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Abstract
This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and
tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is
replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high
torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and
steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include
guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The
current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial ten-
sion. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this
study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and
material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship
is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.
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Introduction

Steel-concrete composite construction can provide an
efficient structural solution by utilising the two compo-
nent materials to create a single efficient composite
section. The high tensile strength and ductility of steel
combined with the excellent compressive strength and
robustness of concrete results in an effective composite
cross-section, which can be used in a wide variety of
applications. Owing to these credentials, composite
construction has experienced a significant growth in its
market share in recent decades (Kirkland, 2014;
Vasdravellis et al., 2012, 2015). Composite members
come in a variety of different arrangements, including
concrete filled steel tubes (CFST). CFST utilise the
beneficial qualities of the constituent materials as the
concrete core prevents local buckling of the steel sec-
tion and increases the stability and strength of the
member as a system whilst the steel hollow section pro-
vides confining pressure to the concrete and forces the
concrete to behave under a triaxial stress state.

Modern-day composite construction regularly com-
prises heavily-loaded structural components such as
bridge approaches, primary beams in multi-storey car

parks and various elements of other large structures. A
relatively new solution for these scenarios is a concrete-
filled tubular flange girder (CFTFG) which are formed
by replacing the top flange plate of a typical I-shaped
steel beam with a tubular section which can then be
filled with concrete. Compared with other solutions,
CFTFGs offer several advantages, including: (1) the
concrete-filled tubular flange increases the stiffness and
strength of the cross-section in bending compared with
a flat-plate flange with the same amount of steel; (2)
the web depth is reduced compared with a conven-
tional I-girder of similar total depth, which reduces the
web slenderness effects; and (3) the concrete-filled tub-
ular flange increases the torsional stiffness, and
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therefore increases the lateral torsional buckling (LTB)
resistance of the girder (Kim and Sause, 2008).

Before the development of CFTFGs, a number of
different types of beam with hollow tubular flanges
were proposed. The structural efficiency of hollow
flange girders is greatly enhanced by the torsionally
rigid closed compression flange and this is coupled
with economic fabrication processes (Kim and Sause,
2008). Hollow flange girders were mainly developed
for high-loading scenarios which could not be sup-
ported by universal hot-rolled sections or built-up steel
girders. Owing to the efficiency of composite construc-
tion, and the interesting and promising development
of hollow tubular flange plate girders, it was a natural
progression to fill the top hollow tube with concrete to
create a concrete-filled tubular flange girder (CFTFG).
Researchers at Lehigh University in the United States
conducted an experimental, numerical and analytical
study into these members and assessed the influence of
boundary conditions and stiffener arrangement on the
structural response (Kim and Sause, 2008). The result-
ing analytical model was based on a transformed sec-
tion approach and a good agreement was shown with
the experimental and numerical results.

Beams in structural frames can often be exposed to
combined actions, for example, continuous or semi-
continuous structures, where members are under either
positive (sagging) or negative (hogging) bending
moments in combination with axial forces. Uy and
Tuem (2006) conducted an investigation into the beha-
viour of traditional composite beams under the com-
bined effect of axial tension and bending, and
presented a full moment–axial load interaction dia-
gram. The effect that combined axial load and bending
moment has on the ultimate capacity of CFTFGs
has not yet been covered in a comprehensive way
either in the research literature or in codes of practice.
Eurocode 4 (EN 1994-1-1, 2004), Australian code
AS2327 (2004) and the American AISC standard
(2005) provide detailed guidance for the design of com-
posite columns under combined actions, but do not
address the effects of combined loading for CFTFGs.

Previous studies have investigated the bending resis-
tance of CFTFGs and a series of analytical expressions
for predicting the location of the plastic neutral axis
and the ultimate bending capacity were proposed (Al-
Dujele and Cashell, 2018, 2019; Al-Dujele et al., 2018a,
2018b). However, the behaviour of CFTFGs under
combined loading has not been previously studied.
This is a scenario which occurs frequently in practice
such as in continuous or semi-continuous members or,
in extreme cases, if a support is removed and the beams
are required to withstand high tensile loads to avoid
progressive collapse.

In this context, the current paper presents a numerical
study into the behaviour of CFTFGs under the combined
effects of positive bending and axial tension. A finite ele-
ment (FE) model is developed which is capable of captur-
ing both the geometric and material nonlinearities of the
behaviour. The analysis is employed to derive and pro-
pose a simplified design equation is for CFTFGs sub-
jected to positive bending and axial tension.

