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Abstract

Recent evidence suggests that shorter telomere length (TL) is associated with neuro degen-

erative diseases and aging related outcomes. The causal association between TL and brain

characteristics represented by image derived phenotypes (IDPs) from different magnetic

resonance imaging (MRI) modalities remains unclear. Here, we use two-sample Mendelian

randomization (MR) to systematically assess the causal relationships between TL and

3,935 brain IDPs. Overall, the MR results suggested that TL was causally associated with

193 IDPs with majority representing diffusion metrics in white matter tracts. 68 IDPs were

negatively associated with TL indicating that longer TL causes decreasing in these IDPs,

while the other 125 were associated positively (longer TL leads to increased IDPs mea-

sures). Among them, ten IDPs have been previously reported as informative biomarkers to

estimate brain age. However, the effect direction between TL and IDPs did not reflect the

observed direction between aging and IDPs: longer TL was associated with decreases in

fractional anisotropy and increases in axial, radial and mean diffusivity. For instance, TL

was positively associated with radial diffusivity in the left perihippocampal cingulum tract

and with mean diffusivity in right perihippocampal cingulum tract. Our results revealed a

causal role of TL on white matter integrity which makes it a valuable factor to be considered

when brain age is estimated and investigated.

Introduction

Telomeres are DNA-protein complexes which protect the end of chromosomes from fusion

and degradation. Telomere length (TL) shortens with time (i.e., during each cell cycle) in

most human cell types [1]. Among many phenotypes, TL is associated with tumors in the
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central nervous system [2]. Furthermore, TL is considered as a potential biomarker of

aging-related diseases such as Alzheimer’s disease (AD) [3]. While several studies [4, 5]

highlighted correlations between TL and brain image derived phenotypes (IDPs), no study

has established the causative link between TL and IPDs, yet. In fact, in current studies

reduced TL may act as a biological proxy for aging and thus induce a correlation between

natural aging and brain integrity. The causal link in this respect could be established by

employing Mendelian randomization (MR), a method that leverages results from large

Genome-wide association studies (GWAS) to infer causality between exposure and out-

come. Thus far, GWAS have identified dozens of single nucleotide polymorphisms (SNPs)

with a significant association to TL [1, 6]. These SNPs were found to play a critical role as

regulators of leukocyte TL through different mechanisms including deoxynucleoside mono-

phosphate biosynthesis [6] and telomere elongation helicase [7]. Furthermore, these SNPs

were used as instruments in previous MR studies to causally associate TL shortening with

increasing facial skin aging [8], increased risk of AD [3] and coronary heart disease [1].

Here we used MR to study the causative link between TL and the brain’s micro and macro

structure. Knowing this causative landscape will help us to better understand the causal asso-

ciation between shorter TL and development of brain aging-related diseases such as AD. In

addition, this study might reveal the causes behind the changes of brain functions and struc-

tures during healthy brain aging.

Results

Fig 1 shows the result of the MR causality screen between TL and brain IDPs using the

inverse variance weighted (IVW) method. Out of the 3,935 tested IDPs, 347 remained sta-

tistically significant after adjusting for multiple testing using the FDR method (PFDR <

0.05;P < 0.004409). However, 119 IDPs were not marginally significant (P > 0.05) in the

complementary MR analyses (i.e., the weighted mode and weighted median) leaving

228 IDPs. MR-PRESSO [9] was used to investigate effects of pleiotropy in these MR

results. Further 35 IDPs were excluded since MR-PRESSO detected horizontal pleiotropy

(MR-PRESSO global test P< 0.05), which, after SNP outlier removal, was no longer signifi-

cant at the FDR-corrected p-value threshold. Thus, the final number of the significant

IDPs was 193. P-values of MR Egger-intercept of the 193 IDPs indicate no significant plei-

otropy (P> 0.05). Therefore, overall, 193 out of 3,935 IDPs showed evidence of being sig-

nificantly influenced by TL, the majority of which are diffusion metrics in different region

of interests.

