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Abstract

From the atmospheres of giant planets to terrestrial oceans, self-organisation of

turbulence into zonal jets is a ubiquitous feature of geophysical fluid dynamics. The

relationship between jets and turbulence is rich, with many unanswered mathematical

questions. The aim of this thesis is to extend the existing literature and understanding

of jets using numerical and theoretical approaches.

It’s well known the number of jets that form in fluid dynamical models can

spontaneously change. Such transitions can occur with increasing rarity as the model

parameters vary. The first interesting problem in this thesis studies the use of a ‘rare

event algorithm’ to calculate transition probabilities when it is too expensive to do

so by direct numerical simulation. We verify the effectiveness of the algorithm in

this context and successfully adapt the algorithm for application to a deterministic

two-layer (baroclinic) model.

The second problem focuses on the stochastically forced single-layer

(barotropic) model, with the motivating question ‘Can eddy momentum fluxes

be parameterised?’. If so, the mean jet profile can be solved directly. The key idea is

if the turbulent scale is small compared to the background flow, eddy motions only

‘see’ local properties of the flow. For the problem to be mathematically tractable

we adopt a second order statistical truncation of the model (known variously as

CE2 or SSST). Within this framework, we simplify an existing expression for eddy

momentum flux in terms of the local background shear. The new expression can

be readily computed and is shown to agree with the statistical model when the

background flow is stable and steady. The expression is tested as a method of

parameterising small scale turbulence in various scenarios with great success. An
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important discovery of the work is the role that emergent secondary (barotropic)

instabilities play in the mean momentum balance for jets.
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Chapter 1

Introductory Material

Arguably turbulence is the oldest and least satisfactorily resolved problem in fluid

dynamics. Despite ubiquity over a wide-range of fluid scenarios from volcanic

plumes to blood flow in the cardiovascular system, analytic theories of turbulence are

incomplete or over-idealised. Exponential advances in computational power over the

past few decades have provided an alternative line of attack, but numerical simulation

encompassing enough scales of interest to fully account for turbulent dynamics is

often out of reach (at least within reasonable computation time). Modelling the

oceans and atmosphere, with scales of motion ranging from metres to hundreds of

kilometres, is particularly susceptible to such shortcomings.

That said, significant contributions towards a turbulent theory were developed

throughout the 20th century, predominantly beginning with Kolmogorov [1]. His

inertial range theory is concerned with an idealised 3D turbulence that is statistically

isotropic (the same in all directions), statistically homogenous (the same at all points)

and has an external energy input at some length scale to sustain the turbulence.

Supposing the Reynolds number is large enough so that the length scale of viscous

dissipation is much shorter than the length scale of the energy injection scale, then

there is an ‘inertial range’ of length scales between the two. For a length scale

lI in the inertial range, inertial range theory hypothesises that the statistics at lI

depend only on lI and the energy injection rate. It is an assumption of locality in

wavenumber space. Dimensional analysis yields that the energy spectrum function,

in wavenumber space, is proportional to wavenumber to the power −5/3 in the
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inertial range. Energy is fluxed towards small scales, producing a ‘whorls become

smaller whorls, and so on to viscosity’ scenario [2].

Progress was made with 2D turbulence in the 1960s by Kraichnan [3] and

Batchelor [4] predicting, and numerically verifying, a −5/3 energy spectra in 2D

also. However, in 2D, energy is directed towards large length scales (referred to

as the inverse cascade), with the −5/3 relationship holding on length scales larger

than the energy injection scale. Energy is typically removed by a linear friction

in 2D models at large length scales, rather than viscous dissipation. Enstrophy

(half vorticity squared) is also conserved in 2D turbulence. It’s predicted that a k−3

profile transfers enstrophy to smaller length scales than the injection scale, where

it’s removed by viscosity.

The upscale energy transfer of freely decaying 2D turbulence is shown in Figure

1.1 which gives snapshots of vorticity from a frictionless 2D simulation on a doubly

periodic domain. Energy is conserved, but clearly occupies larger length scales as

the simulation progresses.

The inertial range theories of turbulence are not a comprehensive theory of

turbulence, however. In turbulence with a mean background flow, there may be a

strong interaction between the turbulent scales and the mean flow directly, implying

a non-local energy transfer and breaking the hypothesis of inertial range theories.

In flows with a differential rotation, anisotropy is induced which can culminate

in large scale zonal jets. A theory for anisotropic turbulence and mean-turbulent

interactions are of key interest in planetary fluid dynamics, in particular for the gas

giants Jupiter and Saturn [see e.g. 5, and refs. therein]. The photogenic jets tracing

lines of longitude on Jupiter have been known for centuries (Saturn is known to have

similar jets, though less visible). Despite its age, however, mathematical study of this

phenomenon is relatively recent and is currently ongoing. Understanding the mecha-

nisms at play in the simple models capturing the same essential physics is helpful,

and perhaps necessary, as a means to understand various real-life observations or

predictions from more advanced models [for instance 6, the recent unearthing of the

surprising properties Jupiter’s internal vertical structure].



23

Figure 1.1: Snapshots of vorticity in freely decaying 2D turbulence in a doubly-periodic do-
main. Time increases clockwise from top-left, along with the energy containing
length scales.

Perhaps the first directly relevant theoretical breakthrough for jets in rotating

turbulence is the contribution from Rhines [7], where jet spacing is predicted to scale

like
√

U/β for a typical velocity U and differential rotation β . The scaling has been

confirmed broadly across the across the subject literature since.

Vallis [8] extended the 2D inverse cascade idea to the beta-plane, finding a

theoretical energy spectrum surface in 2D wavenumber space. Briefly, due to a

mismatch of (anisotropic) Rossby wave period and turbulent eddy turnover time,

particular low meridional wavenumbers aren’t efficiently excited so the inverse

energy cascade is diverted around an anisotropic shape on its journey to small
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wavenumbers. The consequence is a disproportionate energy density on the lowest

zonal wavenumbers.

In this Chapter two models to study zonal jets are introduced. First is the

quasi-geostrophic 2D (QG2D) turbulence model. The model is an excellent test-bed

for theories and is cheaper numerically than more complex models. The second

model is a two-layer model, similar to the Phillips model [9], where the layers are

relaxed towards an unstable vertical shear. Both models, as we shall see, are capable

of producing turbulent-jet dynamics.

Starting with QG2D, both models will be derived and the important non-

dimensional parameters associated with jets will be discussed. Numerical results

are provided after each model description. The last section details the methods and

considerations of the numerical integrations for the models.

Both models will be relevant for Chapter 2, where rare event algorithms are

investigated. In Chapters 3, 4 and 5, a theoretical approach to turbulence-mean

interaction problems is studied, with attention being limited to the QG2D model.

1.1 Barotropic, Quasi-Geostrophic Equations

1.1.1 Derivation

The governing equation for the QG2D model is the two-dimensional barotropic

vorticity equation on a β -plane, subject to stochastic forcing and a linear drag

(1.1.21). QG2D has long been considered a key ‘toy’ model for understanding the

physics of jet formation, in particular the long-lived zonal jets of Jupiter and Saturn.

This section derives the equation from a more general perspective to introduce

geophysical fluid dynamics principles and place the validity of the vorticity equation

in a wider context.

To begin, assume an incompressible fluid in a thin layer with aspect ratio α� 1.

It is a standard exercise to derive the shallow water equations as an approximation

to the Navier-Stokes equations in this scenario [29, p. 59-62]. The key steps are

to show that the hydrostatic approximation holds at leading order in the vertical

direction. This implies that horizontal accelerations are independent of the vertical
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coordinate z, and the vertical momentum equation can be depth integrated for a mass

conservation equation. The rotating shallow water equations over a flat topography

are found as

∂uuu
∂ t

+(uuu ·∇)uuu+ fff ×uuu =−g∇δ , (1.1.1)

∂δ

∂ t
+∇ · (huuu) = 0. (1.1.2)

Here uuu is the horizontal velocity vector, g is gravity, H is the mean fluid depth, δ

is the variation of the fluid surface from H (so h = H +δ is total depth), and fff is a

background rotation.

Assuming length scales of motion are smaller than the radius of the planet

allows the β -plane approximation

fff = f k̂kk = ( f0 +βy)k̂kk,

where f0 = 2Ωsinθ and β = 2(Ω/a)cosθ for Ω the angular velocity of the planet.

To derive the single layer quasi-geostrophic equations we need to highlight

some significant scales, non-dimensionalise accordingly and apply an asymptotic

approach.

If U is a typical velocity and L is a typical length scale, one of the most

fundamental quantities in geophysical fluid dynamics is the Rossby number

Ro =
U
f L

, (1.1.3)

which compares the strengths of the advective and Coriolis terms. On Earth, Ro� 1

in the ocean and atmosphere. The most severe approximation from small Ro is to

ignore the advection terms entirely which gives a relation between the Coriolis and

pressure terms called geostrophic balance. Geostrophic balance indicates the scaling

for the pressure term is

δ ∼ fUL
g

, (1.1.4)
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which may also be written as

δ ∼ RoH
L2

L2
D
, (1.1.5)

where the Rossby radius of deformation,

LD =

√
gH
f

, (1.1.6)

has been introduced. It’s a known result that
√

gH is a scaling for the speed of

surface waves in the shallow water equations, so LD can be thought of as a ratio of

wave speed to planetary rotation.

Letting a prime denote non-dimensional variables, we non-dimensionalise

using (x,y) = L(x′,y′), uuu = Uuuu′, t = L/Ut ′, δ = Ro f 2L2/gδ ′, β = U/L2β ′ and

f = f0( f ′0 +Roβ ′y′). The momentum and mass equations (1.1.1)-(1.1.2) become

Ro
{

∂uuu′

∂ t ′
+
(
uuu′ ·∇′

)
uuu′
}
− fff ′×uuu′ =−∇

′
δ
′, (1.1.7)

Ro
L

LD

{
∂δ ′

∂ t ′
+uuu′ ·∇′δ ′

}
+∇

′ ·uuu′ = 0, (1.1.8)

Now looking for solutions as an expansion in Rossby number

uuu′ = uuu′0 +Rouuu′1 +Ro2uuu′2 + . . . , (1.1.9)

δ
′ = δ

′
0 +Roδ

′
1 +Ro2

δ
′
2 + . . . , (1.1.10)

the momentum equation at leading order simply gives geostrophic balance. The two

equations can be cross differentiated to cancel δ ′0 getting ∇′ ·uuu′0 = 0, which is also

the conclusion of the mass equation at leading order. The mass equation at the next

order introduces uuu1, viz.

