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Jim E. Griffin*, Laurenţiu C. Hinoveanu and James G. Hopker

Bayesian modelling of elite sporting performance
with large databases
https://doi.org/10.1515/jqas-2021-0112
Received December 21, 2021; accepted November 18, 2022;
published online December 8, 2022

Abstract: The availability of large databases of athletic
performances offers the opportunity to understand age-
related performance progression and to benchmark indi-
vidual performance against the World’s best. We build
a flexible Bayesian model of individual performance
progression whilst allowing for confounders, such as
atmospheric conditions, and can be fitted using Markov
chain Monte Carlo. We show how the model can be
used to understand performance progression and the
age of peak performance in both individuals and the
population. We apply the model to both women and men
in 100 m sprinting and weightlifting. In both disciplines,
we find that age-related performance is skewed, that the
average population performance trajectories of women
and men are quite different, and that age of peak per-
formance is substantially different between women and
men. We also find that there is substantial variability in
individual performance trajectories and the age of peak
performance.

Keywords: Bayesian variable selection; longitudinal mod-
els; Markov chain Monte Carlo; performance monitoring;
skew t distribution.

1 Introduction
The availability of large databases of elite athletic per-
formances makes it possible to model age-related perfor-
mance progression and to benchmark this progression
against the World’s best athletes. This information has
manyapplications suchas systematically identifying those
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Laurenţiu C. Hinoveanu and James G. Hopker, School of Sport and
Exercise Sciences, University of Kent, Canterbury, UK,
E-mail: lh460@kent.ac.uk (L.C. Hinoveanu), J.G.Hopker@kent.ac.uk
(J. Hopker)

athletes with the potential for future success in order to
prioritise funding and resource allocation (Allen, Vanden-
bogaerde,andHopkins2014), settingperformancegoalsby
coaches and/or athletes, or guiding training programmes.
These data have repeated measurements, usually taken
at irregular intervals (due to the timing of different
events/competitions in the international calendar) and
with confounders of performance such as wind speed in
sprinting, seasonality effects, and competition level. As
discussed by Brander, Egan, and Yeung (2014), selection
effects due to ability differences across athletes provide
a further complication. For example, only exceptional
younger athletes will compete at the highest levels of
sport against a wider range of abilities levels in older
more established counterparts. This selection bias may
result in an underestimation of performance gains that an
athletemay realizeover their early yearswithin senior level
competition. As such, cross-sectional analytical methods
including least squares or simple averages at different ages
can lead to misleading results.

There are two main approaches to the statistical anal-
ysis of athletic performance over time. Firstly, a time series
analysis of a small number of elite level performances
can be used to understand population-level changes. For
example,StephensonandTawn (2013)analysedworldbest
times per year using extreme value theory to understand
changing performance for men and women. Similarly,
Gao, Li, and Wang (2020) analysed the finishing times in
World Championship and Olympic Games semi-finals and
finals using time series model to understand the effects of
technology in swimming, andKovalchik andStefani (2013)
analysed medal-winning performances at Olympic games
using a regression model to understand whether the
difference in performance between men and women was
changing over time. Secondly, longitudinal models have
been fitted to a database of performances measured over
time. For example, in cricket, Boys and Philipson (2019)
modelled batsmen’s scores allowing for the effect of age,
home advantage, different innings and quality of oppo-
sition, whereas Stevenson and Brewer (2021) modelled
changing individual performancewith aGaussianprocess.
Egidi and Gabry (2018) build a hierarchical autoregressive
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model for player ratings in football allowing for individual,
team and position effects. In ice hockey, Bradbury (2009)
usedaquadratic age effect andallowed for other covariates
using random effects model. Wimmer et al. (2011) built
a factor model for decathlon performances (across the
ten component events) and used a spline functions to
nonparametricallymodel the effect of ageand themonthof
the year (this allows for the changes in performance levels
over the athletics season).

The longitudinal approach allows for inference at the
individual level (unlike the time series approach) and
addresses the selection effect by accounting for different
performance levels across athletes. This approachwas first
proposed for the analysis of sports data by Berry, Reese,
and Larkey (1999) who fit Bayesian hierarchical models
across different individual athletes and competition sea-
sons. The performance for an individual in a particular
season is decomposed into an individual effect, a season
effect and an individual effect of age (called the individual
ageing function). The use of individual ageing functions
(rather than a single common ageing function for all
individuals) is important since it allows for variability
in the effect of ageing which is observed in data (for
example, some athletes peaking earlier than others) and
is a key part of longitudinal models. Berry, Reese, and
Larkey (1999) model the individual ageing function as the
sum of a flexible, nonparametric average ageing function
andasimple (parametric) function.However,Albert (1999)
suggests an alternative approach using a parametric aver-
age ageing function but a more flexible model for the
departures for each individual ageing function. A range
of individual and average ageing functions have been
proposed for longitudinal monitoring including quadratic
(Boys and Philipson 2019; Bradbury 2009), cubic (Bran-
der, Egan, and Yeung 2014), a two parameter non-linear
function (Berthelot et al., 2012; Strand, Nelson, and Grun-
wald 2018), and Gaussian processes (Stevenson and
Brewer 2021).

