and Ofer Lahav1

1Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
2Scientific Computing Department, Rutherford Appleton Laboratory, Science and Technology Facilities Council (STFC), Harwell Campus, Didcot OX11 0QX,
UK

Accepted 2021 May 14. Received 2021 April 29; in original form 2021 April 5

ABSTRACT
Obtaining accurate photometric redshift (photo-z) estimations is an important aspect of cosmology, remaining a prerequisite of
many analyses. In creating novel methods to produce photo-z estimations, there has been a shift towards using machine-learning
techniques. However, there has not been as much of a focus on how well different machine-learning methods scale or perform
with the ever-increasing amounts of data being produced. Here, we introduce a benchmark designed to analyse the performance
and scalability of different supervised machine-learning methods for photo-z estimation. Making use of the Sloan Digital Sky
Survey (SDSS – DR12) data set, we analysed a variety of the most used machine-learning algorithms. By scaling the number
of galaxies used to train and test the algorithms up to one million, we obtained several metrics demonstrating the algorithms’
performance and scalability for this task. Furthermore, by introducing a new optimization method, time-considered optimization,
we were able to demonstrate how a small concession of error can allow for a great improvement in efficiency. From the algorithms
tested, we found that the Random Forest performed best with a mean squared error, MSE = 0.0042; however, as other algorithms
such as Boosted Decision Trees and k-Nearest Neighbours performed very similarly, we used our benchmarks to demonstrate
how different algorithms could be superior in different scenarios. We believe that benchmarks like this will become essential
with upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), which will capture
billions of galaxies requiring photometric redshifts.

Key words: methods: data analysis – galaxies: distances and redshifts – cosmology: observations.

1 IN T RO D U C T I O N

Calculating distances to cosmological objects remains one of the
most important steps required for probing cosmology. These dis-
tances are given by the distance–redshift relation, and hence one
needs very accurate measures of redshift to be confident in the
inferred distances. Ideally, high-resolution spectra would be obtained
for every object enabling for a precise measurement of the redshift.
However, with current and future surveys such as the Dark Energy
Survey (DES) (DES Collaboration 2005, 2016), Euclid (Amendola
et al. 2018), and the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time (Tyson et al. 2003; Ivezić et al. 2019), even with
large spectroscopic surveys such as the Dark Energy Spectroscopic
Instrument (Flaugher & Bebek 2014; Martini et al. 2018), only tens
of millions of the galaxies will have spectroscopy performed, despite
hundreds of millions of galaxies being observed.

In the absence of real spectroscopic measurements, obtaining
photometric redshifts (photo-z) estimations is the only viable route
available for scientists. There are two major techniques used for
photometric redshift estimation, template flitting (e.g. Benitez 2000),
and machine learning (ML) (e.g. Collister & Lahav 2004). Both

� E-mail: ben.henghes.13@ucl.ac.uk(BH); t.jeyan@stfc.ac.uk(JT)

methods rely on the photometric information produced by the
survey, usually given as magnitudes in different colour bands.
These magnitudes act as approximate measures of the underlying
spectral energy distribution (SED) of the observed object, and by
appropriately reconstructing the SED, a corresponding redshift can
be inferred (Bolzonella, Miralles & Pelló 2000).

Template-fitting methods use a small and fixed set of template
spectra for the estimations and inherently rely on the assumption that
the best-fitting SED template provides the true representation of the
observed SED. There are benefits of template methods, such as, the
ability to incorporate physical information, like dust extinction, into
the model. However, embedding such physical constraints requires
very precise calibration and an accurate model (Benitez 2000).

ML techniques, on the other hand, do not have any explicit model
for capturing the physical information of the objects or of the estima-
tion process. Instead, ML techniques rely on a training data set with
spectroscopic redshifts from observed or simulated (or a combination
of both) data for inferring an estimation model. More specifically,
supervised learning models rely on a guided principle that with
sufficient examples of input–output pairs an estimation model can be
inferred by understanding the latent variables of the process. In other
words, ML methods derive a suitable functional mapping between
the photometric observations and the corresponding redshifts.

C© 2021 The Author(s).
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

http://orcid.org/0000-0002-1448-219X
mailto:ben.henghes.13@ucl.ac.uk
mailto:t.jeyan@stfc.ac.uk
http://creativecommons.org/licenses/by/4.0/

4848 B. Henghes et al.

The learning process relies on a labelled data set consisting
of a set of magnitudes in each wavelength band (the inputs) and
corresponding true values of the spectroscopic redshifts (the output
labels or ground truth). The learning model, such as a Random
Forest or Neural Network, learns the mappings that can be non-
linear. It has been shown that the functional mapping learned through
the supervised learning can for some science goals outperform the
template-based methods (Abdalla et al. 2011).

Although the usage of ML in handling this problem has become
very common (Hoyle 2016; D’Isanto & Polsterer 2018; Pasquet
et al. 2019), and some studies are beginning to investigate the
efficiency of different models (Euclid Collaboration 2020; Schmidt
et al. 2020), there is still no comprehensive study outlining the
benchmarking process and how it changes our overall understanding
of how different ML methods handle the photo-z problem. In fact, this
is a common problem across all domains of sciences, and as such, the
notion of artificial intelligence (AI) benchmarking is an upcoming
challenge for the AI and scientific community. This is particularly
true in light of recent developments in the ML and AI domains,
such as the deep learning revolution (Sejnowski 2018), technological
development on surveys (Dewdney et al. 2009), the ability to generate
or simulate synthetic data (Springel 2005), and finally the progress
in computer architecture space, such as the emergence of GPUs
(Kirk 2007).

