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Prediction of the disease course 
in Friedreich ataxia
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Sylvia Boesch7, Wolfgang Nachbauer7, Thomas Klopstock8,9,10, Claudia Stendel8,9, 
Francisco Javier Rodríguez de Rivera Garrido11, Ludger Schöls12,13, Stefanie N. Hayer12, 
Thomas Klockgether14,15, Ilaria Giordano14, Claire Didszun1, Myriam Rai16, 
Massimo Pandolfo16,18, Holger Rauhut3, Jörg B. Schulz1,2 & Kathrin Reetz1,2*

We explored whether disease severity of Friedreich ataxia can be predicted using data from clinical 
examinations. From the database of the European Friedreich Ataxia Consortium for Translational 
Studies (EFACTS) data from up to five examinations of 602 patients with genetically confirmed FRDA 
was included. Clinical instruments and important symptoms of FRDA were identified as targets for 
prediction, while variables such as genetics, age of disease onset and first symptom of the disease 
were used as predictors. We used modelling techniques including generalised linear models, support-
vector-machines and decision trees. The scale for rating and assessment of ataxia (SARA) and the 
activities of daily living (ADL) could be predicted with predictive errors quantified by root-mean-
squared-errors (RMSE) of 6.49 and 5.83, respectively. Also, we were able to achieve reasonable 
performance for loss of ambulation (ROC-AUC score of 0.83). However, predictions for the SCA 
functional assessment (SCAFI) and presence of cardiological symptoms were difficult. In conclusion, 
we demonstrate that some clinical features of FRDA can be predicted with reasonable error; being 
a first step towards future clinical applications of predictive modelling. In contrast, targets where 
predictions were difficult raise the question whether there are yet unknown variables driving the 
clinical phenotype of FRDA.

Friedreich ataxia (FRDA) is a rare autosomal-recessive, slowly progressing neurodegenerative spinocerebellar 
ataxia. While it is a rare disease with a prevalence of at most 1:20,000, it is at the same time the most common 
form of hereditary ataxia1,2.

The disease is caused by an expansion of GAA-repeats in the first intron of the FXN gene located on chromo-
some 93,4. The gene encodes the Frataxin protein which is involved in iron-metabolism in mitochondria and is 
especially found in high metabolic cells such as in the muscles, nervous system and the heart5. In addition to 
homozygote GAA-repeat expansions in the FXN gene, there are heterozygote carriers of one GAA-repeat expan-
sion and a pathogenic variant in FXN leading to a diverse clinical spectrum6,7.
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The major clinical symptom is sensory and cerebellar ataxia. However, ataxia is usually accompanied by a 
wide array of non-ataxic symptoms such as scoliosis, pes cavus, cardiomyopathy, diabetes mellitus and urinary 
dysfunction8. The typical age at onset of the disease is during adolescence or childhood, with first symptoms 
often being imbalance, falls and/or scoliosis2,8. The heart disease seems to be independent from the neurological 
progression and is the leading cause of death in FRDA9,10. To this date, there is no cure or effective treatment 
for this devastating disease that usually leads to heavy impairment in both quality of life and independence for 
the affected individuals.

Previous work from EFACTS, the prospective registry by the European Friedreich Ataxia Consortium for 
Translational Studies (EFACTS; http://​www.e-​facts.​eu)11,12 as well as studies from other groups13–15 have described 
the progression of the disease in FRDA over the course of several years. It was found that core symptoms related 
to spinocerebellar dysfunction become gradually worse over time and clinical instruments for measuring ataxia 
such as the scale for rating and assessment of ataxia (SARA) also indicate worsening with each subsequent 
examination, despite high variability in scores. A core challenge regarding predictions and modelling of the 
disease course of FRDA is that the disease is progressing rather slowly and additionally the complex clinical 
picture varies to a significant extent beyond the defining symptoms.

To enable answering legitimate questions patients affected by FRDA might have about the disease progres-
sion and to also potentially enable informed estimates about an individual’s disease progression for clinical 
use, we exploratively attempted to model and predict disease severity by employing techniques of statistical 
learning. Having at least an informed estimate on how to answer such a question could help in individualising 
medicine for individuals with this disease and in the long-term such data could support planning the interval 
of examinations and also help patients and their care takers making preparations for potential future disabilities 
and limitations affecting daily life. Furthermore, an informed estimate could help in situations where data is lost 
or when visits are only possible in a limited manner. As the modelling approach was explorative we did refrain 
from formulating hypotheses.

