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ABSTRACT

Objective: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the value of real-world data

for public health research. International federated analyses are crucial for informing policy makers. Common

data models (CDMs) are critical for enabling these studies to be performed efficiently. Our objective was to con-

vert the UK Biobank, a study of 500 000 participants with rich genetic and phenotypic data to the Observational

Medical Outcomes Partnership (OMOP) CDM.

Materials and Methods: We converted UK Biobank data to OMOP CDM v. 5.3. We transformedparticipant research

data on diseases collected at recruitment and electronic health records (EHRs) from primary care, hospitalizations,

cancer registrations, and mortality from providers in England, Scotland, and Wales. We performed syntactic and

semantic validations and compared comorbidities and risk factors between source and transformed data.

Results: We identified 502 505 participants (3086 with COVID-19) and transformed 690 fields (1 373 239 555 rows)

to the OMOP CDM using 8 different controlled clinical terminologies and bespoke mappings. Specifically, we trans-

formed self-reported noncancer illnesses 946 053 (83.91% of all source entries), cancers 37 802 (70.81%), medica-

tions 1 218 935 (88.25%), and prescriptions 864 788 (86.96%). In EHR, we transformed 13 028 182 (99.95%) hospital

diagnoses, 6 465 399 (89.2%) procedures, 337 896 333 primary care diagnoses (CTV3, SNOMED-CT), 139 966 587

(98.74%) prescriptions (dmþd) and 77 127 (99.95%) deaths (ICD-10). We observed good concordance across demo-

graphic, risk factor, and comorbidity factors between source and transformed data.

Discussion and Conclusion: Our study demonstrated that the OMOP CDM can be successfully leveraged to har-

monize complex large-scale biobanked studies combining rich multimodal phenotypic data. Our study uncov-

ered several challenges when transforming data from questionnaires to the OMOP CDM which require further
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research. The transformed UK Biobank resource is a valuable tool that can enable federated research, like

COVID-19 studies.

Key words: electronic health records, medical ontologies, phenotyping, OMOP, common data model

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has had a pro-

found worldwide impact on disease and healthcare system burden.1

Disease severity, and interactions with the healthcare system, have

been highly heterogeneous between pandemic waves and viral var-

iants.2 Rapidly evolving Severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) testing patterns and clinical guidelines also meant that

patients demonstrate different clinical trajectories and interact with the

healthcare system in different ways. Finally, the widespread and sus-

tained worldwide uptake of vaccinations has a huge impact in terms of

patient outcomes but also raised concerns in terms of adverse reactions

(eg, thrombocytopenic events following ChAdOx1/BNT162b2).3

During the COVID-19 pandemic, there has been a critical need for

generating and providing real world high quality scientific evidence to

clinicians and policy makers on COVID-19 phenotypes, treatments and

prognosis. Many aspects of COVID-19 vary significantly across health-

care systems across countries and international comparisons on patients’

outcomes are vital to understand the reasons for this variability.4 Fur-

thermore, rare COVID-19 vaccination side effects require multiple data-

sets to be analyzed given their very low prevalence in any individual

source. Performing federated analyses across different datasets is chal-

lenging as data are recorded in different clinical terminologies, are gener-

ated for different purposes, and use different schemas and multiple large-

scale collaborations, such as the National COVID Cohort Collaborative

(N3C) were created for this purpose.5 Observational Health Data Scien-

ces and Informatics (OHDSI) is an international research network aim-

ing to generate reliable and high-quality clinical evidence for improving

health and healthcare. During the COVID-19 pandemic, OHDSI used

the Observational Medical Outcomes Partnership (OMOP) Common

Data Model (CDM)9 to transform disparate data into a standardized

format and perform federated analyses to produce high quality evidence

about COVID-19 for policy makers and healthcare providers.4,6–8

The IMI European Health Data Evidence Network (EHDEN)

project10 launched a series of Rapid Collaboration Calls in order to

catalyze the conversion of datasets to OMOP with the aim of pro-

viding insights into COVID-19 rapidly and at scale across countries.