The notion of benchmarking (Dongarra, Luszczek & Petitet 2003)
has conventionally been about how a given architecture (or an aspect
of a given architecture) performs for a given problem, such as the
LINPACK challenge (Dongarra et al. 1979). However, in our case, the
focus is broader than just performance. Our motivation here is many-
fold, including understanding how different ML models compare
when estimating the redshifts, how these techniques perform when
the available training data are scaled, and finally how these techniques
scale for inference. Furthermore, one of the key challenges here is the
identification of appropriate metrics or figures of merit for comparing
these models across different cases.

We intend to answer some of these questions in this paper by
introducing this as a representative AI benchmarking problem from
the astronomical community. The benchmarks will include several
baseline reference implementations covering different ML models
and address the challenges outlined above. The rest of this paper is
organized as follows: In Section 2, we describe the data set used and
include discussions on the features selected. In Section 3, we briefly
describe the ML models that were evaluated in the study, followed
by the descriptions of the optimization and benchmarking processes
and the different metrics that are part of our analyses. The results
are then presented in Section 4 along with our observations, and we
conclude the paper in Section 5 with directions for further work.

2 DATA

The data used in our analysis come entirely from the Sloan Digital
Sky Survey (SDSS) (York et al. 2000). Using its dedicated 2.5-m
telescope at Apache Point Observatory (Gunn et al. 2006), SDSS is
one of the largest public surveys with over 200 million photometric
galaxies and three million useful galaxy spectra as of data release 12
(DR12) (Alam et al. 2015).

In this work, we downloaded 1 639 348 of these galaxies with
spectroscopic data available to be used by the ML algorithms. The
spectroscopic redshift was required as it was taken to be the ground
truth for the redshift that the algorithms were trying to predict using
the magnitudes of each galaxy. SDSS took images using five different
optical filters (u, g, r, i, and z), and as a result of these different

wavelength bands, there were five magnitudes for each observed
galaxy (Eisenstein et al. 2011).

The 1.6-million galaxies used in this investigation were from a
cleaned data set where it was a requirement for all five magnitudes to
have been measured. In many cases for observations of galaxies, there
could be a missing value in one of the filters, which would negatively
impact its redshift estimation. By only using galaxies with complete
photometry, we ensured that our comparison of methods was not also
being affected by the kind of galaxies within the different-sized data
sets.

Furthermore, the redshift range of the galaxies used was con-
strained to have only galaxies with a redshift, z < 1. While this
greatly simplified the task of obtaining photo-z estimations and
meant that the specific models tested would not be useful outside of
this range, there are far fewer galaxies with measured spectroscopic
redshifts greater than 1, and we kept within this range to ensure
that the training set would be representative and allow for reliable
estimates to be generated inside of this range. This meant that the
benchmarking performed could be carried out without also having
to take into account the effects that an unclean data set might have
had on the different ML algorithms.

The main features of the data used by ML algorithms were the
five magnitudes that could also be combined to give the four colours
that are simply the difference in magnitudes between neighbouring
wavelength bands (u–g, g–r, r–i, and i–z). There were additional
feature columns contained in the SDSS data that could have been
added such as the subclass of galaxy or the Petrosian radius (Petrosian
1976; Soo et al. 2017). However; adding these additional features
would not have had a large impact on the results and could have
added more issues due to incompleteness if the feature was not
recorded for every galaxy. Instead, it was decided to use only the
information from the five magnitudes as features that we knew to be
complete.

Finally, we also scaled the features by subtracting their mean
and dividing by their standard deviation to give unit variance. This
ensured that the ML algorithms used were not being influenced by the
absolute size of the values, where a difference in a feature’s variance
could result in it being seen as more important than other features.
And by randomly splitting the full data set to form the training and
testing sets, the subsets created kept the same distribution of redshift
and were representative of the overall data frame.

3 ME T H O D O L O G Y

With the data prepared, the first step of the ML process was to split
the entire data set to create a training set, testing set, and validation
set, whereby the test and validation sets were kept unseen by the ML
algorithms until after they had been trained using the training data.
As part of the benchmarking process, the ML algorithms (described
in Section 3.1) were trained and tested on many different sizes of
data sets, and to do this, the data were split randomly for each size
of training and testing set required.

During training, the algorithms were also optimized by changing
the hyperparameters. These are the parameters of the models that
control how the ML algorithms create their mappings from the
features to the redshift. The most complete way of optimizing would
be to perform brute force optimization where every combination
of a defined grid of hyperparameters would be tested. However,
this is far more computationally intensive than random optimization
that instead tests a random subset of the hyperparameter grid and
provides a good estimate of the best hyperparameters. The grids of
hyperparameters tested for each algorithm are given in Table 1 along

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

Benchmarking photo-z methods 4849

Table 1. Grids of hyperparameters that were searched to test and compare each machine learning algorithm, along with
the hyperparameters that were selected by the random optimization. The arrays of hyperparameters were chosen to give
a good overview of different possible configurations of the algorithms, and by changing the parameters that had the
greatest impact on the algorithms, we ensured finding a good representation of the ‘best’ performing algorithms.