Methods
Subjects.  All patients included in this analysis participated in the annual examinations for the EFACTS 
longitudinal database and had genetically confirmed FRDA. Retrieved data included only patients for which 
monitoring had been completed up to the fifth annual visit (fourth follow-up), leading to 602 patients with a 
total of 2306 data points. All subjects or their authorised surrogates gave informed consent before participation 
and all procedures were reviewed and approved by the institutional ethics committee of the medical faculty of 
RWTH Aachen University (reference number: EK 057/10) and carried out in accordance with the Declaration 
of Helsinki16.

Modelling implementations.  Data analysis and modelling were carried out using the R programming 
language version 4.017 and the Python programming language version 3.7 (https://​python.​org). Most important 
libraries used for modelling were the tidymodels framework18 in R as well as scikit-learn19 in Python.

Variables of interest.  We identified potential variables of interest (targets) from the data. The main goal 
was to select items characterising overall disease severity and progression in an individual as well as items con-
taining information about symptoms that are especially debilitating for an affected individual. These included 
clinical instruments characterising current disease severity; namely the SARA total score20, activities of daily 
living (ADL) total score21, and spinocerebellar ataxia (SCA) functional assessment (SCAFI) sub-scale results 
(i.e. 8-metre-walk-test mean seconds, nine-hole-peg-test mean seconds, PATA task mean syllables)22. Further-
more, presence of cardiological symptoms (arrhythmia, hypertrophy, left-ventricular hypertrophy, repolarisa-
tion abnormalities) was a group of targets of interest. We included loss of ambulation in two stages based on 
the spinocerebellar degeneration functional score23 and an additional dichotomous item coding wheelchair-
boundness. Full loss of ambulation or more severe was defined as being wheelchair-bound or more severely 
affected, while near loss of ambulation was defined as being able to walk with support of two sticks or more 
severely affected.

As cardiac symptoms are an important non-ataxia feature in FRDA, we created an additional variable specify-
ing the presence of any cardiological symptom. For creating this variable, we used all dichotomous items in the 
regular (annual) EFACTS examination coding the presence of cardiac symptoms. If any of these items indicated 
pathological findings, the created variable was set to 1, otherwise it was set to 0.

Furthermore, we were interested in cardiac hypertrophy. However, as data quality regarding the presence of 
cardiac hypertrophy was in parts insufficient for modelling due to missing data and information based on external 
clinical reports, we created an additional variable hypertrophy risk coding the likelihood of presence of cardiac 
hypertrophy on a scale from zero (most likely no hypertrophy) to five (very likely hypertrophy), based on these 
items giving the presence of hypertrophy and left-ventricular-hypertrophy, septum-thickness and a free-form 
text item for cardiac diagnoses which was evaluated programmatically using regular expressions. If one of the 
input data points was missing, the risk item was set to be missing as well; however if at some time points input 
data was available and missing at other visits, the available data was re-used for the time points where it was 
missing. In case that value was 2 or higher, we considered hypertrophy to be likely present in a patient, and for 
modelling the variable was then dichotomised into unlikely hypertrophy ( < 2 ) and likely hypertrophy ( ≥ 2).

For modelling the selected targets, relevant predictors (clinical and genetic routine features) were selected 
from the data. A critical point here was to ensure no feature leakage (including features that implicitly contain 
information about the target) would be present in the modelling, as many of the variables available in the EFACTS 
database measure disease progression in some way. By correlating features with targets and selecting variables 
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based on topic knowledge we identified a core set of features, namely age at disease onset, age at examination, 
GAA-repeats on both FXN alleles separately, gender, first symptom of the disease and presence of problems 
during the neonatal phase. To examine the predictive performance reachable with more limited predictor sets 
we also used a minimal predictor set containing only age of disease onset and disease duration (below referred 
to as the minimal set) and another set extending the minimal set with GAA-repeats on the shorter allele (below 
referred to as the small set).

Predictive models.  For all types of targets, we compared the predictive performance of various suitable 
model types against each other and also against a trivial predictor (see below) establishing a baseline of predic-
tive performance.

Data processing.  For modelling we split the data into a training set and a test set, where 80% of available data 
was used for the training set and the remaining data for the test set. To ensure that inclusion of a single subject 
in both sets would not artificially inflate model performance, we generally split the data so that all time points 
from a single subject would only be included in one of the split data sets, but not in both. However, for evaluat-
ing the impact of subject effects in the data we additionally modelled ADL and SARA scores with this constraint 
removed.