L
LD

{
∂δ ′0
∂ t ′

+uuu′0 ·∇′δ ′0
}
+∇

′uuu′1 = 0, (1.1.11)

as does the same order from the momentum balance

∂uuu′0
∂ t ′

+
(
uuu′0 ·∇′

)
uuu′0−β

′y′kkk×uuu′0− f ′0kkk×uuu′1 =−∇
′
δ
′
1. (1.1.12)
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The δ1 term is eliminated by taking the curl here, getting the vorticity equation

∂q′0
∂ t ′

+
(
uuu′0 ·∇′

)(
ζ
′
0 +β

′y′
)
=− f ′0∇

′ ·uuu′1 (1.1.13)

where ζ ′ = v′x−u′y is two-dimensional vorticity (and its subscripts here denote its

orders as expected). The associated streamfunction ψ ′0 satisfies ∇2ψ ′0 = ζ ′0 and

(u′0,v
′
0) = (−∂y,∂x)ψ

′
0. Also geostrophic balance implies ψ ′0 = δ ′0/ f ′0. Eliminating

uuu′1 using (1.1.11) in the above finds

∂

∂ t

{
∇

2
ψ
′
0−

L2

L2
D

f
′2
0 ψ

′
0

}
+
(
uuu′0 ·∇′

){
∇

2
ψ
′
0 +β

′y′− f
′2
0

L2

L2
D

ψ
′
0

}
= 0. (1.1.14)

Dimensions may be reintroduced for the shallow-water quasi-geostrophic equation

D
Dt

(
∇

2
ψ +βy− 1

L2
D

ψ

)
= 0, (1.1.15)

where D/Dt = ∂t +uuu ·∇. The term in the brackets is the quasi-geostrophic shallow

water potential vorticity. The ψ/L2
D term captures the effects of 3D vortex stretching

in a 2D setting. As a final approximation, this term is neglected as a result of

considering motions on scales smaller than the deformation radius. For 2D vorticity

ζ = vx−uy, then, we have

ζt−ψyζx +ψxζy +βψx = 0, (1.1.16)

with the streamfunction relation

ζ = ∇
2
ψ. (1.1.17)

Velocity components are

u =−ψy, v = ψx, (1.1.18)

which satisfy mass conservation

∇ ·uuu = ux + vy = 0. (1.1.19)
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The 2D potential vorticity, q, is simply the absolute vorticity (composed of the

relative and background planetary vorticity)

q = ζ +βy. (1.1.20)

The QG2D model is a modified version of equation (1.1.16) that includes forcing,

drag and diffusion terms. The full equation, which has long been considered a

toy-model for atmospheric jets, is

ζt + J(ψ,ζ )+βψx =−µζ +(−1)n+1
ν2n∇

2n
ζ +
√

εη . (1.1.21)

The notation for the Jacobian operator J(·, ·) has been introduced here, defined by

J(ρ,σ) := ρxσy−ρyσx, (1.1.22)

i.e. J(ψ,ζ ) = ∇∇∇ · (uuuζ ). This term contains the nonlinearity, and consequently much

of the difficulty involved in understanding QG2D. The final
√

εη term represents

a stochastic forcing on the flow which is detailed in section 1.1.4. For now it’s

enough to state the forcing term supplies energy to the system and ε is the energy

injection rate. The−µζ term appearing is referred to as a drag or friction term which

is frequently used in this model. Besides the convenience, the linearity is also a

theoretical parameterisation of the damping imposed on a flow from the basal Ekman

layer. Lastly, a hyper-diffusion term is included as a means of viscous dissipation.

For simplicity QG2D uses a square domain D with dimensions 2πLd×2πLd

and the boundary conditions are doubly-periodic.

1.1.2 Energy and Enstrophy

The spatially averaged kinetic energy over the entire domain has various representa-

tions using standard integral theorems, e.g.

E = 1
|D|

∫
D

1
2
(
u2 + v2)= 1

|D|

∫
D

1
2
|∇ψ|2 = −1

|D|

∫
D

1
2

ψζ . (1.1.23)
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Employing the rightmost expression, an energy budget is found by multiplying

(1.1.21) by −ψ and taking the domain mean. In addition, taking the expectation over

forcing realisations finds the equilibrium energy budget

dE
dt

=−2µE+ ε−D. (1.1.24)

The final term is the energy sink from hyper-diffusion

D =
ν2n

|D|

∫
D
E [|∇ψ|n] , (1.1.25)

which clearly always removes energy. Supposing ν2n is such that D� ε , neglect-

ing D in the energy balance gets the equilibrium expected energy as

E = ε

2µ
. (1.1.26)

Similar to E , another quadratic of interest in QG2D is the domain averaged

enstrophy, Z , defined as

Z =
1
|D|

∫
D

1
2

ζ
2. (1.1.27)

Like energy, enstrophy is provided by η . However, in contrast, enstrophy is cascaded

downscale. The discretisation of numerical simulations sets a smallest resolved scale

of motion. Without a strong enough diffusion at small scales simulations are prone

to enstrophy ‘pile-up’ at the smallest resolved scale. The hyper-diffusion must be

calibrated carefully to remove enstrophy before pile-up, but have a weak effect on

the larger scales of motion.

1.1.3 Fourier-Space and Quadratic Cascades

To continue discussion it is necessary to the introduce the Fourier transform of a

function f (x) defined on domain [0,2πLd) to be

fk =
1

2πLd

∫ 2πLd

0
f (x)e−ikxdx, f (x) = ∑

k
fkeikx. (1.1.28)
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Note that k isn’t necessarily integer here as it depends on the domain size. Precisely,

k takes values n/Ld for n ∈ Z. The n-dimensional Fourier transform on some domain

D is simply an application of the above transform on each dimension,

fkkk =
1
|D|

∫
D

f (x,y)e−ikkk·xxxdxxx, f (xxx) = ∑
kkk

fkkkeikkk·xxx. (1.1.29)

This specification of the Fourier transform is designed so that domain averaged

quantities are found simply as the zeroth mode, i.e.

1
|D|

∫
D

f (xxx)dxxx =
1
|D|

∫
D

f000dxxx = f000. (1.1.30)

Supposing f (xxx) is a real function, so that f = f ∗, where an asterisk (*) denotes

the complex conjugate, we must have

∑
kkk

fkkkeikkk·xxx = ∑
kkk

f ∗kkk e−ikkk·xxx = ∑
kkk

f ∗−kkkeikkk·xxx. (1.1.31)

This yields the conjugate symmetry condition

fkkk = f ∗−kkk. (1.1.32)

Fourier space provides the natural environment to consider the turbulent en-

ergy/enstrophy cascades discussed in the introduction. Now we briefly give an

argument for an inverse energy cascade in Fourier space [e.g. Vallis 10, pgs. 370-

371]. Defining a characteristic wavelength for the energy as

kE =

∫
|kkk|Ekkkdkkk∫
Ekkk

, (1.1.33)
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a measure of the energy distribution’s width can be found using

I =
∫
(|kkk|− kE)2Ekkkdkkk, (1.1.34)

=
∫
|kkk|2Ekkkdkkk−2kE

∫
|kkk|Ekkkdkkk+ k2

E

∫
Ekkkdkkk, (1.1.35)

= Z− k2
EE . (1.1.36)

The energy budget (1.1.24) in the absence of forcing, friction and viscous dissipation

implies conservation of energy (similarly, enstrophy is also conserved). Under

the natural assumption that the energy distribution spreads out from some initial

distribution,

0 <
dI
dt

=−2kE
dkE
dt
E , (1.1.37)

implying kkkE decreases; energy inverse cascades towards smaller wavenumbers (larger

physical length scales). By the vorticity-streamfunction relation (1.1.17), it follows

that energy and enstrophy are related via Zkkk = kkk2Ekkk, and a similar argument as for

the energy cascade is easily applicable to enstrophy, finding a forward cascade.

In QG2D, due to the random forcing, there isn’t an exact energy conservation,

but the same idea applies – energy is injected at a characteristic scale and transferred

upscale before significant energy loss to friction.

1.1.4 Stochastic Forcing

1.1.4.1 Overview

The final term in (1.1.21) is a means of supplying energy. Without such a forcing, the

energy budget (1.1.24) implies that any energy in the system from initial conditions

will tend to zero due to the drag and viscous terms. The stochastic forcing term may

be viewed as an attempt to model the energy injection from baroclinic instability on

the barotropic mode (see section 1.2), or as localised injections of vorticity modelling

moist convection penetrating into the modelled layer of fluid. Without explicitly

solving any internal or external processes, it is typical to turn to a stochastic guess.

The focus in the bulk of the literature adopting the QG2D model isn’t on the details

of the stochastic forcing as it’s not considered to have a significant effect on the larger
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scales of 2D turbulence such as jets [11] (this is a large topic of debate in Chapters

4 and 5 of this thesis). The only real requirement is usually that the characteristic

forcing length scale, L f , is taken to be relatively small.

The stochastic forcing term is defined through spatial and temporal correlations.

The most common-place stochastic forcing for QG2D is delta-correlated in time.

Essentially the forcing has no ‘memory’, or is white. The spatial correlation for η is

taken to be described fully by its two-point correlation; the forcing is Gaussian. The

two-point correlation is usually chosen to be an annulus in Fourier space since this

provides a homogenous isotropic forcing centred on a wavelength of choice.

Taking the Fourier transform of the vorticity equation (1.1.21) yields

dζkkk

dt
= {deterministic terms}kkk +

√
εηkkk (1.1.38)

so we have a set of complex SPDEs

dζkkk = {deterministic terms}kkk dt +
√

εγkkkdWkkk. (1.1.39)

where ηkkk (and hence η) is defined through γkkk of our choosing. The dWkkk are complex,

i.e.

dWkkk = dW R
kkk + idW I

kkk , (1.1.40)

with both W R
k and W I

k being independent standard Brownian processes. Conjugate

symmetry to keep η(xxx) real requires

ηkkk = η
∗
−kkk, (1.1.41)

thus we take

dWkkk = (dW−−−kkk)
∗ , (1.1.42)

and

γkkk = γ
∗
−−−kkk. (1.1.43)
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One consequence of the complex variables to be aware of is the unusual result that

E
[
dWkkkdWjjj

]
=

 2dt, if jjj =−kkk,

0, otherwise.
(1.1.44)

Defining η in this manner implies it is a white-in-time stochastic noise defined

entirely by it’s second order statistic

Π(xxx,xxx′) = E
[
η(xxx)η(xxx′)

]
. (1.1.45)

Here the expectation is over realisations of η . The covariance Π fully defines the

statistics of η .

Note that

Π(xxx,xxx′) = E
[
η (xxx, t)η

(
xxx′, t ′

)]
,

= ∑
kkk, jjj

2δkkk,−−− jjjγkkkγ jjjei(kkk·xxx+ jjj·xxx′),

= ∑
kkk

2γkkkγ−kkkei(kkk·(xxx−xxx′)),

= ∑
kkk

2|γkkk|2ei(kkk·(xxx−xxx′)),

= Π(xxx− xxx′). (1.1.46)

implying that Π a function of only the vector difference between the two points,

regardless of where they are situated. This means the forcing is homogenous.

Moreover, it is clearly seen that the two-dimensional Fourier coefficients of Π

are

Πkkk = 2|γkkk|2. (1.1.47)

1.1.4.2 Isotropic Forcing

For isotropic forcing one must go beyond homogeneity and also restrict Π to a

function of only the magnitude of xxx− xxx′. For this it is required that γkkk is dependent

only on |kkk| (i.e γ is radially symmetric in wavenumber space).
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Then the expression above – in it’s continuous limit where the wave vector

discretisation effects are ignored – can be manipulated using a change of coordinates

to a polar system (r,θ) with θ = 0 corresponding to the xxx− xxx′ direction as

Π(|xxx− xxx′|) = 2
∫

∞

0

∫ 2π

0
|γr|2eir|xxx−xxx′|cosθ rdrdθ . (1.1.48)

Using the fact that
∫ 2π

0 exp(izcosθ)dθ = 2πJ0(z) for J0 the zeroth order Bessel

function of the first kind, this can be written

Π(|xxx− xxx′|) = 4π

∫
∞

0
r|γr|2J0(r|xxx− xxx′|)dr. (1.1.49)

1.1.4.3 Energy Normalisation Constraint

A calculation for the expected domain averaged energy injection rate from the

forcing, is required in order to normalise η appropriately. The constraint is

ε = ε ∑
kkk

|γkkk|2

|kkk|2
. (1.1.50)

This means that η is independent of ε , with the normalisation contraint

∑
kkk

|γkkk|2

|kkk|2
= 1. (1.1.51)

Equivalently,

∑
kkk

Πkkk

2|kkk|2
= 1. (1.1.52)

1.1.5 Non-dimensional Parameters for Jet Dynamics

Rather than investigating the change of dynamics over the (β ,µ,ε,Ld,L f ) param-

eter space, it’s more sensible to consider dimensionless parameters which control

important features of jets: strength, stability, number of jets etc. The reason is that

similar jet dynamics may occur across some lower-dimensional surface within the

parameter space.