As part of this initiative, we have transformed the UK Biobank

(UKB), one of the world’s largest prospective longitudinal studies of

500 000 individuals with extensive genotypic (eg, GWAS, WES,

WGS), phenotypic (eg, electronic health records [EHRs] linkages to

primary care, hospitalizations, cancer registrations, mortality, etc.)

and questionnaire information, to the OMOP CDM.

The objective of our work was to transform the UKB into the

OMOP CDM and facilitate international collaboration on COVID-

19 research and beyond. The primary aim of our study was to con-

vert the UKB and linked EHR data into the OMOP CDM and evalu-

ate the results from a syntactic and semantic perspective.

MATERIALS AND METHODS

Data sources
The UKB recruited 500 000 individuals (aged 40–69 years at recruit-

ment) from England, Scotland, and Wales. UKB participants have

extensive phenotyping and genotypic information collected.11 The

study includes genome-wide genetic data on �488 000 participants

including imputed genotype data, whole exome-sequencing and

whole-genome sequencing.

All participants attended an initial assessment center visit (2006–

2010), and a smaller subset were invited for repeat assessments or

deeper phenotyping (eg, multimodal imaging). Phenotypic data can

be categorized as: (1) research-collected data at the point of recruit-

ment (baseline data), and (2) longitudinal health information from

EHR and disease registry sources.

Baseline data fields

Baseline data contain a wealth of information which was collected

during the baseline assessment of participants in the UKB clinics.

These include: (1) participant current and past self-reported ill-

nesses, medications and procedures which were then verified by a

clinical research nurse, (2) detailed socio-demographic and lifestyle

risk factor data, (3) extensive blood, saliva, and urine biomarkers,

and (4) anthropometric measurements including data from multiple

modalities on particular aspects of human health (eg, spirometry,

bone density, eye and hearing tests, etc.). Baseline data fields are

recorded using a bespoke coding system developed by the UKB, eg,

field 20002 contains patient reported noncancer diseases which are

encoded using 474 unique numeric codes.12

EHR linkages

Longitudinal health outcomes for study participants is collected by

linking with national EHR, administrative and disease registry sour-

ces in each of the 3 countries that participants were recruited from.

Specifically, these include information across these domains: (1)

EHR data from primary care healthcare providers, (2) administra-

tive data for hospital admissions, (3) cancer registration informa-

tion, and (4) mortality data. Each country records data across these

domains in unique data providers which use different clinical termi-

nologies and have variable follow up times. Datasets were linked

using the NHS number, a unique 10 digital healthcare-specific iden-

tifier assigned at first interaction with the healthcare system.

Primary care data are collected from English, Scottish, and

Welsh general practitioner (GP) practices that make use of the EMIS

(https://www.emishealth.com/), Vision (https://www.visionhealth.

co.uk/), or TPP (https://www.tpp-uk.com/) primary care informa-

tion systems. Data are recorded using 3 different controlled clinical

terminologies: (1) SNOMED-CT13; (2) Clinical Terms Version 3

(CTV3)14; and (3) the Dictionary of Medicines and Devices

(dmþd).15 CTV3 is part of the SNOMED Clinical Terms

(SNOMED-CT) used in the UK primary care since 2018. Finally,

proprietary codes are also used in each provider (eg,

“EMISNQSU106—Suspected 2019-nCoV [novel coronavirus]

infection”). Hospital care data and mortality data are recorded

using International Classification of Diseases version 10 (ICD-10)

and version 9 (ICD9) terminologies.16 ICD for Oncology version 3

(ICD-O17) was used for recording cancer registry data. Procedures
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during hospital admissions are recorded using an UK-specified

ontology, OPCS-3 and OPCS-4.18

OMOP CDM and ETL process
We used OMOP CDM version 5.3 (Figure 1)19 which consists of 23

tables organized in 4 top-level domains: clinical, derived elements, health

system, and health economics. Clinical data tables (n¼15) hold core

data on patient demographics, clinical events (eg, diagnoses, laboratory

measurements, medication prescriptions, surgical procedures), visit

occurrences and observation periods. We preprocessed clinical events

such as drug exposure periods and stored information as derived ele-

ments (n¼3). The health system data tables (n¼3) provide information

on healthcare providers associated with the healthcare events held in the

clinical data types. The UKB contains over 9000 individual data fields

from participants and spans multiple data modalities. We excluded -

omics, imaging and bespoke binary research data (eg, accelerometer).