A set of processing steps was applied to the data. Processing was done on the training set initially and after-
wards applied to the test set based on what was learned for the training data. Predictors were removed if at least 
10% of the data was missing; in a similar fashion subjects were removed if 10% or more of data points for a subject 
were missing from the selected predictors. Then, categorical data was dummy coded and the remaining missing 
values were imputed using a k-nearest-neighbour classifier using Gower’s distance and k set to 5. Imputation 
affected 19 values. Next, predictors with zero or near-zero variance were removed, in this case affecting one 
predictor. Predictors were then centred and scaled to be in [0, 1]. A check for highly correlated predictors was 
done (with |r| ≥ .85 ), but this did not pertain to any of the included predictors.

The removal of subjects with missing predictor data during processing resulted in a training set with 1030 
observations, while the test set had 276 observations, leaving 368 unique subjects with multiple time points in 
the training set and 93 in the test set. Missing data in targets was ignored in this step and only removed when 
fitting models.

Continuous targets.  For continuous targets models were evaluated based on the root mean squared error 
(RMSE) of the model’s predictions against the actual values. RMSE characterises the difference between predic-
tion and actual observation (truth), but emphasises larger errors more than smaller errors. We also provide the 
mean absolute error (MAE), which has the same goal as RMSE, but treats all data points equally. The smaller 
both values are, the better is the prediction. The trivial predictor employed here was using the mean of the train-
ing data as prediction for all observations in the test data. Both RMSE and MAE reflect the predictive error in the 
scale of the target, thus these values have to be interpreted within the target’s context and con not be compared 
between targets in a straightforward manner.

Modelling families that were employed were Linear Regression, Lasso Regression24, Random Forests25 and 
Gradient Tree Boosting (XGB26).

Categorical targets.  For categorical targets models were evaluated using the receiver operating characteristic - 
area under the curve (ROC-AUC) based on probabilities assigned to class predictions compared to the actual 
values. ROC-AUC characterises a binary model’s quality and is 0 if all predictions are the opposite from the 
truth, a random predictor would be expected to reach a value of 0.5 and a perfect prediction is a value of 1. The 
trivial predictor for categorical targets was using the most common category from the training data as prediction 
for all observations in the test data. For comparing modelling performance against the trivial predictor accuracy 
was used, as calculating ROC-AUC scores on the trivial predictor is not sensible.

Modelling families were largely similar to what was used for continuous targets and were: Logistic Regres-
sion (Generalised Linear Model), Logistic Lasso Regression, Support Vector Machines27, Random Forests and 
Gradient Tree Boosting (XGB).

Model fitting.  Where available we tuned some hyperparameters of models using a grid search and 10-fold-
cross-validation, for finding values leading to optimal predictive performance.

The hyperparameters we tuned were the regularisation parameter C for logistic regression and its variant Lasso 
regression (inverse of regularisation strength � ), the regularisation parameter C and Gaussian kernel coefficient 
γ for SVM, the number of trees for random forests and the loss regularisation, learning rate and depth for XGB.

Variable importance.  Where available, we calculated estimates of variable importance for all predictors that 
were entered into the models. For generalised linear models coefficients were used, characterising the weight of 
each predictor. As predictors were scaled and centred in [0, 1] this allows for a crude estimation of the influence 
of the predictors compared to each other. For tree-based models Gini importance was used, characterising the 
mean decrease in impurity from a predictor. In less technical terms the importance associated with a predictor 
can be thought of as a metric of the improvement of the prediction when creating tree splits on that variable. 
Finally, for SVM permutation importance was used, characterising the importance of a predictor for the model 
by randomly shuffling predictors and evaluating how much this corruption affects the outcome. To help with 



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19173  | https://doi.org/10.1038/s41598-022-23666-z

www.nature.com/scientificreports/

comparisons, absolute values of importance scores were re-scaled to [0, 1], with the least influential predictor set 
to 0 and the most influential predictor set to 1.

Results
Sample characteristics.  A detailed description of the sample at baseline is available elsewhere8,11,12. The 
average length of GAA-repeats on the shorter allele was 591.0 (standard deviation [SD] = 269.2, range: [6, 1200]), 
with 573 patients being homozygotes for the GAA-repeat expansion. Average disease duration at baseline was 
18.2 years (SD = 10.2, range: [1, 55]), with the mean age at onset being 15.5 years (SD = 10.4, range: [1, 65]). 
Using a cut-off of age at onset of 25 or higher, the sample included 99 patients of late-onset FRDA. At baseline 
the mean SARA score was 22.0 (SD = 9.6, range: [1.5, 40]), while the mean ADL score was 14.6 (SD = 7.8, range: 
[0, 35]). As for the SCAFI, the average time to complete the 8-metre-walk task was 12.2 s (SD = 13.8, range: [3.5, 
127.5]), while for the 9-hole-peg-test subjects took an average of 67.0 s (SD = 44.0, range: [15.4, 275]) to com-
plete the task. For the PATA task the mean number of syllables was 19.2 (SD = 6.0, range: [2.5, 39]).