Development of the numerical model

A finite element (FE) model was developed using the
commercial software package ABAQUS (2011), which
is capable of achieving numerical convergence for
complex structural systems such as CFTFGs despite
the geometric and material nonlinearities of the beha-
viour. This model is a further advancement of the pre-
vious version which was employed to assess CFTFGs
under bending (Al-Dujele and Cashell, 2018) and vali-
dated against available test data (Wang et al., 2008;
Al-Dujele et al., 2018a).

FE modelling of CFTFGs

General. The model is developed based on the testing
carried out by Wang et al. (2008). Accordingly, the
simulated girder is 0.5 m in height and 4.3 m in length,
as shown in Figure 1, and is subjected to two concen-
trated loads (P) in the vertical direction. It is made
using Q235 steel and the concrete infill has a compres-
sive strength of 38.6 MPa. The load is applied incre-
mentally and the nonlinear geometry parameter
(*NLGEOM, in the ABAQUS library) is included to
allow for changes in the geometry under load. There
are four stiffeners across the span, including one at
each of the supports and also at the two loading
points, to prevent local instability of the web at these
locations. The steel beam and stiffeners are both mod-
elled using the four-noded, three-dimensional shell ele-
ments with reduced integration (S4R in the ABAQUS
library) whereas the concrete infill is represented using
the C3D8R solid elements in the ABAQUS library. A
tie contact is defined between the surface of the steel
section and the edges of the stiffeners. Following a
mesh sensitivity study, an element size of 30 mm 3 30
mm is employed as this provides the optimum combi-
nation of accuracy and computational efficiency.

The amplitude of the global imperfection is taken as
L/1000 where L is the member length, in accordance
with the permitted out-of-straightness tolerance in EN
1090-2 (2008). It is noteworthy that the residual stres-
ses are neglected in the FE simulation, in accordance
with the approach of other researchers (Dong and
Sause, 2009), as the beam is relatively short and
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residual stresses are not expected to be very influential
to the overall behaviour.

Material modelling. In terms of the concrete material
response, typical uniaxial stress–strain curves for con-
fined and unconfined concrete are shown in Figure 2,
where fc and ec are the compressive strength and the
corresponding strain of unconfined concrete, respec-
tively, and fcc and ecc are the equivalent values for con-
fined concrete. The nonlinear stress–strain response
for confined concrete proposed by Hu et al. (2003) is
adopted in the numerical simulations. The expressions
proposed by Mander et al. (1988) are employed for
relating the stress and strain properties of confined
and unconfined concrete, and are given in equations
(1) and (2), respectively:

fcc = fc +k1fl ð1Þ

ecc = ec 1+k2
fl

fc

� �
ð2Þ

In these expressions, values of 4.1 and 20.5 are used for
k1 and k2, respectively, based on the study of Richart
et al. (1928). The term ‘fl’ refers to the confining pres-
sure in the concrete, which is determined in the current
study based on the empirical relationships presented in
equations (3) and (4), proposed by Hu et al. (2003):

fl=fy = 0:043646� 0:000832 Dtube=ttð Þ for 21:7
łDtube=tt ł 47

ð3Þ

fl=fy = 0:006241� 0:000357 Dtube=ttð Þ for 47
łDtube=tt ł 150

ð4Þ

The stress–strain curve of confined concrete, as pre-
sented in Figure 2, consists of three parts. Initially, it is
assumed that the confined concrete responds linearly,
obeying Hooke’s law and this continues up to around

40% of compressive strength in the ascending branch
(EN 1992-1-1, 2004; Goode and Lam, 2011). During
this phase of the response, the behaviour of confined
and unconfined concrete is identical, as shown in
Figure 2. The initial Young’s modulus Ecc (in GPa)
can be estimated with reasonable accuracy from the
empirical formulation provided in Eurocode 2 (2004)
given in equation (5):

Ecc = 223 fc=10ð Þ0:3 ð5Þ

The second part of the stress–strain curve defines the
nonlinear behaviour before the concrete reaches its
maximum strength, starting from the proportional
limit (0.4fc) to the maximum confined concrete strength
fcc. The relationship between concrete stress and strain
in this part of the response was proposed by Saenz
(1965), and is as described in equations (6) to (8):

sc=
Ecce

1+ R+RE � 2ð Þ e
ecc

� �
� 2R� 1ð Þ e

ecc

� �2

+R e
ecc

� �3

ð6Þ

Figure 2. Typical stress–strain curve of confined and
unconfined concrete (reproduced from Hu et al., 2003).

Figure 1. Schematic of the simply supported beam (all units in mm).

