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Abstract

Development of a cytomegalovirus (CMV) vaccine is a high priority due to its sig-

nificant global impact—contributing to mortality in immunosuppressed individuals,

neurodevelopmental delay in infected neonates and non‐genetic sensorineural

hearing loss. The impact of CMV on the general population has been less well

studied; however, a wide range of evidence indicates that CMV may increase the

risk of atherosclerosis, cancer, immunosenescence, and progression of tuberculosis

(TB) and human immunodeficiency virus. Due to the high seroprevalence of CMV

worldwide, any modulation of risk by CMV is likely to have a significant impact on

the epidemiology of these diseases. This review will evaluate how CMV may cause

morbidity and mortality outside of the neonatal and immunosuppressed populations

and consider the potential impact of a CMV vaccine on these outcomes.

1 | INTRODUCTION

Cytomegalovirus (CMV) is the most common non‐genetic cause of

sensorineural hearing loss in neonates and a leading cause of neu-

rodevelopmental delay.1 In the immunocompromised host, CMV

reactivation results in vasculopathy, graft rejection and severe end

organ damage.2,3 Subsequently, the development of a vaccine against

CMV has been cited as a high priority for the last 2 decades including

by the National Institute of Health.4

CMV has been associated with several distinct disease pro-

cesses– atherosclerosis,5–8 cancer9 and impaired immune response

to vaccination.10–12 Additionally, CMV is suspected to enhance the

pathogenicity of human immunodeficiency virus (HIV) and tubercu-

losis (TB).13–16 Animal studies and large population based epidemi-

ological studies suggest that CMV may cause disease through

mechanisms such as CD8+ memory T‐cell inflation17; immunose-
nescence and immunomodulation.18–20 In addition, reactivation of

CMV in local tissues may result in lytic replication and cause direct
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damage to tissues. However, current evidence has only demonstrated

an association rather than causal role in these disease processes.

The primary objectives of developing a vaccine against CMV

have been to eliminate congenital infection and to reduce morbidity

and mortality in highly immunosuppressed individuals. However, this

review presents evidence that CMV may also contribute to the

development of vascular, infectious, and oncological conditions in the

general population. Globally, CMV seroprevalence is estimated to be

between 60% and 90%21 and therefore if there is any modulation in

risk by CMV, vaccination is likely to have a significant impact on the

incidence of these diseases. We used PubMed to perform a literature

review of the epidemiology and potential pathogenic mechanisms of

CMV using search terms ‘CMV’ or ‘cytomegalovirus’ or ‘human

cytomegalovirus’ in combination with ‘atherosclerosis’, ‘cancer’, ‘HIV’,

‘TB’ or ‘vaccination’. We included these themes as they represent the

most studied areas of CMV in the general population, and areas

where there would be the greatest implications if a causal interaction

did exist. We performed a separate ClinicalTrials.gov search for CMV

vaccination trials. In this review, we focus on the potential indirect

effects of CMV in the general population, and methods to evaluate

the effect of vaccination on associated disease development during

and after vaccine trials.

1.1 | CMV in immune development

CMV seropositivity becomes increasingly prevalent with age. In low‐
middle income country (LMIC) settings, the age of acquisition is

typically younger—studies in the Gambia and Uganda demonstrated

86%–95% seroprevalence at 12 months of age compared to 15% in

UK 1–4‐year‐olds.22,23 Even in high income settings, the seropreva-

lence eventually reaches 60%–80% by 65 years of age.22–24 The age

of CMV acquisition and the role of co‐infection with other viruses are
factors that may influence how CMV interacts with the host immune

system. The human virome is an emerging concept in virology, and

similar to the microbiome, the interactions between host and virus

are likely to shape immune development and response.25

CMV is a major determinant of variation in the immune system

between individuals26 and therefore likely exerts an important effect

on its development. CMV‐specific CD8+ effector memory T‐cells
dominate the immune repertoire of elderly patients who are sero-

positive for CMV.17 This has been proposed due to chronic reac-

tivation and low‐level presentation of antigens to CMV‐specific
T‐cells leading to memory T‐cell inflation.27 In healthy monozygotic

twins who are discordant for CMV seropositivity, the number of

effector CD8 T‐cells and gamma‐delta T cells are poorly correlated.26

Similarly, there are significantly different plasma levels of IL‐10 and

IL‐7 level between CMV seropositivity discordant twins, however

this study did not adjust for any confounding factors that may explain

this discrepancy.26 Overall, evidence indicates that CMV is strongly

associated with phenotypical differences between individual immune

systems. With increasing age, there is a diminishing impact of genetic

factors in determining the proportion of cell populations, cytokines

and signalling molecules—this may reflect an increasing role of mi-

crobial influences, of which CMV is a likely a major contributor.