Supplementary Table S5 provides an overview of mapping methods for

all data sources and their respective clinical terminologies. Detailed ETL

documentation available at https://ehden.github.io/ETL-UK-Biobank.

Baseline data mapping

We used the Observational Health Data Sciences and Informatics

(OHDSI) White Rabbit tool20 a data profiling tool which scans the

source data to provide information on tables, fields and values. We

used the tool to generate a data profile on all UKB data tables, fields,

and values. The output was used to gain a better understanding of

the source data and design the syntactic transformation. We priori-

tized 519 baseline fields by: (1) engaging with the community

through the OMOP UKB Working Group we established, (2) expert

review for clinicians to identify key data of high interest or related

to COVID-19 research, and (3) triaging the fields by generating

descriptive statistics and including the most frequently occurring

values or combinations of values.

We classified baseline fields into numeric/continuous (eg, meas-

urements such as systolic blood pressure) and discrete (eg, a patient

reported past medical history). Discrete fields were further classified

as: (1) Boolean fields where the answer is true or false, (2) categori-

cal fields where the value was a string or more from a pre-set list of

values. For each numeric field, 2 mappings to standard concepts

were created: firstly a mapping for the event (preferably from

SNOMED-CT and the Measurement domain) and, secondly a map-

ping for the respective unit (from Unified Code for Units of Measure

[UCUM]21). Dates associated with discrete and numeric fields were

included in the mapping (Supplementary Table S1).

In a data preprocessing phase, we traversed the wide source data

format, ie, 1 row per patient with columns corresponding to each data

field, into a long format, ie, 1 row per patient and specific data field.

Within the syntactic mapping phase, we mapped patient identifiers,

data field identifiers, data field values, units, and dates (if applicable)

onto corresponding fields of the OMOP CDM tables (eg, sex, ethnicity,

date of death) or as a clinical event record (self-reported diseases, blood

pressure measurement); (Supplementary Figure S1). We annotated base-

line data fields by OMOP Concept ID using the UK Biobank Athena

vocabulary providing information about data field hierarchical struc-

ture, categories and value encoding systems used in the dataset.

Athena22 is the OHDSI vocabulary repository that merges multiple

medical ontologies and provides unique Concept IDs for terms from

each source ontology. This vocabulary however does not implement

nonstandard to standard concept mappings, ie, mapping from nonstan-

dard UK Biobank fields to standard SNOMED concepts. Therefore, we

created custom mapping tables for the prioritized fields (Figure 2) by

using USAGI.23 USAGI proposes “Non-standard to Standard map”

suggestions between imported nonstandard terms and standard con-

cepts from OMOP CDM supported terminologies. The suggestions are

evaluated by a textual match score. Accepted suggestions were man-

ually reviewed and the output exported to mapping files. The UK Bio-

bank fields were added during this project as a “nonstandard” source

vocabulary, with some concepts mapping to standard OMOP concepts.

In case of an occurrence of multiple mapping candidates, the final target

concept ID was selected by choosing the standard concept in the

OMOP vocabulary providing the best match according to OHDSI con-

ventions. If ambiguity remained, target concepts were selected based on

preferred target terminology (mostly SNOMED) and target domain (eg,

condition preferred over observation for a diagnosis of Hypertension).

The OMOP CDM also allows to store the nonstandard source con-

cepts, for which we used the UKB vocabulary in Athena. We processed

31 hematology measurements (UKB field id 9081) which were directly

measured (eg, white blood cell count), calculated (eg, neutrophil num-

ber) or derived (eg, mean platelet volume) from samples obtained from

participants during the recruitment center assessment. All semantically

unmapped fields (not mapped to a standard concept) were transformed

into the OMOP Observation domain with a Concept ID 0 and the orig-

inal field id as the source value to preserve this information.