Al-Dujele and Cashell 3



Al-Dujele and Cashell 2515

where:

RE =
Eccecc
fcc

ð7Þ

and

R=
RE Rs � 1ð Þ
Re � 1ð Þ2

� 1

Re
ð8Þ

In these expressions, Re and Rs are both assumed to
be 4.0, in accordance with the recommendations given
elsewhere by Hu and Schnobrich (1989).

The third and final part of the curve is the descend-
ing branch which begins at the maximum confined
concrete strength fcc and decreases linearly until a
stress of fcu is reached at a corresponding strain of ecu,
which are determined using equations (9) and (10),
respectively:

fc, u = rk3fcc ð9Þ

ec, u =11ecc ð10Þ

In these expressions, the parameter k3 for concrete-
filled circular steel tubes is calculated using equation

(11), based on the recommendations presented by Hu
et al. (2003):

k3 = 1 for 21:7łDtube=tt ł 40

k3 = 0:0000339
Dtube

tt

� �2

� 0:010085
Dtube

tt

� �

+ 1:3491 for 40łDtube=tt ł 150

ð11Þ

where Dtube and tt, represent the tube outside diameter
and tube thickness, respectively. As a result of the
experimental studies carried out by Giakoumelis and
Lam (2004), it was suggested that the value of the para-
meter r in equation (9) may be taken as 1.0 for concrete
with cube strength of 30 MPa and 0.5 for concrete with
a cube strength of 100 MPa and linear interpolation
can be used for intermediate values (Ellobody and
Young, 2006; Ellobody et al., 2006). Table 1 presents
the compressive strength fc and Poisson’s ratio of the
concrete, as determined during the testing programme.

The steel properties incorporated in the model are
presented in Table 1 including the yield strength (fy),
ultimate strength (fu), Young’s modulus of steel (Es)
and Poisson’s ratio given by Ding et al. (2009). An
idealised tri-linear stress–strain relationship is assumed
to model the steel material in the FE model, as shown
in Figure 3. The strain at the onset of strain hardening
est and the strain at the ultimate tensile stress eu are
taken as 0.025 and 0.2, respectively (Ban and
Bradford, 2013). In order to consider the effects of the
decreased section during the tensile test, the stress–
train curves included in the FE model are converted
into true stress–strain relationships. The engineering
stress–strain (seng 2 eeng) curve is converted to true
stress–strain (strue 2 etrue) curve for the ABAQUS
model using equations (12) and (13), respectively.

etrue = ln 1+ eeng
� �

ð12Þ

strue =seng 1+ eeng
� �

ð13Þ

Support and loading conditions

The geometry and loading conditions are symmetrical
about the mid-span and therefore only half the girder
length is explicitly modelled, and appropriate

Table 1. Details of the material properties.

Steel (Ding et al., 2009) Concrete

Yield stress,
fy (N/mm2)

Ultimate stress,
fu (N/mm2)

Young’s modulus,
Es (N/mm2)

Poisson’s
ratio

Compressive cylinder
strength of concrete,
fc (MPa)

Poisson’s ratio

287.9 430.2 195,000 0.28 38.6 0.20

Figure 3. Stress–strain curve of steel beam (reproduced from
Ban and Bradford, 2013).
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boundary conditions are applied at the plane of sym-
metry. The ends of the beam are simply supported, as
was the case in the experiments that are being used for
validation (Wang et al., 2008). Accordingly, simply
supported boundary conditions are applied to one
the end of the modelled girder whilst the other end
has symmetrical boundary conditions, as shown in
Figure 4, in which ux, uy, uz, ux, uy and uz are the dis-
placements and the rotations about the global x, y and
z axes, respectively. The y–z plane is considered to be
in-plane whilst the x–z and x–y planes are out-of-
plane. The end of the beam is modelled as a rigid body
and the whole depth of the cross-section is subjected to
identical tensile stresses. The tensile load is applied at a
reference point which is selected in the current work to
coincide with the centre of gravity of the steel section.

Failure criteria

In order to determine when the CFTFG has failed, a
number of failure criteria are defined and these are
closely monitored during simulation. The possible fail-
ure modes of a CFTFG subjected to positive bending
and axial tension are as follows:

Local buckling: a tubular flange should not buckle
locally before yielding in compression. Therefore, the
local buckling requirement provided by the AASHTO
(1998) Design Specifications for circular tube compres-
sion members has been checked for all specimens
examined in this study, in accordance to:

Dtube

tt
ł 2:8

ffiffiffiffiffi
Es

fy

s
ð14Þ

Equation (14) was originally developed based on an
unfilled tube although the AASHTO specification
recommends using the expression for concrete-filled
tubes also.