In this paper, we will use a longitudinal model in a
Bayesian framework (for a review of Bayesian methods
for analysis of sports data the reader is referred to the
work of Santos-Fernandez, Wu, and Mengersen 2019) and
concentrate on centimetre-gram-second sports where per-
formance is either measured in centimetres (e.g. distance
thrown), grams (e.g. weight lifted) or seconds (e.g. time to
run a specific distance). Our approach is in the spirit of
Albert (1999) and uses a parametric form for the average
ageing function and a flexible model for the individual
ageing function. We make several contributions. Firstly,
our model is more flexible than previous models in

the literature. We assume a polynomial for the average
ageing effect, a spline model for the individual ageing
function and a skew-t distribution for the observation
errors. Secondly, we extend the Adaptively Scaled Inde-
pendenceproposal (Griffin, Latuszynski, andSteel 2021) in
a Metropolis-Hastings sampler to allow variable selection
in linear regression models with skew t distributed errors.
Thirdly, we apply this model to large databases of athlete
performances in both 100 m sprinting and weightlifting,
and show thatMarkov chainMonte Carlo (MCMC)methods
can be used for inference in this context. Fourthly, we
discuss how the Bayesian approach can be used to draw
inferences about aspects of athlete’s performance such
as age of peak performance at both the population and
individual level.

The paper is organized as follows. Section 2 describes
the data used in the study. Section 3 introduces the model
tobeused for theanalysisandaspectsof thecomputational
methodsrequired.Section 4presents results forbothmales
and females in 100 msprintingandweightlifting. Section 5
discusses the approach and possible future work.

2 Data
Our analysis focuses on competition results from 100 m
sprinting andweightlifting events obtained from theWorld
Athletics and International Weightlifting Federation web-
sites, respectively following Institutional ethical approval
(Prop_72_2017_18). The 100 m sprint data contains results
from both male and female sprinters who had at least 5
competition results between 8th January 2001 and 28th
August 2021. The database contained 2834 male athletes
who have a personal best below 10.5 s and 1297 female
athletes who have a personal best below 11.6 s. The male
data set had 95,376 observed performances, with the
female data set having 48,999 observations. The ages for
males athletes ranged from 12 to 45 years, whereas females
ranged from 12 and 42 years.

The weightlifting data comprised competition results
from 1609 male and 1212 female lifters who had at least
5 competition results between 24th April 1998 and 24th
May 2021. This led to 14,557 observations in the male
data set and 11,690 observations in the female data set.
Weightlifters’ ages ranged from 11 to 43 years old in
the male data set, and between 12 and 41 years in the
female data set. The two different lifts that comprise
weightlifting competitions (snatch and clean and jerk)
were combined into a total lift score. The scores were
transformed to Sinclair totals to allow for the differences
in the levels of lift scores across weight categories. This
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allowed us to consider results across weight categories
without adjusting for weight category in the model. The
Sinclair total is calculated bymultiplying the total lift score
by a coefficient derived from the lifters body weight, the
current World record holder’s body weight in the various
weight categories, and a coefficient from World record
performance from the previous years.

3 Model
We assume that there is a database of measured perfor-
mance forM athletes. The ith athlete has ni performances
andwedefine yi, j tobe the jthperformanceof the ithathlete
which occurs at age ti, j with a p-dimensional vector of
additional regressors xi, j which are functions of measured
confounders or other covariates. This allows the model to
include the effects of confounders of performance such as
wind speed in sprint running events. We model yi, j by

yi, j = hi(ti, j)+ xi, j 𝜁 + 𝜖i, j

= g(ti, j)+ fi(ti, j)+ xi, j 𝜁 + 𝜎i 𝜖i, j

where hi(t) is the ith athlete’s individual performance
trajectory (or ageing function) as a function of age, 𝜁
are population-level regression coefficients shared by all
athletes and events and 𝜖i, j are observation errors which
are assumed to follow a standard skew t distribution
(Azzalini and Capitanio 2003). The individual performance
trajectory hi(t) is decomposed into two parts: g(t)t, which
represents thepopulationperformance trajectory (orageing
function) and fi(t) represents thedifferencebetween the ith
individual performance trajectory and population perfor-
mance trajectory, which we call the excess performance
trajectory.

Our modelling approach assumes that fi(t) can be
less smooth than g(t) for some athletes since it repre-
sents the population average whereas individual perfor-
mance trajectories can change abruptly. Therefore, we
use a parametric model for the population performance
trajectories and a non-linear regression model for the
excess performance trajectory. This leads to the same
modelling approach as the suggestion of Albert (1999). In
our analyses, we assume that g(t) follows a fourth order
polynomial g(t) = ∑4

k=0 𝜂k(ti, j − t̄)kwhere t̄ is themeanage
of a performance across all athletes.We flexiblymodel fi(t)
by piecewise linear splines fi(t) = 𝜃i + si, j𝛽 i where si, j =(
(ti, j −m1)+,… , (ti, j −mK)+

)
is K-dimensional vector, 𝜃i

is the excess performance before time m1 for the ith
athlete and controls their overall level of excess perfor-
mance, 𝛽 i is a K-dimensional vector of individual-specific

regression coefficients, (x)+ = max{0, x} and m1, . . . ,mK
are pre-specified knots (which are chosen to be equally
spaced between the smallest and largest age observed
with a performance for any athlete). Usually K is chosen
to be large (100 in our examples) to allow fi(t) to have
a wide-range of possible shape. Since K is large, there is
potential foroverfittingandso𝛽 imustbeeither regularized
(for example, using the Lasso) or variable selection must
be performed. We use Bayesian variable selection and
refer the interested reader to Denison et al. (2002) for
further explanation of Bayesian methods and their appli-
cation to the spline model. Other non-linear regression
approaches such as Gaussian process priors (Rasmussen
and Williams 2006) or B-splines (Lang and Brezger 2004)
could also be used.