Classifier Hyperparameter Array of values searched Selected value

LR ‘fit intercept’ [True, False] True
‘normalize’ [True, False] True

kNN ‘no. neighbors’ [1, 200] 21
‘weights’ [‘uniform’, ‘distance’] ‘distance’
‘leaf size’ [10, 100] 27

‘p’ [1, 4] 2

DT ‘max. features’ [1, 5, ‘auto’] ‘auto’
‘min. samples split’ [2, 100] 38
‘min. samples leaf’ [1, 100] 64

‘min. weight fraction leaf’ [0, 0.4] 0
‘criterion’ [‘mse’, ‘mae’] mse

BDT ‘no. estimators’ [1, 200] 88
‘loss’ [‘ls’, ‘lad’, ‘huber’, ‘quantile’] ‘lad’

‘max. features’ [1, 5] 4
‘max. depth’ [1, 20] 17

‘min. samples split’ [2, 100] 46
‘min weight fraction leaf’ [0, 0.4] 0

RF ‘no. estimators’ [1, 200] 94
‘max. features’ [1, 5] 4

‘min. samples leaf’ [1, 100] 8
‘min. samples split’ [2, 100] 13

‘min weight fraction leaf’ [0, 0.4] 0
‘criterion’ [‘mse’, ‘mae’] mae

ERT ‘no. estimators’ [1, 200] 147
‘max. features’ [1, 5] 4

‘min. samples leaf’ [1, 100] 3
‘min. samples split’ [2, 100] 87

‘min weight fraction leaf’ [0, 0.4] 0
‘criterion’ [‘mse’, ‘mae’] mse

MLP ‘hidden layer sizes’ [(100, 100, 100), (100, 100), 100] (100, 100, 100)
‘activation’ [‘tanh’, ‘relu’] ‘tanh’

‘solver’ [‘sgd’, ‘adam’] ‘adam’
‘alpha’ [0.00001, 0.0001, 0.001, 0.01] 0.01

‘tol’ [0.00001, 0.0001, 0.001, 0.01] 0.00001
‘learning rate’ [‘constant’,‘adaptive’] ‘constant’

with the selected parameters.
To be able to optimize the algorithms, the decision first had to be

made of which metric would be optimized for. There are three main
metrics used for regression problems such as this: mean squared error
(MSE), mean absolute error (MAE), and R-squared score (R2). The
formulae for calculating each of these metrics are given below where
for the i-th sample within a total of n samples, ẑi is the predicted
value, and zi is the true value.

MSE(z, ẑ) = 1

nsamples

nsamples−1∑
i=0

(zi − ẑi)
2 (1)

MAE(z, ẑ) = 1

nsamples

nsamples−1∑
i=0

|zi − ẑi | (2)

R2(z, ẑ) = 1 −
∑n

i=1(zi − ẑi)2∑n

i=1(zi − z̄)2
. (3)

There are three additional metrics defined below that are com-
monly used to determine the performance of photometric redshift
estimations: bias (the average separation between prediction and

true value), precision [also 1.48 × median absolute deviation, which
gives the expected scatter as given by Ilbert et al. (2006)], and outlier
fraction (the fraction of predictions where the error is greater than a
set threshold, here chosen to be >0.10). Each of these metrics was
also calculated and the results are given in Table 2.

Bias = <zpred − zspec> (4)

Precision = 1.48 × median

(|zpred − zspec|
1 + zspec

)
(5)

Outlier fraction = N (�z) > 0.10

Ntotal
. (6)

As well as deciding which metric to optimize for, we introduced
an extra stage included in the optimization that allowed for a time-
considered optimization (see Section 3.2). We optimized the ML
algorithms for MSE (aiming to minimize the MSE) and used a
random optimization with 1000 iterations to ensure a good estimate
of the best hyperparameters for each algorithm. Furthermore, we
used a threefold cross validation (Breiman & Spector 1992) to ensure

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

4850 B. Henghes et al.

Ta
bl

e
2.

R
es

ul
ts

of
te

st
in

g
th

e
se

ve
n

m
ac

hi
ne

-l
ea

rn
in

g
al

go
ri

th
m

s
de

sc
ri

be
d

in
Se

ct
io

n
3.

1.
E

ac
h

al
go

ri
th

m
w

as
tr

ai
ne

d
us

in
g

10
00

0
ga

la
xi

es
an

d
te

st
ed

us
in

g
fiv

ef
ol

d
cr

os
s

va
lid

at
io

n
to

ob
ta

in
th

e
qu

ot
ed

st
an

da
rd

de
vi

at
io

n.

L
in

ea
r

k-
N

ea
re

st
D

ec
is

io
n

B
oo

st
ed

R
an

do
m

E
xt

re
m

el
y

M
ul

til
ay

er
re

gr
es

si
on

ne
ig

hb
ou

rs
tr

ee
de

ci
si

on
tr

ee
fo

re
st

ra
nd

om
iz

ed
pe

rc
ep

tr
on

(L
R

)
(k

N
N

)
(D

T
)

(B
D

T
)

(R
F)

tr
ee

s
(E

R
T

)
(M

L
P)

M
SE

0.
00

57
14

±
0.