� Excessive yielding of the steel beam: the spread
of yielding from the bottom surface of the gir-
der, at the mid-span. A tensile yielding strain es
of 0.2 is employed in the current study as the
limiting acceptable value. This failure mode is
clearly dependent on the level of vertical and
axial loading that is applied.

� Deflection limit: the maximum level of mid-span
deflection that can be tolerated in the girder,
depending on the application. Here, it is suggested
that the maximum acceptable limit of allowable
deflection is L/120, where L is the member length,
in accordance with AISC standard (2005).

� Concrete damage: concrete usually fails either
by tensile cracking or compressive crushing, and
both of these are considered in the concrete
material model, as discussed before.

Solution method

The implicit dynamic analysis method in ABAQUS
(2011) with adaptive stabilisation is employed to simu-
late the nonlinear response of the CFTFG. Finite ele-
ment analysis with concrete elements in tension may
result in convergence problems. In order to avoid
these, the discontinuous analysis option is also
employed in the general solution control options of the
programme. The applied moment acting on the girder
comprises two components, (1) the direct moment due
to the applied vertical load and (2) the second-order
moment created by the eccentricity of the applied axial
load relative to the plastic centroid of the section.
Thus, the moment equilibrium equation is given as:

M=Pa+Ne ð15Þ

where P is the vertical force applied on the beam, a is
the distance between the simple support and the verti-
cal force, N is the horizontal axial force applied placed

Figure 4. Support and loading conditions of FE model for the CFTFG.
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through a reference point in the steel web and e is the
eccentricity between the location of the axial load and
the plastic neutral axis (PNA) of the CFTFG.

Validation of the FE model

To assess the accuracy of the load-displacement
response generated by the FE model, the test con-
ducted by Wang et al. (2008) was simulated as
described in previous sections. This is the only test
which has been done on concrete filled tubular flange
girders with a circular top flange, to date, in the public
domain. The load-displacement response of the
CFTFG from both the FE model and the experimental
programme is presented in Figure 5. The ultimate load
and ultimate moment obtained from the FE analyses
(Pu,FE and Mu,FE, respectively) are compared with the
test ultimate load and ultimate moment (Pu,Exp and
Mu,Exp, respectively) in Table 2. Pu,Exp is determined
as the maximum value in the test, whilst Pu,FE is deter-
mined as the value at which the slope of the load ver-
sus axial displacement response reaches 1% of its
initial stiffness, as proposed by dos Santos et al.
(2018).

In terms of the general behaviour, and with refer-
ence to Figure 5, it is observed that the response pre-
dicted by the FE model is divided into four phases.
Firstly, below a load of around 400 kN, there is a lin-
ear relationship between load and displacement in the
elastic phase, and the response is very well predicted
by the model in this range. Secondly, when the
load reaches 500–600 kN, the behaviour becomes

nonlinear. With the expansion of the yielded region
from the bottom flange to the middle of the steel sec-
tion, the flexural rigidity decreases and the stress redis-
tributes. In this elastic-plastic stage, there are some
disparities between the experimental and numerical
curves and the model somewhat over-predicts the
capacity of the beam. This difference is likely to be due
to a combination of factors which affect deformations,
such as the idealisation of the material nonlinearity in
the FE model as well as the likelihood of initial imper-
fections in the real structure. In the third phase, when
loading exceeds 600 kN, the displacement increases
rapidly as plasticity spreads in the middle region of the
beam. Finally, when the load reaches around 720 kN,
the response plateaus as the displacement continues to
increase with very little change in the load. The failure
mode of FE model as well as experimental is combined
between steel yielding and torsional buckling.

It is clear that the FE model is capable of providing
a good representation of the general response and also
offers an excellent prediction of the ultimate load of
the CFTFG. Overall, the simulated load-deformation
curves reflect the experimental behaviour very well and
it is concluded that the FE model is capable of predict-
ing the behaviour and strength of that member well
and is suitable for conducting further parametric stud-
ies on CFTFGs under positive bending and axial
tension.

Behaviour of CFTFGs under combined
loading

General

In this section, the FE model is used to study the inter-
action of bending moment and axial tension for
CFTFGs with different properties. In order to specify
a reliable moment–axial force (M–N) interaction dia-
gram, a parametric study is conducted using a series of
beams with different material and geometric design
parameters. The beams studied are all 4300 mm in
length (L) and are transversally stiffened with double-
sided flat plate stiffeners which are 12 mm in thickness
(tstiffener) and located at the support and loading loca-
tions. A total of 44 different arrangements are consid-
ered in this study, as presented in Tables 3 and 4. For
clarity, in the current section, the results are presented
in two general categories: (i) members with different

Table 2. Comparisons of experimental and numerical ultimate strengths (Al-Dujele et al., 2018a).