CMV is linked to profound changes in various cellular subsets,

including reduction in naïve cell populations, and presence of cellular

phenotypes and functions.28 Overall, it appears that with age the

T‐cell compartment becomes increasing dominated by CMV‐specific
CD8+ T‐cells with a corresponding reduction in the naïve T‐cell
population. In CMV seropositive experimental mice models naïve

CD8+ T‐cells are reduced and a similarly reduced naïve cell popu-

lation appears to contribute to an overall mortality risk profile.29,30

CMV‐specific CD8+ cells typically re‐express CD45RA alongside a

reduction in co‐stimulation markers such as CD28 and CD27.20 The

CD45RA isoform becomes increasingly expressed during chronic

CMV infection and is associated with expansion of low‐avidity cells.

CD45RA, the longer isoform of CD45, is typically expressed on naïve

T‐cells and impacts on the T‐cell receptor (TCR) signalling pathway

through altering the interaction of the TCR with CMV antigens.

Interestingly, these CMV‐specific T‐cells express few markers of

T‐cell exhaustion such as programed cell death protein 1 (PD‐1), in
contrast to T‐cells seen in chronic infection secondary to HIV and

hepatitis C virus (HCV).28 This may be related to the low‐level of
chronic exposure of antigens in CMV latent infection compared to

the high level of damage and replication seen in HIV and HCV.

CD8+ CD28− CD57+ T‐cells is a specific subset which has been

found to be elevated in cohorts of CMV seropositive patients

compared to controls.31 These cells represent a highly differentiated

phenotype with limited proliferative ability. CD57 is a surface

sulphated glycan carbohydrate that has been found to be a marker of

chronic immune activation in humans often in association with sup-

pression of CD28. Studies suggest that this cell population can

remain highly polyfunctional and maintain ability to kill pathogens ex

vivo.31 Nevertheless, several studies have associated expansion of

this T‐cell subset with increased mortality and morbidity.32,33 The

apparent contradiction of these findings may suggest that these cells

are not directly pathogenic and may represent a proxy of chronic

immune dysfunction and inflammation induced by CMV. Alterna-

tively, these polyfunctional cells may be directly pathogenic through

generation of excessive inflammation and bystander host damage

and thus contributing to ‘inflamm‐ageing’.
Studying the relationships between age of acquisition and out-

comes at different ages has been challenging due to the inherent

difficulties in conducting long‐term observational studies spanning

decades and the inability to date when primary infection occurred.

2 | ATHEROSCLEROSIS

Many epidemiological studies have suggested an association between

CMV seropositivity and cardiovascular mortality risk5,8,34–36; howev-

er, distinguishing whether this is a confounding effect of co‐variants
such as socioeconomic status, country of origin and smoking status,

makes establishing causality challenging. A large longitudinal study of

14,000 subjects in the USA recruited from the National Health and
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Nutrition Examination Survey (NHANES) III (1988–1994) showed that

CMV seropositivity at initial sampling (age ranging from 25 to 90 years

old) was associated with increased cardiovascular and all‐cause mor-
tality after 2 decades of follow up35 (Table 1). The effect on all‐cause
mortality (hazard ratio [HR] 1.19, 95% CI: 1.01–1.41) remained sig-

nificant after adjusting for confounders including diabetes, age and

gender; however, the effect on cardiovascular disease (CVD)mortality

disappeared after adjustment.35 A nested USA case‐cohort of 726
participants reported that patients with the highest 20% of CMV

immunoglobulin G (IgG) titres had an increased rate of CVD, with a HR

of 1.76 (95%CI: 1–3.11), as compared to patients with the lowest 20%

of CMV IgG titres.8 Conversely, in a 13,090 participant prospective

study based in the UK which included 2514 deaths, there was no

significant association between CVD mortality and CMV IgG sero-

positivity over an average 14.5 years follow up.34

Evidence for the contribution of CMV to the development of

atherosclerosis is derived from several sources. Firstly, antiviral

therapy reduces the rate of transplant graft atherosclerosis.46,47 This

may be the mechanism by which antiviral therapy reduces both

overall mortality and CMV related disease in solid organ transplants

at 3–18 months post‐transplant.48 Secondly, CMV antigens have

been directly isolated from smooth muscle cells of the carotid artery

and aorta in surgical specimens.49–51 There is mixed evidence for

isolation of CMV antigens or CMV transcripts within the athero-

sclerotic plaques—Sambiase et al. found no evidence of CMV anti-

gens isolated from cardiac transplantation patients. The presence of

CMV within the plaque itself, whilst supportive of a role of CMV in

atherosclerosis does not confirm pathogenesis.