Key Dimensional Parameters
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It is not possible to discuss non-dimensional parameters without introducing

two important dimensional quantities first. First, the Rhines length scale [7], defined

as

LRh ∼

√
U
β
, (1.1.53)

has been widely found to predict the spacing of the barotropic jets (up to a constant

prefactor). Here, U is a typical root mean square velocity. Essentially LRh this is the

cross-over length scale balancing beta and advection terms in the vorticity equation.

A second notable dimensional quantitity is the estimated length scale at which

freely decaying turbulence starts to ‘feel’ planetary rotation. By balancing the

frequency of freely decaying turbulence (ε1/3k2/3) from Kolmogorov’s dimensional

analysis with Rossby wave frequency (β/k), the ‘anisotropic length scale’ is [10]

Lβ =

(
ε

β 3

)1/5

. (1.1.54)

Non-dimensional Parameters

A quantisation parameter, Q, which gives an indicator of the expected number of

jets in the domain is simply defined for the doubly periodic domain as the meridional

domain length divided by the Rhines scale

Q =
Ld

LRh
. (1.1.55)

The ratio of the Rhines scale, LRh, to the ‘anisotropic length scale’, Lβ , gives

the zonostrophy of the flow

Z =
LRh

Lβ

=
β 1/10ε1/20

µ1/4 . (1.1.56)

Zonostrophy was first introduced by [12], and subsequently refined to the above

form in [13] and [14]. The idea is that if Z is large (LRh � Lβ ), turbulence will

organise itself anisotropically at length scales smaller than the jet scale. Conversely,

if Z is small then it is not clear that jets will form since the turbulence will still

be approximately isotropic at the Rhines scale. Consequently Z is considered an
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indicator of jet strength and stability – something our numerical experiments are in

keeping with as well as the literature [for a beautiful demonstration see 15].

Notice that when formulating Lβ above, the Rossby wave frequency was taken

as k/β which is an isotropic approximation to anisotropic Rossby wave frequency

−βkx/|kkk|2. An illuminating theory for zonal jets is put forward by [8] using the

anisotropic Rossby frequency to derive an anisotropic wave-turbulence boundary.

Setting the anisotropic Rossby wave and turbulence frequencies as equal (as in

the derivation of Lβ ), gives an anisotropic boundary ε1/3|kkk|2/3 =−βkx/|kkk|2. This

boundary is a dumbbell shape in Fourier space, oriented so that the two ‘centres’ are

on the kx axis. The theory is that turbulence cannot cross this boundary easily due

the frequency mis-match, so the boundary acts to funnel the inverse energy cascade

onto the ky axis creating (zonally oriented) anisotropy. Whilst this inverse cascade

type theory of spontaneous jet formation is attractive and is backed up numerically

for fairly low zonostrophy flows, the past decade or two have made it clear that,

in high zonostrophy, non-local interactions between the turbulence and the zonal

mean field become more important than the classic local cascade interactions [see for

instance 16]. A key point to realise here is that the Buckingham π theorem reveals

that there is actually only one non-dimensional parameter which can be formulated

from the parameters ε , µ and β . So regardless if the assumptions are valid or not for

some particular derivation of Z, it inevitably arrises as an important non-dimensional

parameter.

Simulating a large zonostrophy is perhaps best achieved through reducing

µ and ε by equal proportion. However, enstrophy needs to be removed at the

small scales whilst keeping the viscous term negligible with respect to the forcing,

hence increasing zonostrophy will typically require an increase in resolution and

computational cost. An O(10) zonostrophy is achieved in [15] creating extremely

robust jets. Flows with Z� 1 are called ‘zonostrophic’.

Another non-dimensional parameter which we expect to be important in QG2D

is the forcing number

F =
L f

LRh
, (1.1.57)
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which is the ratio of the characteristic forcing length scale, L f , to the Rhines scale

LRh (jet length scale). It can be thought of loosely as a measure of how many

stochastically forced eddies fit between adjacent zonal jet tips.

In summary, the important non-dimensional parameters are zonostrophy, Z, jet

quantisation Q, and the forcing number F . The relevant regime for strong and steady

jets is Z� 1 and F � 1, and naturally we are interested in a Q value which will

produce at least a single jet on the domain.

Time scale separation

A final dimensionless quantity that is of interest and is prominent in the literature,

is a timescale separation between the eddy turnover time and the zonal timescale

α =
τadv

τdrag
. (1.1.58)

Following the non-dimensionalisation procedure in [17], QG2D is considered on

the dimensionless domain [0,2π)× [0,2π) with a theoretical mean total equilibrium

energy on the domain of 1. This is achieved by taking the advective timescale as

τadv =
Ld

2π
√
E
=

Ld

2π

√
2µ

ε
, (1.1.59)

where E = ε/2µ is the (dimensional) expected energy per unit area. The drag

timescale is µ−1 so it follows that

α = µτadv =
Ld

2π

√
2µ3

ε
. (1.1.60)

Non-dimensionalising the vorticity equation (1.1.21) with length and time scales Ld

and τadv respectively gets

ζ
′
t ′+ J(ψ ′,ζ ′) =−β

′
ψ
′
x′−αζ

′+
√

2αη
′−ν

′
2n(−∇

2)n
ζ
′, (1.1.61)

where β ′= Ldτadvβ and η ′= 2πLdτ
1/2
adv η . The 2π factor here (and in τadv above) is to

maintain consistency with Bouchet et al. ([17], [18]). Essentially the forcing term η ′
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is re-normalised to have unit energy injection rate on the entire non-dimensionalised

domain, rather than per unit area. It is then observed from (1.1.61) that the non-

dimensional expected energy over the entire domain is one (c.f. E = ε/2µ). Writing

the equation in this form, particularly with the
√

2 factor, links QG2D to Langevin

dynamics.

Within the timescale separation framework, the model is viewed as having two

dimensionless parameters (α,β ′). These are found from the dimensional quanti-

ties (Ld,β ,ε,µ) via

α =
Ld

2π

(
2µ3

ε

)1/2

, (1.1.62)

β
′ =

L2
dβ

2π

(
2µ

ε

)1/2

. (1.1.63)

Notice we can write the non-dimensionalised beta parameter as proportional to the

square of the ratio of domain length to Rhines scale

β
′ =

L2
d

2π
(
E1/2/β

) = √2
2π

(
Ld

LRh

)2

(1.1.64)

predicting that the quantisation parameter Q scales according to

Q ∝ β
′1/2, (1.1.65)

hence only one of Q or β ′ needs to be specified. We can also write the zonostrophy

(1.1.56) in the non-dimensional variables

Z =

(√
2

2π

β ′

α2

)1/10

. (1.1.66)

This gives the peculiar relationship Z ∝ (Q/α)1/5, which is not overly insightful but

it makes the point that only two of Z, Q and α actually need to be specified. In the

remainder of this Chapter, and in Chapter 2, the non-dimensionalised form (1.1.61)

of QG2D is used, and the prime is dropped from β ′ with the understanding that β is
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no the non-dimensionalised Coriolis parameter defined above.

1.1.6 Model Integrations

In this section some example results from numerical simulations that capture the

essence of the barotropic model are reported. The specifics of the numerical imple-

mentation are detailed in section 1.3.

Firstly, simulations with the same parameters and initial conditions are not

identical since the model is determined by a realisation of the stochastic forcing

which is different for each simulation. However, over all repeated simulations where

the only difference is the forcing realisations, the jet existence (or lack thereof)

has been consistent - no flipping between a dipole and jet state is found as in [19],

for instance. This is due to the dynamics being controlled by the non-dimensional

parameters described in 1.1.5, in particular the zonostrophy parameter (of which

[19] does not have, since β = 0 in that problem).

An example of typical jet formation from spin-up (zero initial energy) is shown

in Figure 1.2. The top panel shows a space-time (or Hovmöller) plot of zonal velocity.

The remaining panels are a zonal velocity plot and the vorticity, energy and enstrophy

fields at the end of the simulation.

We can see that as the energy increases from zero to equilibrium, the number of

jets decreases. The Rhines scale for jets should really be considered as an equilibrium

theory, but the decreasing jet number can be loosely interpreted as the jet scaling

being related to energy [20] (c.f. LRh ∼U1/2 ∼ E1/4). The simulation has been run

beyond the time when equilibrium energy has been reached and the three jets appear

reasonably well established. Changes in the number of jets are possible even once

equilibrium energy is obtained. These are referred to as transitions and they are the

subject of Chapter 2.

The zonal velocity panel shows that the east and west jets are asymmetric.

East jets are sharp, while the west jets are more rounded with a typical maximum

curvature β . The asymmetry is discussed in more depth in Chapter 4, but may

be viewed several ways. For instance, the Rayleigh-Kuo necessary condition for

instability in 2D flow is that the potential vorticity gradient Uyy−β changes sign
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in the domain [21]. Since the potential vorticity gradient is more liable to change

sign at westward jets, the idea that the growth of westward jets is halted due to a

counteracting instability mechanism has been suggested [22, 23]. Additionally, a

simple but powerful idea which captures the profile asymmetry is the staircase limit

([24], [15]). The idea is that the potential vorticity field mixes within each ‘layer’

between the cores of the east jets. The conclusion from a perfect mixing is a staircase

potential vorticity profile; equivalently, a parabolic profile for zonal velocity, i.e.

Uyy = β , is predicted from perfect potential vorticity mixing. It is observed that the

combination of a staircase profile and the assumption that the zonal flow contains

the majority of energy provides a simple constraint on the jet width – it is a simple

exercise to show this width scales like LRh.

The contour plots of energy and enstrophy illustrate their tendency to the large

and the small scales respectively. Unsurprisingly, the bulk of energy is located at the

jet cores (both east and west) where the fluid velocity is typically largest. Enstrophy

isn’t restricted to the jet cores and large contributions are due to small eddies and

filaments which can be anywhere in the flow.

Results from a parameter sweep over (α,β ) are shown in Figure 1.3. The

results clearly show coherent jet formation and maintenance over a large time scale.

A large time scale in this context is taken as multiple α−1 non-dimensional time

units. The values for β increase such that
√

β is proportional to (2,3,4,5); it is

observed that the jet number roughly follows these values, confirming the Rhines

scale is inversely proportional to
√

β .

The jets appear stronger with larger zonostrophy in most cases. This agrees

with the discussion in section 1.1.5. The simulations in the right-most column with

β = 12.5 are the obvious exceptions. All of these simulations have an approximate

jet number of five, highlighting that the forcing scale to jet width, F , does become

important to the dynamics when it is not sufficiently small. We do not worry

about this since the simulations provided in the parameter sweep were run at a

relatively low resolution, and hence a relatively small k f (large forcing scale) was

chosen. In hindsight, the choice of k f = 10 was smaller than necessary, however it’s
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0

2

Figure 1.2: Integration of (1.1.21) from spin-up. Top: Hovmöller and final zonal velocity.
Middle: final vorticity. Bottom: final energy enstrophy. Parameters: β = 5.26,
µ = 0.0012, ε = 0.0024, k f = 14.5 with an annulus half width of 0.6. Numerical
resolution is 256×256 and ν4 = 2.5×10−8.

encouraging to show that the expected behaviour is followed for the two to four jet

state simulations in spite of this. All our interest will be in a jet number of three or

less in subsequent chapters and k f will also be larger.
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Z = 3.845 Z = 4.170 Z = 4.417 Z = 4.619

Z = 3.348 Z = 3.630 Z = 3.845 Z = 4.021

Z = 2.914 Z = 3.160 Z = 3.348 Z = 3.500

Z = 2.687 Z = 2.914 Z = 3.087 Z = 3.228

Figure 1.3: Hovmöller contour plots for zonal velocity against time in QG2D simulations.
Top to bottom: α = (2, 4, 8, 12) ×10−3. Left to right β = [22,32,42,52]/2
Zonostrophy values according to (1.1.66) given in each case. Even these low
resolution 128×128, k f = 10 give the expected scalings. All simulations are
run for 50α−1 non-dimensional time units.
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1.2 Two-Layer Baroclinic, Quasi-Geostrophic

Equations

1.2.1 Derivation

In this section we derive the two-layer model. The governing equations are given in

(1.2.15)-(1.2.16) and the specifics of the model set-up are in the following section.