The majority of the significantly associated IDPs (162 of 193) corresponds to different indi-

ces from diffusion MRI covering a wide range of white matter tracts (Table 1). Three IDPs cor-

respond to resting-state fMRI and the remaining 28 were derived from T1-weighted MRI,

with the majority representing gray-white matter intensity contrasts. The direction of associa-

tion was uniform for each of the modalities: FA, ICVF and gray-white matter intensity contrast

were negatively associated with TL (i.e., longer TL causes decreases); axial (L1), radial (L2, L3)

and mean diffusivity (MD) were positively associated with TL (i.e., longer TL causes increases

in these values). A full list detailing all the results is available in S1 Table.

Fig 2 illustrates for the most prevalent diffusion indices the tracts that are causally influ-

enced by TL according to the MR analysis. Many tracts are found to be associated across the

various diffusion indices. For instance, almost all diffusion indices were significant in tracts

like posterior thalamic radiation and anterior thalamic radiation in both hemispheres. Fur-

thermore, the grey-white matter intensity contrast in many cortical regions were causally asso-

ciated with TL (Fig 2, S1 Table).
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Discussion

In this study, we performed casual association of TL and 3,935 brain IDPs using MR. The

results indicate that TL casually affect 193 brain IDPs. Interestingly, the majority of the signifi-

cant IDPs were related to white matter but not to gray matter. Even the measure with the high-

est number of significant IDPs derived from T1-weighted MRI was the grey-white matter

intensity contrast. In the context of aging the diffusion indices can be interpreted in terms of

white matter integrity. For instance, high FA values suggest increased diffusion directionality

and thereby higher white matter integrity. Contrary, high MD values suggest a higher average

rate of diffusion and thus impaired WM integrity [12]. Therefore, with increasing age, FA

Fig 1. The causal association of TL and brain IDPs using the IVW method. The y-axis represents the −log10(p−values) of the association. The color

of each IDP indicates the MRI modality and the triangle shape indicates whether the identified association (IVW β value) is positive (4) or negative

(5). The black horizontal line indicates the FDR-adjusted significance threshold (P = 0.004409). The triangles with black border highlight the 193 IDPs

that were significantly associated with TL using the IVW method as well as the complementary MR analyses. WM: white matter; FA: fractional

anisotropy; MO: diffusion tensor mode; OD: orientation dispersion; ICVF: intracellular volume fraction; ISOVF: isotropic volume fraction; tfMRI: task

fMRI; rfMRI: resting-state fMRI; QC: quality control.

https://doi.org/10.1371/journal.pone.0277344.g001

Table 1. The significant IDPs categorized by modality. ED: effect direction whether it is positive (+) or negative (-).

Category Number ED Category Number ED

FA 12 - ISOVF 1 -

ICVF 27 - wg intensity-contrast 18 +

L1 18 + Thickness 5 -

L2 29 + Area 1 -

L3 42 + Volume 4 -

MD 32 + rs-fMRI 3 +

OD 1 -

https://doi.org/10.1371/journal.pone.0277344.t001
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tends to decline while MD tends to increase in white matter tracts. In previous works some of

the IDPs were also identified as informative features to model and estimate brain age. For

instance, ten out of the 193 IDPs were previously reported to have a significant association

with brain age delta [13] that are: weighted mean anterior thalamic radiation left (L2 and L3),

weighted mean posterior thalamic radiation left (L2 and MD), weighted mean uncinate fascic-

ulus left (MD), weighted mean posterior thalamic radiation right (L2 and MD), weighted

mean anterior thalamic radiation right (MD and L3) and TBSS external capsule right (ICVF).

Moreover, three other IDPs (i.e., TBSS posterior thalamic radiation right (L3), weighted mean

uncinate fasciculus left (L3) and TBSS cingulum hippocampus right (MD)) were also previ-

ously reported to be important to estimate brain age [14]. However, despite changes in these

IDPs having been reported before as potential biomarkers of brain aging, the driving factor

Fig 2. Visual representation of the significant IDPs among the seven most prevalent measures. For the six

diffusion indices (top six rows) the tracts that are significantly associated with TL are highlighted. The last row shows

the cortical regions with a significant effect of TL on gray-white matter intensity contrast. Different colors within a

diffusion measure relate to IDPs extracted from two different methods: tract-based spatial statistics (solid colors) and

probabilistic tractography (color gradients). The plots were generated by BrainPainter [10] and FSL [11].

https://doi.org/10.1371/journal.pone.0277344.g002
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behind these changes was missing. Our MR analysis demonstrated that TL is one key factor

that influences the observed values of these IDPs, and by extension brain aging.