CMV may initiate and maintain atherosclerosis through multiple

immunological mechanisms: promotion of pathogenic T‐cell pheno-
types; polarisation of infected monocytes to M1 phenotypes; indirect

immune modulation secondary to CMV; and direct lytic damage from

reactivation of CMV, potentially originating from invading monocytes

(Figure 1a). CMV pre‐disposes to a Type 1 T‐helper (Th1) cytokine
phenotype6,52 and an M1 macrophage phenotype19,53,54 in healthy

patients during latency. Type 1 T‐helper cell dominance has been

mechanistically linked to the initiation and maintenance of athero-

sclerosis in mouse models.55 Observational studies in humans show

that Th1 phenotypes are associated with increased atherosclerosis as

measured by carotid artery calcification.56 Some studies have shown

increased internal carotid interna media thickness in CMV positive

patients7,8; although, there are other studies which have not shown

an association with atherosclerosis on imaging.6,57 CMV infection is

associated with a subset of vascular‐homing CD57+ CD4+ T Cells58

and increased serum levels markers of endothelial activity (ICAM‐1,
VCAM‐1, and IP‐10)52—indicating a role for CMV in increasing the

migration of cells into atherosclerotic plaques (Figure 1a). The risk of

atherosclerosis appears to be related to markers of inflammation (C‐
reactive protein [CRP], IL‐6)35 in combination with raised CMV IgG

levels therefore suggesting persistent reactivation as a

mechanism.34,59

The excess cardiovascular mortality risk may be due to CMV

modulating the risk of plaque rupture and subsequent complications

(Figure 1a). CD4/CD8 inversion is associated with plaque rupture60

and as mentioned, CMV is associated with an inversed CD4/CD8

ratio. Additional co‐infection with other chronic viruses may exac-

erbate the phenotype; for example, HIV and CMV co‐infection leads

to inversed CD4/CD8 ratio and has a particularly high cardiovascular

risk.61,62 High serum levels of CMV DNA were detected in patients at

time of admission with acute coronary syndrome.63

3 | CANCER

The role of CMV in cancer is controversial and the evidence is highly

contradictory. The supportive evidence for CMV's role as an onco-

genic or onco‐modulatory agent64 is twofold; (1) isolation of CMV

proteins and DNA from tumours with surrounding non‐infected tis-

sue and (2) well‐studied in vitro effects of CMV on key cellular

mechanisms of tumourigenesis—these are briefly summarised below

and discussed in more detail elsewhere (Figure 1b).65,66

The key mechanisms of CMV tumourigenesis include inhibition of

apoptosis, prevention of normal immune surveillance and promotion

of cell cycling (Figure 1b). Intermediate‐early 1 (IE1) and intermediate‐
early 2 (IE2) are CMV proteins that promote cellular proliferation

through suppression of p53 and promotion of entry into the cell cycle.

IE2 inhibits apoptosis in infected cells through upregulation of anti‐
apoptotic molecules bcl‐2 and c‐FLIP.67,68 TGF‐beta is induced by

IE1 and contributes to suppression of type‐1 cytokine responses by

inhibiting Th1 CD4+ T‐cells.69 CMV produces an IL‐10 mimic, which

alongside TGF‐beta promotes polarisation of tumour associated

macrophages to an M2 phenotype.69,70 M2 macrophages are associ-

ated with immune evasion of tumour cells, and promote tumour pro-

gression through secretion of vascular endothelial growth factor and

increasing epithelial to mesenchymal transitions.70 Immune recogni-

tion of tumour cells by CD4 and CD8 T‐cells is reduced through

downregulation of major histocompatibility complex I (MHC I) and

MHC II molecules alongside upregulation of PD‐1 signalling. Several

CMV proteins promote cell‐cycling such as UL82, which both

promotes entry into S phase from quiescence and increases the

progress of cells through G1, potentially through an interaction with

cell‐cycle regular retinoblastoma protein.71 Whilst CMV proteins

primarily function to promote viral persistence in the human host, in

the appropriate context these may contribute to tumourigenesis.

CMV DNA and protein has been reported within a wide range of

tumours—including breast, prostate, glioblastomas—but not the sur-

rounding tissues.72–74 CMV may come to infect these tissues through

local infiltration of infected immune cells with subsequent local

infection; however, why tumour cells appear to be susceptible to

CMV infection is unclear. Many studies have been unable to isolate

CMV DNA or protein in tumours.40,56

Glioblastoma is the most studied example of CMV interaction

with cancer—particularly in relation to epidemiology, prognosis, and

pathogenesis64,75—however overall, the evidence is limited. CMV

transcripts and proteins have been found within glioblastomas,

although this is not a universal finding and there is a large amount of
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TAB L E 1 Summary of the key studies evaluating the indirect effects of cytomegalovirus (CMV)

Effect Trial/study Population

Exposures and outcomes

measured Results

Increased

CVD risk/

overall

mortality

OCTA/NONA32,37 Longitudinal At several time points: Concept of ‘immune risk profile’

(IRP)
Swedish octogenarians, starting in

1989

CD4/CD8 ratio

101 participants originally Lymphocyte subsets High IRP patients has highest rate

of mortality and CVD risk
T‐cell responsiveness

CMV seropositivity IRP variables include CMV

seropositivity, CD4/CD8

inversion, CMV‐specific T cells
CVD mortality/Overall mortality at

10 years follow up

EPIC34 30,000 men and women aged 40–

79 years at baseline between

1993 and 1998 from 35

participating general practices

in Norfolk, UK

CMV IgG level Trend towards increase in CVD

mortality in high IgG titre (HR

1.24). Non‐significant
BMI/Socioeconomic data

Labs including CRP/lipids

CVD mortality High CMV IgG associated with all‐
cause mortality when

controlling for many

confounders (HR 1.23)