The choice of a skew t error distribution for the
observational errors allows for both skewness and kur-
tosis which occur due to unusually poor performances
(for example, longer times in track events or shorter
throws or jumps in field events). Following Azzalini and
Capitanio (2003), a random variable Y to has a standard
skew t-distribution with parameters 𝛼 and 𝜈 if Y =
X√
W

where X follows a skew normal distribution with
parameter 𝛼 (Azzalini 1985) and W ∼ Gamma(𝜈∕2, 𝜈∕2).
This construction reduces to the Student t distribution
if 𝛼 = 0. The mean and variance of Y are 𝛼

√
𝜈Γ[0.5(𝜈−1)]√

𝛼2+1
√
𝜋Γ(0.5𝜈)

and 𝜈

𝜈−2 −
𝛼2

𝛼2+1
𝜈

𝜋

{
Γ[0.5(𝜈−1)]
Γ(0.5𝜈)

}2
, respectively. The parame-

ters have simple interpretations: 𝛼 controls skewness and
𝜈 controls kurtosis. In our model, we assume that 𝜖i, j has
shared skewness 𝛼 and kurtosis 𝜈.

We use a Bayesian analysis and assume the fol-
lowing priors for our model (the parametrization of all
distributions is given in the Appendix A). The regression
coefficients in the population-level performance trajectory
are given an uninformative prior, 𝜋(𝜂) ∝ 1. The regression
coefficients of the regressors xi, j are given independent
horseshoe priors (Carvalho, Polsen, and Scott 2010),

𝜁l ∣ 𝜆2l , 𝜏
2, a, bi.i.d.∼ N

(
0, ba𝜆

2
l 𝜏

2
)
and

𝜆l
i.i.d.∼ C+ for l = 1,… , p, 𝜏 ∼ C+

where C+ is the standard half-Cauchy distribution which
has density

p(x) = 2
𝜋
(1+ x)−1, x > 0.

This choices allows us to perform regularisation on
𝜁 and so shrink out regressors which are not related to
the response. The parameters of the excess performance
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trajectory fi(t) follow a standard Bayesian variable selec-
tion structure by assuming that only some 𝛽 i’s are non-
zero. The jth regression coefficient 𝛽 i, j is non-zero (and the
jth spline included in the model) if 𝛾 i, j = 1 and is given the
hierarchical prior

p(𝛾i, j = 1) = 𝜋i for l = 1,… ,K, 𝜋i ∼ Be(1, (K − 3)∕3).

Let p𝛾i =
∑K

j=1𝛾i, j, which is the number of included
splines, then prior mean of p𝛾i is E

[
p𝛾i
]
= 3 (Ley and

Steel 2009) and so encourages only a small number of
splines to used for each individual. We define 𝛽

𝛾

i to be
the regression coefficients for which 𝛾 i, j = 1 and use the
priors

𝜃i ∼ N
(
0, 𝜓𝜎2

i
)
, 𝜷

𝛾

i |𝜎2
i , 𝛾i ∼ N

(
0, 𝜎2

i V
𝜸

i
)
,

where 𝛾 i = (𝛾 i,1, . . . , 𝛾 i,K) and V𝛾

i is a
(
p𝛾i × p𝛾i

)
-

dimensional diagonalmatrixwith all diagonal terms equal
to g. A hierarchical model is assumed for the individual-
level observational error scale

𝜎2
i ∼ IG(a, b) for i = 1,… ,M, p(a) ∝ 1, p(b) ∝ 1.

The remaining population-level parameters are given
the following prior distributions

g ∼ C+, 𝜓 ∼ IG(1, 1), 𝛼 ∼ N(0, 100), 𝜈 ∼ Ga(2,0.1)

The choice of 𝛼 and 𝜈 follow the choices advocated by
Frühwirth-Schnatter and Pyne (2010).

Bayesian inference can be implemented usingMarkov
chainMonte Carlo (MCMC) with a Gibbs sampler. The sam-
pling uses several latent variable representations to give
simpler updates of the parameters. Firstly, the standard
skew-t distribution can be represented as

𝜖i, j = 𝜖⋆i, j +
𝛼√
1+ 𝛼2

zi, j

where 𝜖⋆i, j
i.i.d.∼ N

(
0, 1

𝑤i, j

)
, zi, j|𝑤i, j, 𝜎

2
i
i.i.d.∼ TN[0,∞)

(
0, 1

𝑤i, j

)
, and

𝑤i, j|𝜈i.i.d.∼ Ga
(
𝜈

2 ,
𝜈

2

)
, j = 1,… , ni, i = 1,… ,M. Secondly,

the half-Cauchy prior on𝜆l can be represented in terms of a
mixture distribution on 𝜆2l (see Makalic and Schmidt 2016)
giving

p
(
𝜆2l |𝜈∗l ) ∼ IG

(
0.5, 1

𝜈∗l

)
,

p
(
𝜈∗l
)i.i.d.∼ IG(0.5, 1), l = 1,… , p.

The same representation can be used for 𝜏2,

p(𝜏2|𝜉) ∼ IG
(
0.5, 1

𝜉

)
, 𝜋(𝜉) ∼ IG(0.5, 1).

All steps for the Gibbs sampler are given in the
Appendix A.

Bayesian variable selection is needed for spline
model for each individual and we use the recently
developed Adaptive Scaled Individual adaptation scheme
(Griffin, Latuszynski, and Steel 2021) to update the full
conditionals associated with each spline model. Grif-
fin, Latuszynski, andSteel (2021) show that their approach
can lead to faster mixing Markov chains than traditional
approaches to MCMC in Bayesian variable selection in
linear regression models with normal errors (see e.g.
Dellaportas, Forster, and Ntzoufras 2000; Tadesse and
Vannucci 2021). We extend their approach to linear regres-
sion models with skew t error distributions using a latent
variable representation.