For the categorical variables of interest, at baseline, cardiac hypertrophy was present in 216 patients with 
FRDA (35.8% of the sample), arrhythmia in 20 (3.3%), left ventricular hypertrophy in 66 (11.0%) and repolarisa-
tion abnormalities in 253 (42.0%). The cardiac hypertrophy risk feature indicated likely cardiac hypertrophy in 
162 patients with FRDA (26.9%), while 462 of the 602 patients at baseline (76.7%) had at least one cardiac symp-
tom. At baseline, 291 patients with FRDA (48.3%) were affected by full loss of ambulation, while 390 (64.8%) were 
characterised as near loss of ambulation or more severe. The distributions of categorical items in the training set 
is given in Table 1, also providing a picture of how these variables are distributed among the patients in this study.

Prediction of continuous targets.  Predictions for the SARA using the full predictor set reached RMSE 
between 6.49 and 6.75, with the trivial predictor achieving a RMSE of 9.07 points. Using the minimal set RMSE 
ranged between 7.04 and 7.18 points, while with the small set values between 6.64 and 7.16 were reached. For 
predicting the scores at the next annual visit only, predictive performance was largely in a similar range.

For the ADL predictions reached a RMSE between 5.77 and 6.58 points, while the trivial predictor reached 
7.85 points RMSE. For the minimal set, we found similar performance with RMSE being between 6.14 and 6.20 
points, with the small set reaching RMSE between 5.82 and 6.16. Similar as for the SARA, predictions of scores 
at the next visit only were of similar quality. Predictions for the SARA and ADL are visualised in Fig. 1. Addition-
ally, there is visualisation of SARA predictions by onset and ambulation in Fig. 2, illustrating that predictions 
were the worst for ambulatory patients with disease onset before 25 years old (RMSE of 8.87), while for typical 
onset non-ambulatory patients as well as late-onset patients, errors were considerably smaller (RMSE 4.30–5.42).

As for the SCAFI predictions of performance in the 8-metre-walk-test reached RMSE between 10.13 and 12.73 
s across all predictor sets, with the trivial predictor being included in this range at 11.00 s. For the nine-hole-
peg-test predictions reached RMSE from 38.03 to 48.39 s across all predictor set, with this range also including 
the trivial predictor at 46.36 s. Finally, for the PATA task RMSE ranged between 5.23 and 7.66 syllables across all 
predictor set; a range which also included the trivial predictor reaching a RMSE of 6.13.

For details on all models for continuous data, including those models with the constraint of subjects being 
exclusive to either training set or test set removed, see Table 2.

Prediction of categorical targets.  For the presence of cardiac hypertrophy as encoded in a binary item, 
ROC-AUC scores across all predictor sets varied between 0.55 and 0.69 with the accuracy at the highest ROC-
AUC score being 0.69, while the trivial classifier reached an accuracy of 0.57. For hypertrophy at the next visit 
ROC-AUC scores were in the range 0.59 and 0.75, the best model here achieving an accuracy of 0.65, compared 
to a trivial baseline of 0.54.

For repolarisation abnormalities ROC-AUC scores ranged from 0.52 to 0.68, the model with the highest 
ROC-AUC score reaching an accuracy of 0.65, while the trivial classifier reached an accuracy of 0.52. For the 
prediction of repolarisation abnormalities at the next visit, ROC-AUC scores were between 0.55 and 0.73; the 
best model having an accuracy of 0.71, while the trivial predictor reached 0.52.

Table 1.   Distribution of categorical targets in the training set. The table shows presence, absence and missing 
data of categorical features in the training set, illustrating eventual class imbalances. LoA loss of ambulation; 
L Ventric Hy  left ventricular hypertrophy; Repol Abn  repolarisation abnormalities; Hyper Risk  engineered 
variable coding the likelihood of the presence of cardiac hypertrophy.