Previous studies demonstrated that FA and ICVF decline with aging while axial, radial and

MD increase [15], although regional differences have been described [16, 17]. Based on these

findings and considering TL as a proxy for cellular aging, we would expect a positive correla-

tions between TL and FA/ICVF as well as negative correlations between TL and axial, radial

and mean diffusivity. However, the MR results support the opposite direction, indicating

decreasing FA and ICVF with increasing TL as well as increasing L1, L2, L3 and MD with

increasing TL. While the expected trend with increasing age for radial and mean diffusivity is

quite clear, there are brain regions, such as the midbrain white matter, which show decreases

rather than increases in axial diffusivity [16]. Indeed, increased axial diffusivity can be inter-

preted as a positive marker for white matter integrity since lowered axial diffusivity indicates

axon injury; by contrast, increased radial diffusivity has been linked to incomplete or damaged

myelination [16]. Furthermore, association between TL and diffusion indices that are reversed

compared to the effects of aging have been found in adolescent rats of the same age [18]: axial,

radial and mean diffusivity were positively correlated to measured TL. In addition, FA and L1

followed inconsistent pattern in different white matter tracts when brain age was estimated

[14]. Regarding the gray-white intensity contrast, previous studies demonstrated that it

decreases with ageing [19, 20]. On the other hand, gray-white intensity contrast was found to

be increased in people with schizophrenia and bipolar disorder compared to controls [21]

although both conditions are linked to accelerated brain ageing [22–24]. In addition, increased

grey-white matter contrast was observed in Autism Spectrum Disorders [25] which is also

linked to accelerated brain ageing [26].

Thus, overall, this MR analysis demonstrated that the association between TL and brain

IDPs is not simply the effect of increased cellular aging but there appears to be a more complex

relationship underneath.

The instrumental variables used in this MR analysis involved numerous genes, which have

been reported in the literature to be associated with regulating TL as well as being involved in

brain disorders. The SNP rs2695242 is located within the Poly (ADP-ribose)-polymerase1

(PARP1) gene. PARP1 is known to contribute largely to regulate telomere complex assembly

and activity [27]. Additionally, PARP1 was previously reported to play an essential role in

neurodegenerative diseases such as AD and Parkinson’s disease [28]. In particular, it was

observed that PARP1 is activated in aging and neurodegenerative diseases leading to autop-

hagy, neuroinflammation and mitochondrial dysfunction and dysregulation [28]. Further

instrumental variable (rs7705526) belong to the Telomerase Reverse Transcriptase (TERT)

gene. The main function of the TERT gene is to maintain telomeres by extending them with

the telomere repeat sequence [29]. TERT was found to have a protective role in brain aging

[30]. The authors demonstrated that neurodegenerative symptoms and brain aging were influ-

enced by shorter telomeres, and conversely, that increasing the level of TERT in the brain of

mice, and by extension the telomeres, could significantly revert signs of cognitive impairment.

Lastly, the SNP rs228595 belongs to the ataxia telangiectasia mutated (ATM) gene which con-

tributes telomere maintenance through telomere elongation and telomerase complex assembly

[31]. It was reported that in humans, ATM function decreased in neurons with increasing pro-

gression of AD [32]. Thus, overall, numerous genes that harbor the instrumental variables in

our MR analysis exhibit a direct role in maintaining telomeres, and have been, in previous

studies, linked to degenerative brain disorders. Our study extends this link to the intermediate

level of brain IDPs.

To the best of our knowledge, this is the first study to perform MR between TL and a wide

range brain IDPs extracted from different MRI modalities. The results support the causal link
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between TL and the brain’s micro and macro structure as represented by the IDPs, with a

strong emphasis on white-matter related measurements. The second finding of this study was

that the direction of TL-IDP associations did not replicate the effect direction of aging-associ-

ated changes. However, the diffusion indices are influenced by multiple aspects of the brain’s

micro and macro structure. For instance, despite showing a decrease in white matter integrity,

increased mean diffusivity was found to be associated with increased cell density and axonal

density [33]. Furthermore, current studies investigating brain age focus on linking changes in

brain IDPs with genetic variations and environment factors [34], but have not considered the

potentially driving role of TL. To summarize, our study showed that TL significantly influ-

enced 193 IDPs covering diffusion MRI metrics, cortical grey-white contrast regions, resting

state fMRI and morphometric measures making TL a valuable feature to be considered when

estimating and investigating brain age.