We define di, j = (1, ti, j − t̄, (ti, j − t̄)2, (ti, j − t̄)3(ti, j −
t̄)4). The marginal likelihood of the observations for the
ith athlete conditional on 𝜁 , 𝜂, Z,W, a, b, g, 𝜓 and 𝛾 i is

mi(𝛾i) = g− p𝛾i ∕2|Δi|−1∕2⎛⎜⎜⎝b+ 1
2

⎛⎜⎜⎝
ni∑
j=1

𝑤i, jz2i, j

+ Y∗
i
T
(
Ini − S∗i 𝚫

−1
i S∗i

T
)
Y∗
i

⎞⎟⎟⎠
⎞⎟⎟⎠
−(a+ni∕2)

where Y∗
i is a ni-dimensional vector whose jth entry is√

𝑤i, j

[√
1+ 𝛼2

(
yi, j − xi, j𝜁 − di, j𝜂

)
− 𝛼zi, j

]
, S∗i is a (ni ×(

p𝛾i + 1
)
)-dimensional matrix whose jth row has entry√

𝑤i, j
1+𝛼2 and subsequent entries

√
𝑤i, j
1+𝛼2 si, j for the j with

𝛾 i, j = 1

𝚫i = S∗i
TS∗i + diag

⎛⎜⎜⎜⎜⎜⎝
1
𝜓
,
1
g ,… ,

1
g

⏟⏞⏟⏞⏟
p𝛾i

⎞⎟⎟⎟⎟⎟⎠
.

In our Gibbs sampler, the adaptive Metropo-
lis–Hastings method of (Griffin, Latuszynski, and
Steel 2021) can be used to update 𝛾 i. The method uses a
Metropolis–Hastings update and proposes a new state 𝛾 ′i
from the proposal distribution

𝛾 ′i, j ∣ 𝛾i, j = 0 ∼ Bernoulli(Ai, j),

𝛾 ′i, j ∣ 𝛾i, j = 1 ∼ Bernoulli(1− Di, j)

for i = 1, . . . ,K. The tuning parameterAi, j is the probability
of adding the jth variable to the model and the tuning
parameterDi, j is the probability of deleting the jth variable
from the model. The proposal value is accepted with
probability



J. E. Griffin et al.: Bayesian modelling of sporting performance | 257

min
⎧⎪⎨⎪⎩1,

mi
(
𝛾 ′i
)

mi(𝛾i)

×
Γ
(
1+ p𝛾

′

i

)
Γ
(
(K − 3)∕3+ K − p𝛾

′

i

)
q
(
𝛾 ′i , 𝛾i

)
Γ
(
1+ p𝛾i

)
Γ
(
(K − 3)∕3+ K − p𝛾i

)
q
(
𝛾i, 𝛾

′
i
) ⎫⎪⎬⎪⎭

where

q
(
𝛾i, 𝛾

′
i
)
=

K∏
j=1

[
A
(1−𝛾i, j)𝛾 ′i, j
j (1− Aj)

(1−𝛾i, j)(1−𝛾 ′i, j)

× D
𝛾i, j

(
1−𝛾 ′i, j

)
j (1− Dj)

𝛾i, j𝛾
′
i, j

]
.

The values of these tuning parameters are adjusted
during the MCMC run using the following rule

Ai, j = 𝜅imin
{
1,

𝜋i, j
1− 𝜋i, j

}
, Dj = 𝜅imin

{
1,
1− 𝜋i, j
𝜋i, j

}
where 𝜅 i is a further individual-specific tuning parameter
and 𝜋i, j is an estimate of the posterior probability that
𝛾 i, j = 1. A Rao–Blackwellised estimate of 𝜋i, j is used in the
algorithm and 𝜅 i is tuned using a Robbins–Munro update

logit𝜖𝜅(t+1) = logit𝜖𝜅(t) + t−𝜆(at − 0.234),

where logit𝜖(x) = log(x − 𝜖)− log(1− x − 𝜖) for 0 ≤ 𝜖 ≤

1∕2, 1∕2 < 𝜆 ≤ 1, at is theMetropolis–Hastings acceptance
probability at the tth iteration. Griffin, Latuszynski, and
Steel (2021) shows that this scheme is optimal with
𝜂 = 1 if 𝛾 i,1, . . . , 𝛾 i,p are independent under the posterior
distribution and that it leads to good performance under
different levels of dependence.

4 Results and discussion
We have analyzed the two sets of data (100 m sprinting
and weightlifting) using our model separately for males
and females. We include the month of competition as a
covariate using January as a baseline in all analyses. Wind
is a confounder in sprint events andwe include both linear
and quadratic effects of wind in the 100 m sprint analyses.
The MCMC algorithm was run for 11,000 iterations with
1000 used as a burn-in. For the MCMC results we have
saved every 10th iteration and we have also started 10
chains. Altogether this leads to 10,000 MCMC recorded
samples.

4.1 Ageing and athletic performance
Figures 1 and 2 show inference about the population per-
formance trajectories for 100 msprinting andweightlifting
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Figure 1: The population performance tra-
jectory for 100 m sprint. The solid line is the
posterior median and the dashed lines are
95% credible intervals.
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Figure 2: The population performance tra-
jectory for weightlifting. The solid line is the
posterior median and the dashed lines are
95% credible intervals.
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respectively. As shown in Figure 1, the population perfor-
mance trajectory suggests that age of peak performance
occurs about two years earlier for males than females
in the 100 m. The parabolic relationship between age
and performance is not symmetric with a greater rate
of performance improvement (i.e. faster sprinting times)
beforepeakage,withareducedrateofperformancedecline
subsequently (i.e. slower sprinting times).

This is true for both men and women. This biphasic
development of athletic performance was first described
by Moore (1975) and has later been characterised using
quadratic and polynomial functions (Berthelot et al. 2012;
Bongard et al. 2007; Stones and Kozma 1984). As shown
by Figure 3, in agreement with the previous literature
(Boccia et al. 2017), the rate of improvement in running
performance for males appears to be much greater than
females up until their late teens. However, over the
early 20s improvement in female sprinting performance
surpasses their male counterparts. For example, at age
20, average times for women are improving by 0.07 s per
year whereas men show an improvement of 0.04 s per
year.