Variable Present Absent Missing

Full LoA 679 (65.9%) 351 (34.1%) 0 (0%)

Near LoA 826 (80.2%) 204 (19.8%) 0 (0%)

Arrhythmia 46 (4.5%) 625 (60.7%) 359 (34.9%)

Hypertrophy 396 (38.4%) 528 (51.3%) 106 (10.3%)

L Ventric Hy 123 (11.9%) 506 (49.1%) 401 (38.9%)

Repol Abn 415 (40.3%) 242 (23.5%) 373 (36.2%)

Hyper risk 489 (47.5%) 344 (33.4%) 197 (19.1%)

Any Cardio 696 (67.6%) 206 (20.0%) 128 (12.4%)
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Some approaches turned out to reach performances not better or even worse than the trivial predictor, this 
was true for prediction of arrhythmia as well as left ventricular hypertrophy.

For the presence of any cardiological symptom, we reached ROC-AUC values in the range from 0.50 to 0.75; 
the best model reaching an accuracy of 0.71, being only slightly better than the trivial classifier with an accuracy 
of 0.68.

For risk of hypertrophy the range of ROC-AUC scores of evaluated models ranged between 0.58 and 0.67. 
Here, the best model reached an accuracy of 0.61, being only marginally better than the accuracy of 0.59 in the 
trivial baseline.

Figure 1.   Truth and prediction for SARA and ADL. Shown are the predictions plotted against actual values 
for the best performing model for both clinical instruments. A perfect prediction would have all values on the 
diagonal line.
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Figure 2.   SARA Prediction by Subgroup. Predictions are shown grouped by age of onset and ambulation, 
where non-ambulatory is defined as being permanently wheelchair bound. For each section of the grid the 
RMSE in the subgroup is given. Perfect predictions would have all values on the diagonal lines.

Table 2.   Predictions of continuous data. The table shows the best performing models for each continuous 
target. Targets marked with + 1 are the results at the next visit only, while targets marked with S indicate 
modelling with allowing subjects to be present in training and test set at the same time. The best RMSE is the 
overall best result of all models, the best MAE is the MAE achieved from that model, thus not necessarily the 
overall best MAE reached. The trivial predictor for continuous targets was predicting the mean for all data 
points. For normalising RMSE, values were divided by the range of data. RMSE root mean squared error; Pred 
Set predictor set; Best Fam model family reaching the best result; MAE mean absolute error; Norm Normalised; 
RF random forest; LinReg inear regression; w8m 8 m walk test; 9hpt nine hole peg test.

Target Trivial RMSE Pred Set Best Fam Best RMSE Best MAE Norm RMSE

SARA​ 9.07 Full RF 6.49 5.07 0.19

SARA + 1 8.99 Full RF 6.53 5.07 0.19

SARA S 8.63 Full RF 3.81 2.82 0.10

ADL 7.85 Small RF 5.82 4.63 0.18

ADL + 1 7.80 Small RF 5.71 4.59 0.19

ADL S 7.48 Full RF 3.55 2.62 0.11

SCAFI w8m 11.00 Full Lasso 10.13 7.07 0.13

SCAFI w8m + 1 8.35 Full RF 7.37 5.69 0.19

SCAFI 9hpt 46.36 Full RF 38.03 27.23 0.18

SCAFI 9hpt + 1 47.21 Small RF 37.16 27.58 0.16

SCAFI PATA​ 6.13 Full LinReg 5.23 4.13 0.17

SCAFI PATA + 1 6.19 Full LinReg 5.31 4.17 0.17
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As for full loss of ambulation ROC-AUC scores where between 0.68 and 0.84, the best model having an accu-
racy of 0.74 compared to the trivial classifier with 0.59. Regarding predictions for full loss of ambulation at the 
next visit, performance was largely similar with the model’s ROC-AUC score being 0.85, achieving an accuracy 
of 0.73, while the baseline was an accuracy of 0.60.

Finally, for near loss of ambulation we were able to achieve ROC-AUC scores between 0.66 and 0.82. The 
accuracy that was reached here was 0.79, compared to 0.77 of the trivial prediction. Performance in predicting 
near loss of ambulation at the next visit was worse with the best ROC-AUC score being 0.78 and reaching an 
accuracy of 0.81, compared to 0.77 for the trivial predictor.

For all details on models for categorical targets see Table 3; in addition ROC curves for selected models are 
visualised in Fig. 3.

Table 3.   Predictions of categorical data. The table shows the best performing models for each categorical 
target. Targets marked with + 1 are the results for the next visit only. The best ROC-AUC score is the overall 
best result of all models, the RA accuracy is the accuracy achieved from that model, thus not necessarily 
the overall best accuracy reached. The best overall accuracy is given in the best accuracy column. The 
trivial predictor for categorical targets was predicting the most common category for all data points. Acc 
Accuracy; RA  ROC-AUC score; Pred Set  predictor set; Best Fam  model family reaching the best result; XGB 
extreme gradient boosting; RBF SVM support vector machines with radial basis function; RF random forest; 
LogReg logistic regression; LoA Loss of Ambulation; L Ventric Hy left ventricular hypertrophy; Repol Abn 
repolarisation abnormalities; Hyper Risk  engineered variable coding the likelihood of the presence of cardiac 
hypertrophy.