Pu,Exp (kN) Mu,Exp (kNm) Pu,FE (kN) Mu,FE (kNm) Mu,FE/Mu,Exp PNA location, y1 (mm)

716.0 537.0 720.2 540.2 1.006 155.9

Figure 5. Load versus deflection relationship from the FE
analysis and experimental results.
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tube diameters (Dtube) (Table 3) and (ii) beams with
various tube (tt) and web thicknesses (tw) (Table 4). It
should be noted that CFTFG groups G1–G9 contain
concrete infill with a compressive strength of
38.6 MPa. Also included in the tables are the ultimate
moment of the girders Mu which is defined later, as
well as the value corresponding to 40% of the ultimate
axial strength N40)for each girder with the correspond-
ing moment which acted on the member in that condi-
tion M40. These are included to provide a reasonable
analysis of the behaviour at this level of combined
loading, which is important later in the development
and proposal of design expressions.

In the specimens listed in Table 3, models with five dif-
ferent tube diameters (Dtube = 180, 200, 210, 219 and
300 mm) are considered. For each model, two web
heights (hw = 267 and 500 mm) and two flange thick-
nesses (tf = 14 and 28 mm) are investigated. The tube
and web thicknesses are fixed at 8 mm and 6 mm, respec-
tively. For the specimens listed in Table 4, models with
three different tube thicknesses (tt = 5, 8 and 10 mm)
are considered and for each model, two different web
heights (hw = 267 and 500 mm), two different web thick-
nesses (tw = 6 and 10 mm) and two flange thicknesses
(tf = 14 and 28 mm) are studied. The tube diameter is
fixed at 219 mm for all of the cases in Table 4.

All of the beams included in the parametric study
are subjected to positive (sagging) bending through the
application of vertical loads in combination with axial
tension. The vertical loads P are kept constant whilst
various levels of axial tension are applied, ranging from
10% to 80% of the ultimate axial strength Nu of the
steel section. This is a similar approach to that taken by
other researchers (e.g. Vasdravellis et al., 2012, 2015).

The analysis continues until one of the failure cri-
teria described in Section 2.3 is satisfied or the ultimate
load level is reached. The data in this figure clearly
demonstrates that increasing levels of axial load have
the effect of reducing the capacity of the girder to carry
vertical loads. The axial capacities of the CFTFGs
examined herein are presented in Tables 3 and 4 and
these values are defined with reasonable accuracy as
the axial capacity of the steel section (Nu), which is the
sum of the tensile strengths of the loaded steel areas:

Nu =ASfy ð16Þ

where As and fy are the cross-sectional area and yield
strength of the steel, respectively.

Interaction curves

The moment–axial load interaction curves generated
from the parametric study are presented in Figure 6. In
general, all of the CFTFGs behaved well and there was

no sudden collapse of any structural component during
the simulations. A general conclusion is that the inter-
action diagram for all beams follows a similar pattern
and the moment capacity of each is reduced with an
increase in axial tensile force acting in the steel beam
section. Figure 6(a) to (d) presents the moment versus
axial load interaction diagrams obtained from the
ABAQUS model for girders with different tube dia-
meters Dtube (as in Table 3). For ease of visualisation
and analysis, the results are grouped into four different
images. Girders with a web height hw of 267 mm and
different tube sizes Dtube are plotted in Figure 6(a) and
(b) for flange thicknesses of 14 and 28 mm, respec-
tively, whilst the equivalent images for members with a
web height of 500 mm are presented in Figure 6(c) and
(d). With reference to these figures, the following
observations are made:

� Figure 6(a) shows that for a given level of
applied axial load (e.g. 40% of the ultimate
axial strength N40), the reduction in bending
moment carried by each girder is 83.4%, 80.9%,
79.5%, 78.1% and 68.6% for GR1, GR5, GR9,
GR13 and GR17, respectively, compared with
their ultimate moment capacity Mu (the value
that can be achieved when no axial load is
applied). Similar trends are shown in Figure
6(b) to (d).

� It is clear that the CFTFGs with a relatively
small tubular flange Dtube experience a greater
reduction in their moment-carrying capability
as a result of increasing the applied axial com-
pared with member with a larger diameter top
tube. This is attributed to the concrete contribu-
tion being less significant for the sections with a
relatively small diameter tubular flange.