Cancer mortality Significant associated between non‐
cancer non‐CVD increased

mortality (HR 1.35)
Overall mortality

ARIC8 Nested case‐cohort, 45–64 years

old, 726 participants, US

communities in 4 states

CMV IgG level High CMV IgG (top 20%) associated

with increases coronary heart

disease (HR 1.76) after

adjustment for confounders

HSV antibodies

Labs including lipids. No CRP

BMI/Socioeconomic data

Coronary heart disease (including

MI deaths) at 5 years follow up

NHANES III35 US population study of 14,153

participants aged >25 years old;
samples taken between 1988

and 1994

CMV seropositivity CMV seropositivity associated

overall mortality after

confounders controlled (HR

1.19)

Socioeconomic data

Lab data including CRP/lipids High CRP and CMV seropositivity

associated with CVD death (HR

1.67)
CVD mortality and overall

mortality measured in 2006

Sacramento area

Latino study on

ageing38

A longitudinal population‐based
study of 1459 older Latinos

(aged 60–101 years) in

California, US followed in

1998–2008

CMV immunoglobulin G (IgG),

tumour necrosis factor, and

interleukin‐6

High CMV Ig (top 25% vs. lowest

25%) significantly increased

CVD death (HR 1.35) after

adjustment

CVD mortality High CMV Ig (top 25% vs. lowest

25%) significantly increased

overall mortality risk (HR 1.43)

after adjustment

TNF, IL‐6 contributes to CMV

associated risk

Increased

cancer risk

—glioma

CMV and glioma

prognosis

metanalysis39

7 studies identified up to 2019.

Includes around 250 patients

CMV seropositivity No association between CMV

seropositivity and glioma

prognosis
CMV IgG levels

CMV IEA staining on histology

samples

Increased CMV IEA staining on

histology worsens progression

free survival (HR 1.46)
Progression free survival

Overall mortality
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T A B L E 1 (Continued)

Effect Trial/study Population

Exposures and outcomes

measured Results

Detection of CMV in

gliomas40
125 histological samples of GMB in

the US

CMV IE1/2 detection via in situ

hybridisation, PCR,

immunohistochemistry in a

combination of fresh‐frozen
tissue samples and formalin‐
fixed paraffin‐embedded

No detection of CMV protein or

transcripts in any samples

Detection of CMV in

gliomas and

peripheral

blood41

45 cases of GBM diagnosed

histologically in US

CMV DNA in peripheral blood 93% of GBM samples had CMV

proteins stain positive
CMV DNA in GBM histology

CMV IEA staining in GBM histology 80% of patients with positive CMV

proteins stain on GBM histology

had peripheral blood CMV DNA

detected

Interaction

with TB/

HIV

General population

cohort

(Uganda)42

Rural Uganda, 25 patients with

active TB; 256 controls with no

active TB. Mean age 26

CMV IgG levels Individuals with medium CMV IgG

OR 2.8 to have active

tuberculosis disease (P = 0.055),

and those with high CMV IgG

OR 3.4 to have active

tuberculosis disease (P = 0.007)

EBV/HSV/HIV antibodies

Serum cytokine levels

TB sputum AFB

MVA85A TB vaccine

trial cohort

(South Africa)43

Prospective South African cohort

study. Part of vaccine study. 49

infants TB disease at first

2 years of life, versus 129

healthy matched controls

CMV IgG levels; CMV+ 48.8% risk versus CMV−
25% risk of active TB at 2 years

(p = 0.043)
CMV‐stimulated IFN‐γ response

PBMC transcriptome analysis

NCT00953927 TB sputum AFB Transcriptional activated T cells,

type I IFN responses, and NK

cells in infants up to 3 years

prior to detection of TB

Time to TB diagnosis

Effect on

response

to

vaccination

Polio vaccine

response in

infants44

369 CMV seropositive versus 75

CMV seronegative Zambian

infants at 18 months of age

CMV seropositivity No difference in antibody titres at

18 months of age between CMV

serostatus group
HIV status

HIV exposure during pregnancy

Part of randomised nutritional

study

Socioeconomics factors

Breastfeeding

Polio antibody titre

Measles vaccination

in infants45
Cohort study, 132 Gambian

Newborns

CMV seropositivity 1 week post‐vaccination: Reduced
IFN‐y response to measles in

CMV+ ve; no other differences
CMV DNA urine

Lymphocyte subsets

CD4+ IFN‐y production to measles

protein

4‐month post‐vaccination: No
difference in IFN‐y response to

measles; no difference in

cytokine production
Measles antibody production:

Inhibition of haemagglutinin

protein assay

Influenza in

adults11,12
Part of safety study for seasonal flu

vaccine

CMV seropositivity Derhovanessian: >60 year old,

CMV seropositivity was

associated with reduction in

influenza antibody production

(88% vs. 44%, p = 0.033)

54 subjects from Antwerp, Belgium.

