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Abstract  6 

Accurate determination of the pathogenicity of missense genetic variants of uncertain 7 

significance is a huge challenge for implementing genetic data in clinical practice. In silico 8 

predictive tools are used to score variants’ pathogenicity. However, their value in clinical 9 

settings is often unclear since they have usually not been validated against robust functional 10 

assays. We compare nine widely used in silico predictive tools including more recently 11 

developed tools (EVE and REVEL) with detailed cell-based electrophysiology for 126 CLCN1 12 

variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We 13 

found poor accuracy for most tools. The highest accuracy was with Mutation Taster (84.58%) 14 

and REVEL (82.54%). However, both scores have poor specificity. EVE has better specificity. 15 

Combined methods based on concordance, improved performance overall but still lacked 16 

specificity. Our calculated statistics for the predictive tools are different to reported values for 17 

other genes in the literature suggesting that utility of the tools varies between genes. Overall, 18 

current predictive tools for this chloride channel are not reliable for clinical use and tools with 19 

better specificity are urgently required. Improving the accuracy of predictive tools is a wider 20 

issue and a huge challenge for effective clinical implementation of genetic data. 21 
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 16 

Introduction 17 

The advent of next generation sequencing and whole genome sequencing is generating 18 

unprecedented volumes of genetic data. Accurate interpretation of novel variants of uncertain 19 

significance in the clinical context is arguably one of the biggest challenges in genomic 20 

medicine. Accurate classification is paramount.  Falsely rejecting pathogenic variants leads to 21 

unnecessary ongoing search for the underlying genetic cause and a missed diagnosis. While 22 

attributing pathogenicity incorrectly has significant consequence for patients and their family. 23 

Several in silico predictive algorithms have been developed to assist in determining 24 

pathogenicity of missense single-nucleotide variants and are routinely used. However, their 25 

efficacy and reliability in specific genes requires assessment.  26 
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 1 

The prediction tools considered in the variant scoring framework from the American College of 2 

Medical Genetics (ACMG) include PolyPhen-2, SIFT, Align-GVGD and MutationTaster2
1
. 3 

These tools consider the nature of the substituting amino acid and the conservation of the 4 

substituted amino acid residue. More recently, metapredictors such as REVEL have been 5 

developed, that predict pathogenicity based on a combination of individual tools
2
.  In 2021, EVE, 6 

a predictive model developed with deep generative models based on evolutionary data was 7 

released
3
. The Association for Clinical Genomic Science (ACGS) and diagnostic laboratory 8 

guidelines consider concordance of tools, in building support for pathogenicity of novel 9 

variants
4,5

.  10 

 11 

While studies comparing efficacy of these tool in specialities such cancer, audiology and 12 

cardiology have been performed, few studies have been conducted in neurology
1,6

. Moreover, 13 

several previously performed studies compare in silico predictive algorithms to databases such as 14 

ClinVar, which introduces concerns regarding circular comparisons - ClinVar variant 15 

characterisations already take in silico predictions into consideration
7,8

. To our knowledge, aside 16 

from validation performed by the authors of EVE, there have been no other comparison to EVE 17 

scores.  18 

 19 

Ion channels provide an attractive model system for comparison of predicted and recorded 20 

measures of pathogenicity as electrophysiological data assessing function of channel variants is 21 

often readily available. In particular, as part of the diagnostic platform for myotonia we routinely 22 

characterize the function of CLCN1 variants identified in patients with myotonia. CLCN1 23 
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encodes skeletal muscle chloride voltage gated channel 1 (CLC-1) that regulates electrical 1 

excitability of the muscle
9
. Variants that lead to reduction in chloride conductance increase 2 

muscle membrane excitability causing myotonia
10

. Myotonia can be caused by several 3 

conditions, of which myotonia congenita is the most common form of non-dystrophic myotonia. 4 

Myotonia congenita can be inherited in an autosomal dominant or autosomal recessive manner. 5 

We compare in silico predictive tools to the pathogenicity as determined by functional in vivo 6 

classification of variants in CLCN1.   7 

 8 

Materials and methods  9 

Our dataset includes 126 CLC-1 missense variants functionally characterised as a part of the 10 

diagnostic platform of skeletal muscle channelopathies. Assessment of pathogenicity for several 11 

of these variants was recently reported
11

.  12 

In silico prediction  13 

Alamut Visual 2.15 -64bit (SOPHiA GENETICS, Lausanne, Switzerland) was utilised to 14 

determine pathogenicity scores and classifications with the tools PolyPhen-2, Align-GVGD (a-15 