There is no evidence of differences in the rate of
deterioration of performance between the sexes at older
ages. Between the age of peak performance and 30 years of
age, bothmale and female sprint performance deteriorates
at a rate of 0.03 s/year, which is similar to previous
findings investigating short-duration events in swimming
over a similar age range (Tanaka and Seals 1997). The
similar magnitudes of decline in short duration sprinting
performance with age between male and female athletes
suggests that age-related decline in physiological deter-
minants of anaerobic performance is likely to be similar
between groups at the elite level. As shown in Figure 2,
both male and female lifters show a rapid improvement in
performance until an age of peak performance followed by

a subsequentdecrease inperformance. The rate of increase
inperformance formales is greater than femalesat younger
ages (up to 23 years old), which is unsurprising, since
functional performance capacity increasesmuch faster for
males compared to females during puberty. However, this
difference in the rate of performance improvement is not
evident following maturation between 23 and 30 years.
After 30, average men’s performance decreases at a faster
rate than females. This may be due to different drop out
rates between males and females once athletes pass their
age of peak performance.

Interestingly, performance in weightlifting is main-
tained at a level close to the peak for a much longer period
thanseen in the100mdata,withaclearplateauabove the0
point being evident from the mid-20’s until approximately
30 in the age-related performance derivative (Figure 3).
Indeed, previous research has suggested that task related
duration appears to modulate the decline in physiological
functional capacity (Donato et al. 2003). Moreover, there
is evidence that muscle function appears to decline less
rapidly in the upper limbs compared with the lower limbs
(McDonagh, White, and Davies 1984), which may also
play a factor in the findings. A slower rate of decline in
weightlifting versus sprinting performance may therefore
be attributed to a slower decline in anaerobic power of the
upper body muscles.

Similar results were found between sprinting and
weightlifting for age of peak performance (Figure 4) with
men reaching their peak approximately 2 years earlier
than women. These findings are in accordance with
Haugen et al. (2018) who analysed season best results
from World ranked track and field athletes. The current
study observed similar results despite analysing all results
from athletes competing on theWorld stage, not just those
within the top 100. Reasons for this sex differences are
unclear, but previous research has speculated that factors
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Figure 3: The derivative of the population
performance trajectory for 100 m sprinting
and weightlifting shown as posterior median
(solid line) and95%credible interval (dashed
lines).Menandwomenare shown inblue and
red respectively.
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Figure 4: Posterior distribution of popula-
tion peak age for 100 m sprint and weightlift-
ing.

such as hormone-dependent changes in muscle and fat
mass, access to specialized training, exposure to training
and technique development, and child-bearing in females
are all possible causes (Haugen et al. 2018). However, as
outlinedabove,data suggests thatwomencatchupsomeof
this gender gap in their early and mid-20’s, and supports
the notion that women appear to improve more quickly
than men in the years immediately preceding their age of
peak performance (Haugen et al. 2018).

4.2 Variability of performance in males
versus females

Results of the current study demonstrate that the variance
in 100 m sprinting performance is larger for females than
males (Table 1). Performance for both males and females
demonstrates a positively skewed error distribution with
tails close to thoseof anormaldistributionswhich suggests
that athletes are slightly more likely to under-perform

Table 1: 100 m sprint: Parameter estimates for the model with month and wind effect (with regressors) and without either effect (without
regressors).

Without regressors With regressors

E
(
𝛔2
i
)

𝜶 𝝂 E
(
𝛔2
i
)

𝜶 𝝂

Males 0.0293 1.29 52.1 0.0197 1.21 18.4
(0.0181, 0.309) (0.00, 1.37) (29.9, 93.1) (0.0163, 0.0206) (0.95, 1.30) (14.6, 21.8)

Females 0.0462 1.55 49.0 0.0307 1.35 19.6
(0.0279, 0.0483) (0.52, 1.64) (23.0, 73.2) (0.0215, 0.0338) (0.53, 1.48) (14.2, 47.5)
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(i.e. run a slower time) than over-perform (i.e. run a faster
time). In both males and females, the inclusion of these
effects leads to a large decrease in the scale and a shorter
credible intervals for 𝛼 and 𝜈. The posterior predictive
distribution of the observation errors 𝜖i, j is shown in
Figure 5.

Inweightlifting, thevariability inperformance ismuch
larger formales than females. This is in contrast toprevious
literature which suggests greater within-athlete variability
in women than men (McGuigan and Kane 2004; Sol-
berg et al. 2019). The reason for these contrasting findings
is unclear, but may be due to the much larger and more
representative sample of female lifters used in the current
study. Moreover, the inclusion of more recent competition
results may also address concerns in previous literature
over level of competitiveness and participant rates of
female weightlifting compared to that of their male coun-
terparts. The error distribution is negatively skewed with
a heavy tail for both males and females which, and, in a
similarway to the 100msprinting, indicates that anunder-
performance is more likely than an over-performance. As
shown in Figure 5, the size of skewness and kurtosis is
very similar between males and females. Even though
similar in nature, the error distribution is clearly more
skewed and heavier tailed than that of 100 m sprinting.
This may be due to the fact that sprinting involves a single
performance whereas weightlifting involves a set series
of lifts in which the athlete attempts to lift the largest
weight possible in order to win the competition. Therefore,
lifters may not lift their best possible weight due to either
misjudgementsof the chosenweights to lift, or competition
tactics.

4.3 Effects of covariates
Previousmodels of athletic performance trajectories have,
generally, not included adjustments for confounding

factors of performance, such as seasonality orwind effects.
For 100 m sprinting, the effects of the wind and month of
competition are shown in Table 1 and Figure 6. There is
clear evidence that both effects are important for explain-
ing variation in sprinting performance. The variance of the
errors in the regression model are substantially reduced
when regressors are included, with effects being similar
for both males and females.