Materials and methods

TL GWAS

We selected 33 SNPs from different publicly available TL GWAS studies [1, 6]. The first 20

SNPs at 17 genomic loci were from the recent GWAS by Li et al. [6]. They conducted a large-

scale GWAS in up to 78,592 European individuals, under the ENGAGE project (European

Network for Genetic and Genomic Epidemiology). Polymerase Chain Reaction (PCR) tech-

nique was established to measure mean leukocyte TL quantitatively. The TL was presented as

the ratio of the telomere repeat number to a single-copy gene. Sex, age and cohort-specific fac-

tors including genetic principle components and center were used as covariates in the GWAS.

The selected 20 SNPs were significantly and independently associated with leukocyte TL.

However, six SNPs were substituted to their proxies as they were palindromic [8] (S2 Table for

details). For that purpose, LDlink was used to select suitable proxies [35].

The remaining 13 SNPs were used previously by Kuo et al. [1] to perform an MR analysis

between TL and aging-related diseases in 261,000 older participants in the United Kingdom

Biobank (UKB). The authors selected SNPs that were significantly (P< 5×10−8) associated

with TL from previous GWAS studies. The SNPs used in their study included GWAS results

from [7] using European population and six GWAS comprising 9,190 European participants

[36]. We added these 13 SNPs to the previously selected 20 SNPs. Ten SNPs were removed

because they were in high linkage disequilibrium (LD) with other SNPs (R2 > 0.02). LD was

calculated using GBR (British in England and Scotland) samples from Phase 3 (version 5) of

the 1,000 Genomes Project using Ensembl 2020 [37]. The final list for our study comprised 23

SNPs (listed in Table 2).

GWAS for brain IDPs

To represent brain IDPs, we used publicly available GWAS summary statistics of 3,935 brain

IDPs [39] (https://open.win.ox.ac.uk/ukbiobank/big40/). Briefly, the results are based on

33,000 subjects (22,000 in discovery and 11,000 in replication) from UKB and the IDPs cov-

ered six MRI modalities (T1-weighted MRI, T2-FLAIR, susceptibility-weighted MRI, diffusion

MRI, task and resting-state functional MRI). They conducted GWAS for recent UK ancestry

based on genetic principal component and self-reported ancestry. In addition, they excluded

related participants to consider only unrelated individuals. Furthermore, they included the X-

chromosome in their analysis. 597 variables were used as confounds including age, sex, head

motion, head size and genetic principal components. More details about the quality control

and the used data can be found in [39].
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Ethics statement

This study is based on Mendelian randomization using publicly available summary statistics of

genome wide association studies. Since these summary statistics are fully anonymised, no eth-

ics approval was required.

Statistical analysis

The TL GWAS included participants from different cohorts such EPIC-CVD and the EPI-

C-InterAct case-cohort study which was conducted in ten countries including UK [6]. On the

other hand, GWAS for brain IDPs was conducted on majority healthy [13] participants (at

recruitment time) only from UK. There is a low possibility of overlapping participants between

the TL GWAS and the brain IDP GWAS. We conducted MR analysis using the TwoSam-

pleMR [40] package in R. For each brain IDP, we first downloaded the GWAS results and

extracted the beta value, standard error, effect allele, other allele, effect allele frequency and p-

value for each SNP selected from TL GWAS studies (Table 2). Then we harmonised the data

from TL GWAS and the brain IDPs GWAS using the harmonise_data() function.