For a two-layer model we assume a set-up of two layers of fluid in which each

have a constant density and mean depth H. Motions are three dimensional and the

interface between the layers can move. All variables are indexed with a subscript

j = 1,2 to denote the upper layer (1) the lower layer (2). i.e uuu1 = (u1,v1,w1)
T is

the velocity in the upper layer. The total depth of each layer is h j and δ j is the

displacement of each layer about its mean height. Density and pressure are denoted

ρ j and p j respectively. As in QG2D, we make the β -plane approximation for the

Coriolis parameter fff = ( f0 +βy) k̂kk.

The Rossby number is identical to the shallow water definition, and as before

we let

Ro =
U
f0L
� 1, (1.2.1)

where U and L are a typical velocity flow speed and length.

For a stable stratification under gravity, ρ1 < ρ2, and we define

ρ
+ =

ρ1 +ρ2

2
, (1.2.2)

∆ =
ρ2−ρ1

ρ+
. (1.2.3)

The Boussinesq approximation, ∆� 1, implies a reduced gravity

g′ = ∆g, (1.2.4)

which acts on the interface between the layers.

Also analogous to the shallow water equations previously, we have that wave
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speed scales like
√

g′H which provides the internal Rossby deformation radius

LD =

√
g′H√
2 f0

, (1.2.5)

and also the Froude number

Fr =

√
2U√
g′H

. (1.2.6)

These are related via Fr/Ro = L/LD.

We will use the internal deformation radius as a horizontal length scale to

non-dimensionalise, hence Ro/Fr = 1, implying Fr� 1 in the same way as Ro.

The incompressible, inviscid Euler equations in each layer are

∂uuu j

∂ t
+
(
uuu j ·∇

)
uuu j + fff ×uuu j =−

1
ρ j

∇p j−gkkk, (1.2.7)

∇ ·uuu j = 0. (1.2.8)

We non-dimensionalise using LD and U . We also redefine uuu j = (u j,v j)
T as

a horizontal velocity and refer to the vertical velocity as w j. Using a prime for

dimensionless quantities, the non-dimensionalised equations are

(
1+(−1) j ∆

2

)(Duuu′j
Dt ′

+(1+Roβ
′y′)k̂kk×uuu′j

)
=− 1

ρ j
∇
′p′j, (1.2.9)(

1+(−1) j ∆

2

)(
∆Fr2α2

2

)Dw′j
Dt ′

=
∆Fr2

2Ro
∂ρ ′

∂ z′
−
(

1+(−1) j ∆

2

)
,

(1.2.10)

∇ ·uuu′j =−
∂w′j
∂ z′

, (1.2.11)

where α = H/L and we have used

ρ j =

(
1+(−1) j ∆

2

)
. (1.2.12)

We make the shallow water approximation, α� 1 and the Boussinesq approximation,

∆� 1 (and also ∆� Ro). The vertical momentum equation can be used to show
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that the upper layer displacement is O(∆) while the interfacial displacement is

O(1). Hence the Boussinesq approximation implies the free surface displacement is

negligible when we consider expansions in Ro, and we may consider the surface as a

frictionless rigid lid. This is equivalent to taking the external deformation radius to

infinity, drawing a parallel to QG2D.

Expanding in powers of Ro with

u′j = u(0)j +Rou(1)j +Ro2u(2)j + . . . (1.2.13)

and similar for other quantities, we drop the ∆ and α terms in the non-

dimensionalised momentum and mass equations and equate orders of Ro. Leading

order gives geostrophic balance (in each layer). The next order is then manipulated,

similarly to QG2D, to arrive at (primes dropped for brevity)

∂Q j

∂ t
+ J
(
ψ j,Q j

)
+β

∂ψ j

∂x
= 0, (1.2.14)

where

Q j = ∇
2
ψ j +(−1) j

(
ψ1−ψ2

2

)
. (1.2.15)

Each layer, then, is similar to the equation for ζ in QG2D (before including dissipa-

tion and stochastic terms), except that Q j is vorticity with a modification that couples

the layer’s dynamics.

Following Lee & Held (1991) [25] we include extra terms on the right hand

side

∂Q j

∂ t
+ J
(
ψ j,Q j

)
+β

∂ψ j

∂x
=−δ j2κM∇

2
ψ2 +ν2n(−∇

2)n+1
ψ j (1.2.16)

− (−1) j
κT

(
ψ1−ψ2

2
− τe

)
.

As in QG2D, n and ν2n are the degree and diffusivity of hyper-diffusion and κM is

an Ekman drag coefficient acting on the lower layer. A new feature appearing is a

radiative damping towards the equilibrium temperature field τe; the parameter κT

controls the strength. The exact profile τe(y) will be specified in section 1.2.2, but it
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should relax the baroclinic velocity to an order one field.

Finally, it’s useful to introduce the barotropic and baroclinic form of a layer

variable, denoted with ‘+’ and ‘-’ respectively, as

f± =
f1± f2

2
. (1.2.17)

These can easily be converted back for each layer as

f j = f++(−1) j−1 f−. (1.2.18)

Consequently we have the simple potential vorticity–streamfunction relations

Q+ = ∇
2
ψ

+, Q− =
(
∇

2−1
)

ψ
−. (1.2.19)

1.2.2 Boundary Conditions and Parameter Specification

Similar to Lee (1997) [26], we consider the two-layer model to have fixed channel

walls at y = ±Lyπ and let the x domain be periodic over [0,2πLx]. Boundary

conditions at the walls in y read (e.g. Phillips (1954) [27])

ψ1y
= 0 (Phillips: upper layer),

(∂t +κM)ψ2y
= 0 (Phillips: lower layer),

ψix = 0 (impermeable walls, i = 1,2), (1.2.20)

where the over-bar denotes a zonal (x) average. For correct evaluation of the hyper-

diffusion at the boundaries we specify the higher order conditions at the walls

∂

∂y

(
∇

2
ψ
′
i
)
=

∂ 3

∂y3

(
∇

2
ψ
′
i
)
=

∂

∂y

(
∂ 2ψi

∂y2

)
=

∂ 3

∂y3

(
∂ 2ψi

∂y2

)
= 0, (1.2.21)

where prime denotes the perturbation field from the zonal mean field [28].

We also note that since ψ ′ix = 0, we simply have ψi = ψi on the boundary. i.e at
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the channel walls

ψ
′
i = 0. (1.2.22)

Care must be taken to satisfy conditions (1.2.20) and (1.2.21) numerically. This is

discussed in section 1.3.

The baroclinic velocity associated with τe is

U−e =−∂τe

∂y
. (1.2.23)

The physical motivation behind the zonal wind profile is to model an equatorially

centred radiative heating, e.g. from the sun. In the context of an idealised model

there is some flexibility over the choice of Ue, and in this thesis it is taken to be (as

in Lee (1997) [26]) a ‘flat top’ shape with a Gaussian decay

Ue1−Ue2 =−2
∂τe

∂y
=

1, if |y|<Wc,

exp
[
−(|y|−Wc)

2/σ2] , if |y|>Wc.

(1.2.24)

The profile Ue is plotted in Figure 1.5 (dotted). For reference, the corresponding τe is

τe =

−y/2, if |y|<Wc,

−1
2sgn(y)

(
σ
√

π

2 erf
(
|y|−Wc

σ

)
+Wc

)
, if |y|>Wc,

(1.2.25)

and has a typical value of order unity in the baroclinically unstable region keeping

consistency with the non-dimensionalisation.

1.2.3 Energy

An energy equation is easily found from (1.2.16) by taking the product of the upper

(lower) equation with the upper (lower) streamfunction and integrating over the
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domain (e.g. [29]). This finds

dE
dt

=
d
dt

∫ 1
2
(
|∇ψ1|2 + |∇ψ2|2

)
+

(
ψ1−ψ2

2

)2

dxxx, (1.2.26)

=
−1
2

∫ dQ1

dt
ψ1 +

dQ2

dt
ψ2 dxxx, (1.2.27)

=−κM

∫
|∇ψ2|2dxxx+

κT

2

∫
ψ1−ψ2

2

(
2τe−

ψ1−ψ2

2

)
dxxx, (1.2.28)

+ν2n

∫
ψ1(−∇

2)n+1
ψ1 +ψ2(−∇

2)n+1
ψ2 dxxx.

The first integral is composed of two terms, the first is the usual kinetic energy and

the second is the potential energy

PE =
∫ (

ψ1−ψ2

2

)2

dxxx. (1.2.29)

A fundamental property of the two-layer model is the exchange between kinetic and

potential energy. The imposed temperature profile supplies potential energy to an

out of equilibrium flow, the potential energy grows disturbances through baroclinic

instability, thereby transitioning to kinetic energy.

In the final expression, the baroclinic relaxation towards the imposed temper-

ature gradient τe has an impact on the energy that depends on the state of the flow.

The Ekman friction term is negative definite and so only serves to remove energy.

The energy and enstrophy cascades are still relevant to the barotropic mode, hence

the viscous term is included to remove enstrophy pile-up at the smallest scales as

in QG2D. Integration by parts on the final term finds that hyper-diffusion always

acts to remove energy. At a high enough numerical resolution (to allow a small ν2n

parameter) this should be a negligible loss of energy.

It should be emphasised that since the temperature profile replenishes energy

lost to friction and viscous dissipation, an essential difference between the two-

layer model and QG2D is that the two-layer model doesn’t require an artificial

stochastic forcing to inject energetic eddies. The two-layer flow, albeit turbulent, is

deterministic.
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1.2.4 Parameter Space and Results

A horizontal strip with periodicity 20π and a meridional length 90 is used in [26]. In

this work a square domain with dimensions 20π×20π is taken. This has the same

aspect ratio as the QG2D model, but the main benefit is that the single and double

jet regimes that are relevant for Chapter 2 don’t require the unstable region to be as

large as some of the experiments in [26]. A meridional length of 90 is therefore an

unnecessary use of numerical power. We do however follow [26] fixing β = 0.25,

σ = π , κT = κM/3 and study the (Wc,κM) parameter space. The flow is initialised so

that U− =U−e (with U2 = 0) with the addition of a small random eddy perturbation

field allowing a unique realisation of turbulence to unfold.

The results provided in Figures 1.4 – 1.7 indicate that the jet number increases

with an increased Wc or a decreasing κM. This is a result that has been observed

over many more (unreported) simulations. It is also found that transitions between a

single and double jet state can occur in some parameter regimes (e.g. Figure 1.7).

Even the simulation in Figure 1.5, which looks like a very steady single jet state, can

be seen to have a distinct second jet form briefly. Exploring larger Wc, it is possible

to generate three or more jets, but the focus here on the two-layer model will concern

the single and double jet state only.
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Figure 1.4: Two-layer model results with (Wc,κM) = (3.25π,0.07). Top: contoured is the
Hovmöller plot for the depth averaged zonal mean flow and plotted are the
mean velocity profiles as labelled. Bottom: final snapshot of the depth averaged
(barotropic) potential vorticity Q++βy.
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Figure 1.5: Same as in Figure 1.4 but with a narrower equilibrium profile and a reduced
friction, (Wc,κM) = (2.4π,0.03).