EHR data mapping

The linked EHR data (eg, participant data from primary and secon-

dary care, cancer registrations and mortality) were mapped to differ-

ent OMOP tables (measurements, conditions, observations, or

Figure 1. Transformation process (synthetic data development, iterative deployment); In the first phase, data profiling is performed over the source data (UK Bio-

bank) and based on the results, synthetic data for developmental and validation purposes were generated. The second phase involves development of the ETL

using the delphyne pipeline. Finally, an iterative validation and redefinition phase is performed. ETL: extract, transform, load; OMOP: Observational Medical Out-

comes Partnership; UKB: UK Biobank.
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procedures) based on the domain of the target OMOP concept. The

observation domain was used as default when the target OMOP

concept was missing. Records with a special value were excluded

from the transformation, eg, for an invalid CTV3/SNOMED-CT

code (�3), for a missing code (�99), for the potential sensitivity of

diagnosis code on rare occasions (�1) or for rare occupation (�2).

In the interest of resource efficiency and speed, in each EHR source

we prioritized for manual review and mapping the terms that

accounted for at least 80% of the clinical events recorded.

Primary care EHR data uses 2 different terminologies:

SNOMED-CT and CTV3. SNOMED-CT codes are natively sup-

ported in OMOP and were semantically mapped directly to target

concepts by OMOP CDM mapping tables. CTV3 codes were

mapped using the official CTV3 to SNOMED-CT cross maps pro-

vided by NHS Digital.24 The map contains 1:1 (n¼178 266) and 1:

many mappings (n¼3189). One: many mappings were filtered by

the following rules: (1) only mappings labeled as “Preferred” and

“Active” were used; (2) only mappings where the target concept is

standard were used, (3) Target domain classification respects the fol-

lowing priority list: Measurement, Condition, Observation, Proce-

dure. Remaining unmapped terms (n¼2095) were ordered by

frequency and the 80% most used (n¼100) were manually

reviewed. During the review, more specific mappings were priori-

tized. Finally, proprietary EMIS and TPP codes were manually

reviewed and mapped using USAGI. Primary care prescriptions were

encoded by dmþd for EMIS and TPP. Records were mapped to the

OMOP Drug Exposure table, using the RxNorm terminology apply-

ing existing dmþd-RxNorm25 mappings available in Athena.

Hospital EHR data were transformed in a similar way, with the

difference that the source used ICD-10 and ICD-9 for diagnoses and

OPCS-3 and OPCS-4 for procedures. These codes were mapped

with the available mapping to SNOMED-CT in the OMOP vocabu-

lary. Hospital procedures were encoded in OPCS-3 and OPCS-4

(OPCS Classification of Interventions and Procedures version 3 and

4) vocabularies. For OPCS-4 codes we used a mapping existing in

the OMOP vocabulary. OPCS-3 had to be mapped manually using

USAGI. We prioritized and mapped the n¼328 terms (out of a total

of 1900 terms) that accounted for 80% of events.

SARS-CoV-2 infection and COVID-19 status ascertainment

Data from national COVID-19 testing laboratories made available

for research26 were mapped onto a common concept Measurement

of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

(OMOP Extension vocabulary) with specification of the specimen

type used for the COVID-19 test and test result as positive or nega-

tive. For the downstream analysis, we ascertained COVID-19 status

by combining information from national serology testing data,

admitted hospital episodes, primary care diagnoses (including pro-

prietary EMIS and TPP codes), and cause of death information on

using a previously validated phenotyping algorithm2,27 (Supplemen-

tary Table S2a and S2b).

Evaluation and validation

During the development phase, the ETL was tested using synthetic

data automatically generated by the Python library Tofu29 and man-

ually written test cases. This enabled the developers to test the ETL

on a large synthetic dataset. Validation of the final transformation

was performed using OHDSI tools: Achilles30 and the DataQuality-

Dashboard (DQD)31 and the EHDEN CDMInspection tool.32

Achilles performs �300 analyses on the transformed data. Data-

QualityDasboard runs �3.5k checks testing data quality on the con-

formance, completeness, and plausibility of the data in the OMOP

CDM. CDMInspection provides 14 additional checks on top of the

DataQualityDashboard, mainly focused on vocabulary and techni-

cal infrastructure of the CDM. Multiple iterations of conversion and

validation were performed until the validation checks passed. We

utilized Achilles to create a dashboard of visualizations of key data

source characteristics (eg, demographics and most occurring clinical

events) and inspected them for consistency and clinical plausibility

after each iteration in collaboration with clinical colleagues.