00
05

77
0.

00
44

38
±

0.
00

04
17

0.
00

46
31

±
0.

00
04

07
0.

00
42

77
±

0.
00

03
94

0.
00

42
21

±
0.

00
04

23
0.

00
43

27
±

0.
00

04
19

0.
00

47
01

±
0.

00
04

99
M

A
E

0.
05

09
31

±
0.

00
16

79
0.

04
08

81
±

0.
00

16
26

0.
04

18
27

±
0.

00
14

52
0.

03
87

57
±

0.
00

15
14

0.
03

85
04

±
0.

00
14

84
0.

04
04

59
±

0.
00

15
37

0.
05

12
60

±
0.

00
88

74
R

2
0.

86
51

98
±

0.
00

90
09

0.
89

52
08

±
0.

00
72

15
0.

89
06

77
±

0.
00

64
15

0.
89

90
17

±
0.

00
68

22
0.

90
03

66
±

0.
00

73
73

0.
89

78
61

±
0.

00
71

98
0.

87
15

07
±

0.
01

43
29

B
ia

s
0.

03
97

42
±

0.
00

09
20

0.
03

11
09

±
0.

00
09

77
0.

03
20

30
±

0.
00

08
95

0.
02

94
28

±
0.

00
08

93
0.

02
93

34
±

0.
00

08
54

0.
03

09
27

±
0.

00
09

47
0.

03
45

77
±

0.
00

22
09

Pr
ec

is
io

n
0.

04
34

21
±

0.
00

05
78

0.
03

18
36

±
0.

00
08

45
0.

03
28

95
±

0.
00

11
37

0.
02

89
86

±
0.

00
02

64
0.

02
92

79
±

0.
00

07
66

0.
03

19
45

±
0.

00
06

09
0.

04
08

37
±

0.
00

33
10

O
ut

lie
r

Fr
ac

tio
n

0.
06

05
00

±
0.

00
51

87
0.

03
48

00
±

0.
00

70
33

0.
03

34
00

±
0.

00
74

39
0.

02
93

00
±

0.
00

51
83

0.
02

97
00

±
0.

00
43

89
0.

03
34

00
±

0.
00

63
04

0.
03

76
00

±
0.

00
27

09 that the algorithms were not overfitting (which could mean that the
algorithms were able to perform well for the training data used but
then failed to generalize), and that the results would be valid for any
given data set. Once optimized, each algorithm was then retrained
and tested to give the final results given in Section 4, along with
the benchmarking results, where the benchmarking process used is
described in Section 3.3.

3.1 Descriptions of machine-learning algorithms tested

The following algorithms were selected for testing as they are some
of the most widely used ML algorithms and all available through
the PYTHON package Scikit–Learn (Pedregosa et al. 2011). While
a simple neural network (Multilayer Perceptron) was included, we
did not include any other examples of deep learning. This decision
was made as deep learning algorithms perform best with many
features (often thousands), and there is only so much information
that the photometry could provide with the five magnitude features.
Furthermore, it has been shown by Hoyle (2016) that ‘traditional’
algorithms can perform equally well as deep learning methods, and
that it might be beneficial to use more computationally expensive
deep learning models only when directly using images as the training
data (Pasquet et al. 2019).

3.1.1 Linear regression

Linear regression, or ordinary least squares regression, fits a linear
model to the data with coefficients that act to minimize the sum of the
squared residuals between the observations and the predictions from
the linear approximation. The linear model requires independent
features, as features that are correlated will give estimates that are
very sensitive to random errors in the observations, resulting in a
large variance (Hastie, Tibshirani & Friedman 2009).

3.1.2 k-Nearest Neighbours

k-Nearest Neighbours uses a predefined number of data points in the
training sample, k, which are closest in Euclidean distance to the
new point whose value is then predicted based off those. This is an
example of an instance-based algorithm, where there is no general
model used to make predictions but which stores the training data.
Although one of the simplest methods, being non-parametric can
make it very successful especially in cases with an irregular decision
boundary. Increasing the value of k acts to reduce the effects of noise;
however, it also makes the decision boundary less distinct and could
result in overfitting (Altman 1992).

3.1.3 Decision Trees

Decision Trees (Breiman et al. 1983) are non-parametric algorithms
whereby the data features are used to learn simple decision rules.
The decision rules are basic if-then-else statements and are used to
split the data into branches. The tree is then trained by recursively
selecting the best feature split, which is taken to be the split that
gives the highest information gain, or greatest discrepancy between
the two classes. Typically, Decision Trees can produce results with a
high accuracy; however, they are bad at generalizing the data as they
are often complex and overfitted. Instead, they can be combined in
an ensemble such as Boosted Decision Trees, Random Forests, or
Extremely Randomized Trees.

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

Benchmarking photo-z methods 4851

3.1.4 Boosted Decision Trees

Boosted Decision Trees were the first ensemble method we consid-
ered. The process of boosting can be described whereby the ML
algorithm is repeatedly fitted to the same data set, but each time the
weights of objects with higher errors are increased. This aims to result
in an algorithm that can better handle the less common cases than
a standard decision tree. The boosting can be generalized by using
an arbitrary differentiable loss function, which is then optimized
(Friedman 2002), and we found that for this problem, using the least
absolute deviation loss function produced the best results.