Target Trivial Acc Pred set Best Fam Best RA RA Acc Best Acc

Full LoA 0.59 Full XGB 0.83 0.73 0.77

Full LoA + 1 0.60 Full XGB 0.85 0.73 0.77

Near LoA 0.77 Small LogReg 0.82 0.79 0.83

Near LoA + 1 0.77 Minimal RBF SVM 0.78 0.81 0.81

Arrhythmia 0.92 Minimal RBF SVM 0.69 0.92 0.94

Arrhythmia + 1 0.89 Minimal RBF SVM 0.66 0.89 0.90

Hypertrophy 0.57 Minimal LogReg 0.69 0.69 0.69

Hypertrophy + 1 0.54 Minimal XGB 0.75 0.65 0.70

L Ventric Hy 0.86 Small RF 0.64 0.89 0.86

L Ventric Hy + 1 0.84 Minimal XGB 0.71 0.85 0.85

Repol Abn 0.53 Small LogReg 0.68 0.65 0.65

Repol Abn + 1 0.52 Small LogReg 0.73 0.71 0.71

Hyper Risk 0.59 Minimal Lasso 0.67 0.61 0.65

Hyper Risk + 1 0.58 Minimal LogReg 0.73 0.65 0.67

Any Cardio 0.68 Minimal RF 0.75 0.73 0.73

Any Cardio + 1 0.68 Minimal RF 0.78 0.72 0.75

Figure 3.   ROC curves for selected classification models. Shown are the ROC curves of six classifiers. 
Abbreviations: LoA - Loss of Ambulation; Repol Abn - repolarisation abnormalities.
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Variable importance.  We briefly assessed variable importance. Generally, independent of the model dis-
ease duration was usually the most influential variable. Variables such as GAA-repeats, age at onset and age were 
the next most important variables, with all other included predictors only being of small importance. A visuali-
sation of variable importance for selected models is presented in Fig. 4.

Discussion
In this work, we used techniques of statistical learning to model state and severity of disease in FRDA based on 
a large sample. To the best of our knowledge, this is the first work using a purely predictive approach in FRDA 
with the greater aim of enabling individualised medicine and care in the long-term. For some measures of disease 
severity modelling worked reasonably well, such as for the SARA and ADL clinical scales and loss of ambulation. 
However, modelling performance was rather insufficient when it came to the SCAFI subtests as well as most 
targets on cardiac symptoms.

Both the SARA and the ADL are well-established important clinical instruments to assess severity and pro-
gression of the disease for which relations between a priori measures and outcome are well known1,8,11. They 
were among the outcomes that we could model with the least amount of error, fitting well in the relation between 
a priori measures and clinical outcome. Previous works have suggested that SARA scores increase at a rate of 

Figure 4.   Variable importance for selected models. Shown are the up to 6 most important features for the best 
models. Scores are scaled as fraction of highest value. Abbreviations: DisDur - disease duration; Onset - age of 
disease onset; Female - patient is female.
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about one point per year of disease duration11. However, recently it was reported that the progression is not 
constant and faster at the beginning of the disease course12,28, while it was also reported that the ADL might be 
more sensitive than the SARA at various disease stages12.

There has been some focus on loss of ambulation in FRDA, which is a symptom that tremendously affects 
patients’ well-being1. A recent work has estimated the time to loss of ambulation29. In addition to a clear relation 
between age of disease onset as well as disease duration and loss of ambulation, a relatively clear progression 
of lost functions could be shown leading up to eventual loss of ambulation. Furthermore, a recent paper on the 
EFACTS data has shown that clinical instruments show differential progression rates over time before and after 
loss of ambulation12. We did include two distinct stages of the progression towards loss of ambulation. Predic-
tive performance was relatively good especially for full loss of ambulation, reinforcing the notion that there is a 
clear relation between eventual loss of ambulation and the data we used as predictors here, like genetics, age at 
onset, disease duration and first symptom of the disease. Furthermore, we did explore whether predictions of 
SARA differed by ambulation and onset and found that for non-ambulatory patients of all onset ages predictions 
worked better than for ambulatory typical onset patients in particular, but the amount of data per group is not 
too large and thus should be interpreted with caution. Also, it should be pointed out that recently it has been 
suggested that progression in the SARA is not equally driven across its items, with items relating to the status 
of ambulation being more sensitive than others in still ambulatory patients12. This in turn suggests that there is 
less room for variability in patients that are already non-ambulatory. Details like these should be addressed in 
subsequent more focused works, potentially enabling better predictive performance.

