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Abstract—Pilot-aided channel estimation techniques are known
to waste the spectral bandwidth. An off-the-grid blind estima-
tor for time-variant orthogonal frequency division multiplexing
(OFDM) systems is studied in this letter. In this regard, we
propose a blind estimator based on atomic norm minimization
(ANM) for OFDM systems. To do so, at the first transmission
block, using a lifted ANM (LANM) and simple constraint on ¢
norm of data, we simultaneously estimate the channel and data.
For the subsequent blocks, we use a penalized ANM (PANM)
to simultaneously track the channel’s parameters and detect
transmit signals. The proposed problems require an infinitedi-
mensional search, hence are NP-hard. Therefore, we propose two
semidefinite programs (SDPs) to implement them. We then derive
the total computational complexity of the proposed estimator. The
simulation results show the superiority of the proposed estimator
to the state-of-the-arts.

Index Terms—Blind OFDM channel estimation, lifted and pe-
nalized atomic norm minimization, semidefinite program (SDP).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) sys-
tems are being used in telecommunications standards to
achieve high rate transmissions. Signals can be transmitted us-
ing a large number of orthogonal subcarriers, which increases
the symbol duration and decreases inter-symbol interference
[1]]. To achieve a coherent demodulation, sufficient knowledge
of channel state information (CSI) is required. Hence, channel
estimation is of paramount importance in OFDM systems [[1]].
Generally, channel estimation approaches can be divided into
supervised and unsupervised methods [1]]. In the supervised
methods, CSI is estimated using pilot signals which are
known at both the receiver and transmitter sides. However,
this introduces transmission overheads. Unsupervised or blind
techniques is a promising approach to circumvent the need for
pilot signals and the relevant overheads.

The OFDM channel can be assumed as a combination of
time dispersive channels, which includes a sparse structure at
a high signal space dimension [1]]. Thus, compressed sensing
(CS) was leveraged in [2] to estimate the OFDM channel using
pilot signals. The recovered time dispersive channels, however,
were required to lie on a gird. This results in an unwanted basis
mismatch since the time dispersive channels inherently belong
to a continuous dictionary. This issue is solved using the
atomic norm that promotes sparsity in continuous dictionaries
[3]]. The authors in [4] proposed the atomic lift technique for
the blind super-resolution problem. In [5]], a pilot-aided atomic
norm minimization (ANM) is adopted to estimate OFDM
channels. In [6], using a penalized ANM (PANM), the authors
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proposed a simple estimator to detect the time dispersive
channels in presence of both dense and spiky noises.

Few works studied linear the linear precoding for blind
OFDM detection [7], [8]]. In particular, the authors in [7|]
applied the linear precoding method to the transmit symbols to
estimate the OFDM channel and transmit data using a cross-
correlation technique at the receiver side. The performance
analysis of this linear precoding is derived in [8]]. One issue
with the above works is that when the precoded subcarrier is
in a deep fade, the entire correlation matrix of the received sig-
nals is required, which increases the complexity at the receiver
side. In addition, to resolve the inherent scalar ambiguity of
the blind estimation, one might need to use pilot signals, which
means that the estimation is not fully blind. Moreover, in [9],
the authors studied rectangular differential coding with index
modulation over the non-coherent OFDM time dispersive
channels. The bits of information are first required to code,
reducing the spectral efficiency. In addition, the channel states
are assumed to be constant over two subsequent transmission
blocks.

To address the above issues, we propose an off-the-grid
blind estimator based on the ANM for a time-variant OFDM
system where the channel parameters are not required to fall
on a fine grid. Blind estimation is generally ill-posed without
additional constraints because the blind deconvolution of two
signals is a bi-linear inverse problem, hence is not tractable [4]].
To tackle this challenging problem, for the first transmission
block, where we have no knowledge about the channel, by
assuming that the /5 norm of data is equal to one, we estimate
the time dispersive channels, their corresponding amplitudes,
and data using a lifted ANM (LANM). For the subsequent
blocks, where we can use previous channel states, we propose
a PANM to simultaneously track the channel’s parameters and
detect the data. Though the proposed problems are convex,
they require an infinite-dimensional search, hence are NP-
hard. To make the problems implementable, we propose two
semidefinite programs (SDP)s. We then obtain the overall
computational complexity of the proposed estimator. The
simulation results are carried out to evaluate the performance
of our proposed estimator and to show its superiority to the
closest benchmarks.