3.1.5 Random Forests

Random Forests also take many decision trees to build an ensemble
method, averaging the predictions of the individual trees to result in
a model with lower variance than in the case of a single decision
tree. This is done by adding two elements of randomness, the first of
which is using a random subset of the training data that is sampled
with replacement (Breiman 1996). Secondly, the feature splits are
found from a random subset of the features rather than using the split
that results in the greatest information gain. This randomness can
yield decision trees with higher errors; however, by averaging the
predictions, the errors cancel out and the variance reduction yields a
greatly improved model as well as removing the typical overfitting
that occurs with single decision trees (Breiman 2001).

3.1.6 Extremely Randomized Trees

Extremely Randomized Trees (Geurts, Ernst & Wehenkel 2006) is
an algorithm very similar to Random Forests but with an additional
step to increase randomness. The feature splits are not only found
from a random subset of the features. It also uses thresholds that are
picked at random for each feature before the best of these random
thresholds are then used for the decision rules, instead of simply
using the thresholds that result in the greatest information gain. This
acts to further reduce the variance compared to a Random Forest;
however, it also results in a slightly greater bias.

3.1.7 Multilayer Perceptron

The Multilayer Perceptron is an example of a fully connected neural
network with at least three layers of nodes. It consists of the input
node, output node, and a minimum of one hidden layer, although
more can be added, which makes the MLP the most simple instance
of deep learning. In the way that the perceptron learns how to map
the input node to the target vector, it is similar to logistic regression;
however, it differs with the addition of one or more non-linear hidden
layers that allow it to approximate any continuous function (Werbos
1988; LeCun et al. 2012).

3.2 Time-considered optimization

In the normal process of optimizing ML algorithms, a single metric is
chosen to minimize. If brute force optimization is used, this produces
an algorithm configured with the hyperparameters from the defined
grid that gives the best result for the metric (e.g. the lowest MSE).
Although this algorithm by definition would have the best result, it
does not necessarily result in the most useful or suitable algorithm.
The hyperparameters selected to minimize the error likely also act
to increase the computational time required both in training and
inference, resulting in a much slower model.

Rather than minimizing a single metric, in time-considered op-
timization, we also consider the time taken by the models both in
training and inference. By setting an error tolerance, we allow for
the model selection to suggest an alternative to the ‘best’ model (the
model that minimizes the error metric), instead providing a model
that will have a higher error, while kept below the tolerance, but
in return will also have faster training and inference times. This
was done by optimizing for a combination of MSE and time, taking
the model that ran the fastest and that had an error below the set
tolerance level. In certain cases, such as training the Decision Tree, it
was possible to achieve a two magnitude increase in efficiency while
increasing the error by <10 per cent.

For the purpose of benchmarking the ML algorithms in this
paper, we set the error tolerance to machine precision (which is
usually 10−16) resulting in the ‘best’ model in terms of error. This
decision was made as these optimized algorithms would result in the
algorithms most commonly used in other ML studies where time-
considered optimization has not been implemented.

3.3 Benchmarking

The benchmarking performed was achieved by recording the system
state (described by the time, CPU usage, memory usage, and disk
I/O) throughout the process of running the ML algorithms. This
allowed us to compare the efficiency of both training and predicting
performance of the ML models and when combined with the
regression errors obtained, allowed for a complete description of
the performance of the different methods.

Our main focus of the benchmark was to investigate how training
and testing times varied with different sizes of data frames, and
how the final redshift estimations would be affected. As such, we
incrementally changed both the training and testing data sets and
recorded the times taken, which allowed us to produce the plots
shown in Figs 1–5.

4 R ESULTS

The results given in Table 2 show how the seven ML algorithms
performed at producing photometric redshift estimations. Further-
more, Fig. 6 displays the true spectroscopic redshifts plotted against
the photometric redshift estimates for each ML algorithm. We also
plotted the distributions of the redshift estimations for each of the
algorithms as well as the true spectroscopic redshift in a violin plot
in Fig. 7 to quickly see which algorithms were able to capture the
correct distribution.

From these results, we saw that all algorithms were able to
successfully provide photometric redshift estimations. Using the
violin plots from Fig. 7, we could see that the rough distribution
was recovered by each algorithm, with the Multilayer Perceptron
(MLP) producing a slightly more similar shape to the true redshifts.
However, from simply looking at the outputs shown in Figs 6 and
7, it would be very difficult to determine which algorithm would be
best to use. While the Decision Tree (DT) might be excluded due to
the estimates being put into bands at set redshifts, its errors were still
found to be quite low and it outperformed both the Linear Regression
(LR) and MLP algorithms.

Looking at the metrics in Table 2 alone, the Random Forest
(RF) performed best having the lowest errors with an MAE =
0.0385 and MSE = 0.0042; however, the other algorithms k-Nearest
Neighbours (kNN), Boosted Decision Tree (BDT), and Extremely
Randomized Trees (ERT) all performed incredibly similarly with
MAE < 0.042 and MSE < 0.0046. Indeed, the BDT was almost

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

4852 B. Henghes et al.

Figure 1. Graph of the training time plotted against the number of galaxies
used in the training set to show how each algorithm scales with different sizes
of training data sets. We saw that the simpler LR, kNN, and DT algorithms all
begin as the fastest to train; however, the DT had terrible scaling and for large
training sets became one of the slowest algorithms. Conversely, the ERT and
MLP algorithms began as two of the slowest algorithms to train but scaled
much better than the rest and could be more useful for massive training data
sets.