� CFTFGs with relatively thin bottom flanges tf
experience a more significant reduction in
moment-carrying capability, relative to their
ultimate moment capacity, when axial tension is
also applied to the section. The reduction in
bending moment carried by each girder is
83.4% and 88.0% for GR1 and GR2, respec-
tively, compared with their ultimate moment
capacity Mu. As the amount of axial load intro-
duced in the steel beam increases, the moment
resistance decreases considerably, as shown in
the percentage ratio values presented in Table 3.

� The influence of web height is examined by com-
paring GR1 in Figure 6(a) and GR3 in Figure
6(c) which have identical properties apart from
hw which is 267 and 500 mm, respectively. The
reduction in moment for GR1, relative to its
moment capacity without any axial load, is just

Al-Dujele and Cashell 9
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83.4% whereas the equivalent value for GR3 is
about 75.5%.

� With reference to Table 3, a relative increase
in tube thickness tt leads to a reduction of the
of the moment carrying capacity. For
instance, as can be seen in the M40,FE/Mu

ratios given in Table 4, the moment capacity
is reduced by 86.0%, 84.2% and 75.9% for
GR22, GR24 and GR26, respectively at 40%
of ultimate axial load. On the other hand, the
M40,FE/Mu ratios increase when the web
thickness increases. The moment is reduced
by 73.8% and 83.2% for GR33 and GR39,
respectively.

Figure 7 presents the moment–axial load interaction
curves for the specimens given in Table 4. All of the
curves within each graph present results from speci-
mens with the same compression flange diameter
(219 mm) and varying other dimensions. The key
observations from these curves include:

� The beams with smaller web heights demon-
strate lower moment and axial force capacity,
as expected.

� An increase in tt leads to a reduction in the moment.
For instance, as can be seen in Table 4, the moment
is 425.6 kN�m when tt = 8 mm for GR23 and the
moment reduces to about 390.1 kN�m when tt =
10 mm for GR25 at 40% of ultimate axial load.
On the other hand, the moment increase when the
tw increases.

� An increase in tf leads to an increase of the
moment-carrying capability.

� The interaction diagrams follow the same trend
for girders with identical values of hw.

From the interaction diagrams and the data presented
in Tables 3 and 4 it can be concluded that the flexural
capacity of CFTFGs under combined tension and
bending moments is not affected when the level of the
axial force is relatively low (i.e. around 20% of Nu).
Nevertheless, a general conclusion is that the moment
capacity is reduced with the presence of applied axial
tensile force acting on the steel section.

Influence of yield strength of steel on the behaviour

In this section, the CFTFG GR13 (as described in
Table 3) is modelled using different grades of structural

(a) (b)

(c) (d)

Figure 6. Moment -axial force interaction diagram for CFTFGs with values of Dtube between 180 mm and 300 mm and (a) hw =
267 mm and tf = 14 mm, (b) hw = 267 mm and tf = 28 mm, (c) hw=500 mm and tf = 14 mm, and (d) hw = 500 mm and tf = 28 mm.

10 Advances in Structural Engineering 00(0)
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steel, ranging from S235 to S690, to assess the influ-
ence of this parameter on the behaviour. The details
and results from this parametric study are presented in
Table 5. Figure 8 presents (a) the moment–axial force
interaction diagrams for these beams and (b) the pro-
posed design equation for these CFTFGs under com-
bined bending moment and axial tension. In Figure
8(a), it is notable that all the predicted responses are of

a similar shape. When the applied axial load is 40% of
the ultimate axial capacity, an increase in the yield
strength of the steel section leads to a reduction in the
combined moment compared with ultimate moment.
For example, when the steel section is made from S235
steel, M40,FE = 290.51 kN�m while Mu = 442.7 kN�m,
giving a ratio of M40,FE to Mu of 65.6%. On the other
hand, if the same CFTFG is made using S355 steel, these

Figure 7. Moment -axial force interaction diagrams for CFTFGs with Dtube= 219 mm and (a) tf=14 mm and tt=5 mm, (b) tf=28 mm
and tt=5 mm, (c) tf=14 mm and tt=8 mm, (d) tf=28 mm and tt=8 mm, (e) tf=14 mm and tt=10 mm, and (d) tf=28 mm and tt=10 mm.
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values change to M40,FE = 462.50 kN�m and
Mu = 637.9 kN�m, with the corresponding ratio being
72.5%. So, the moment which can be carried by the sec-
tion when the applied axial load is 40% of Nu increases
when a higher grade of steel is used. In addition as can
see by theM40,FE/Mu ratio in Table 5, the reduction ratio
of moment relative to Mu increase with increase the steel
yielding 65.62%, 72.50%, 77.62% and 80.39% for S235,
S355, S460 and S690, respectively. As expected, the axial
load and bending moment capacity increases in accor-
dance with the yield strength.