Here, we introduce the notation used in this paper. Vectors
and matrices are denoted by boldface lowercase and uppercase
letters, respectively and scalars or entries are non-bold lower-
case. The ||-||; and ||-||2 are ¢; and ¢ norms, respectively. The
operators tr(-) and (-) are trace of a matrix, hermitian of a
vector, respectively. In addition, diag(x) places € CN*! in
the main diagonal of X € CV*V,
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II. PROBLEM FORMULATION

We study an OFDM system with N subcarriers and cyclic
prefix (CP) length of L., over M transmission blocks. At
the transmitter side, for each block, the data symbols are
passed through a serial to parallel converter to obtain N x 1
frames. The N-point inverse discrete Fourier transform (IDFT)
of frames modulates the signal on N subcarriers. The CP of
length L., is then added in order to prevent inter symbol
interference (ISI). The resulting signal is converted to serial
data. A filter gp(7) is exploited to shape the signal to be
transmitted over a multi-path environment where it’s base-
band model contains s Dirac delta function as []1]]

h(r) = Zaié(r—n), (1)
i=1

where 7; and «; = | |ej % are the delay of the time dispersive
channel and its corresponding complex amplitude at the i-th
path for the first block, respectively. In addition, o(7 — 7;)
is the Dirac delta function located at 7;. Assuming perfect
synchronization in both time and frequency domains, the
received signal is passed through a matched receive filter
gr(7). After the serial to parallel conversion and removing
the cyclic prefix, the N-point DFT can be used to obtain the
frequency domain signal y,, 1 at the first transmission block
as

Yn,1 = Tn,1 hn,l + Wn, 1, Vne N 2
where ; € CNV*! is the transmitted data vector, and
w; € CV*1 is a zero mean circularly symmetric complex

Gaussian noise with the variance of o} for each entry. g7(7)
and gg(7) are band-limited root-raised-cosine functions and
hni = gnhy 1, n € N, where g, and hy, 1 can be sampled
from DTFT of the discretized version of g(7) = gr(7)*gr(7)
and (I), respectively. We can assume that 9n = 1 and write the
DTFT of hy, 1 as by =D o q @ e 727X 7 which constructs
hy; € CV*1 in which T}, is the sampling interval.

We assume that the channel states are constant over a
transmission block, then in a subsequent block, a small vari-
ation in channel states at the Fourier domain occurs, i.e.,
Py =hp 1+ A, Ym € {2,---, M} where h,,, € CVN*1is
the channel states related to the m—th transmission block and
A,, is a zero-mean circularly symmetric complex Gaussian
number with the variance 03 at the m—the transmission block,
where is independent to the Gaussian noise. We assume that
all the sub-carriers experience the same noise. However, our
model can be generalized to the case where each sub-carrier
has its noise in the cost of more notations.

Assuming the CP time as T¢;,, then 0 < 75, < Tt +T5 T
where T, = & is the duration of g(7) to satisfy the effects
of the temporal conditions [1]]. Then, the received signal can
be recast as

Yn,m = In,mhn,m + Wn,m, 3)

S
—jonn i
= Tn.m E a;e NTs +w,, Yme{2,--- ,M}.
i=1
N . . .
where w,,, € C* is a zero-mean circularly symmetric complex
Gaussian noise with the variance of 02 = ¢ +mo? for each
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entry at the m-th block. Let us define f; := %%, therefore
the received signal at the m-th block in the vector form can
be written as

Ym = diag(xny, )by + Wy, Yme{2,--- M}, @)

where h,, is the channel vector at the m-th block with entries
hin,m = Zle a; e92mfin 4 Z;n:l Aj, 0 < f; < 1. Now,
the problem is to estimate the transmitted signal and channel
parameters form the observed signal vy, of all blocks, which
we call it blind channel estimation. To solve this problem,
we first estimate the channel and data at the first block using
the LANM, then we use the obtained channel for tracking the
channel changes and estimating the signal for the remaining
transmitting blocks using PANM.