GVGD), SIFT and Mutation Taster
1,12–16

. GnomAD frequencies and Grantham distance were 16 

also extracted. Ensembl was utilised to determine pathogenicity scores and classifications for 17 

REVEL, MetaLR, CADD and Mutation Assessor
17–22

. EVE scores were taken from the EVE 18 

platform
3
.  19 

 20 
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Functional determination  1 

Methods for generation of channel variants, expression of channel variants in Xenopus oocytes, 2 

electrophysiological analysis using two-electrode voltage-clamp and criteria for determination of 3 

pathogenicity was recently described in Suetterlin et al
11

. Briefly, if the voltage of half-maximal 4 

activation was positive to cut-off value of -18.6 mV or if the channel variant did express no or 5 

only minimal ClC-1 currents the variant was considered pathogenic (Figure 1A). Variants with 6 

other loss-of-function features as reported in Suetterlin et al. were also considered pathogenic.   7 

 8 

Statistical analyses were performed using Excel version 16.65 and IBM SPSS version 26 and 9 

expressed as specificity, sensitivity, positive predicative value, negative predictive value, 10 

accuracy and receiver operating characteristics (ROC) curve. The following equations were used:  11 

Sensitivity = True positive (TP)/(TP + False negative (FN)) 12 

Specificity = True negative (TN)/(TN + False positive (FP)) 13 

Positive predictive value (PPV) = TP/(TP + FP) 14 

Negative predictive value (NPV) = TN/ (TN + FN)  15 

Accuracy = (TP + TN)/(TP + TN + FP + FN) 16 

 17 

Data availability  18 

The data that support the findings of this study are available from the corresponding author, upon 19 

reasonable request. 20 

 21 

 22 

 23 
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Results  1 

Of a total of 126 CLCN1 variants, based on in vivo functional characterisation, 91 were 2 

pathogenic and 35 were benign (Figure 1B). The variants were considered pathogenic if the half-3 

maximal voltage dependence of activation was positive to -18.6 mV and the peak tail-current 4 

amplitude at -100 mV was smaller than -2.5 µA.  For the variants with reduced current amplitude 5 

most of the cells did not show any currents
11

. In addition, variants with other loss-of-function 6 

features that could not be characterised in terms of voltage of half maximal activation or current 7 

amplitude were also considered pathogenic
11

.  8 

 9 

Comparing the prediction tools, Mutation Taster, REVEL, EVE and PolyPhen had above 80% 10 

accuracy. Sensitivity, specificity, positive and negative predictive values as well as accuracy for 11 

each tool is shown in Table 1. 12 

  13 

Assessing ROC curves on sensitivity vs. specificity plots demonstrated that better predictive 14 

tools are EVE, Mutation Taster, MetaLR and REVEL for CLCN1 (Figure 1B). The highest area 15 

under the curve (AUC) score was for REVEL (Table 2).  16 

 17 

When considering concordance of different tools as is done using ACMG criteria, ACGS 18 

recommendations as well as diagnostic lab consensus, with three of four tools requiring 19 

concordance to be accepted, we found that 79 variants were classified correctly, 12 were 20 

incorrectly classified and 34 were unable to be classified due to a lack of concordance, Table 3. 21 

The tools commonly used when applying the ACMG criteria are PolyPhen, SIFT, Mutation 22 

Taster and aGVGD.  23 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

ac431/6830658 by U
niversity C

ollege London user on 23 N
ovem

ber 2022



7 

We looked at concordance with REVEL, MetaLR, Mutation Taster and EVE as these four scores 1 

had good AUC and specificity based on our data. Three of four scores required concordant 2 

predictions for their predictions to be included. Using these scores, 100 variants were classified 3 

correctly, 14 incorrectly classified and 12 were unable to classified due to a lack of concordance. 4 

Although more variants were able to be classified using concordance of these 4 scores (REVEL, 5 

MetaLR, Mutation Taster and EVE) with good accuracy and sensitivity, the specificity was 6 

reduced to 0.48, Table 3. When MetaLR was no longer included, due to its poor individual 7 

specificity, the resultant concordant specificity for the three scores (REVEL, Mutation Taster and 8 

EVE) was improved to 0.65, as shown in Table 3.  9 

 10 

In CLCN1, location of variants has been previously shown to be important
9,11

. Variants in the 11 

intracellular domain are more likely to be benign while those in the transmembrane domains are 12 

more likely to be pathogenic. In our data set, 27 variants were intracellular and 99 in the 13 

transmembrane domain. Looking at our concordance analysis, using REVEL + Mutation Taster 14 