Design of CFTFGs under combined
loading

In this section, a simplified analytical approach for
assessing the capacity of CFTFGs under combined
loading is presented, based on the observations from
the FE simulations as well as a fundamental review of
the behaviour. Firstly, it is necessary to assess the
cross-sectional behaviour for a section under pure

bending, before extending the study to allow for axial
load also.

Moment capacity of a CFTFG Mu

The ultimate bending capacity Mu of a CFTFG in
pure flexure can be derived based on the equilibrium
of internal forces in the cross-section. Previously, a
series of analytical expressions for predicting the loca-
tion of the PNA (y1 from the top of the girder) and
Mu was presented by Al-Dujele et al. (2018a). In this
scenario, when y1 . Dtube and therefore the PNA
passes through the steel web, as shown in Figure 9, the
moment capacity is determined as:

Mu = (Fc1 +F1c2 +F2c2 +Fc3)3 y+Fc3

3
2

3
y1 �Dtubeð Þ+F1t1 3

2

3
y2 +F2t1 3

h� y1 � y2 � tfð Þ
2

+Ft2 3 h� y1 �
tf
2

� � ð17Þ

The internal axial force for each component of the
section can be computed as shown in Table 6. On

Table 5. Details and FE strengths of GR13 used to investigate the effect of fy.

Beam fy (N/mm2) Nu (kN) Mu (Al-Dujele et al.,
2018a) (kNm)

N40 (kN) M40,FE (kNm) (
M40,FE

Mu
) % M40,des

(kNm)

GR13 235 22115.6 442.7 2846.2 290.5 65.6 336.5
355 23195.8 637.9 21278.3 462.5 72.5 484.9
460 24141.1 803.0 21656.4 623.3 77.6 610.4
690 26211.6 1162.4 22484.6 934.4 80.4 883.4

Table 6. Internal force components in case the PNA exists at the web (Al-Dujele et al., 2018a).

Internal axial force component Force equation

Compressive force in the
concrete infill (Fc1)

2
R y1�tt
y1�Dtube + tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3scdy

Compressive force in the
steel tube (F1c2)

2
R y1�tt
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3fydy+

R y1
y1�tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
3fydy

� �

Compressive force in the
steel tube (F2c2)

2
R y2
y1�Dtube + tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3fsdy+

R y1�Dtube + tt
y1�Dtube

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
3fsdy

� �

Compressive force in
the region of the
web above PNA (Fc3)

1
2 tw y1 � Dtubeð Þ3 fy y1�Dtubeð Þ

y2

Tensile force at web below
PNA (F1t1)

1
2 tw3y23fy

Tensile force at web below
PNA (F2t1)

tw3 h� y1 � y2 � tfð Þ3fy

Tensile force at lower
flange (Ft2)

bf3tf3fy
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the other hand, when y1 \ Dtube, and the PNA passes
the concrete filled tube as shown in Figure 10, Mu can
found as follows:

Mu = (Fc1 +F1c2 +F2c2 +F1t1 +Ft2)3 y+F2t1

3
h� y1 � y2 � tfð Þ

2
+ y2ð Þ

� �
+Ft3

3 h� y1 �
tf
2

� �
ð18Þ

The internal axial force for each component of the sec-
tion can be calculated from the equations presented in
Table 7.

In these expressions, fs and es are the stress and
strain in the steel section, respectively. The coordinate
(x0, y0) is the centre of the circular tube where x0 = 0
and y0 = y1 2 R, and R and r are the outer and inner
radius of the steel tube, respectively. The term y2,
which is the vertical height of the triangular stress
block, is determined by y2 = ey=ecc y1 � ttð Þ. It is note-
worthy that in the equations given in Tables 6 and 7,
F1c2 and F2c2 represent the rectangular and triangular
stress blocks, respectively, in the compression region
of the tubular flange. In addition, F1t1 and F2t1 refer
to the triangular and rectangular stress blocks, respec-
tively, in the tension region of the web, below the
PNA. sc is the stress in the confined concrete obtained

(a) (b)

Figure 8. Model GR13: (a) moment–axial force interaction diagram with different yielding strength of steel and (b) proposed design
equation for CFTFGs under combined action with different yielding strength of steel.

Figure 9. Distributions of strain and stress for Case 1, where the PNA is in the web of the steel section (y1 . Dtube).

Al-Dujele and Cashell 13
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using equation (6). Mu for all models included in the
parametric study are given in Tables 3 and 4.