Predictions of SCAFI subtests did turn out to only have a poor performance in FRDA30. This is unexpected 
as progressive ataxia as found in FRDA should reflect in a clinical test focused on the motor system. One issue to 
raise with the SCAFI in FRDA is that the 8-metre-walk test cannot be completed by a large number of patients 
due the eventual loss of ambulation associated with the disease1,31. As patients, unable to perform the test, were 
not included in the modelling, this should not have affected the outcome too much. However, this did lead to 
a starkly reduced sample size for this subtest. As for the 9-hole peg test, previous works have shown that per-
formance deteriorates with time12, also with the CCFS32 but the error in prediction was rather large here. This 
suggests that on the one hand performance in this task becomes progressively worse, on the other hand the 
performance itself is mostly unrelated to a priori markers. Assuming the SCAFI is a valid instrument to assess 
disease severity in FRDA, the quality of prediction here might point towards yet unknown variables driving the 
clinical state as measured by SCAFI subtests; but this has to remain speculative as there is no direct evidence for it.

A similar outcome as for the SCAFI was found for items coding the presence of cardiological symptoms. The 
situation is different here than for the SCAFI for several reasons, though. First of all, for many of the symptoms 
queried in the annual EFACTS examinations the presence of symptoms is often very skewed in the way that 
symptoms are either very common or very rare without many changes over the observed amount of time. This 
is for example true for arrhythmia and left ventricular hypertrophy, where the class imbalance is extremely large. 
We did not account for this in our modelling approaches, thus impairing the predictive quality reached. Further, 
research points towards the onset and progression of this symptom group not being fully understood yet in the 
context of FRDA33. One study found that only a subset of patients in FRDA show progressive decline in cardiac 
function, but the features that distinguish both groups of patients are unknown10. Without reliable separation 
of these phenotypes, predicting cardiac symptoms in FRDA will of course be rather difficult.

While based on objective measurements34, there is some amount of error introduced by clinicians35 when 
diagnosing cardiac hypertrophy. We attempted to counteract this by combining several sources of information 
on whether cardiac hypertrophy is present into a new variable, but we did not reach better predictive perfor-
mance on that new target representing likelihood of cardiac hypertrophy compared to other cardiological targets. 
Additionally, when trying to predict whether any cardiac symptom is present, predictions were of similar quality 
as when trying to predict individual cardiac symptoms. This suggests that there is no common overreaching 
relationship between the predictors included here and the manifestation of heart disease in FRDA. This fits well 
in the overall uncertainty surrounding cardiac symptoms in FRDA.

Especially for the modelling of clinical measurements it should be pointed out that some amount of variation 
might be expected. A recent trial for a remote examination of the SARA found that scores could vary up to a 
similar extent as the prediction error we found here over a short amount of time36. While the trial investigated a 
remote examination and non-FRDA ataxias, it nonetheless supports the idea that a score of a clinical examina-
tion is not as static as it might appear. In contrast, research seeking to quantify retest-reliability of the modified 
Friedreich Ataxia Rating Scale as well as the SARA in patients of FRDA did find rather high retest-reliability37,38. 
Despite standardised operating procedures effects due to multiple and changing examiners as well as shifts in 
subjective criteria where examinations depend on a clinician’s rating are concerns over the long-term and ways 
to address these issues should be sought. Stability of results from rating scales is both a challenge and a limitation 
when applying techniques of statistical learning to clinical instruments and at the moment there is not much 
data to draw conclusions on how FRDA and the instruments commonly used here are affected by this issue.

Numerous more predictors were included in the present work compared to a priori information included 
in previous works. With a wider range of available predictors there might be potential for improved predictive 
accuracy if the used predictors convey additional information. However, the data presented here suggests that 
in some cases rather small predictor sets led to a superior predictive performance and even if the full predictor 
set led to the best performance, the difference to the smaller ones was usually rather minor. Given previous 
literature it is not unsurprising that especially the number of GAA-repeats, disease duration and age of disease 
onset together led to a very reasonable predictive performance.