1.2. Two-Layer Baroclinic, Quasi-Geostrophic Equations 52

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-10

-5

0

5

10

y

(U1+U2)/2

U1

U2

U
e

Figure 1.6: Same as in Figure 1.4 but with parameters setting for two jets. (Wc,κM) =
(3π,0.02).
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Figure 1.7: Same as in Figure 1.4 but with parameters setting for two jets. (Wc,κM) =
(3.25π,0.05).
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1.3 Numerical methods

1.3.1 Numerical Methods For Barotropic Flow

To integrate the vorticity equation (1.1.61) a second order Runge-Kutta scheme is

used. On a doubly periodic domain the boundary conditions are periodic, making it

sensible to work spectrally. Taking the Fourier transform (1.1.29) of (1.1.61)

∂

∂ t
ζkkk =−J (ψ,ζ )kkk− iβkxψkkk−αζ −ν2n|kkk|2n+2

ζkkk +
√

2αηkkk. (1.3.1)

The potential vorticity–streamfunction relation is simply

ζkkk =−|kkk|2ψkkk, (1.3.2)

which crucially means the streamfunction is easily inverted as ψkkk =−ζkkk/|kkk|2. This

is very fast numerically since it only requires element-wise matrix division. Velocity

components are related by

ukkk =−ikyψkkk =
iky

|kkk|2
ζkkk, (1.3.3)

vkkk = ikxψkkk =−
ikx

|kkk|2
ζkkk, (1.3.4)

which are just as easy to calculate.

The bulk of numerical work is contained in the nonlinearity in the Jacobian

term. We have

J (ψ,ζ ) = ψxζy−ψxζx = uζx + vζy = (uζ )x +(vζ )y− (ux + vy)ζxy (1.3.5)

= (uζ )x +(vζ )y

and the kkkth component is found as

{J (ψ,ζ )}kkk =
{
(uζ )x +(vζ )y

}
kkk
, (1.3.6)

= ikx (uζ )kkk + iky (vζ )kkk , (1.3.7)
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but to compute this one must compute the physical u, v and ζ from ζkkk and then

Fourier transform uζ and vζ back into Fourier space. This involves three inverse and

two forward 2D Fourier transforms. A regular (1D) discrete Fourier transform with

MATLAB’s Fast Fourier Transform (FFT) function is O(N lnN) for N the number of

discrete points or wavenumbers. The ‘divide and conquer’ algorithm used for FFT is

optimised if N has small prime-factors. For this reason we always use a power of 2

for the resolution.

Supposing the (single dimensional) resolution of N (even), then in general N

wavenumbers are needed. Generally these can be thought of in the wavenumber

order

[0,1 . . .N/2,−N/2+1, . . . ,−2,−1].

Conjugate symmetry can be utilised to save memory as it means only knowledge

of ‘non-negative’ Fourier components is required. The choice of which waves are

‘non-negative’ is actually somewhat arbitrary, but for two dimensions on an N2 grid

the choice is made to divide the wave vectors into ‘positive’ waves K+ (which are

solved) and ‘negative’ waves K− (which can be derived), according to

K+ =

{
(kx,ky) :

((
0 < kx ≤

N
2

)
∩
(
− N

2
≤ ky ≤

N
2

))

∪

((
kx = 0

)
∩
(

0 < ky ≤
N
2

)) }
, (1.3.8)

and

K− =
{

kkk : kkk+ jjj = 000 for jjj ∈ K+
}
. (1.3.9)

This divide can be thought of as following the sign of kx and when kx = 0 follows

the sign of ky.

To integrate numerically, a time-step δ t must be selected. A small time-step

provides numerical stability but takes more computation and more time. The aim is

to choose the largest time-step such that the simulation is numerically stable. The
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Courant-Friedrichs-Lewy condition for numerical stability is

uδ t
δx
�C. (1.3.10)

Here u is the magnitude of fluid velocity, δx = 2π/N is the grid scale and C depends

on the integration scheme. For Runge-Kutta schemes, C is typically unity.

The condition gives an inverse relationship between resolution and time-step.

Hence if the resolution is doubled, the integration time not only increases from the

calculation of terms in the vorticity equation (predominantly the O((N lnN)2) 2D

Fourier transforms), but will also double from the time-step reduction. Typically it’s

found that doubling the resolution increases the integration time by a factor of ∼ 10.

A difficult aspect of numerical integration is choosing the hyper-diffusion

coefficient. On the one hand, this must be large enough to remove enstrophy before

pile-up at the small scales which is unphysical and potentially leads to numerical

instability. On the other hand the coefficient must be small enough to have minimal

interference on the energy balance. Investigating the enstrophy in spectral space

by looking at plots such as ln |(ζ 2)k| (logarithm of the 2D transform of enstrophy),

we can tune the viscous coefficient so that enstrophy decays (at least) exponentially

before pile-up on the shortest waves.

In all cases a fourth order hyper diffusion (n = 2) is chosen, and the numerical

parameters for the various simulation resolutions used in this thesis are given in

Table 1.1.

Grid points, N δ t ν4
128 0.02 1×10−7

256 0.01 2.5×10−8

512 0.005 4×10−9

Table 1.1: Numerical parameters for the barotropic model.

1.3.2 Numerical Methods For Two-Layer Flow

Since there are boundary conditions at the channel walls in the two-layer set-up, we

use finite-difference methods in y. Spectral methods are still used in x as the model
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is zonally periodic. The grid points in y are placed in the centre of the N meridional

divisions. i.e.

yn = 2πLy

(
n−0.5

N
− 1

2

)
, n = 1, . . . ,N. (1.3.11)

The spacing between grid points is simply

δy =
2πLy

N
. (1.3.12)

A key difference for implementation is we evaluate y derivatives using differ-

entiation matrices. Derivatives on the interior of the domain can be found using

adjacent points fairly intuitively (or more formally using Taylor expansions at the

grid scales about the the grid point of interest). Recalling that the variables are

discretised at the ‘half-way points’, differentiation matrices satisfying Neumann (NNN)

and Dirichlet (DDD) conditions can be found as

NNN1 =
1

2δy



−1 1 0 0 . . . 0

−1 0 1 0 . . . . . .

0 −1 0 1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . −1 0 1

0 . . . . . . 0 −1 1


, DDD1 =

1
2δy



1 1 0 0 . . . 0

−1 0 1 0 . . . . . .

0 −1 0 1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . −1 0 1

0 . . . . . . 0 −1 −1


.

Similarly, second derivatives adopting Neumann and Dirichlet conditions at the walls

are

NNN2 =
1

δy2



−1 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 −2 1

0 . . . . . . 0 1 −1


, DDD2 =

1
δy2



−3 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 −2 1

0 . . . . . . 0 1 −3


.
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For the high order derivatives for hyper-diffusion, it is first observed that

∇
2
ψ j = q j− (−1) j(ψ1−ψ2)/2, (1.3.13)

so the first laplacian is easily found using the right hand side. One can then use

∇
2 =−k2III +NNN2, (1.3.14)

to premultiplying each
[
∇2ψ j

]
k twice through each zonal wavenumber, k. This

satisfies boundary conditions (1.2.21).



Chapter 2

Jet Transitions and Rare Events

2.1 Introduction

We have seen from the integrations carried out in Chapter 1 that a zonal flow

profile may sporadically transition back and forth between a different number of

jets. This indicates the mean flow has multiple quasi-equilibrium states that it can

abruptly transition between. This is a widely observed phenomenon in turbulent

flow. For instance, the Kuroshio current [30], magnetic field reversals in turbulent

dynamos [31, 32], various two-dimensional scenarios [33, 19, 34], three-dimensional

turbulence experiments [35], convection turbulence [36, 37, 38]) and the bimodal

behaviour in the turbulent wake from flow past a cylinder [39] are all examples

known to exhibit transitional behaviour between turbulent attractors. There are even

known bistability phenomena between laminar and turbulent flow states [40].

Developing tools to efficiently calculate the likelihood of the transitions in

the models introduced in Chapter 1 may serve as a stepping stone to calculate

the probabilities of rare weather events in more realistic, numerically expensive

models. The layer models may also still be able to capture the essential physics of

jet transitions, going some way to understand why, for example, between 1939 and

1940 Jupiter remarkably lost a jet to be replaced with three white anticyclones [41].

The most straightforward approach for finding a rare event and estimating its

statistics is direct numerical simulation (DNS) (i.e. integrate a simulation, or run

many trials, until the rare event is observed multiple times). This is also referred to
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as naı̈ve Monte-Carlo or crude Monte-Carlo. The approach suffers as events become

increasingly rare. To see why, suppose a random variable achieves its rare event when

X ∈ B, with probability 0 < p = P(X ∈ B)� 1. The Naı̈ve Monte-Carlo method

draws an i.i.d. sample (X1,X2, . . . ,XN) from X and gets a probability estimator

p̂ =
1
N

N

∑
i=1

1B(Xi), (2.1.1)

where 1B(X) is the indicator function which takes the value of 1 if X ∈ B and 0

otherwise. The i.i.d. variables 1B(Xi) are Bernoulli with success probability p, so

the normalised variance is

V
(

p̂
p

)
=

1− p
N p

≈ 1
N p

, (2.1.2)

for small p. The normalised variance should be order one or less, which demands

N & 1/p for an acceptable variance. For a rare event, with p� 1, this demands a

large sample which can quickly become impractical. To achieve the same variance

with a reduced computational effort in sampling we can use a rare event algorithm.

As an aside, events may even be so rare that the limitations of a practical sample size

render a single rare event observation as unlikely using DNS (i.e. if the practical

sample size is much less than 1/p). In this case a rare event algorithm may be needed

just to show the existence of an event.

There are two main algorithmic approaches to rare event sampling: importance

sampling and splitting methods. Importance sampling draws samples from a biased

distribution to make a rare event more probable. Consequently importance sampling

requires enough knowledge of the system to choose a good importance distribution

and is not well suited to high-dimensional turbulence.

Splitting algorithms were first introduced in the 50s by Kahn & Harris [42]

and Rosenbluth & Rosenbluth [43] and there are now various modifications. The

applications have been wide-spread, from molecular dynamics [44] to air traffic

management [45], but the underlying idea is consistent. The algorithms hinge on

simultaneously integrating an ensemble of trajectories and guiding the members
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towards rare event realisations through a systematic pruning and cloning. Simulations

which are deemed the most unlikely to achieve the rare event are removed and

replaced with a clone of another, more promising, ensemble member. After cloning,

stochasticity in the system splits the cloned members (avoiding the redundancy of an

ensemble with identical members). If correctly implemented, the splitting algorithm

will drive all the ensemble members to achieve the rare event. The final ensemble

can be thought of as a selected subset of the effective ensemble that also comprises

of all the deleted simulations and their potential clones; probability estimates are

easily obtained from such considerations and are generally known to be unbiased for

most splitting algorithms.

The likeliness of achieving a rare event is monitored by values of a scoring

function. In the original versions of splitting algorithms, the entire ensemble is

integrated and splitting occurs at regular intervals. Members which don’t meet a

specific value of the scoring function (or score, or splitting level) are discarded and

replaced by a clone of another member. The scores are decided beforehand. Such

algorithms are referred to as ‘multi-level splitting algorithms’. Relatively recently

an adaptive multi-level splitting algorithm (AMS) has been put forward, which, as

the name suggests, adapts the splitting levels on-the-fly [46]. The advantage is no

decision needs to be made for the scoring level values (one of the most difficult

aspects of multi-level splitting algorithms). It can be proved [47] that if optimally

implemented it’s known that the variance of estimators is reduced for multi-level

splitting methods over DNS. Optimal implementation, however, depends on an

optimal choice of scoring function which is usually out of reach. The challenge of

implementing AMS is therefore to choose a good enough scoring function; this is

specifically discussed in sections 2.2.3 and 2.2.4.