Age >18
Lymphocyte subsets Frasca: In young (>18) and elderly

(>60), CMV seropositivity was

associated with reduction

influenza Ab production

Haemagglutinin inhibition assay

Abbreviations: AFB, acid fast bacilli; BMI, body mass index; EIA, enzyme immunoassay; GBM, glioblastoma; HR, hazard ratio; HSV, herpes simplex virus;

IEA, immediate eary antigen; IFN, interferon; MI, myocardial infarction; NK cell, natural killer cell; PBMC, peripheral blood mononuclear cell; PCR,

polymerase chain reaction; TNF, tumour necrosis factor.
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contradictory evidence in this area.41,74,76 One study combined

several different detection methods including polymerase chain re-

action, immunohistochemistry and in situ hybridisation targeted to

IE1/2 failed to detect CMV among 125 samples.40 Differences be-

tween studies is likely due to differences in storage methods, CMV

isolation methods and sampling. CMV seropositivity and presence of

CMV proteins with tumour has been associated with worse prognosis

in several studies.9,77,78 However, a recent metanalysis showed no

association between CMV seropositivity and prognosis.39 Many of

the studies included failed to account for confounding factors. A

hypothesis‐generating 42‐patient phase I/II double‐blind randomised
control trial reported from a post‐hoc analysis a survival benefit in

patients with glioblastomas treated with valganciclovir for 6 months

compared to patients who had it for less than 6 months (24.1 vs.

13.1 months).79 An update of the cohort with 102 patients demon-

strated similar findings.80 These studies were single centre with a

small cohort of patients. Currently there is a multi‐centre double

blind randomised phase II trial (NCT04116411) recruiting a cohort of

220 patients with 30 months follow up.

In summary, current evidence demonstrates little substantive

proof of a causal interaction between cancer and CMV. The lack of

clear causation between CMV and cancer risk may be related to

variability in the presence of CMV within tumours and the host

response. Alternatively, confounding factors may be driving the as-

sociations observed.

4 | CMV AND SUSCEPTIBILITY TO INFECTION

CMV has been reported to have a protective effect against infection

with unrelated pathogens and enhance the response to vaccination

and superantigen stimulation.45,81 Mice infected with CMV who were

F I GUR E 1 Proposed mechanisms by which cytomegalovirus (CMV) could promote and maintain disease in the general population.
(a) CMV likely promotes plaque maintenance through vascular migrating subsets of CD8 T‐cells promoting an inflammatory environment.

CMV promotes M1 macrophage and Type 1 T‐helper (Th1) polarisation which are associated with increased risk of plaque rupture. (b) CMV
may enter tumours through local infiltration of infected monocytes. CMV has diverse genes which are likely to have oncomodulatory roles.
CMV can promote reduced expression of key cancer recognition molecules of cancer cells such as major histocompatibility complex (MHC)
and increase inhibitory factors such as PD‐1—therefore impairing immune recognition. (c) CMV has been showed to reduce immune responses

—both antibody generation and T‐cell mediated immunity. The mechanism behind this may related expansion of terminally differentiated T‐
cell subsets and a reduction of naïve T‐cells therefore reducing ‘immunological space’ for vaccine responses. (d) CMV appears to increase the
risk of disease in TB. CMV encodes a molecule similar to IL‐10, whilst TB stimulates production of IL‐10 leading to impaired immune responses
local to infection. Both CMV and TB have roles in reduces the expression of MHC receptors and production of chemokines which reduce
immune recognition to infected cells.
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challenged with a lethal load of listeria were protected—compared to

those with no CMV exposure—and this effect persisted for several

months.81 Subsequently, the persistence of this effect was ques-

tioned as it appeared that the protection waned past 6.5 months in

mice.82 Protection against unrelated pathogens is often felt to be due

to the non‐specific priming of the innate immune system. Alterna-

tively, cross‐reaction between peptides induced in the CMV immune

response is another possible mechanism.

TB is a highly prevalent pathogen which has remarkable over-

lapping epidemiology and cellular tropism to CMV.16,83 CMV may

increase the risk of progression to disease in TB infected in-

dividuals. CMV is nearly ubiquitous in a TB prevalent setting,

limiting epidemiological studies between seropositive and seroneg-

ative individuals. However, a Ugandan nested case‐control study of

2170 individuals reported increasing levels of CMV IgG are asso-

ciated with increased risk of TB disease.42 This case‐control cohort
had age, sex and HIV status matched controls, however there was

no control for other confounding factors—particularly adjusting for

large family sizes where CMV IgG levels may be raised due to CMV

boosting and there is an increased risk of TB. Similarly, in a cohort

of South African children, presence of CMV‐specific T‐cell re-

sponses as measured by IFN‐y production were associated with a

2.2‐fold increase in progression to TB disease over a 3 year follow

up period.43

The mechanism of interaction between TB and CMV is un-

clear.15,83 They are both active in similar host‐modulatory pathways
including IFN‐y up‐regulation,52,83–85 IL‐10 upregulation and