In agreement with the findings of previous research,
the current study demonstrates that wind speed has a
strong effect on performance, with greater tail winds
associated with faster times (Moinat, Fabius, and
Emanuel 2018). Specifically, for males a 1 m per second
increase in tail wind improves sprint time by 0.05 s on
average. For females, the tail wind advantage is slightly
bigger, leading to an average improvement of 0.06 s.
Slightly faster sprint times are also shown during the
main part of the outdoor track and field racing calendar
in June and July. However, interestingly, the seasonality
effect is smaller than that of wind, with the sprinting time
improving by only 0.04 s in June and July compared to
January, suggesting that performance is remarkably stable
over the year.

In weightlifting, there was evidence of a small effect
across the months for both males and females. Males
demonstrated an improvement of 2.5 and females of 1.8
Sinclair Total units in August compared to January. Plots
of the results are shown in Figure 7. This weaker effect
leads to similar estimated variability for the model with
andwithout regressors and, as such,we only report results
for the model with regressors in Table 2.

4.4 Individual performance trajectory
analysis

Analysis of performance trajectories provides evidence of
a typical rate of progression of successful athletes, which
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Figure 5: The posterior predictive distri-
bution of 𝜖i, j for 100 m sprinting and
weightlifting for men and women.
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Figure 6: The effects of month and wind for
100 m sprint.
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Figure 7: The effects of month for weightlift-
ing.

Table 2:Weightlifting: Parameter estimates for the model with month effect (with regressors) and without month effect (without regressors).

Without regressors With regressors

E
(
𝛔2
i
)

𝜶 𝝂 E
(
𝛔2
i
)

𝜶 𝝂

Males 211 −1.97 7.9 206 −1.91 7.8
(141, 311) (−1.44,−2.73) (6.3, 71.4) (152, 308) (−2.65,−1.34) (6.2, 42.2)

Females 134 −1.73 7.3 126 −1.64 6.9
(103, 154) (−1.97,−1.10) (5.9, 9.7) (100, 147) (−1.93,−0.60) (5.7, 12.2)

canbeused to informbenchmarks for talent identification,
analysis of performance during a season to identify the
impact of performance improvement strategies, and to
predict performance itself. For this level of information
it is important to consider performance trajectory at an

individual level in comparison to both their own historical
performance level, but also that of the wider cohort of
athletes. Within the current model this is provided by the
measure of excess performance. In Figure 8, we present an
example of individual performance trajectories (adjusted
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Figure 8: Individual performance inference for
Athletes 1–3: (a) shows observed performances
and posterior median individual performance
trajectory (solid line) with 95% credible interval
(dashed line), and (b) shows adjusted excess
performances and posterior median excess per-
formance trajectory (solid line) with 95% credible
interval (dashed line).

for seasonality and wind effects) for three of the World’s
top 50 (based upon 2021 rankings) male and female
100 m sprinters across the course of their careers. The
data points in panel (b) are adjusted by the posterior
mean population performance trajectory, and month and
wind effects. Figure 8 shows results for men’s 100 m
sprinting. It can be seen that across his career, Athlete
1 consistently performs approximately 0.6 s faster than
the rest of the population, bearing in mind the population
displays performance improvement up until the mid-20’s
at which point a decline in performance is seen. Similarly
Athlete 3 shows a career profile that evolves at a similar
rate to the population leading to a flat excess performance
trajectory, but again consistently better than the wider
population. By comparison, Athlete 2 was performing
at the population average at age 20, but had almost
caught up with Athlete 1 by age 30, showing a much

later improvement in performance and an ability to retain
performance better than others. At the age of 25 years,
Athlete 1 was on average 0.1 s faster than Athlete 2.

Similar patterns of performance are seen in female
sprint athletes (Figure 9) such as Athlete 5 who’s perfor-
mance career path largely follows the same polynomial
pattern as the wider population, but with a between 0.19
and 0.42 s greater level of excess performance. Athlete
6 is an athlete who competed in the heptathlon in the
earlier part of their career and specialised in sprinting
disciplines later inher career. As such she realises a greater
performance gain of 0.50 s into her early andmid-20’s than
seen across the wider population, but as she learns the
skills of sprinting the rate of her performance improvement
slows to match that of the wider population by the age
of 30. As such her excess performance represents a “v”
shaped trajectory. Going through the American College
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Figure 9: Individual performance inference for
Athletes 4–6: (a) shows observed performances
and posterior median individual performance
trajectory (solid line) with 95% credible interval
(dashed line), and (b) shows adjusted excess
performances and posterior median excess per-
formance trajectory (solid line) with 95% credible
interval (dashed line).
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athletic system, Athlete 4 shows a fast rate of improvement
in her performance over her early 20s (0.57 s/year at the
initial peak age of 24 years). However, recurrent injuries
between the ages of 26 & 27 limits her rate of performance
improvement compared to the wider population of sprint-
ers. Following resolution of her injuries, the athlete goes
on to demonstrate a second peak in her performance at 29
years of age when her rate of improvement reaches 0.63
s/year.

Figure 10 shows the posterior distribution of the age of
peak performance across six 100 m sprint athletes. There
are clearly differences in these distributions. There is clear
evidence that Athlete 2 peaks at a later age than Athletes 1,
3 or 6. There are also some differences in shape. Particular

clear is the bi-modal posterior distribution of Athlete 4
which indicates the aforementioned two periodswhen this
athlete was performing at their peak level.