CFTFGs under combined loading

Based on the FE results and the parametric study, a
simple design model for CFTFGs under combined
sagging moments and axial tension is proposed in this

section. For this purpose, the interaction data points
presented before are given in non-dimensional form in
Figure 11 for each of the CFTFGs included in the
parametric study. In these figures, the axial force and
bending moment acting on the beams simultaneously
are normalised by the axial capacity (Nu) and moment
capacity (Mu), respectively. Using the data from the
parametric study, it is proposed that for the design of

Table 7. Internal force components in case the PNA passes the concrete filled tube (Al-Dujele et al., 2018a).

Internal axial force component Force equation

Compressive force
in the infilled
concrete above
the PNA (Fc1)

2
R y1�tt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3scdy

Compressive force in
the steel tube
above the PNA (F1c2)

23
R y1�tt
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3fydy+

R y1
y1�tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
3fydy

� �

Compressive force in the
steel tube (F2c2)

23
R y2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y� y0ð Þ2

q
3fsdy

� �

Tensile force at web below
PNA (F1t1)

R y1�Dtube

�y2
tw3fsdy

Tensile force at web below
PNA (F2t1)

h� y1 � y2 � tfð Þ3tw3fy

Tensile force in the
steel tube
below the PNA (Ft2)

23
R 0
�(Dtube�tt�y1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y� y0ð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� y�y0ð Þ2

q
3fsdy+

R�(Dtube�tt�y1)
�(Dtube�y1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � y�y0ð Þ2

q
3fsdy

� �

Tension force
at lower
flange (Ft3)

bf3tf3fy

Figure 10. Distributions of strain and stress for Case 2, where the PNA is in the tubular flange section (y1 \ Dtube).
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CFTFGs subjected to combined axial load and bend-
ing moment, the following interaction expression
should be satisfied:

N=NuforMł 0:4Mu

M

Mu
+ 0:6

N

Nu
ł 1:0forM.0:4Mu

ð19Þ

This proposed design expression is the same for all
beams included in the current study and is presented in
Figure 11, denoted as ‘Design’. According to equation
(19), the moment capacity of a CFTFG reduces line-
arly from 100% of the ultimate value when there is no
axial load present to around 40% ofMu when the axial
load applied equals Nu. It is noteworthy however, that
in practice it is very rare for a beam to be subjected to
tensile axial forces greater than the 30%–40% of its
axial capacity (Kirkland, 2014; Vasdravellis et al.,
2012, 2015). Nevertheless, this study has considered
the full range of axial force possibilities in order to
complete the interaction diagram and gain a complete
understanding of the behaviour of CFTFGs under
combined loading.

Tables 3 and 4 present a comparison between the
bending strength predicted by the FEM (M40,FEM) and
the design moment capacity (M40,des) calculated by
equation (19) for a selection of girders, as well as the
associated error. A positive value for the error indi-
cates an unconservative prediction. The results are not
presented for all girders in the study for brevity but
similar analaysis has been completed for all of the
CFTFGs presented in Tables 3 and 4. Based on the
images presented in Figure 11 and the data in Tables 3
and 4, it is clear that the proposed equation provides a
conservative estimation of the interaction behaviour of
the majority of CFTFGs. The error is small when the
level of axial load is relatively low (i.e. up to and
including 60% of the axial capacity, which is the most
realistic scenario for CFTFGs under combined load-
ing) and becomes slightly greater as the axial load
increases to 80% of Nu.

Conclusions and further research

This paper presents the results of an extensive numeri-
cal investigation that is carried out to study the effects
of axial tension applied in combination with sagging
moment’s for CFTFGs. A parametric study is con-
ducted, examining several key parameters including
the tube diameter size (Dtube), the thickness (tt) of the
compression flanges, the bottom tubular flange depth
(tf), the web plate slenderness and the yield strength of
steel. It is shown that the moment capacity of a

CFTFG is reduced under the presence of an axial ten-
sile force acting in the steel beam section but this is not
a major issue within the realistic range of applied axial
loads (up to 40% of Nu). In addition, the analysis
demonstrates that the axial tensile force that the
CFTFG section can sustain is limited and the design
axial tensile resistance should be taken equal to the
plastic axial capacity of the steel beam alone. It is
shown that the bending moment capacity of a CFTFG
deteriorates under the simultaneous action of a rela-
tively high axial tensile force with bending moments.
However, the reduction is less or even negligible under
a low to moderate axial force in most practical cases.
Based on the absence of specific design formulae for

Figure 11. Results from the parametric study and proposed
design equation.
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CFTFGs under combined loading, a design model is
proposed and shown to provide accurate capacity pre-
dictions. The work presented in this paper is part of a
larger programme of research, in which different
shapes of CFTFGs are studied under various other
load scenarios, including extreme conditions.
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