Much of the research into rare event algorithms has been in low dimensions.

For example, applications to Ornstein-Ulhenbeck processes and low dimension

potential-well problems [46, 48, 49]. These simple SDEs offer analytic solutions

for rare event probabilities, allowing the algorithm estimators to be checked. They

are also numerically fast so various algorithms may be compared and verified to
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be more efficient than DNS (or not). An overview of many key results and notable

contributions can be found in the historical perspective [50].

The extension to a variable such as potential vorticity on an N×N resolution

grid is relatively straightforward, however the computational memory and power

needed for an ensemble of simulations can be immense. Especially when one

considers that accurate statistics require multiple algorithm implementations. That

said, the technological advances of recent decades have allowed an application of rare

event algorithms to high-dimensional rare events. Statistics of extreme heatwaves

over western Europe in a climate model which are out of reach of DNS have been

accumulated using a splitting algorithm [51, 52] and AMS has been applied directly

to the QG2D model to study the transitions between two and three jets [18, 53].

Notably, [18] is the first use of a rare event algorithm in a model of turbulence.

Similar work is repeated and discussed at depth in section 2.2 as an appropriate

introduction to AMS and a test of algorithm implementation. We then adapt AMS to

find transitions in the two-layer model in section 2.3. The achievement here is the

adaptation from a stochastic model to a deterministic model (since AMS requires

stochasticity to split trajectories).
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2.2 Adaptive Multi-Level Splitting Algorithm

(AMS)

2.2.1 The Algorithm

Let Rd be the space of trajectories of some stochastic dynamics with two attractive

states which are contained within the open subsets A,B∈Rd . Also suppose A∩B= /0.

It should be likely that if a trajectory leaves either set it returns to the same set. We

are interested in the rare event that a trajectory moves from set A to set B, without

going back to set A.

A

B

Q1

Q2

S1

S2

Q3S3

A

B

Q2

S1
S2

Q3S3

Q1

Figure 2.1: Schematic representation of the AMS algorithm with an ensemble size of three.
The first iteration, on the left, shows S1 being split from one of the other two
trajectories (in this case S2) at score Q1. The purple trajectory is the new
trajectory and the yellow star marks the split. The next iteration of the algorithm,
on the right, shows the adjusted {S1,S2,S3} ensemble, re-ordered by ascending
maximum scores. A new split is shown following the same procedure but this
time branching off S3.

The first step in setting up AMS is to define a scoring function, Q : Rd → R,

with

Q(X) =

0, if X ∈ A,

1, if X ∈ B.
(2.2.1)

The efficacy of the algorithm will depend on the relationship between the values of
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Q(X) for X outside of A and B and the actual probability of reaching B before A (see

section 2.2.4 for more precise details).

We let N be the size of the ensemble, label the simulations in the ensemble

S1,S2, . . . ,SN , denote by r the number of transitioned simulations and denote by n

the number of splits.

To begin the algorithm we initialise trajectories with initial conditions which are

distributed according to the probability density function for a flow given it’s in set A

(practical implementation of this is discussed in section 2.2.2). These simulations are

then run from these initial conditions until they reach some small escape score Q0

near the boundary of A and then they are continued until they (probably) return to A.

The maximum score of each trajectory is tracked and referred to as its score. When

all trajectories return to set A, we are in a position to begin the algorithm’s iterative

process. The simulations are re-indexed by ascending score, i.e. S1,S2, . . . ,SN with

respective scores Q1 ≤ Q2 ≤ ·· · ≤ QN . The simulation S1 is discarded and one of

the remaining simulations is randomly nominated to be cloned. The cloned version,

S∗1, is only cloned until it reaches the score Q1. The clone S∗1 is then integrated from

this point – the new forcing realisation splitting it from its sibling member – until

reaching set A or B. The simulations are then re-indexed and the process is repeated

again on whichever simulation now has the smallest score. When a particle reaches B

it should still be considered part of the ensemble and available for cloning selection.

The algorithm can be chosen to stop when r reaches some value, typically r = N.

The algorithm procedure is described in Algorithm 1 and represented schematically

in Figure 2.1.

The algorithm described above is known as ‘last particle AMS’, although we

will simply refer to it as AMS. In full generality, the algorithm may discard a variable

number of trajectories, kj, at the jth iteration. The algorithm then picks a clones

randomly from the remaining trajectories for each discarded trajectory and the clones

are all split from the score of the kth
j last particle. It’s observed that k = 1 yields the

best numerical results [48], so we opt for the last particle method and don’t clutter

the algorithm with unnecessary parameters.
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Algorithm 1: AMS

1 r = 0
2 n = 0
3 for i = 1 : N do
4 initialise Si in set A
5 run Si until Qi ≥ Q0 > 0 and Q0 small.
6 continue until either returning to A or reaching B

7 arrange simulations in ascending order of high score and re-index
8 update r if needed (unlikely)
9 while r < N do

10 discard S1

11 clone S j as S1 up until Q1 for random j ∈ 2, ...,N
12 n = n+1
13 run S1 until returning to A or reaching B
14 arrange simulations in ascending order of high score and re-index
15 update r if needed

16 P({Q = Q0}→ B) =
(N−1

N

)n

2.2.2 Initialisation

Ideally, we should draw initial conditions from set A according to the invariant

measure of the dynamical system conditional on being in set A and then run the

flow until first exit. This is practically achieved by drawing initial conditions from

a large data file of a long run. The idea is that the ergodicity of the system implies

minimal bias here. To reduce any potential bias from sampling from the same specific

long run, the initial conditions are also simulated with their own stochastic forcing

realisations for a time before being allowed to reach the boundary of A. This is at

least a step beyond using a single initial condition for the entire ensemble as in [53]1.

The simulations are then continued until they return to set A and their highest

scores are recorded.

2.2.3 Scoring Function

A crucial component for the efficacy of AMS is choosing a sensible scoring function

to determine how likely a given trajectory is to reach the rare event set. Ideally,

1 It strikes the author that this is a bad practice. Moreover, by default this is presumably also the
method used in the original study [18], as it is not mentioned and [53] is essentially an extension and
detailed explanation of the same work.
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the theoretical scoring function is simply the committer function: the probability

of reaching set B before set A from any given point. It actually turns out that any

committer-like function which has isosurfaces which align with the isosurfaces of

the event probability (see section 2.2.4) is an optimal choice. The dilemma for rare

event algorithms is that their optimisation requires knowledge of the isosurfaces of

the committer function, but if we already knew the committer function then the rare

event problem is solved.

For the QG2D implementation, we take the same approach as [18], where the

scoring function depends on the absolute value of the second, third and fourth Fourier

modes of zonal vorticity, i.e. |ζ 2|, |ζ 3| and |ζ 4|. For given parameters (α,β ) which

can exhibit two and three jet states, we can investigate the (empirical) probability

density function of the lowest wavenumbers and find a clear separation in Fourier

space. This allows a sensible choice of lower and upper bounds for each |ζ k| to

define each set A and B, i.e. A and B are distinct cuboids in the (|ζ 2|, |ζ 3|, |ζ 4|)

space. If P is a point in this space corresponding to time t of trajectory Xt , let |P−A|

denote the shortest distance of P from the boundary of A (in the l2−norm sense, and

zero if P ∈ A) and likewise for |P−B|. The scoring function used is

Q(Xt) =


|P−A|
2|P−B| , if |P−A|< |P−B|,

1− |P−B|
2|P−A| , if |P−A|> |P−B|.

(2.2.2)

This is a crude guess at the isosurfaces of the committer function. In fact, it’s pointed

out [18, 53] that the typical path between the sets A and B is asymmetric in the fourth

wave. The two jet to three jet transition first sees a large growth in fourth-wave

amplitude for instance. This surely implies the level surfaces of a committer function

cannot be aligned so symmetrically as (2.2.2). It will be shown below the crude

scoring function (2.2.2) works nonetheless. This is an encouraging sign for the rare

event algorithms’ ease of application.

With the parameters (α,β ,k f ,dk) = (0.0012,5.26,14.5,0.6), where k f and dk

and the radius and half width of the forcing annulus, we define jet state boundaries
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from DNS evidence. The two jet state, set A, is defined by

|ζ 2| ∈ [0.22,0.231], (2.2.3)

|ζ 3| ∈ [0,0.022], (2.2.4)

|ζ 4| ∈ [0,0.06], (2.2.5)

and the three jet state, set B, by

|ζ 2| ∈ [0.1,0.14], (2.2.6)

|ζ 3| ∈ [0.2,0.3], (2.2.7)

|ζ 4| ∈ [0.12,0.175]. (2.2.8)

2.2.4 Probability Estimators

Suppose we have a trajectory Xt , where 0≤ t ≤ s, for s the hitting time for set A or

B. The event probability we are interested in is

p = P(Xs ∈ B|Q(X0) = Q0) , (2.2.9)

and it is intuitive that its probability estimator may be found at any point during

AMS as

p̂ =
r
N

(
N−1

N

)n

. (2.2.10)

This is because r/N is the fraction of transitions in the ensemble and (N−1)/N is

the ‘inverse growth’ of the effective ensemble at each of the n splits. This estimator

is known to be unbiased [54]. When AMS is implemented to the completed situation

where the entire ensemble consists of transitions, the r/N factor is unity and the

expression simplifies to p̂ = (1−1/N)n.

Useful insights can be derived from the AMS probability estimator (2.2.10). For

example, for a given ensemble size the number of algorithm iterations, n, is expected

to scale like

n ∝− ln(p). (2.2.11)
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So as p becomes small the number of algorithm iterations to find some number of

rare events has a better scaling than the 1/p scaling for DNS to find a fixed number

of rare events (an ‘iteration’ is a different process in AMS and DNS of course, but

the scaling is promising for AMS as events become rare).

Another property which can be seen from (2.2.10) is the nonlinear relationship

between n and r. For instance, it is a simple exercise to show from (2.2.10) that the

required number of iterations for AMS to find N transitions is approximately only

double the number of iterations to find the first transition if p∼ 1/N2. For smaller p,

this idea of increased returns becomes more extreme, hinting that it is beneficial to

run the algorithm to completion (r = N). However, it is unknown how the variance

of the estimator p̂ depends on the algorithm-stopping r value. The picture is also

distorted since not all algorithm iterations will have the same expected computational

time – simulations split at different scores will typically have different expected

hitting times. It will be seen in the results section that we run AMS implementations

with r = 1 and r = N for a direct inspection of the variance of p̂ in the most extreme

cases.

An optimal implementation of AMS could be considered as minimising the

variance of the probability estimator p̂ against the computational time [50]. Before

we can discuss results related to the variance of the probability estimator p̂, though,

it is necessary to introduce some notation. Denoting sl the hitting time of the open

threshold with score l as

sl = inf
t
{Q(Xt)> l}. (2.2.12)

The committer function

Q∗(X) = E[1B(Xs)|X0 = X ], (2.2.13)

is simply the probability of reaching the rare event set B from some position X . We

also define the conditional distribution

ηl(ϕ) = E[ϕ(Xsl)|sl ≤ s], (2.2.14)
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where ϕ is any test function, and the level probabilities

pl = P(sl ≤ s), (2.2.15)

for l ∈ [0,1]. i.e. p0 = 1 and 0 < p1� 1.