+ EVE, 12 of 27 (44.44%) variants in the intracellular domain were predicted correctly and 88 of 15 

99 (88.89%) in the transmembrane domain were predicted correctly. When using the 16 

ACMG/ACGS guidelines based tools (Polyphen + SIFT + Mutation Taster + aGVGD) 17 of 27 17 

(62.96%) variants in the intracellular domain were predicted correctly and 63 of 99 (63.63%) 18 

variants in transmembrane domain.  19 

Discussion  20 

In silico prediction tools are commonly used to score novel variants but their validity is often 21 

unclear. To assess this requires comparison against robust datasets assessing clinical and 22 
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functional features of the variants. We perform a comparison of functional features of ClC-1 1 

variants against in silico tools. While Mutation Taster, REVEL, EVE and PolyPhen had above 2 

80% accuracy and relatively good sensitivity over 0.8, the specificity for all four tools is poor. Of 3 

these four, EVE has the best specificity at 0.7. This specificity is far from ideal for clinical 4 

application but remains much better than the specificity of the other three tools, with good 5 

accuracy and sensitivity. EVE is trained only on evolutionary sequences which lends itself to 6 

having a higher degree of specificity
3
.  7 

 8 

The AUC of EVE is 0.8. While this is a good score, it is below REVEL, Mutation Taster, 9 

MetaLR and SIFT. The REVEL AUC score is high at 0.89. This is not surprising given the 10 

mechanism of REVEL which combines several individual tools as a meta-predictor. The best 11 

scores based on AUC for in silico prediction in CLCN1 were REVEL, Mutation Taster and 12 

MetaLR. 13 

 14 

The AUC values we report for CLCN1 are lower than other reported AUC values in the 15 

literature. When EVE was compared to ClinVar datasets an AUC of 0.91 was reported
3
. 16 

Similarly REVEL was compared to SwissVar with an AUC of 0.908
18

. MetaLR has a reported 17 

AUC of 0.883. However, such comparison are inherently circular as such databases (ClinVar, 18 

SwissVar) incorporate in silico predictive algorithms in categorising variants as benign or 19 

pathogenic
8,23

.  20 

 21 

Few studies compare predictive algorithms to variants that have been functionally characterised 22 

in vitro. Similar characterisation can be performed with genes responsible for cardiac 23 
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9 

channelopathies causing long QT syndromes
24

. When in silico prediction tools were compared to 1 

KCNQ1, KCNH2 and SCN5A variants characterised in vivo or by co-segregation, AUC for 2 

PolyPhen was 0.77 for all genes combined and 0.715 for SIFT. When looking at individual genes 3 

the AUC varied from 0.63 to 0.94 using the same score (PolyPhen).  4 

 5 

Comparing PolyPhen, Sift and Mutation Taster to functional characterisation of RYR1 variants 6 

using in vitro contracture tests on muscle biopsies, demonstrated an AUC of 0.94 (PolyPhen), 7 

0.98 (Sift) and 0.92 (Mutation Taster)
25

. These values are much higher than the AUC values we 8 

demonstrated in CLCN1.  9 

 10 

These studies demonstrate clear differences in the AUC for in silico predictive tools for different 11 

genes. It is likely that this is due to variations in complex factors such as penetrance and pattern 12 

of inheritance. This is important to consider when interpreting a novel variant.  Reported AUC, 13 

specificity and sensitivity for in silico predictive tools should not be applied generally to all 14 

genes.  15 

 16 

Using concordance of several tools appears to improve performance. Concordance (all three in 17 

agreeance) between the REVEL, Mutation Taster and EVE improved accuracy, sensitivity, 18 

positive and negative predictive value compared to the ACMG or diagnostic lab based tools (3 of 19 

4 concordant out of Polyphen, Sift, Mutation Taster and aGVGD). The specificity was slightly 20 

reduced which is a recurring issue across all in silico predictive tools. However, an accuracy of 21 

90% makes a compelling case for considering the use of the newer predictive tools and 22 

concordance in the interim, while better tools are developed. Additionally, these tools appear to 23 
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10 

be in line with differentiating variant pathogenicity based on variant location within the gene. 1 