Individual performance trajectories for 3 of the top
50 ranked male and female weightlifters (as of August
2021) are shown in Figures 11 and 12. It is evident that
elite weightlifting athletes tend to compete fewer times
per year than the 100 m sprinters. However, performance
trajectories appear similar, with increasing (Athlete 7),
polynomial (Athlete 8), andplateauing (Athlete 9) patterns
observed. A key difference between the 100 m sprinting
and weightlifting data sets is the skew distribution. The
negative skew distribution within the weightlifting data
suggests that poor performances are often a lot worse than
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Figure 10: Posterior distributions of individ-
ual age of peak performance for Athletes
1–6.
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Figure 11: Individual performance inference
for Athletes 7–9: (a) shows observed per-
formances and posterior median individual
performance trajectory (solid line) with 95%
credible interval (dashed line), and (b) shows
adjusted excess performances and posterior
median excess performance trajectory (solid
line)with 95%credible interval (dashed line).
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Figure 12: Individual performance inference
for Athlete 10–12: (a) shows observed per-
formances and posterior median individual
performance trajectory (solid line) with 95%
credible interval (dashed line), and (b) shows
adjusted excess performances and posterior
median excess performance trajectory (solid
line)with 95%credible interval (dashed line).

exceptionallygoodones.Evidenceof this canbeseen in the
career trajectory from Athlete 8, where, despite a general
upward trajectory in his level of excess performance,
his worst performances lie outside the 95% confidence
bounds. A similar rate of performance increase is seen
in the trajectory of Athlete 7 over the early stage of his
career. The rate of increase in performance shows a ten-
dency towards plateauing towards his late 20s, but excess
performancecontinues to increase linearly, suggesting that
the lifter is still continuing to make significant gains in
performance over the age matched wider population of
lifters. The performance trajectory of female weightlifters
(Figure 12) is much flatter than that of males, with clear
evidence of a plateau in lifting performance, and excess
performance from their mid-20’s onwards. Notwithstand-
ing the age polynomial, the median of excess performance
suggests that these athletes are consistently performing
between 50 and 100 Sinclair units above that of the wider
population of female weightlifters, even in to the later
stages of their careers.

5 Discussion
This study developed a Bayesian hierarchical model to
investigate both population and individual level longi-
tudinal performance trajectories over time. Performance
change was modelled as a function of age using a non-
parametric curve fitting approach which accounted for the
estimatedeffectsof knowncovariateswithin the regression
model. The inclusion of these covariates allows us to
adjust for confounders and leads toa substantially reduced
variance of the observation errors in both for 100m sprint-
ing and weightlifting. By reducing these error variances,

the model produced tight-fitting individual performance
trajectories that are appropriate for the assessment of
athletic performance changes over the course of their
career.

The model has potential to be applied a wide-range of
sporting events within the category of centimetre-gram-
second sports. For example, in swimming performance
time can be modelled with pool size and depth included
as confounders as both will influence performance; in
timed track cycling events, the venue (altitude, humidity,
track surface) has an important systematic effect on times
which can be included as a confounder; finally in longer
distance running events, performances can be influenced
by factors including the environment and race tactics, and
by including a “race” effect would allow for consistent
differences in race times across a whole field. Within this
manuscript we have demonstrated the model on sports
measured in centimetres–grams–seconds, but it can also
be applied to a wide range of others where performance
is measured in rankings (e.g. Tennis), scores (e.g. Gym-
nastics), or where there are player metrics provided in
competition (e.g. distance covered in team sports).

Several methodological limitations need to be
acknowledged with this study. Career trajectories were
developed giving equal importance to each performance
and did not account for the strength of the competition.
It is likely that athletes prioritised certain events, or
performances were affected due to the relative strength of
their opponents. Data were limited to results appearing
on the World Athletics and International Weightlifting
Federation websites, and therefore do not include lower
level competitions or those from junior age-group events.
We cannot discount the potential effects of doping within
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the data, especially given the history of anti-doping rule
violations in both 100 m sprinting and weightlifting.
Future work will look at extending the model to other
centimetre–gram–second sports as well as others where
performance is measured by finishing position/rank or
individual player metrics. This will involve adjusting for
more confounders andmodelling the effect of competition
strength.
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Appendix A: Computational method
We define IG(a, b) to be an inverse gamma distribution
with shape parameter a and scale parameter b which has
density

p(x) = ba
Γ(a)x

−(a+1) exp{−b∕x},

Ga(a, b) to be a gammadistributionwith shapeparam-
eter a and scale parameter b which has density

p(x) = ba
Γ(a)x

a−1 exp{−bx},

N(𝜇,Σ) to be a multivariate normal with mean 𝜇

and covariance matrix Σ, TNA(𝜇, 𝜎2) represents a normal
distribution with mean 𝜇 and variance 𝜎2 truncated to
the interval A, C+ is the standard half-Cauchy distribution
which has density

p(x) = 2
𝜋
(1+ x)−1, x > 0,

GIG(p, a, b) is the generalized inverse Gaussian distri-
bution with shape p and scale parameters a and b which
has density

p(x) = (a∕b) p∕2

2Kp(
√
ab)

xp−1 exp{−(ax + b∕x)∕2}

If Y follows a zero-mean skew-t distribution with
parameters 𝜔2, 𝛼 and 𝜈 can be represented as

Y = X + 𝛼√
1+ 𝛼2

Z

where X ∼ N(0, 1∕W) and Z ∼ TN[0,∞)(0, 1∕W), W ∼
Ga(𝜈∕2, (𝜔𝜈)∕2). This allows us to write the model in a
convenient form for Gibbs sampling,

yi, j = xi, j𝜁 + di, j𝜂 + si, j𝛽
𝛾

i +
𝛼√
1+ 𝛼2

zi, j + 𝜖⋆i, j

where 𝜖⋆i, j ∼ N(0, 1∕𝑤i, j), zi, j ∼ TN[0,∞)(0, 1∕𝑤i, j), 𝑤i, j ∼
Ga(𝜈∕2,

(
𝜈𝜎2

i
)
∕2)

A.1 Gibbs sampler
We define the following notation:

Xi is ani-dimensional vectorwhose jth entry isdi, j con-
catenatedwith xi, j,Y∗

i is a ni-dimensional vector whose jth
entry is√𝑤i, j

[√
1+ 𝛼2

(
yi, j − xi, j𝜁 − di, j𝜂

)
− 𝛼zi, j

]
,Y∗∗

i
T is

a ni-dimensional vector whose jth entry is yi, j − 𝛼√
1+𝛼2

zi, j,
S∗i is a (ni ×

(
p𝛾i + 1

)
)-dimensional matrix whose jth row

has entry
√

𝑤i, j

1+𝛼2 and subsequent entries
√

𝑤i, j

1+𝛼2 si, j for the
j with 𝛾 i, j = 1 and

𝚫i = S∗i
TS∗i + diag

⎛⎜⎜⎜⎜⎜⎝
1
𝜓
,
1
g ,… ,

1
g

⏟⏞⏟⏞⏟
p𝛾i times

⎞⎟⎟⎟⎟⎟⎠
.

The full conditional distributions of theGibbs sampler
are as follows.

We update 𝜂 and 𝜁 jointly marginalising over(
𝜃1, 𝛽

𝛾

1
)
,… ,

(
𝜃M, 𝛽

𝛾

M
)
,

(
𝜂

𝜁

)
∼ N

⎛⎜⎜⎝𝚵−1
⎡⎢⎢⎣

M∑
i=1

XT
i 𝚺

−1∕2
i

(
I p − Si𝚫−1

i STi
)

× 𝚺−1∕2
i Y∗∗

i

⎤⎥⎥⎦,𝚵−1
⎞⎟⎟⎠,

where

𝚵 =
M∑
i=1

XT
i 𝚺

−1∕2
i

(
Ini − Si𝚫−1

i STi
)
𝚺−1∕2
i Xi +𝚲∗,

𝚺i = diag
(

𝜎2
i

𝑤i,1(1+ 𝛼2)
,

𝜎2
i

𝑤i,2(1+ 𝛼2)
,… ,

𝜎2
i

𝑤i,ni (1+ 𝛼2)

)
,

𝚲∗ = diag
⎛⎜⎜⎜⎝0,… ,0
⏟⏟⏟
5 times

,
a

b𝜆21𝜏2
,… ,

a
b𝜆2p𝜏2

⎞⎟⎟⎟⎠,
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𝜆2l ∼ IG
(
1, 1
𝜈∗l

+
𝜁 2l a
2𝜏2b

)
, l = 1,… , p

𝜏2 ∼ IG
(
p
2 ,

1
𝜉
+ a
2b

p∑
l=2

𝜁 2l
𝜆2l

)
𝜈∗l ∼ IG

(
1, 1+ 1

𝜆2l

)
, l = 1,… , p,

𝜉 ∼ IG
(
1, 1+ 1

𝜏2

)
,

We update 𝛾 i using the method in Section 3.

𝜎2
i ∼ IG

⎛⎜⎜⎝a+ ni
2 , b+

1
2

⎛⎜⎜⎝
ni∑
j=1

𝑤i, jz2i, j + Y∗
i
T
(
Ini − S∗i 𝚫

−1
i S∗i

T
)
Y∗
i

⎞⎟⎟⎠
⎞⎟⎟⎠,(

𝜃i
𝛽
𝛾

i

)
∼ N

(
𝚫−1
i S∗i

TY∗
i , 𝜎

2
i 𝚫

−1
i

)

𝑤i, j ∼ Ga
⎛⎜⎜⎝𝜈 + 2

2 ,
𝜈𝜎2

i +
{√

1+ 𝛼2
[
yi, j − 𝜃i − s𝜸i, j𝜷

𝜸

i− xi, j𝜁 − di, j𝜂
]
− 𝛼zi, j

}2 + z2i, j
2𝜎2

i

⎞⎟⎟⎠,
zi, j ∼ TN[0,+∞)

⎛⎜⎜⎝
𝛼
[
yi, j − 𝜃i − s𝜸i, j𝜷

𝜸

i − xi, j𝜁 − di, j𝜂
]

√
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,
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b ∼ GIG

(
Ma− 1

2 p+ 1, 2
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1
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,
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𝜋(a) ∝
(
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𝜎2
i
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ap∕2 exp
{
− a
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𝜁 2l
𝜆2l

}
,

which can be updated using a Metropolis-Hastings
random walk on log a,

𝜓 ∼ IG
⎛⎜⎜⎜⎝1+

M
2 , 1+

1
2

M∑
i=1

(
𝛽
𝛾

i,1

)2
𝜎2
i

⎞⎟⎟⎟⎠,
𝜋(g) ∝ g−1∕2(1+ g)−1

M∏
i=1

mi(𝛾i),

whichcanbeupdatedusingaMetropolis-Hastings random
walk on log g,

p(𝛼) ∝ (1+ 𝛼2)
M∑
i=1

ni∕2 exp
{
− 1
2
𝛼2

100 − 1
2

M∑
i=1

×
ni∑
j=1

𝑤i, j
𝜎2
i

{√
1+ 𝛼2

[
yi, j − 𝜃i − x𝜸i, j𝜷

𝜸

i

− xi, j𝜁 − di, j𝜂
]
− 𝛼zi, j

}2
}

whichcanbeupdatedusingaMetropolis-Hastings random
walk on log𝛼.

p(𝜈) ∝
M∏
i=1

⎡⎢⎢⎢⎣
(
𝜈

2

) 𝜈

2

Γ
(
𝜈

2
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ni( ni∏

j=1
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2

exp
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ni∑
j=1

𝑤i, j

2 + 0.1

⎞⎟⎟⎟⎟⎠
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which can be updated using a Metropolis–Hastings ran-
dom walk on log 𝜈.
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