III. LANM AT THE FIRST TRANSMISSION BLOCK

As discussed, our target is blind estimation of the channel
vector at the first transmission block when the receiver does
not know the transmit signal. Generally speaking, a blind
detection is extremely ill-posed, indeed, it can not be solved
without additional constraints [4f], [10]. Thus, we assume
that x; lies in a known low-dimensional dictionary [10], as
x, = Bg, where B € CV*” is a Gaussian random matrix,
which is known at both the transmitter and receiver sides and
g € CF is unknown constrained on L < N and ||g||z = 1 in
which L the size of the recovered data. This is indeed a linear
coding such that g is passed through coding matrix B. We
denote the n-th column of matrix BT € [by,--- by ], with
b, € CL, and rewrite (2) at the first block as

= b,TLghn,l + Wp,1 = bggeZhl + Wp 1 5
eZ(hlgT)bn + Wn 1,

Yn,1

where e,, is the n-th standard basis vector of RY, i.e., all
components of e,, are zero, except the n-th component which
equals one. Let us define Z = h; g7, then using the lifting
technique [[10]], we can rewrite @ as a linear measurements
of Z,

Yn1 = €L Zb, +w,1 = (Z,e, bV + w1,  (6)

where (X,Y)r = tr(XHY) is the Frobenius inner product.
Thus, y; can be written as a linear measurement of Z
contaminated by Gaussian noise as

y1 = X(Z) + wy, @)

where X(-) : CV*L — CV is a linear operator.

Regarding the fact that Z is a rank-one matrix and ||g||2 =
1, h; and g can be precisely obtained from Z using it’s left
and right singular vectors, respectively. Thus, the goal is to
estimate Z from measurement vector y;. To do so, we first
write Z in the form of a sparse combination of the complex

. ) . T
sinusoidal atoms c(f,0) = |e 927 H0 ... emi2mNS+j0

for f c [0, 1], as Z = hlgT = Zle\ai|c(fi,9i)gT S
CN*L Now, we can define a set of atoms in the form A4; =
{A(f,v,0) = e(f,0)v" € CV*F|f € 0,1],[lv]la = 1,0 €
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[0, 27)}, hence the lifted atomic norm for the arbitrary matrix
Z, over the Aj, can be written as

|Z||a, =inf{t >0:Z € tconv(ApL)},

where conv(Ar) is the convex hull of set Ajf
and ¢ is a positive constant variable or |Z|4, =

inf s cjo,1),wech ,|vlla=1 {Zi ai’aiA(fiavvei)aai > 0,0; €

[0,27) p. Thus, we can conclude that (8) is a sum of sparse
signals” over the atom set A; and dense noise. Thus, the
off-the-grid CS can be considered a promising solution [3].
Below, we propose a LANM that achieves a low-dimensional
representation of Z constrained on the noise power density
as

lyr — X(Z)|2 < o7. ©®)

min

min 2], s

Implementing such a problem is generally challenging since
an infinite-dimensional search for the objective value is re-
quired. To tackle this issue, using [3], we provide an SDP
characterization for the lifted atomic norm as

12ll, = St (Toep(u) + S tx(W) |

inf {
ueCN wectxrt (2 2

T Z
[ oo W] =0}, ©

where Toep(u) is the Toeplitz matrix with the first column w
and W is an L x L matrix. Thus, the problem can be written
in the SDP form as below

. 1 1
JR . itr(Toep(u)) + itr(W)
Toep(u) Z

lyr — X(Z)|2 < 0. (10)

where can be efficiently solved using off-the-shelf convex
solvers such as CVX [[11]. Since Z is low-rank, the singular
value decomposition can be used to simultaneously extract h
and g. More precisely, ﬁl = g1 and g = vy, where 77 is the
largest singular value of Z. In addition, @; and 9, are the left
and right singular vectors corresponding to ¢1. The authors in
[10] have shown that there is a logarithmic relation between
the sparsity level, number of observed samples and the coding
length for the blind convolution problem. It is beneficial to
follow the proposed approach in [10] to see if there exists a
similar relation between s, L, and N. In the next section, we
show that the estimated channel at the first transmission block
can be employed to detect the transmit signal and consequently
the channel at the second transmission block. Then, we show
that this technique can be repeated for all the remaining blocks.

IV. PANM FOR THE REMAINING TRANSMISSION BLOCKS

In this section, we propose an optimization problem based
on PANM to estimate the channel and data for all the remain-
ing blocks. Assuming that we have the channel at the m —1-th
transmission block for m > 2, we can estimate the transmit
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Algorithm 1: Non-Coherent OFDM Detection.