downregulation of MHC‐I molecules (Figure 1d).86 Additionally,

CMV is associated with increased CD8+ and CD4+ T cell activation

and expansion of CD4+ Human Leukocyte Antigen–DR isotype

(HLA‐DR+) T‐cells are associated with an increased risk of pro-

gression to TB disease (Figure 1d).87

In LMIC settings, CMV and HIV are common co‐infections that
are both linked to pro‐inflammatory immune phenotypes. HIV

exposure in utero (regardless of whether the infant subsequently

develops HIV) appears to increase the risk of CMV infection in in-

fants.88 Infants born to a mother living with HIV who themselves are

negative for HIV infection (HIV‐exposed, uninfected infants) appear

to have adverse outcomes including increased risk of hospitalisation,

pneumonia, failure to thrive and higher overall mortality.13,89–91 In a

prospective study of 811 Zambian infants where CMV serostatus

was measured at 18‐months, CMV seropositive infants with HIV

exposure demonstrated impaired growth and social development

scores which persisted compared to CMV‐seronegative HIV‐exposed
infants, even when controlling for socioeconomic factors, breast-

feeding duration, and education.14 CMV‐seropositivity in combina-

tion with HIV‐exposure is associated with an increased CRP level in

six‐week‐old infants compared to CMV‐seronegative HIV‐exposed
infants, which may suggest that CMV and HIV‐exposure are syner-

gistic in promoting an early pro‐inflammatory state in infants.13,92

Despite this, CMV and HIV co‐infection does not appear to increase

mortality when infants received early anti‐retroviral therapy14,88 and
the long‐term impact after 2 years of age is unclear.

5 | CMV AND VACCINATION RESPONSE

CMV may impair response to vaccination—particularly in elderly in-

dividuals where both T‐cell and B‐cell mediated effector functions

are affected (Figure 1c). In studies evaluating influenza vaccine re-

sponses, CMV seropositivity has been associated with poor humoural

vaccine response in adult populations.11,12 One study demonstrated

reduced influenza vaccine IgG production in CMV seropositive adults

compared to seronegative adults across all ages,12 whereas another

found that CMV seropositivity was associated with reduced vaccine

response only in adults over the age of 60.11 However several studies

have shown no association between CMV seropositivity and vaccine

responsive to both influenza and pneumococcal vaccination.10,93,94

These studies vary in the strain of influenza evaluated and the degree

to which they adjust for confounding effects (most studies only

adjusted for age and sex).

Various measures of immunogenic response to influenza

vaccination—such as neutralising antibodies titres on haemagglutinin

inhibition assays and antibody‐dependent‐cellular‐cytotoxicity
assays—decrease with age.95,96 Poor immunogenic response to

influenza vaccination is associated with an increase in the CD8+
CD28− T‐cell subset96,97 which is typically expanded in CMV infec-

ted elderly individuals as part of a late‐differentiated CD8+ cell

phenotype.20,31,32 Similarly, late‐differentiated CD4+ phenotypes,

present in CMV+ patients, associated with poor humoural immuno-

genic response in elderly individuals.11 In a study evaluating the

immune responses to the Ebola vaccines, UK CMV seropositive

young adults were found to have reduced antibody production.98

Poor response to Ebola vaccination is correlated with increased

levels of KLRG1, a marker of the terminal differentiated T‐cell found
in CMV seropositive individuals.98 The expansion of these differen-

tiated cells is potentially a consequence of low‐level reactivation; it is
not known whether these cells contribute directly to poor immune

responses or are a proxy marker of an alternative pathological

process.

In infants, most of the evidence regarding immunogenic re-

sponses to vaccination shows no association between CMV sero-

positivity and response as measured by vaccine antibodies titres and

T‐cell responses. Exposure to CMV occurs early in life in the majority

of LMIC's, where seropositivity can reach 90% within 6 weeks of

birth.92 In a Zambian cohort of 369 CMV‐seropositive infants, there

was no difference in polio antibody titres at 18 months of age

compared to CMV‐seronegative infants.44 In 9‐month‐old Gambian

infants, CMV seropositivity was associated with mildly impaired IFN‐
y response to measles antigen 1 week after vaccination—however

this effect disappeared 3 months later.45,99

6 | CMV RELATED MORTALITY

One interesting aspect of many epidemiological studies is the mor-

tality gap between CMV seropositive and seronegative patients

which is not explained by cancer or CVD, even once various
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socioeconomical factors have been controlled for.34,35,38 This non‐
specific increase in death is due to a highly heterogenous group of

causes.