Figure 2. Graph of the inference time plotted against the number of galaxies
used in the training set to show how each algorithm scaled with different sizes
of training data sets (and a constant test set of 327 870 galaxies). We saw that
all algorithms other than LR and MLP exhibit a training bloat, whereby the
inference time increased with the number of galaxies included in the training
set; however, the algorithms inference times generally increased by only a
factor of 10 despite the training data set increasing by a factor of 104.

Figure 3. Graphs of the inference time plotted against the number of galaxies
used in the testing set to show how each algorithm will scale with different
sizes of testing data sets (and a constant training set of 983 608 galaxies).
In inference, we saw all algorithms scaling very similarly with the main
difference being the RF and the ERT where, during the period between 102

and 105 galaxies used in the test set, the inference time did not increase despite
the number of galaxies to provide an estimate for increasing by a factor of
103. This meant that both algorithms ended up being faster to provide redshift
estimations for larger test sets.

Figure 4. Graphs of the mean-squared error (MSE) plotted against the
number of galaxies used in the training set to show how each algorithm’s
performance will scale with different sizes of training data sets (and a
constant test set of 327 870 galaxies). As expected, in general, we saw all
algorithms (other than LR) achieving lower MSE as the number of galaxies
included in the training set was increased. However, we saw this increased
error performance quickly plateau, and past 104 galaxies in the training set,
there was very little reduction in error.

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

Benchmarking photo-z methods 4853

Figure 5. Graphs of the mean-squared error (MSE) plotted against the
training times for each algorithm tested. For the ideal algorithm, one would
see a curve down to the bottom left corner, thereby achieving the best possible
result for the error in the shortest amount of time. In general, the algorithms
do improve their errors as the training time (and number of galaxies included
in the training set) increased; however, as shown, the improvement and the
time taken vary greatly for each algorithm. The RF achieved the lowest error
but with the longest training time, whereas the ERT can be seen to reach a
very similar error much faster.

identically performing to the RF with a slightly improved preci-
sion and outlier fraction, and with such close performances of all
the other algorithms, it was impossible to sufficiently determine
which algorithm would be the most useful. To be able to further
differentiate between them and determine which would be the best
algorithm to use, it was therefore necessary to use the benchmarking
results.

The results of the benchmarking performed for each algorithm are
plotted in Fig. 1 (that shows the speed of training with varying sizes
of training data sets), Figs 2 and 3 (that show the inference speeds
with varying sizes of either training or testing data sets), Fig. 4
(that shows how the MSE varies as the number of galaxies in the
training set increases), and Fig. 5 (that shows how the MSE varies
with the time taken during training). As shown by these figures, the
fastest algorithm overall was LR, which remained the fastest both in
training and inference with increasing sizes of training and testing
data sets. This was perhaps not surprising as out of the algorithms
tested, it was the most simple model and as such required less
computational resources both to train the model and to make its
predictions. However, as LR also had by far the worst errors out
of the algorithms tested (with errors around 30 per cent higher than
those of the better performing algorithms), it seemed unlikely that it
would ever be implemented for the problem of photometric redshift
estimation.

Out of the other algorithms, the DT and the MLP were the poorer
performing in terms of error. The DT was the second fastest behind
LR in terms of inference, using its simple decision rules to quickly
obtain the redshift estimations; however, as it also resulted in only
estimating certain redshift bands, the final estimates were not as
useful as other algorithms. Furthermore, the DT was the worst scaling

algorithm for training and became the second slowest algorithm to
train on a million galaxies. The MLP was also one of the slowest
algorithms tested, starting as the slowest to train with small training
sets and also being one of the slowest in inference. Although it is the
simplest example of deep learning, it suffered from being one of the
more complex algorithms tested and would perform better on even
larger data sets with far more features, where it would have more
chance to catch up to the other algorithms in both speed and error
performance.

The remaining kNN, BDT, RF, and ERT algorithms all performed
well in terms of error and were the hardest to differentiate between;
however, using the benchmarking results, it was possible to see
how differently they scaled. kNN was the simplest of the four
better performing algorithms and, using the nearest neighbours to
produce its estimates, resulted in the second fastest training times,
only being beaten by LR. Although kNN was very fast to train, it
was the slowest in inference and exhibited a bad ‘training bloat’
whereby the inference time increased as the number of galaxies in
the training set was increased. While most other algorithms also
displayed some level of this training bloat, it was worst for kNN due
to the nature of its nearest neighbour search, which became more
and more computationally expensive as more training points were
added, and as such, it would not be as useful an algorithm for giving
estimates for incredibly large data sets.

Out of the three ensemble tree-based methods, the RF scaled the
worst in terms of training, becoming the slowest algorithm to train
on the one million galaxies. Whereas, the ERT scaled surprisingly
well and became the third fastest algorithm in training and similar to
kNN. In training, the BDT was quite fast, scaling much better than
the RF but worse than the ERT; however, when it came to inference,
the BDT scaled worse than both the ERT and the RF and was the
second slowest algorithm for large data sets. The RF and the ERT
scaled almost identically in inference, which made sense being such
similar algorithms, both only being beaten by the much simpler LR
and DT.