Finally, we performed MR between TL and brain IDPs. The (random effects) IVW method

was adopted as a primary analysis for SNP-specific casual estimate for brain IDPs. P-values

were corrected for multiple tests using the false discovery rate (FDR) method [41]. IDPs were

considered significant at PFDR < 0.05 (corresponding to P< 0.004409). Weighted median and

weighted mode approaches were also implemented as complementary MR analyses (requiring

uncorrected P< 0.05). To detect directional pleiotropy and heterogeneity of the genetic

Table 2. List of the SNPs used in the MR analysis. rsID, ID of the SNP; Chr, chromosome; Pos, position of the SNP in the genome; EA, effect allele; OA, other allele; EAF,

effect allele frequency; Beta, beta value of the SNP in GWAS; SE, standard error.

rsID Chr Pos Gene EA OA EAF Beta SE P-value Source

rs2695242 1 226594038 PARP1 G T 0.83 -0.039 0.0064 9.31E-11 [6]

rs11125529 2 54475866 ACYP2 A C 0.16 0.065 0.012 4.48E-08 [7]

rs6772228 3 58376019 PXK T A 0.76 0.041 0.014 3.91E-10 [38]

rs55749605 3 101232093 SENP7 A C 0.58 -0.037 0.007 2.45E-08 [6]

rs7643115 3 169512241 TERC A G 0.243 -0.0858 0.0057 6.42E-51 [6]

rs13137667 4 71774347 MOB1B C T 0.959 0.0765 0.0137 2.37E-08 [6]

rs7675998 4 164007820 NAF1 G A 0.8 0.048 0.012 4.35E-16 [7]

rs7705526 5 1285974 TERT A C 0.328 0.082 0.0058 4.82E-45 [6]

rs34991172 6 25480328 CARMIL1 G T 0.068 -0.0608 0.0105 6.03E-09 [6]

rs805297 6 31622606 PRRC2A A C 0.313 0.0345 0.0055 3.41E-10 [6]

rs59294613 7 124554267 POT1 A C 0.293 -0.0407 0.0055 1.12E-13 [6]

rs9419958 10 105675946 STN1 (OBFC1) C T 0.862 -0.0636 0.0071 4.77E-19 [6]

rs228595 11 108105593 ATM A G 0.417 -0.0285 0.005 1.39E-08 [6]

rs76891117 14 73399837 DCAF4 G A 0.1 0.0476 0.0084 1.64E-08 [6]

rs3785074 16 69406986 TERF2 G A 0.263 0.0351 0.0056 4.5E-10 [6]

rs62053580 16 74680074 RFWD3 G A 0.169 -0.0389 0.0071 3.96E-08 [6]

rs7194734 16 82199980 MPHOSPH6 T C 0.782 -0.0369 0.006 6.72E-10 [6]

rs3027234 17 8136092 CTC1 C T 0.83 0.103 0.012 2E-08 [36]

rs8105767 19 22215441 ZNF208 G A 0.289 0.0392 0.0054 5.21E-13 [6]

rs6028466 20 38129002 DHX35 A G 0.17 0.058 0.013 2.57E-08 [6, 36]

rs71325459 20 62268341 RTEL1 T C 0.015 -0.1397 0.0227 7.04E-10 [6]

rs75691080 20 62269750 STMN3 T C 0.091 -0.0671 0.0089 5.75E-14 [6]

rs73624724 20 62436398 ZBTB46 C T 0.129 0.0507 0.0074 6.08E-12 [6]

https://doi.org/10.1371/journal.pone.0277344.t002
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instruments, weighted median function [42] and MR-Egger [43] regression were performed.

The MR-Egger intercept test (P> 0.05), leave-one-SNP-out analyses and the modified

Cochran Q statistic methods were implemented as horizontal pleiotropy test and to assess the

quality of results. In addition, we used MR–Pleiotropy Residual Sum and Outlier (MR-

PRESSO) [9] to detect and correct pleiotropy which affected the overall results. Thus, for IDPs

surviving our filtering by IVW (PFDR < 0.05) and complementary analyses (P< 0.05), we

retained IDPs when they showed either no horizontal pleiotropy in the MR-PRESSO global

test (P> 0.05) or the IVW adjusted for SNP outliers detected by MR-PRESSO remained signif-

icant (PFDR < 0.05). For each brain IDP association with TL, we generated an html file report

using the command mr_report() in the package. The html file contains on all the results of

the methods mentioned earlier.

Supporting information

S1 Table. Full list of all MR results.

(XLSX)

S2 Table. Information on SNPs and their selected proxies for the MR analysis.

(DOCX)
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