1: Set m =1 and solve and obtain h; and g.
2: Repeat
3: Set m = m + 1 and solve to obtain &,,.
4: Solve to obtain ﬁm and é,,.
5: Obtain a better estimation of x,, using
T =ming, cm | Bm — (B + €m)]|2-
5:Until m =M
Result: g, &,,, m > 2 and flm,Vm.

signal at the m-th block by solving the following least square
problem

&y = min ||y, — diag(@m,)hm—1ll2,

T, EM

(an

where M is a predefined constellation. Then, we can define
e/ =, — &, as an error vector and rewrite the observation
signal in (3) as
Yn,m = (An,m + e;,,m)hn,m + Wn,m, (12)
T

n,mhn,m + €n,m + Wn,m

where e, m = G;L,mhn,m . Consequently, the observed signal
at the receiver side can be written in the vector form as

Ym = diag(&)h,, + e, + Wiy, Ym > 2. (13)
In practice, regarding the fact that the channel states do
not vary fast between two consecutive transmission blocks,
the demodulation error, e/, is sparse. Consequently, e,, is
sparse. This means that the observed signal is a combination
of two sparse vectors, h,, and e, in different domains,
which are contaminated by dense noise. Following [12]], we
propose the following PANM that obtains a low-dimensional
representation for the channel with respect to the sparsity of
e, and the power of AWGN noise

nin [|diag(@)hm .4 + Mlem (14)

m ’em,

st. ||ym — diag(@)ho, — emll2 < 0%, ¥Ym > 2,

where A > 0 is a regularization parameter, balancing the
sparsity of h,, and e,,. The atom set for the above problem
can be written as A = {A(f,0) = c(f,0) € CVN*Y|f €
[0,1],6 € [0,27)}, consequently, the atomic norm over set A

{27 ai‘aiA(fiaei)aai >
0,9}. Problem requires an infinite dimensional search

over the interval [0,1), Vf;, hence is NP-hard and challeng-
ing to implement. However, one can employ the SDP for
atomic norm minimization which was first proposed in [3}
Proposition 1I.1] over the observation set N as ||h|4 =
inf,, {ﬁtr(Toep(u)) + %‘ {TOZI;}U) ﬂ - 0}’ where
Toep(u) denotes the Toeplitz matrix whose first column is
equal to u and ¢ is a constant variable. Indeed, the pro-
posed semidefinite programming turns the infinite dimensional

is defined by ||h[[4 = infy,cpo,1)
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search issue to a tractable SDP. Consequently, we can write

problem as

1 t
min ﬁtr(Toep(u)) + 5 + Aleml

m,€m, ,U,t
o Toep(u)  diag()hmn,
" |diag(2 )2 t

Hy - dlag(j)hm - e'rnHQ < 027 Ym > 27

= 0, 15)

which is convex and can be solved by CVX. Then, using
the Vandermonde decomposition of Toep(@), where @ is the
solution of problem which was first proposed in [3]], the
channel can be estimated. It is worth noting that a more accu-
rate estimation of the transmit signal can be obtained using the
following optimization &,, = ming, e ||Tm—(Tm+€m)||2s
where €,,, is the solution of problem (I5). The above procedure
can be done for all the blocks. The overall procedure is
summarized in Algorithm

Since the proposed problems are convex, they can be
implemented using the interior point method with Newton
steps, which is leveraged by off-the-shelf convex solvers such
as CVX [11]. The total computational complexity for this
method is given by O((E + F)!5E?), where E and F are
the numbers of variables and constraints in the optimization
problem, respectively [[11]. Hence, the overall complexity of
the proposed problem in and are approximately

and

O((3N +3)'°(3N +1)?) = O(46N39), (17)

respectively. From these derivations, one can understand that
the proposed problems can be implemented for a moderate
number of OFDM subcarriers in practice. We also show this
by numerical simulations in Section For large OFDM
subcarrier scenarios, one might need to use the greedy-based
methods [13]] or alternating direction method of multipliers
(ADMM) [14].

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
blind estimator using 1000 Monte-Carlo simulations for an
OFDM system with N = 128 over M = 20 transmission
blocks. The parameters of the OFDM system are set according
to [1]. We define the normalized mean-square error (NMSE)
asE[|H — H|%/|H|/%2] where H = [hy,--- , hy] in which
I - |l is the Frobenius norm and the symbol error rate (SER)
as

1 L 1 M N
ER=E|- Lg—g0t IS
S R |:L kgl (gk gk)+N(M _ 1) Tnzﬁl; ( k,m k},ﬂl)}

where I is a binary indicator such that I = 0 if zy, 1 = Tpnm
(9x = gx), otherwise, I = 1, to investigate the channel and
symbol estimation performances, respectively. Note that the
first and second terms of SER are for m = 1 and m > 2,
respectively. At the first transmission block, we uniformly
and independently generate 3 time dispersive channels at the
interval 7; € [Ts, NTs) where Ts = 1 microsecond (us) and
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Fig. 1: A Comparison of NMSE of the LANM-based channel
estimation with the benchmarks for NV = 128, L = 12.
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Fig. 2: A Comparison of SER and NMSE between the pro-
posed estimator and benchmarks in Figs. 2 (a) and (b) for
N =128, L = 12, and s = 3, respectively.