As a result, it seemed like there was no clear best performing
algorithm, but rather each algorithm could be useful in different
situations. While the RF had the best error metrics, its terrible
scaling with increasing training data meant that it would only be
the best algorithm for problems where it could be trained once
and it would be inefficient to use for problems that required the
algorithm to be regularly retrained on large amounts of data. In that
case, the BDT that had similar errors but was faster to train could
be a more useful alternative, and similarly if both the training and
inference times were required to be lower, the ERT would be a good
compromise.

5 C O N C L U S I O N S

Producing reliable photometric redshift estimations will continue
to be an incredibly important area of cosmology, and with future
surveys producing more data than ever before, it will be vital to
ensure that the methods chosen to produce the redshifts can be run
efficiently.

Here, we showed how benchmarking can be used to provide a more
complete view of how various ML algorithms’ performances scale
with differing sizes of training and testing data sets. By combining
the benchmarking results with the regression metrics, we were able
to demonstrate how it is possible to distinguish between algorithms
that appear to perform almost identically and suggest which could
be better to implement in different scenarios. Furthermore, by
suggesting a novel time-considered optimization process that takes

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

4854 B. Henghes et al.

Figure 6. Graphs of photometric redshift estimates against the true spectroscopic redshift where the lighter shaded contours display the more densely populated
regions. From top left to bottom right – Linear Regression (LR), k-Nearest Neighbours (kNN), Multilayer Perceptron (MLP), Decision Tree (DT), Boosted
Decision Tree (BDT), Random Forest (RF), and Extremely Randomized Trees (ERT).

into account the benchmarking results during model selection, it was
possible to provide additional insight into how ML algorithms can
be fine-tuned to provide more appropriate models.

From our tests, we determined that while the kNN, BDT, RF,
and ERT methods all seemed to perform very similarly, obtaining a
good result for the MSE <0.0046, it was the RF that achieved the
best metrics and was also one of the faster algorithms in inference.
However, depending on which area of the pipeline an experiment
requires to be faster, the RF method could also be inefficient as
it scaled worse than all other algorithms in training. Hence, for
problems that require regular retraining of models on large data
sets, one of the other algorithms such as the BDT or the ERT could
allow for a greater improvement. As large sky surveys producing

enormous data sets will require the most efficient methods possible,
it could also be necessary to investigate the use of deep learning
neural networks that could benefit the most when using even larger
amounts of data with more features.

Further work could be done to include a wider range of ML
algorithms, including more deep learning networks, and to test them
on larger simulated data sets to confirm their scaling. By making
use of the time-considered optimization, it would also be possible
to further examine the trade-offs between minimizing errors and the
training/inference times in each individual algorithm. We could also
run the benchmarks on a variety of computer architectures, making
use of GPUs that have the potential to speed up the algorithms
that are most parallizable, as well as allowing us to examine the

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

Benchmarking photo-z methods 4855

Figure 7. Violin plots showing the kernel density estimation of the underlying distributions of photometric redshift estimates of each algorithm along with the
true spectroscopic redshift. From left to right – True spectroscopic redshift (zspec), Linear Regression (LR), k-Nearest Neighbours (kNN), Decision Tree (DT),
Boosted Decision Tree (BDT), Random Forest (RF), Extremely Randomized Trees (ERT), and Multilayer Perceptron (MLP).

environmental impact of running such computationally expensive
tasks.

AC K N OW L E D G E M E N T S

BH was supported by the Science and Technology Facilities Coun-
cil (STFC) UCL Centre for Doctoral Training in Data Intensive
Science (grant no. ST/P006736/1). OL thanks All Souls College,
Oxford, for a visiting fellowship. The authors also acknowledge
the support from following grants: OL’s European Research Council
Advanced Grant (TESTDE FP7/291329), STFC Consolidated Grants
(ST/M001334/1 and ST/R000476/1), JT’s UKRI Strategic Priorities
Fund (EP/T001569/1), particularly the AI for Science theme in
that grant and the Alan Turing Institute, Benchmarking for AI for
Science at Exascale (BASE), and EPSRC ExCALIBUR Phase I Grant
(EP/V001310/1).

Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science.
The SDSS-III website is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium
for the Participating Institutions of the SDSS-III Collaboration in-
cluding the University of Arizona, the Brazilian Participation Group,
Brookhaven National Laboratory, Carnegie Mellon University, Uni-
versity of Florida, the French Participation Group, the German
Participation Group, Harvard University, the Instituto de Astrofisica
de Canarias, the Michigan State/Notre Dame/JINA Participation
Group, Johns Hopkins University, Lawrence Berkeley National
Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University,
New York University, Ohio State University, Pennsylvania State
University, University of Portsmouth, Princeton University, the
Spanish Participation Group, University of Tokyo, University of

Utah, Vanderbilt University, University of Virginia, University of
Washington, and 〈0:funding-source 3:href="http://dx.doi.org/10.13
039/100005326"〉Yale University〈/0:funding-source〉.

DATA AVAI LABI LI TY

The data used in this paper came entirely from the Sloan Digital Sky
Survey data release 12 (SDSS-DR12) and are openly available from:
https://www.sdss.org/dr12/.