We validated the mapping by defining and comparing a series of

metrics between the raw data, the OMOP converted data and the

subset of OMOP converted data which had tested positive for

COVID-19. Specifically, we extracted information on: (1) key dem-

ographic fields (from the baseline assessment center visit), (2) life-

style risk factors (eg, smoking status), (3) clinical biomarkers (eg,

Figure 2. Example of a semantic mapping of self-reported hypertension. Mapping is realized in 2 steps using: (1) UK Biobank vocabulary and (2) custom created

nonstandard to standard concept mapping tables. OMOP: Observational Medical Outcomes Partnership; CDM: Common Data Model. Here, the UK Biobank data

field 20002 (noncancer illness code, self-reported) with value 1065 (hypertension) is transformed to an OMOP an observation record with observation_concept_id

4214956 (History of clinical finding in subject) and value_as_concept_id 316866 (Hypertensive disorder).
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blood pressure) and, (4) clinical comorbidities. Clinical comorbid-

ities were defined using a set of previously validated phenotyping

algorithms from CALIBER28,33: Type 2 Diabetes (T2DM), Heart

Failure (HF), Acute Myocardial Infarction (AMI), Chronic Obstruc-

tive Pulmonary Disease (COPD) and Hypertension (HT). We used

Atlas,34 a unified interface for OHDSI tools, and OMOP compatible

SQL queries to generate and compare the metrics between the data-

sets. For comorbidities, the number (and percentage) of patients

identified in each dataset was compared while for continuous meas-

urements the median and standard deviation were compared.

Statistical analyses

We generated and reported descriptive statistics (mean, median) for

key demographic and clinical variables in the cohort, stratified by

COVID-19 status. For each source, we created descriptive analyses

to report the most frequent unmapped concepts per OMOP domain

during the ETL process.

Open source mapping and vocabulary files

To perform the transformation, we used delphyne,35 a Python

OMOP ETL pipeline developed by The Hyve. The source code and

ETL mapping files for this project are available: https://ehden.

github.io/ETL-UK-Biobank. We used a bespoke OMOP vocabulary

for UKB baseline fields/categories available in Athena,36 which we

extended for this project. The CTV3, and CTV3-SNOMED-CT

mappings are available from NHS Digital.

Data availability and ethical approval. Ethical approval for this

study was provided from the UKB Access Review Board, reference

58356 “Defining and redefining human disease at scale: an atlas of

the human phenome.” Participant data for this project are available

directly from the UKB following a protocol review and contractual

agreements, more information can be found on the UKB website.

We excluded participants that had withdrawn consent from the

study.

RESULTS

Data sources and SARS-CoV-2 ascertainment
We identified 502 505 unique participants in the UKB and trans-

formed 1 373 239 555 rows of data across all sources to the OMOP

CDM (Table 1). A single participant was rejected (with all associ-

ated data) from the ETL pipeline due to a missing year of birth

value. We identified 3093 (0.61% of total) participants with

COVID-19 during the study period We successfully identified 3086

of these participants (99.8%) in the OMOP CDM. Seven partici-

pants were not identified as a small number of relevant clinical

records were not mapped due to a missing nonstandard to standard

concept mapping (eg, CTV3 code X73lE—Coronavirus). We trans-

formed 690 distinct fields with 2898 values encoded by proprietary

coding systems (Supplementary Table S3 presents a list of all fields).

Baseline and EHR data mapping
In the baseline data, we processed events from 1 127 434 self-

reported noncancer illnesses (field id 20002), 53 384 cancer illnesses

(field id 20001), 1 381 148 medications (field id 20003) and,

994 355 procedures entries (field id 20004) and mapped 946 053

(83.91%), 37 802 (70.81%), 1 218 935 (88.25%) and 864 788

(86.96%) entries respectively (Table 2) in addition to 45 629 849

(74.65%) hematology entries.