Domains and loci of variants are likely to be useful aspects to include in the design of future 2 

predictive tools
26

. However, pathogenicity of variants in some functional domains may not be 3 

accessible with certain functional analyses, for example some CLC-1 intracellular variants that 4 

assert pathogenicity by disrupting muscle-specific protein interactions
27

. Practically, we suggest 5 

that variants in domains that are less well conserved are those that particularly require functional 6 

studies.  In ClC-1 for example, variants outside the transmembrane domain are less well 7 

conserved
11

.  8 

 9 

The correlation of functional features with clinical characteristics such as inheritance patterns is 10 

not 100% and is expected for skeletal muscle channelopathies where variants show variable 11 

clinical features within and between pedigrees. Also, depending on the type of functional 12 

analysis only certain forms of pathogenicity can be detected – for example exonic variants 13 

affecting splicing or tissue specific interaction will not be picked using heterologous expression 14 

and electrophysiological analysis.  However, functional expression is a strong indicator of 15 

pathogenicity, and is classified as such in the ACMG criteria. This creates a robust dataset, in 16 

particular compared to ClinVar based datasets, where some variants are reported without any 17 

indicators of pathogenicity. 18 

 19 

Additional limitations to functional analysis include the time taken, the labour-intensive process 20 

and technical expertise needed. Functional expression of a new variant can take months 21 

depending on the assay. Not all genes, and indeed not all channel genes can be expressed. High 22 

throughput electrophysiology platforms which utilise automated multi-channel patch-clamping 23 
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11 

may overcome some barriers, time in particular. However, the initial purchase cost and cost per 1 

data point of these platforms is significant. High throughput platforms may be an option in the 2 

future as access and costs are reduced. To perform traditional functional expression, significant 3 

equipment and technical experience is required. In contrast, more accurate in silico tools could 4 

be applied by clinicians, geneticists and bioinformaticians.   5 

 6 

As per the ACGM guidelines multiple lines of in silico predictions provide supporting or 7 

moderate evidence of a variant being benign or pathogenic while functional analyses can provide 8 

strong indications. Thus, currently, in the case where a functional assay is available, it should be 9 

sought. In silico predictions can provide preliminary estimation that may precede functional 10 

analyses by months or years, and following the functional analysis provide supportive evidence 11 

for pathogenicity of the variant. In the absence of functional assays or other strong indicators the 12 

in silico predictive tools are part of the main pathway to assess the pathogenicity. Developing 13 

improved predictive tools that are more specific is a key area of need in genomics, particularly 14 

for genes without a method for functional assessment. At present, genes without robust 15 

expression systems are more limited to accuracy achieved with traditional parameters such as 16 

conservation, nature of mutation, mutation hotspots or clinical validation such as segregation 17 

testing which may not always be possible. 18 

 19 

Ideally, improved algorithms would be developed that can be rapidly applied to new variants and 20 

newer machine learning techniques may see this happen. Machine learning techniques such as 21 

multi-task learning on channel data sets have been utilised to develop models to predict variant 22 

pathogenicity. In addition, the algorithms may incorporate homology modelling approaches
28

. 23 
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12 

However the key challenge remains in using a large enough data set to train an algorithm without 1 

compromising the validity of the data included
29,30

. Larger data sets with more inclusive data 2 

tend to incorporate unvalidated data points. For example, the multi-task learning support vector 3 

machine (MTL-SVM) model for potassium channels is trained on some data that is non-human 4 

and may not appear in a disease context
30

.   5 

 6 

At present, clinical assessment incorporating functional and in silico predictions is imperative. 7 

Other causes of myotonia need to be considered and excluded. In patients with other causes of 8 

myotonia, for example myotonic dystrophy, pathogenic CLCN1 variants can alter the phenotype 9 

and must be considered in clinical assessment. For some variants, electrophysiological patterns 10 

may not be able to determine mode of inheritance and clinical assessment will be important for 11 

genetic counselling.  12 

 13 

Our study in CLCN1 using a robust data set and comparing to newer predictive models supports 14 

data in other fields of medicine illustrating the poor utility of current in silico predictive tools. 15 

Overall, tools with improved specificity while maintaining good sensitivity are urgently required 16 

with assessment in the future performed against robust data sets that have been functionally 17 

validated. Importantly, AUC, specificity and sensitivity of the predictive tools varies between 18 

genes and requires independent assessment for each gene. While the predictive tools may support 19 

in scoring a variant, functional assessment of the variant is warranted where possible.  20 ACCEPTED M
ANUSCRIP