Now, there is a central limit theorem

√
N p̂ =N

(
p,σ2) , (2.2.16)

associated with AMS [e.g. 47, and references therein], where

σ
2 =−p2 ln p−

∫ 1

Q0

Vηl(Q
∗)pldpl. (2.2.17)

and

Vηl(Q
∗) = V [E(1B(Xs)|Xsl)] . (2.2.18)

The integration in (2.2.17) is over the level sets of the scoring function Q and

the integrand is the variance (across the given level set) of the real probability of

reaching set B from such a position. If we know and use the committer function Q∗

for the scoring function, such variance vanishes since E(1B(Xs)|Xsl) is constant for

any given scoring level l. Any committer-like function [50], which has a gradient

everywhere in the same direction (though not necessarily the same magnitude) as Q∗,

or equivalently shares the same isosurfaces as Q∗, will also be an optimal choice.

Insightful as (2.2.17) may be from a theoretical vantage, we cannot calculate the

integral without the knowledge of a comitter-like function, rendering it practically

useless.

It is worth mentioning that in the hypothetical case that the committer function

is used, the number of iterations is Poisson distributed [55] according to

n∼ Pois(−N ln p), (2.2.19)

giving direct access to the distribution of p̂. The unwanted effects of a sub-optimal
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scoring function, though, are not insignificant [also 55].

Finally, it is put forward that the upper bound on AMS variance is “at worst

twice as bad as DNS” [47] for the same computational effort. Although disappointing,

at least AMS variance is theoretically bounded (even with a worst permissible scoring

function).

2.2.5 Return Times

The probability estimator p̂ is a fairly arbitrary statistic in of itself. It simply gives

the probability of transitioning from the threshold with score Q0 to set B without

first entering set A. A more fundamental statistic of interest is: given we are in set A,

how long can we expect to wait until we are in set B? This is particularly important

for risk assessment, for example, where one needs to know the expected frequency

of a catastrophe.

The expected waiting time may be estimated from p̂ if we know the expected

time taken to reset a simulation (e.g. [48]). The reset time, τ , is the total time taken

to integrate from the initialisation at Q = Q0 until returning to set A and passing

back out of A to the Q = Q0 threshold again. The reset time is not defined if the

simulation reaches set B before returning to set A after initialisation.

To access the waiting time, consider a single simulation initialised in set A and

integrated forward in time. Typically we’ll expect the score to pass back-and-forth

many times through Q = Q0 before a transition to set B (since p is small). If we

imagine that when we reach Q =Q0 (having just exited set A) that we count returning

to set A as failure and transitioning to set B as a success. Now we essentially have

a Bernoulli trial with success probability estimated by p̂. Using the reset time, it’s

easy to conclude the expected waiting time to transition from A to B is

E[TA→B]≈
τ

p
. (2.2.20)

The transition time itself, τtrans (i.e. the expected time to go directly from Q = Q0 to

B), and the small time, τ1, to initially reach Q = Q0 from a random initial condition

in A could be added for precision. But presuming events are rare and abrupt it will
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be a small adjustment. The condition is p� τ/(τtrans + τ1).

Data from 10000 QG2D simulations are shown in the Figure 2.2. Each simu-

lation was initialised using the same initialisation process as AMS and the scoring

function is defined as above. All other parameters are kept the same, too. The mean

reset time is τ = 55.1957 . . . with a standard deviation of 111.80896 . . .. Assuming a

central limit theorem, the 95% confidence interval is [53.004 . . . ,57.387 . . . ].

The 10000 simulations took roughly 30 hours to integrate directly, which in the

context of rare event algorithms is not a very long time. It is therefore feasible to

reduce the confidence interval if desired.

Figure 2.2: Histogram of return times for the 2 jet state from 10000 simulations. Reset times
greater than 400 are not shown. This is for an improved display of the histogram
at lower τ values.

2.2.6 Parallelising

It is possible, generally, to clone/split k trajectories at each splitting implementation.

It is found the algorithm’s variance is minimised with k = 1 [48], but also noted that

there is a potential to run in parallel if k > 1 which might reverse the numerical costs

associated with the increased variance. For instance, [53] parallelised with k = 100.

Another parallelising option is to simply run many algorithm implementations in

parallel with smaller ensembles. This is equivalent to dividing the pool of potential

clones to subsets of a ‘global’ ensemble. It seems inevitable this will produce

variance but a detailed study would be interesting. Here, we give a method to

parallelise the ‘last particle’ version of AMS.

For simplicity consider parallelising AMS on two cores only. We can’t im-

mediately run the two worst scoring simulations in parallel for two reasons: the

worst scorer may never exceed the second worst scorer (in which case the second
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worst scorer may be called on as the clone), and also the second worst scorer may

be assigned the worst scorer as a clone when it needs to be split which can’t be

done until the worst scorer ‘overtakes’. The solution to this is simple, we run the

worst scoring simulation and wait until it achieves the second worst simulation’s

high-score. Then (and only then) we can confidently randomly select a clone for the

second worst scorer and run the two in parallel until completion. If the worst scorer

never achieves the second worst’s high-score then we don’t parallelise and we run

the worst scorer again.

To parallelise with multiple cores, consider labelling the simulations

S1,S2, ...,SN in ascending order according to their respective high-scores

Q1,Q2, ...,QN . We then clone and run for S1 until it achieves Q2, then clone

for S2 and run S1 and S2 in parallel until they both achieve Q3, then clone for S3

and run S1, S2 and S3 in parallel until they achieve Q4 etc... At some level n not

all S1,...,Sn will reach score Qn+1. At this point, let all the simulations run until

completion, re-order and begin again. Psuedo-code is given in Algorithm 2.

Although the parallelised AMS doesn’t consistently use parallelisation, it is ex-

pected that with a large enough number of simulations, the worst scoring simulations

are tightly bunched. It’s a tough competition to be last, typically a quick dethroning

is expected from the next-best neighbour when cloning randomly from the larger

(better performing) ensemble.

Note however that with each round of splitting, before starting with the losing

simulation again, there are potentially long waiting times for the final simulation(s) to

finish. It is an annoying consequence of AMS (compared to, say, multi-level splitting

with fixed splitting times) and a waste of parallel capabilities. An anticipated step

further in sophistication for a parallelised last particle AMS might monitor which

simulations have finished and if they are guaranteed losers, prematurely begin the

next round of splitting. This could entirely bypass the bottleneck that comes with

waiting for the longest simulations to finish. Lastly, we note that although this

parallelisation procedure is slightly slower and more convoluted than simply running

multiple simultaneous implementations of AMS each on a single core, it is far more
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memory efficient (and memory constraints become important when saving thousands

of turbulent flows at relatively high temporal resolution).
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Algorithm 2: AMS - parallel

1 r = 0
2 n = 0
3 for i = 1 : N do
4 initialise Si in set A
5 run Si until Qi ≥ Q0 > 0 and Q0 small.
6 continue until either returning to A or reaching B

7 arrange simulations in ascending order of high score and re-index
8 update r if needed (unlikely)
9 while r < N do

10 Pmax = N− r
11 for p = 1 : Pmax do
12 clone S j onto Sp for random j ∈ {p+1, p+2, . . . ,N} up to Qp

13 n=n+1
14 for q = 1 : p do
15 run Sq until reaching Qp+1 or returning to set A

16 if none reach Qp+1 then
17 break

18 if only some reach Qp+1 (but not all) then
19 clone the worst scoring sim that didn’t reach Qp+1. Run this

along with those that reached Qp+1 until completion.
20 n=n+1
21 if any sims reach set B then
22 update r appropriately

23 break

24 re-order

25 P({Q = Q0}→ B) =
(N−1

N

)n



2.2. Adaptive Multi-Level Splitting Algorithm (AMS) 75

2.2.7 Results

DNS may be used to find transitions with parameter values (α,β ) = (0.0012,5.26).

A long integration of the QG2D model is given in Figure 2.3. Three transitions from

two to three jets are observed over the entire integration time of 3.67× 106 time

units. The time spent in the two jet state is approximately 8.075× 105 time units

per transition. This isn’t out of keeping with the estimate in [18] (supplementary

material) which finds five transitions from DNS with an average time of 5.3×105

per two-to-three jet transition. The difference is easily accounted for in the error

sampling only a handful of transitions. There may also be differences in underlying

statistics due to alternative numerical integration schemes.
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Figure 2.3: Transitions between two and three jets in QG2D found by DNS. Top: Hövmoller
plot of zonal mean velocity, bottom: corresponding line plot of |ζ 2| (blue) and
|ζ 3| (orange) showing abrupt transitions.

Results for the AMS algorithm applied to QG2D with the same parameter

values are given in Table 2.1. In all cases, the rare event is a transition from two to

three jets.

There are three groups of algorithm implementations, each consisting of 10

ensembles:

1. Ensembles 1-10 with N = 50 and r = 1.

2. Ensembles 11-20 with N = 1000 and r = 1.

3. Ensembles 21-30 with N = 1000 and r = 1000.

where N is the ensemble size and r is the desired number of transitions from the

algorithm.
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Ens. N r n p̂ (×10−6)
1 50 1 427 3.58562
2 50 1 592 0.12790
3 50 1 269 87.26586
4 50 1 357 14.74820
5 50 1 427 3.58562
6 50 1 742 0.00618
7 50 1 444 2.54335
8 50 1 707 0.01253
9 50 1 928 0.00014
10 50 1 96 2875.63170
11 1000 1 5513 4.02288
12 1000 1 2989 50.26252
13 1000 1 4726 8.84092
14 1000 1 5550 3.87668
15 1000 1 2662 69.71555
16 1000 1 4308 13.43146
17 1000 1 6042 2.36963
18 1000 1 9033 0.11887
19 1000 1 7961 0.34742
20 1000 1 7962 0.34707
21 1000 1000 8726 161.60331
22 1000 1000 9811 54.57641
23 1000 1000 8843 143.75150
24 1000 1000 9550 70.86186
25 1000 1000 9132 107.65606
26 1000 1000 8920 133.09293
27 1000 1000 9049 116.97767
28 1000 1000 8971 126.47214
29 1000 1000 9619 66.13498
30 1000 1000 9367 85.09974

Table 2.1: AMS results for two-to-three jet transitions in QG2D.

The first success is that all ensembles manage to successfully run until com-

pletion. This at least shows that the algorithm reliably runs in a finite and feasible

time.

We now compare the statistics of the probability estimator p̂ for the three groups.

The mean probability estimator for the first group is 2.99×10−4 with a normalised

variance of 9.19. The same quantities for the second group are 1.53× 10−5 and

2.52, and for the third group they are 1.07× 10−4 and 0.11. The results in the

first two groups are not very statistically useful since their normalised variance is

greater than one. In these groups it’s clear that 10 ensembles is not a large enough

sample (ensemble number 10 alters the estimator from the first group by an order of

magnitude). The high variance associated with the r = 1 AMS implementation in

the second group is not unexpected as each ensemble is waiting for only one rare

event. It is encouraging that the variance is markedly reduced from group two to

group three. Moreover, the reduction in normalised variance outweighed the extra
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computational time taken to find the remaining N−1 transitions, indicating the extra

computational effort provides an increased benefit.

To compare DNS with AMS we will use group three. AMS’s group three took

15 times more computer time than DNS (approximately 30 weeks to DNS’s two).

Despite this large factor, AMS still outperformed DNS in the task of finding rare

events. AMS found 100,000 events to DNS’s three, meaning AMS found rare events

over two-hundred times faster than DNS. Some of these rare events share ancestry,

however even eliminating all such events, AMS finds distinct rare events at a faster

rate than DNS.

To obtain a confidence interval on the transition waiting time from AMS we

assume a central limit theorem for p̂. The 95% confidence interval for the transition

waiting time can then be found (e.g. using the reset time τ found in section 2.2.5).