their corresponding amplitudes are i.i.d. zero-mean circularly
symmetric complex Gaussian variables with zero-mean and
unit variance. For the subsequent blocks, we consider the
dependency of h,, = h,,_1 + A, with 2 = 0.01. To have
a fair balance between the sparsity of the demodulation error
and OFDM channel, we set A = 1 in (14) as there is no prior
knowledge about the channel or noise sparsity. We use [7]
which is based on the linear precoding and cross-correlation
techniques as the comparative benchmark and call it as PBB.
For a fair comparison, we assume that J in [[7] that is the
number of OFDM blocks with the same channel states is
one. To evaluate the channel estimation performance of the
proposed estimator, we compare its NMSE with the pilot-aided
£ minimization [2]] and ANM [3].

We commence our evaluations by comparing the NMSE
of LANM-based channel estimation with PBB, pilot-aided ¢;
minimization and ANM in Fig. || for different SNR values. For
this simulation, we set L = 12. As shown in this figure, by
increasing the SNR thresholds, the NMSE of all approaches
decreases. This figure demonstrates that although the LANM
estimates the channel and transmit signal simultaneously,
it performance is comparable to the pilot-aided ANM and
outperforms the conventional channel estimations methods.
Since the transmit signal is known at the receiver side for
the pilot-aided ANM, its NMSE severs as a lower bound for
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Fig. 3: The average execution time of the proposed LANM
and PANM in Fig. 3 (a) and (b), respectively.

the LANM. In addition, the NMSE of proposed LANM is
less than the PBB and pilot-aided ¢; minimization for all
the SNR values. The LANM outperforms the PBB and pilot-
aided ¢, minimization since is more robust against the additive
noise and recovers the time dispersive channels in a continuous
dictionary, respectively.

We compare the SER of proposed estimator for L = 12
with PBB in Fig. [J] (a) and its NMSE with PBB, pilot-aided
¢; minimization and ANM in Fig[J] (b). We consider the
worst-case scenario where the channel is estimated once at
the first transmission block and then use for the consecutive
blocks. One can understand from Fig. [2] that the SER and
NMSE decrease by increasing the SNR thresholds. Fig. [2]
(a) demonstrates that the performance obtained in terms of
SER of the proposed estimator outperforms the PBB for the
same quadrature amplitude modulation (QAM) constellation.
The QAM singling is adapted from [15]. Moreover, we can
understand from this figure that by enlarging the QAM constel-
lation, the SER increases for both approaches. Similar to Fig.
Fig. [2] (b) reveals that the NMSE of the proposed estimator
is comparable to the pilot-aided ANM and outperforms the
PBB and pilot-aided /; .

In Fig. 3] we investigate the average execution time for the
proposed problems. As shown in (I6), the total complexity of
the proposed LANM is a function of N and L. Thus, in Fig.
(a), we evaluate the average execution time of LANM versus
L for the different values of N. For performing simulations,
we use an Intel Core i7 — 6700 2.6GHz CPU computer. It
is observed from this figure that the average execution time
is increasing by growing L or N and lower bounded by the
pilot-aided ANM. Moreover, in Fig. [3|(b), we plot the average
execution time of PANM for each transmission, which shows
that the implementation time increases when N grows. From
Fig. 3] one can observe that the proposed problems can be
efficiently implemented for a moderate number of OFDM
subcarriers in practice. For large subcarrier scenarios, one
might develop greedy-based methods [[13]] or ADMM [|14].

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

A blind estimator based on ANM for a time-variant OFDM
system is proposed in this letter. The channel is estimated
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at the first block using LANM. Then, using PANM, the
channel and transmit signal are estimated at the subsequent
blocks. The total computational complexity of the proposed
problems was derived, showing that they can be implemented
for a moderate number of OFDM subcarriers in practice.
The simulation results support the validation of the proposed
estimator and illustrate its superiority in terms of SER and
NMSE compared to the benchmarks. The performance of the

proposed estimator relies on the channel error power, o2,

Though we show that when o2 is small, the proposed estimator
can be efficiently employed. An interesting research direction
would be developing a robust ANM problem which was first
studied in [16] to evaluate the effects of af on the estimation
performance.
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