For a small set of targets we did remove the constraint of subjects being exclusive to either training or test 
set and obtained a much better predictive performance. This is not too surprising, but this does suggest that 
what the models’ trained on in that scenario was mainly the individual combination of predictors. Obviously, it 
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is near-impossible to gather all information that might have influenced the course of the disease over a person’s 
life. But this does point towards further, yet unknown, variables having substantial influence on an individual’s 
disease course. The uncertainty around cardiological symptoms that is established in the literature10,33 and the 
results obtained in the present work for the SCAFI support the idea that there are important, but yet unknown, 
variables influencing the disease course in FRDA.

The predictive performance that was found here should of course be put into context, looking at what can 
be achieved in other diseases. Using techniques from the domain of machine learning to enable individualised 
medicine is still a relatively new approach. In FRDA one work used a recommendation algorithm to fill miss-
ing items in the SARA scale39. Similar approaches used methods of supervised statistical learning to identify 
core signs for disease progression40 or used a quantitative motor task to identify variables relevant to disease 
progression41. Our work differs insofar from previous studies, as that we here attempt a broad prediction of the 
clinical state in FRDA. In non-FRDA ataxias similar approaches for identification of important features42,43 as well 
as classification between healthy controls and patients have been carried out44, reaching an accuracy of 0.88. Con-
sidering machine learning approaches beyond ataxia, in Parkinson’s disease, studies making use of deep learning 
reached accuracies between 0.8 and 0.85 on UPDRS data using voice recordings45 and motor data as inputs46. 
Similarly, in Alzheimer’s disease prediction of disease severity scores could be demonstrated with an accuracy 
of 0.83 based on a variety of clinical and biological measures47. A study using deep learning to predict clinical 
dementia rating of patients at future clinical examinations reached an accuracy of 0.99, but the model was tested 
against data of subjects it was trained on48. Overall, this suggests that at least some of the results presented here 
are not too far away regarding predictive performance to what is currently available in the literature. It should be 
noted that we here undertook a one-size-fits-all approach, applying a wide range of techniques to many targets 
without specifically optimising our models. For eventual routine use of predictions in a clinical setting as well 
as follow-up works, much more optimised approaches focusing on a very small number of targets are needed.

In the longer-term this work can be viewed as a first step towards individualised medicine49 in FRDA. The 
idea here is that a set of core variables allowing for prediction of the future disease course within reasonable 
margin of error can augment clinicians’ work for better planning of routine examinations as well as pointing out 
patients at risk for certain symptoms. Of course, at the moment the predictive performance we report here is 
not good enough for clinical use and open questions remain, but we demonstrate the general feasibility of such 
approaches in a rare disease like FRDA.

The inclusion of measures characterising the state of neurodegeneration as well as quantitative motor data as 
predictors would certainly be an interesting follow-up work, although modelling approaches are likely to become 
more complex with more diverse features. Despite being to some degree sensitive to the applied (pre-) process-
ing, measures characterising the central nervous system are suffering less from issues regarding objectivity than 
clinical scales. Characteristic alterations of the spinal cord, brain stem and cerebellum in FRDA have recently 
been shown50,51 and thus seem like a viable variable to include in predictive modelling of the disease course.

Limitations.  There are limitations in the work presented here. First, while in the context of EFACTS large 
amounts of data are regularly gathered in a standardised manner, missing data was the main drawback in this 
work. Especially when researching a rare disease, it is much better to have a smaller, but complete dataset, than 
having a wide range of variables, but large amounts of missing data. However, we are aware that examinations in 
the context of the study can be strenuous and for severely affected patients there are constraints regarding how 
long of an examination they can participate in and also which kinds of examinations are practicable. We are 
grateful for the ongoing participation of many individuals affected by this disease.

Second, we did not employ additional techniques like resampling strategies or introducing synthetic data 
where class imbalance was a problem, leading to likely worse predictive performance than what could be theo-
retically possible.

Finally, it should be noted that on the other hand predictive modelling and statistical learning in a clinical 
context bear a large potential for improving decision making and enabling individualised medicine, on the other 
hand they should not replace attention and care by medical professionals.

Conclusions
In conclusion, in this paper we demonstrated that certain clinical instruments and features relevant for FRDA 
can be predicted to an extent that allows for an informed estimate about a patient’s disease severity. However, 
parts of the clinical phenotype of FRDA are still not well understood and this is reflected in subpar predictive 
performance when attempting to establish predictive modelling for these clinical features. This work can be seen 
as a promising first step towards a more individualised medicine in FRDA. Much more work, both on optimis-
ing modelling for the most promising targets, as well as on the understanding of FRDA as a whole is necessary.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available for protecting 
patient privacy but are available from the corresponding author on reasonable request.
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