In hospitalization EHR (Table 3), we processed 12 962 292 diag-

noses using ICD-10 and mapped 12 961 962 (99.99%). Addition-

ally, we processed 7 220 399 procedure events using the OPCS-4

classification and successfully mapped 6 449 843 (89.32%). A signif-

Table 1. Patient demographic and clinical characteristics presented for the source population, the OMOP CDM transformed population and

the subset of the transformed population with COVID-19

Source UK

Biobank data

OMOP-transformed

UK Biobank data

Transformed UK Biobank COVID-

19 positive sub population

Patients 502 505 502 504 3086

% Female 54.4 54.4 48.76

Median age (IQR) 58 (13) 58 (13) 58 (15)

Median Townsend deprivation index (IQR) �2.135 (4.18) �2.135 (4.18) �1.111 (5.19)

BMI median—baseline (IQR) 26.652 (5.72) 26.65 (5.70) 27.7 (6.21)

BMI median—GP EMIS (IQR) 27.2 (6.9) 27.3 (6.84) 28.89 (8)

SBP median—baseline (IQR) 136 (26) 136 (26) 136 (25)

DBP median—baseline (IQR) 81 (14) 81 (14) 82 (14)

Smoking status

Not answered 2276 Not mapped Not mapped

Never 317 891 317 891 1676

Previous 197 949 197 949 1323

Current 55 676 55 676 395

Comorbidities

T2DM 40 433 (8.04%) 40 476 (8.05%) 453 (14.67%)

HF 8068 (1.6%) 8053 (1.6%) 140 (4.53%)

AMI 10 593 (2.1%) 10 749 (2.13%) 110 (3.56%)

COPD 22 364 (4.45%) 22 367 (4.45%) 328 (10.62%)

HT 175 449 (34.91%) 175 539 (34.93%) 1571 (50.9%)

Note: Age, Townsend deprivation index, Body Mass Index (BMI), Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) values collected at first

assessment center visit.

T2DM: type-II diabetes; HF: heart failure; AMI: acute myocardial infarction; COPD: chronic obstructive pulmonary disease; HT: hypertension.
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icantly smaller number of clinical events using deprecated terminol-

ogies (eg, ICD-9 and OPCS-3) were mapped to a high degree of

accuracy (Table 3). Finally, 77 127 (99.95%) of all death events

recorded in mortality registers across the 3 countries were success-

fully mapped (cause of death recorded using ICD-10).

In primary care EHR (Table 4), we processed 212 828 306 clini-

cal events from EMIS and 133 092 016 clinical events from TPP.

These were recorded using 51 160 SNOMED-CT and 82 669 Clini-

cal Terms Version 3 (CTV3) terms respectively. In EMIS data,

49 968 (97.67%) of SNOMED-CT concepts were mapped success-

fully resulting in 207 756 102 (97.62%) of clinical events mapped.

In TPP, 73 683 (89.13%) of CTV3 concepts were mapped but the

proportion of successfully mapped clinical events remained equally

high with 97.78% of events (n¼130 140 231) successfully mapped.

Measurement units in EMIS for relevant clinical events (eg, mmHg

for blood pressure) were recorded using 55 terms of which 44 were

mapped resulting in 31.27% of events successfully transformed. We

processed 141 752 534 medication prescription events which were

recorded using dmþd. Overall, 30 859 (99.85%) were mapped and

139 966 587 (98.74%) were successfully transformed. Finally, we

mapped 41 COVID-19-related unique proprietary codes used by pri-

mary care EHR software vendors.

Lists of top 10 most frequently used mapped and unmapped

terms can be found in Supplementary Table S4a–S4k.

Evaluation and validation
We identified 40 433 T2DM, 8068 HF, 10 593 AMI, 22 364 COPD

and 175 449 HT patients in the source data and observed similar

estimates in the converted data. A small number of patients (43

AMI, 15 HF, 157 AMI, 6 COPD and 94 HT) were identified only in

the converted data and not in the source data.