T
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Figure legends 11 

 12 

Figure 1 Functional assessment of pathogenicity of ClC-1 variants and comparison to in 13 

silico predictive tools. A) Voltage of half-maximal activation (V1/2) is plotted against current 14 

amplitude for 126 ClC-1 variants. Please note change of scale at 0 mV. The vertical red line and 15 

horizontal pink line represent the cut-off voltage (vertical (-18.6 mV)) and current amplitude 16 

(horizontal (-2.5 µA)). Data for wild-type channel is shown in red and all the variants in the 17 

wild-type channel quadrant defined by the cut-off lines were considered benign. Several variants 18 

showed no currents or showed currents that could not be characterised only in terms of V1/2 and 19 

current amplitude
11

. The V1/2 of these variants was not assessed but are plotted in the graph with 20 

0 current amplitude in blue. Variants in orange show wild-type-like voltage dependence of 21 

activation and current amplitude, but the rate of activation differed from wild-type. Based on the 22 
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cut-off criteria these were not classified as pathogenic. B) ROC curves for in silico predictive 1 

tools + Grantham distance. 2 

 3 

Figure 1 4 
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Table 1 Results for each in silico predictive tool 1 
 2 
  Mutatio

n Taster  
REVE
L 

EVE PolyPhe
n  

MetaL
R  

SIFT  aGVG
D 

Mutatio
n 
Assessor  

CAD
D 

True Positive (% of total 
pathogenic) 

88 (97) 87 (96) 59 
(65) 

74 (81) 91 (100) 62 
(68) 

26 (29) 39 (43) 13 (14) 

False Positive  15 18 8 15 28 9 0 18 3 

Total Actual Pathogenic  91 91 91 91 91 91 91 91 91 

True Negative (%) 18 (51) 17 (49) 19 
(54) 

10 (29) 7 (20) 26 
(74) 

31 (86) 17 (49) 32 (91) 

False Negative 3 4 9 5 0 29 40 12 78 

Total Actual Benign  35 35 35 35 35 35 35 35 35 

Uncertain (n) 2 0 31 22 0 0 29 40 0 

Accuracy  85.48% 82.54% 82.11
% 

80.77% 77.78% 69.84
% 

58.76% 65.12% 35.71% 

Sensitivity 0.97 0.96 0.87 0.94 1.00 0.68 0.39 0.76 0.14 

Specificity  0.55 0.49 0.70 0.40 0.20 0.74 1.00 0.49 0.91 

Positive Predictive Value  0.85 0.83 0.88 0.83 0.76 0.87 1.00 0.68 0.81 

Negative Predictive Value  0.86 0.81 0.68 0.67 1.00 0.47 0.44 0.59 0.29 

Most accurate tool listed on the left and least accurate on the right. 3 
 4 

Table 2 AUC for in silico prediction tools 5 
 6 
 REVEL Mutation 

Taster  
MetaLR  Mutation 

Assessor  
SIFT  EVE PolyPhen  CADD 

AUC (SE) 0.89 (0.3) 0.88 (0.03) 0.86 (0.04) 0.83 (0.04) 0.82 (0.04) 0.80 (0.05) 0.75 (0.05) 0.66 (0.06) 

95% CI 0.83–0.95 0.81–0.94 0.79–0.93 0.76–0.9 0.74–0.89 0.7–0.89 0.66–0.85 0.54–0.77 

 7 
 8 

Table 3 Data based on concordance of a combination of in silico predictive tools 9 
 10 
 Tools used in the 

ACMG/ACGS guidelines 

(PolyPhen, SIFT, Mutation 
Taster, aGVGD) 

Tools performing highly 
based on AUC and 

specificity (REVEL, 
Mutation Taster, MetaLR, 
EVE)  

(REVEL, Mutation 
Taster, EVE) 

Sensitivity  0.92 0.99 0.97  

Specificity  0.74  0.48  0.65  

Accuracy  86.95% 87.72%  90.00%  

Positive Predictive Value  0.90 0.87  0.91 

Negative Predictive Value  0.80  0.92  0.85  

Number of concordant scores 
(% of all variants)  

39 (30.95%)  [4 of 4 scores 
concordant] 

70 (55.56%) [4 of 4 scores 
concordant] 

0 [3 of 3 scores 
concordant] 

Number of concordant scores 
(% of all variants) 

53 (42.06%) [3 of 4 scores 
concordant] 

44 (34.92%) [3 of 4 scores 
concordant] 

80 (63.49%) [2 of 3 scores 
concordant] 

Number of variants unclassified  34 12 46  

 11 
 12 
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