In a Swedish longitudinal cohort, the accumulation of CD8+
CD28− CD57+ T‐cells, a subset driven by CMV seropositivity as

discussed above, was associated with increased mortality (Table 1).37

CMV is thought to have a generalised pro‐inflammatory effect

potentially through persistent low‐level replication. Raised CRP has

been found to be an independent predictor of mortality in the elderly

and in another study CRP is synergistic with CMV to increase the risk

of mortality.35 Overall mortality and CVD‐related mortality was

correlated with CMV‐IgG levels and most of this effect was reduced

when controlling for IL‐6 and tumour necrosis factor‐alpha levels.38

It is likely that CMV interacts with other diseases through modula-

tion of the immune system and localised reactivation in inflammatory

niches. Whilst CMV may not initiate disease processes, through

biasing immune responses towards pro‐inflammatory phenotypes it

may contribute to the maintenance of inflammation and impaired

resolution.

7 | CMV VACCINATION AND THE INDIRECT
EFFECTS OF CMV INFECTION

Several CMV vaccine platforms are in phase II and phase III trials

including viral vector, recombinant subunit, live attenuated and

mRNA.100,101 Currently two vaccines have reached phase III. The

ASP01131 vaccine recently reported no impact on mortality or CMV

end organ damage at 1 year follow up in haematopoietic cell trans-

plant recipients (NCT01877655).102 Moderna started recruitment in

October 2021 for a phase III trial of an mRNA‐based vaccine which

showed promising immunogenicity in phase II trials (NCT05085366).

Several different populations are being evaluated in these studies

including solid‐organ transplants patients, HSCT patients, adolescent

females, women of child bearing age (NCT05085366), and healthy

adults. Notably few studies include older adults. Many of these

studies include secondary endpoints which evaluate the direct effects

of CMV: CMV end organ damage in transplant populations

(NCT02506933, NCT01877655) and cases of congenital infection

(NCT00125502).

There are no CMV vaccine trials currently evaluating the po-

tential impact on the indirect effects of CMV infection. Registries

could be created for any CMV vaccine trial allowing for long‐term
follow up and measurement of indirect effects of all participants

(Table 2). In addition, using services such as the UK Clinical Practice

Research Data Link (CPRD) for data linkage studies would allow

follow up of long‐term outcomes of patients with a rich dataset that

includes both primary care and secondary care data. Many previous

phase II or III trials102–106 have been conducted in a healthy adult or

child population with no existing co‐morbidity—but little long‐term
follow up of these patients exists. Only the Moderna mRNA‐1647
vaccine (NCT04975893) currently has registered trial for longer

follow up of participants. Bernstein et al. (NCT00133497 and

NCT03486834) included adolescent female and child‐bearing age

females respectively—these are healthy females that have compa-

rable demographics to the general population—follow up of cohorts

such as these could provide data broadly applicable to the general

population in high income country settings. Registries including all

clinical trial patients would allow for comparison between the un-

vaccinated and vaccinated patients within the same trial, and com-

parison between different vaccine candidates. Several of the indirect

effects of CMV discussed above will not be detectable within con-

ventional vaccine trial follow up periods, as these effects are likely to

take decades to emerge; therefore, it is important to collect longi-

tudinal data through registries or data linkage.

Currently, vaccine modelling and cost effectiveness studies have

only considered the direct effects of CMV.107–109 Modelling the in-

direct effects of CMV is severely limited by lack of detailed epide-

miological evidence which can be used to inform accurate parameters

(Table 2). There are several well defined long‐term prospective

cohort studies with CMV seropositivity data available—NONA,

OCTA, EPIC (Table 1)—which could be used to form initial estimates

of the impact of vaccination in reducing the burden of atherosclerosis

and CVD. Using data from previous studies demonstrating increased

mortality from CMV reactivation in intensive care unit, an estimate

of excess deaths caused by CMV reactivation in ICU‐admitted
pneumonia patients is also feasible. Future studies need to evaluate

the epidemiological role and quantitative impact of CMV on out-

comes such as CVD, TB, HIV, vaccination responses and cancer

(Table 2), which will allow for more accurate modelling studies to be

performed and estimate the impact of CMV vaccination. During the

COVID‐19 pandemic, several HICs used population based observa-

tional data to inform the effectiveness of societal lockdowns, vaccine

effectives and other public health strategies. Researchers could

adopt these platforms, utilise existing routinely collected national

datasets and develop novel strategies using anonymised electronic

healthcare records to conduct observational studies evaluating the

association between CMV and the conditions outlined.

It is important to note that there is evidence that latent CMV

infection may have beneficial effects, particularly in children and

young adults. Seropositive 20–30‐year‐olds appear to have a greater
response to influenza vaccination compared to seronegative in-

dividuals of the same age at 28 days post vaccination.94 Additionally,

in Gambian infants IFN‐y response to CMV correlated with IFN‐y
response to staphylococcal enterotoxin B (r = 0.30, P = 0.012). In

young adults CMV was associated with high IFN‐y, pSTAT1 and

pSTAT3 level suggestive of an activated immune state. In younger

individuals, it is plausible that CMV may promote a more dynamic

active immune system, and therefore vaccination may be harmful.