REFERENCES

Abdalla F. B., Banerji M., Lahav O., Rashkov V., 2011, MNRAS, 417,
1891

Alam S. et al., 2015, ApJS, 219, 12
Altman N. S., 1992, Am. Stat., 46, 175
Amendola L. et al., 2018, Living Rev. Relativ., 21, 2
Benitez N., 2000, ApJ, 536, 571
Bolzonella M., Miralles J.-M., Pelló R., 2000, A&A, 363, 476
Breiman L., 1996, Mach. Learn., 24, 123
Breiman L., 2001, Mach. Learn., 45, 5
Breiman L., Spector P., 1992, International statistical review/revue interna-

tionale de Statistique. p. 291
Breiman L., Friedman J., Olshen R., Stone C. J., 1984, in Classification and

Regression Trees Routledge Boca Raton, FL, USA
Collister A. A., Lahav O., 2004, PASP, 116, 345
D’Isanto A., Polsterer K. L., 2018, A&A, 609, A111
DES Collaboration, 2005, Int. J. Mod. Phys. A, 20, 3121
DES Collaboration, 2016, MNRAS, 460, 1270
Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L., 2009, Proc. IEEE,

97, 1482
Dongarra J. J., Moler C. B., Bunch J. R., Stewart G. W., 1979, LINPACK

users’ guide. SIAM. Philadelphia, USA
Dongarra J. J., Luszczek P., Petitet A., 2003, Concurrency Comput. Pract.

Exp., 15, 803

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

http://www.sdss3.org/
https://www.sdss.org/dr12/
http://dx.doi.org/10.1111/j.1365-2966.2011.19375.x
http://dx.doi.org/10.1088/0067-0049/219/1/12
http://dx.doi.org/10.2307/2685209
http://dx.doi.org/10.1007/s41114-017-0010-3
http://dx.doi.org/10.1086/308947
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1086/383254
http://dx.doi.org/10.1051/0004-6361/201731326
http://dx.doi.org/10.1142/S0217751X05025917
http://dx.doi.org/10.1093/mnras/stw641
http://dx.doi.org/10.1109/JPROC.2009.2021005
http://dx.doi.org/10.1002/cpe.728

4856 B. Henghes et al.

Eisenstein D. J. et al., 2011, AJ, 142, 72
Euclid Collaboration 2020, A&A, 644, A31
Flaugher B., Bebek C., 2014, in Ground-based and Airborne Instrumentation

for Astronomy V, The Dark Energy Spectroscopic Instrument (DESI).
SPIE. Bellingham, WA, USA, p. 91470S

Friedman J. H., 2002, Comput. Stat. Data Anal., 38, 367
Geurts P., Ernst D., Wehenkel L., 2006, Mach. Learn., 63, 3
Gunn J. E. et al., 2006, AJ, 131, 2332
Hastie T., Tibshirani R., Friedman J., 2009, in The elements of statistical

learning. Springer, New York, NY, USA. p. 43
Hoyle B., 2016, Astron. Comput., 16, 34
Ilbert O. et al., 2006, A&A, 457, 841
Ivezić Ž. et al., 2019, ApJ, 873
Kirk D., 2007, in Proceedings of the 6th International Symposium on Memory

Management. ISMM ’07. Association for Computing Machinery, New
York, NY, USA, p. 103

LeCun Y. A., Bottou L., Orr G. B., Müller K.-R., 2012, Efficient BackProp.
Springer Berlin Heidelberg, Berlin, Heidelberg, p. 9

Martini P. et al., 2018, in Ground-based and Airborne Instrumentation for
Astronomy VII. SPIE, Bellingham, WA, USA, p. 410

Pasquet J., Bertin E., Treyer M., Arnouts S., Fouchez D., 2019, A&A, 621,
A26

Pedregosa F. et al., 2011, J. Mach. Learn. Res., 12, 2825
Petrosian V., 1976, ApJ, 209, L1
Schmidt S. J. et al., 2020, MNRAS, 499, 1587
Sejnowski T. J., 2018, The deep learning revolution. Mit Press Cambridge,

MA, USA
Soo J. Y. H. et al., 2017, MNRAS, 475, 3613
Springel V., 2005, MNRAS, 364, 1105
Tyson J., Wittman D., Hennawi J., Spergelb D., 2003, Nucl. Phys. B Proc.

Suppl., 124, 21
Werbos P. J., 1988, Neural Netw., 1, 339
York D. G. et al., 2000, AJ, 120, 1579

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 505, 4847–4856 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4847/6288434 by U
niversity C

ollege London user on 23 N
ovem

ber 2022

http://dx.doi.org/10.1088/0004-6256/142/3/72
http://dx.doi.org/10.1051/0004-6361/202039403
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1086/500975
http://dx.doi.org/10.1016/j.ascom.2016.03.006
http://dx.doi.org/10.1051/0004-6361:20065138
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1051/0004-6361/201833617
http://dx.doi.org/10.5555/1953048.2078195
http://dx.doi.org/10.1086/182301
http://dx.doi.org/10.1093/mnras/staa2799
http://dx.doi.org/10.1093/mnras/stx3201
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1016/S0920-5632(03)02073-5
http://dx.doi.org/https://doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.1086/301513