DataQualityDashboard verified and validated plausibility, con-

formance, and completeness of the transformed dataset. On the final

run, 3399 checks passed and 18 failed (Supplementary Figure S2).

All remaining failed checks were investigated, and their failure was

expected. Seven checks on completeness failed because the percent-

age of records with a value of 0 in the standard concept field

exceeded a threshold (20%) due to missing mappings. Two plausi-

bility checks failed due to an incompatible gender for a gender

related clinical code, eg, 41 records with a concept 198197—male

infertility are not associated with participants identified as males.

This is given by the source data. Due to errors introduced during the

manual mapping process (ie, incorrect mapping selections using

USAGI), 9 conformance checks failed as a standard Concept ID

value in a table did not conform with a corresponding domain (eg,

0.2% of unit Concept ID values in a Measurement table do not con-

form with a Unit domain).

DISCUSSION

We have extracted and transformed the UKB, a complex large-scale

biobank cohort study of 502 504 middle-aged individuals from Eng-

land, Scotland, and Wales. The study combined self-reported data

from questionnaires which were collected during recruitment and

longitudinal EHR from primary care consultations, hospital admis-

sions, cancer registrations, and mortality using 8 different clinical

terminologies. Overall, >1.3 billion rows of data were processed

and transformed to the OMOP CDM. Transformation of OMOP

has enabled UKB to take part in federated analyses of 17 health data

sources on adverse events of special interest (AESIs) associated with

COVID-19 vaccination and many other studies are ongoing.37,39

Representing data collected through questionnaires in the CDM

was a challenging task and required a significant amount of prepro-

Table 2. Mapping coverage for terms in the baseline and EHR data relating to ethnic status, noncancer/cancer diseases, medication usage

and surgical procedures in the UK Biobank and converted to the OMOP CDM standard vocabulary

Source vocab Used source terms # Mapped used terms # (%) Events # Mapped event # (%)

Baseline ethnic status 22 10 (45.45%) 533 612 512 158 (95.97%)

Self-reported noncancer illness 446 351 (78.69%) 1 127 434 946 053 (83.91%)

Self-reported cancer 82 48 (58.53%) 53 384 37 802 (70.81%)

Self-reported medication 3737 1100 (29.43%) 1 381 148 1 218 935 (88.25%)

Self-reported procedures 254 128 (50.39%) 994 355 864 788 (86.96%)

Hematology samples 124 93 (75%) 61 119 731 45 629 849 (74.65%)

Hospital EHR admission source 86 44 (51.16%) 3 541 594 282 505 (7.97%)

Hospital EHR admission method 63 58 (92.06%) 3 541 610 3 540 046 (99.95%)

Hospital EHR discharge destination 91 56 (61.53%) 3 484 435 3 189 509 (91.53%)

Note: Coverage is given as both the number of unique terms mapped and as the number of events mapped.

EHR: electronic health records.

Table 3. Mapping and event coverage for UK Biobank vocabularies for diagnoses, procedures, and death electronic health records

Source vocab Used source terms # Mapped used terms # (%) Events # Mapped event # (%)

ICD-10 diagnoses 12 094 12 088 (99.95%) 12 962 292 12 961 962 (99.99%)

ICD-9 diagnoses 3337 2847 (85.31%) 72 256 66 220 (91.64%)

OPCS-3 procedures 883 221 (25.02%) 20 077 15 556 (77.48%)

OPCS-4 procedures 8324 8276 (99.42%) 7 220 399 6 449 843 (89.32%)

ICD-10 Death Cause 1962 1961 (99.94%) 77 161 77 127 (99.95%)

Note: Coverage is given as both the number of unique terms mapped and as the number of events mapped.

ICD: International Classification of Diseases; OPCS: OPCS Classification of Interventions and Procedures.
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cessing and consolidation across multiple fields. Eight custom map-

ping tables together with vocabularies from the existing OMOP

vocabularies were used to map data fields and data values to stand-

ard OMOP concepts. Each type of data required a different mapping

approach. One challenge was that OMOP measurements do not

have many attributes, eg, for the Hemoglobin concentration (field id

30020), the freeze-thaw cycles data field (field id 30021) and the

device ID (field id 30023) had to be mapped as a separate observa-

tion and device record respectively.