All current modelling and cost‐effectiveness studies are derived

from data in HICs where seroprevalence is lower and seroconversion

typically occurs later in life. Limited epidemiological data in many

LMIC countries hinders detailed modelling in these settings. In LMIC

settings, the indirect effects of CMV on infectious disease outcomes

—where TB and HIV prevalence is high—are likely to be an important

element of modelling the cost‐effectiveness of a vaccine. Further
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TAB L E 2 Proposed areas of research to better understand the impact of a cytomegalovirus (CMV) vaccine

Indirect effect knowledge gap Study design(s) Outcome measures

TB/HIV Pathogenesis—role of

reactivation of CMV in

driving TB

Prospective birth cohort study measuring CMV

viraemia during active TB infection.

Focussed on LMIC settings

Presence of CMV Viraemia during active TB

disease; cytokine measurements;

transcriptome and proteome

Mouse models with CMV latent infection with

TB challenge

Epidemiology Prospective cohort birth studies. Measurement

of CMV serostatus of mother during

pregnancy. Sequential measurement of

CMV serostatus of baby. Ideally measure

CMV viraemia

Incidence of TB disease in CMV seropositive

versus seronegative

Rate of progression from TB infection to TB

disease in CMV seropositive versus

seronegative.

Role of anti‐viral therapy in prevention of TB

disease or anti‐viral therapy host‐
modulation in TB disease

Measuring vaccine impact CMV vaccination trial registries facilitating

long‐term prospective follow up;

Rate of progression from TB infection to TB

disease in vaccination compared to un‐
vaccinated

Incidence of TB disease in vaccinated

compared to general population

Modelling studies evaluating the impact of

vaccination on TB disease outcomes.

Should include different populations and

include LMIC population demographics

Incidence of site of TB disease (rate of

pulmonary vs. extrapulmonary TB) in

vaccinated compared to unvaccinated (or

general population)

Correlates of protection against TB

Evaluation of effectiveness of BCG vaccination

—prospective follow up of paediatric

population post‐BCG vaccination

Number and severity of TB cases

Measurement of immune correlates of

protection post‐BCG vaccination

Infectious disease

interactions

Epidemiology Prospective cohort study evaluating rate of

reactivation of CMV in different contexts

including ICU versus ward and illnesses

Rate of CMV viraemia in different group (ICU

vs. ward, pneumonia vs. UTI)

Mortality and mortality rates in CMV viraemia

versus no CMV viraemia

Vaccination impact Modelling study evaluating the excess deaths

and morbidity cause by CMV reactivation

in severe illness

Measurement of excess deaths secondary to

CMV reactivation in severe illness

CMV influence on

vaccination

response

Vaccination impact CMV vaccination trial registries facilitating

long‐term prospective follow up;

Measurement of influenza (or alterative)

vaccine IgG/HA assay titres and ADCC at

various time points in vaccine recipients

Data linkage studies Rates of admission to hospital with vaccine

preventable diseases (influenza,

streptococcal pneumonia)

CMV vaccine trials. Prospective data during

early follow up

Measurement of influenza (or alterative)

vaccine IgG/HA assay titres and ADCC in

infants born to mother who have had

vaccination

Atherosclerosis and

CVD risk

Pathogenesis Autopsy samples from ACS patients with CMV

seropositivity and CMV seronegative.

Presence of CMV inclusion bodies. Presence of

CMV DNA

Pro‐atherosclerosis mouse studies M1/M2 macrophage polarisation and RNA

transcriptome

Epidemiology Prospective cohort studies of initially CMV

seronegative population. To include

measurement of serostatus sequentially;

measurement of CMV viraemia; frequency

of reactivations and measurement of

socioeconomical cofounders

Incidence of acute coronary syndrome (ACS)

Coronary artery thickness

Incidence of peripheral vascular disease

Biomarkers predictive of outcomes above

(Continues)
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modelling studies in this population should evaluate outcomes such

as HIV and TB reactivation and mortality, and model how outcomes

vary between different vaccination target populations.

8 | CONCLUSIONS AND IMPLICATIONS FOR
VACCINE DEVELOPMENT

Whilst studies have modelled how CMV vaccination would impact

the reduction of CMV associated disease in immunosuppressed pa-

tient and congenital disease, there may be unforeseen benefits of

vaccination in the general population. Atherosclerosis and CVD have

been associated with increased CMV IgG levels and there are clear

mechanisms by which CMV could maintain atherosclerosis and pro-

mote plaque rupture (Table 1). Vaccination responses in CMV posi-

tive individuals, whilst unaffected in infancy, may be impaired in later

life as demonstrated by poorer response to influenza vaccine. Addi-

tionally, CMV may synergise with other important pathogens such as

TB where there is an increased risk of TB progression and disease.

Many of these effects may be mediated by recurrent sub‐clinical
CMV reactivation which leads to immune activation and expansion

of dysfunction immune cell subsets. Following participants of vaccine

studies may be the most effective way to evaluate the effect of CMV

in the general population and there should be consideration for

creation of registries in these trials.
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