In line with previous studies38 that used similar controlled clini-

cal terminologies for EHR, our approach achieved high mapping

coverage (>97% coverage) across established systems, eg,

SNOMED-CT, ICD-10. Similarly, 89% of surgical procedure events

recorded in OPCS-4 were transformed. Older terminologies, eg,

ICD-9, OPCS-3, used in historic data had slightly less good cover-

age: 91% and 77%, respectively. In contrast with previous research

using prescription information in primary care EHR, the establish-

ment of dmþd as the standard used has led to a significantly

improved mapping accuracy of 98.7%. Using USAGI, we mapped a

small subset of the proprietary TPP and EMIS codes related to

COVID-19 (41, 0.19%). The mapping of these proprietary codes

had a significant impact on COVID-19 case ascertainment as it cap-

tured �60% of unique identified cases in primary care data and

28% in all sources.

We observed good overall concordance when comparing key

demographic, risk factor and clinical comorbidities source and con-

verted data. Broadly, we observed 2 classes of problems. Firstly, not

all patients identified by comorbidity in the source data were identi-

fied in the transformed data. One cause is semantically unmapped

diagnosis codes used for a cohort identification and appearing in

patients’ clinical records (eg, CTV3 code X73lE—Coronavirus, used

for identification COVID-19 cases; n¼15). A second cause are

restrictions imposed by the ETL (eg, diagnosis codes outside obser-

vation period window).

Secondly, a very small number of patients were only identified as

cases in the transformed data (n¼3 in case of COVID-19 cases).

This occurs when 2 or more distinct source codes are mapped onto

the same target code. If the source comorbidity definition uses one

code and not the other, it is not possible to separate these using the

target code (Supplementary Figure S3). Mapping of 2 or more

source codes onto the same target concept could be a result of: (1)

an incorrectly specified mapping, (2) specific source codes are

mapped onto a more general target code or (3) synonymous source

codes In the latter case the source comorbidity definition should

take both source codes into account.

Our study does have limitations. Not all available data could be

mapped to the OMOP CDM and must be handled separately. For

example, genomic data (eg, SNPs) cannot be integrated within the

OMOP CDM as the data model has been developed for routinely

collected healthcare and claims data. This provides an additional

layer of complexity when creating studies that need to combine

information across phenotypic and genomic sources. Information

collected via questionnaires is also challenging to include as it differs

from typical OMOP CDM data; it uses local coding systems, storing

data in a wide format and of cross-sectional nature. In addition,

questionnaire data often captures negation and data missingness

explicitly (eg, patient did not answer or refused to answer), which

by convention is not stored in the OMOP CDM. As with previous

studies, the OMOP CDM definition of an observation period (the

period for which the data capture of a person is considered com-

plete) causes some discrepancies between analysis on the source and

OMOP CDM as historical medical events are considered outside the

observation period. It should be noted that this has been recently

revised, and events outside observation period are allowed in the

OMOP CDM for some use cases.

Finally, our study findings are potentially generalizable to other

large datasets consisting of research-driven questionnaires and EHR

linkage that require conversion to the OMOP CDM. The UK Bio-

bank contains detailed phenotypic data that are sourced from differ-

ent data modalities (eg, patient-reported questionnaires data,

research data, claims data and EHR) combined with deep genotypic

information. This resulted in a challenging technical implementation

including the usage of a custom OMOP vocabulary. Other similar

resources in terms of complexity, such as All of Us40 and the MVP41

in the United States can potentially benefit from our findings when

undergoing similar conversion to OMOP CDM for participation in

OHDSI studies.

CONCLUSION

Our study demonstrated that the OMOP CDM can be successfully

leveraged to harmonize complex large-scale biobanked studies. Our

study did uncover several challenges when transforming data col-

lected using bespoke questionnaires from patients to the OMOP

CDM which require further research. The transformed UK Biobank

resource is a valuable research tool that can enable large-scale

research in COVID-19 and other diseases.
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