The estimated transition waiting time is 5.83× 105 with the confidence interval

[4.28,6.55]×105. We note that the estimated transition time is similar to the (very

approximate) DNS values given above.

To compare with DNS, we assume that DNS rare event observations are Poisson

distributed. For a 95% confidence interval to have the same (relative) range magni-

tude as the AMS interval, we need to observe approximately 80 events (giving the

confidence interval for the number of events as [63.4,99.6]). Using the confidence

interval from AMS as a guide, 80 events would require between 18 and 29 weeks of

computer time by DNS. This does not include the DNS time taken to transition back

to a two jet state after the rare event like Figure 2.3, since if we were looking for two

to three jet transitions exclusively then we would reset the DNS simulation after each

transition. The conclusion is that DNS would provide a slightly more precise statistic

over the same computational time used as for the AMS group three experiment. With

a smaller friction parameter so that events are more rare, it is expected that AMS

will outperform DNS (due to the n ∝− ln p relationship).

The single transitions from each of the ensembles 11-18 are plotted in Figure

2.4 and consolidate the previously observed quality that nucleations start in the

westward jet [18, 53]. It is most usual for a nucleated jet to form in a westward jet
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and grow in zonal velocity until the flow reaches set B, but it can be observed that

trajectories may take alternative routes to set B. The first two simulations of the top

row of Figure 2.4 are noteworthy as they clearly experience two distinct nucleations

before fully transitioning. Note as well that the time taken to transition has large

variability. Figure 2.5 plots the second and third wave components of the mean

vorticity profile for two of the transitions, highlighting that in some cases there is

a relatively direct path between sets A and B, while in other cases the majority of

the progress towards set B is made early on, with some time being taken to gain the

required jet strength and spacing to actually be in set B. Before and after snapshots

of potential vorticity are given in Figure 2.6.

Figure 2.7 shows trajectories in the three dimensional (|ζ 2|, |ζ 3|, |ζ 4|) space

relevant for the scoring function. The sets A and B are the grey cuboids and transitions

are coloured red to blue as they transition from two to three jets. The first panel shows

the eight transitions from ensembles 11-18. Of particular interest is the particularly

wayward trajectory near set B. This trajectory corresponds to the top left transition in

Figure 2.4 and its distinction from other trajectories is capturing the peculiar second

nucleation towards the end of the transition. The second panel in Figure 2.7 has

been taken from a test ensemble of 100 members (not included in Table 2.1) where

all the members transitioned. Similar to previous results [18, 53], the transitions

take a non-direct route from A to B, following a curve rather than a line, which at

first grows in the direction of increasing the fourth Fourier component magnitude.

The ensemble of 100 transitions is seen to have relatively few ancestors at set A;

the 100 trajectories are independent realisations once they reach set B, but many of

them share the same dynamics for some initial time prior to splitting (seen here as a

branching of the trajectories exiting set A).
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Figure 2.4: A selection of two-to-three jet transitions for QG2D found using AMS, corre-
sponding to the transitions found from ensembles 11-18 in Table 2.1.
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Figure 2.5: Zonal vorticity Fourier component amplitudes for the middle-middle (left) and
bottom-left (right) transitions in Figure 2.4. Note the right hand side has a longer
time axis.
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Figure 2.6: The potential vorticity at the beginning and end of the bottom-left transition in
Figure 2.4.

Figure 2.7: Transitions in the reduced zonal Fourier component amplitude space
(|ζ 2|, |ζ 3|, |ζ 4|). The boxes are the sets A and B and the transition from red to
blue is from two to three jets. The left panel is for the eight transitions from
ensembles 11-18. The right panel plots a full ensemble of 100 members where
all trajectories were guided towards set B.
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2.3 Deterministic Adaptive Multilevel Splitting

Algorithm (DAMS)
Many physical models are deterministic, not stochastic. That is to say, once initial

conditions are prescribed, the future dynamics are fully determined. Rare events

are not confined to stochastic systems, so can a rare event algorithm be devised to

find rare events in deterministic models? In this section we describe a deterministic

adaptive multilevel splitting algorithm (DAMS) and provide results of the algorithm

in the two-layer model. To our knowledge it is the first time the idea has been

implemented and the first time any rare event algorithm has been applied to a

baroclinic model of turbulence.

2.3.1 The Algorithm

It is clear with a moments thought that AMS cannot be applied to a deterministic

model. Without the random forcing, cloned trajectories do not develop distinct

dynamics since simulations with any shared ancestry must be identical for all time.

This can be overcome by adding a small perturbation at the splitting time. If a system

is sufficiently chaotic, the perturbation will grow exponentially with time, leading to

cloned trajectories developing distinguished dynamics.

The idea to add a perturbation at splitting times in AMS was first used to

study rare energy fluctuations in the deterministic Lorenz ‘96 model [56] (a low

dimensional model of chaos). The perturbation added was a random Gaussian noise

at the time of splitting. The justification is that it’s a non-physical model of chaos

and the emphasis is showing AMS can be modified to successfully find rare events

in deterministic chaos for the first time. Similarly, the deterministic collapse of

turbulence in plane Couette flow has recently been successfully studied by adding a

small random noise at splitting times [57].

We question whether a random perturbation is the most relevant and propose an

alternative with some advantages. The perturbation is fully detailed in the following

sections 2.3.2–2.3.3.

The rare event algorithm we term DAMS is identical to AMS except line 11 in
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Algorithm 1 where it should read “clone S j as S1 and perturb”, i.e. DAMS perturbs

using our new perturbation method.

2.3.2 Splitting Perturbation: Idea and Theory

We propose a more natural method than the random perturbations used previously

to split trajectories in deterministic applications of AMS [56, 57]. The method will

make use of some general results of chaotic dynamical systems which we introduce

here.

Supposing we have an ergodic dynamical system which has been (effectively)

run to equilibrium from t =−∞,

qt =Nq (2.3.1)

where N is a time-dependent nonlinear operator acting on q. We may linearise

(2.3.1) about a given solution trajectory q(t) to find a tangent linear model

q̃t = Lq̃. (2.3.2)

The time-dependent linear operator L is dependent on the original trajectory q(t).

As an example, if we consider the material conservation equation

qt =−uqx− vqy, (2.3.3)

looking for solutions of the form q+ q̃ (for some specific solution q) and linearising

finds the equation

q̃t =−uq̃x− vq̃y− ũqx− ṽqy =
{
−u∂x− v∂y +qx∂y∇

−2−qy∂x∇
−2} q̃. (2.3.4)

The operator in the curly brackets gives the linear operator in this simple example.

In general, given an initial condition q̃0 at t = t0, the tangent linear model has

the formal solution

q̃(t, t0) = exp
(∫ t

t0
Ldt
)

q̃0, (2.3.5)
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where the exponential can be interpreted in the power series sense.

We are now in a position to give a working definition of the maximal Lyapunov

exponent

λ = sup
q̃0∈Q0

lim
t0→−∞

1
t− t0

ln
(
‖q̃(t, t0)‖
‖q̃0‖

)
, (2.3.6)

where here and throughout ‖ · ‖ is the L2-norm

‖φ‖=
∫
D

φ
2dxxx. (2.3.7)

The set Q0 is the set of all suitable randomly generated initial conditions. In fact,

almost all (in the probabilistic sense) q̃0 ∈Q0 qualify as a supremum in the above,

with only sets of measure zero in Q0 recovering other Lyapunov exponents. Let us

denote this ‘almost everywhere’ subset of Q0 by Q0. This allows for a consistent

definition of the maximal Lyapunov vector (MLV)

q̃MLV(t) =± lim
t0→−∞

q̃(t, t0)
‖q̃(t, t0)‖

∣∣∣∣
q̃0∈Q0

, (2.3.8)

where the sign can be chosen by some criterion to confer uniqueness. A crucial

property of the MLV is it is independent of the particular q̃0, as all initial conditions in

Q0 develop into the MLV structure. The MLV depends on the underlying nonlinear

trajectory and is hence a unique time-evolving property of q(t). In contrast, the

maximal Lyapunov exponent, λ , is a property of the dynamical system.

The new splitting procedure for DAMS perturbs a simulation in the direction of

the MLV at the time of the split with some relatively small specified magnitude εs,

i.e. the perturbation at splitting times is εsq̃MLV.

A perturbation at t = 0 is expected to grow like exp(λ t) so an approximate

convergence to a MLV is expected for t� λ −λ2 (where λ2 is the second largest

Lyapunov exponent). Provided the splitting time satisfies the inequality, almost any

change in initial conditions with magnitude εs exp(−λ t) approximately converges to

εsq̃MLV.

The crucial conceptual leap from AMS to DAMS, then, is that we are approxi-
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mating a natural exploration of initial conditions. Consequently, the trajectories from

DAMS correspond (at least to close approximation) to a realisable deterministic flow.

The ‘splitting’ can be considered as selecting a new initial condition in set A, such

that the dynamics are close to the clone up to the splitting time.

2.3.3 Splitting Perturbation: Practical Implementation

To approximate the MLV at time T , we consider the flow history back to T −

∆T for some ∆T > 0. We begin by adding a noise at time T −∆T with a small

magnitude εp. The model can then be integrated and the perturbation monitored.

However, since nonlinear effects on the perturbation are unwanted, we must not let

the perturbation grow large relative to the flow. To avoid this we employ a simple

trick: the perturbation is rescaled back to magnitude εp several times throughout the

integration over [T −∆T,T ]. Provided ∆T is large enough (∆T � λ −λ2), the final

perturbation at T gives an approximation to the MLV direction.

The two-layer model exhibits a single jet state when the parameters

are (Wc,κM) = (2.2π,0.01). We use this parameter setting to test different εp and

∆T for the calculation of the linear tangent space. It’s determined that εp = 10−12

(relatively very small, see discussion below on εs for context) and ∆T = 25 with a

perturbation rescaling every time unit is sufficient to approximate the MLV. At this

value of ∆T the MLV approximation is found to have negligible dependence on the

initial perturbation (i.e. the MLV approximations have a small standard deviation

magnitude relative to the MLV magnitude).

A difficult component of DAMS is deciding the final splitting perturbation

magnitude, εs. Since we are using a linear approximation for the perturbation,

we should not take εs to be large compared to the magnitude of the original flow.

However, choosing εs too small results in the perturbed clone decorrelating from

the original flow at an impractically late time (later than the typical lifetime of a

trajectory in the rare event algorithm for example).

To determine a sensible value for εs in the two-layer model, we run some

experiments with parameters (Wc,κM) = (2.2π,0.01). For various values of εs, we

add εsq̃MLV at t = 0 and monitor the growth of the perturbation.
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Plotted in Figure 2.8 is the magnitude of the perturbation after splitting. Ex-

ponential growth is observed until trajectory decorrelation halts the linear theory

described above. The perturbation in the two-layer model is taken to be applied to the

‘vector’ Q = (Q1,Q2)
T . The typical magnitude of Q in the two-layer model with the

above parameters is approximately 3×105. Much of this is contained in the zonal

profile due to the imposed temperature gradient. The magnitude of Q without the

zonal contribution is approximately 2.5×103. Normalisation of the MLV means the

splitting perturbation has magnitude εs, hence εs� 103 is the condition for relatively

small perturbations. However, this magnitude comparison misses that the MLV has

a tendency to be skewed to specific regions of the domain. With εs = 1, sometimes

the MLV has been found to exceed 10−2 times the magnitude of Q on some small

part of the domain. It is expected that εs = 0.25 will keep the perturbation to less

than 10−2 times the original trajectory everywhere in the domain. We decide to

take εs = 0.25. This value also implies a total perturbation magnitude O(10−4) of

the original trajectory, as well as a decorrelation time within the typical trajectory

lifetime.
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Figure 2.8: The initial perturbation magnitudes are εs = (1,0.25,10−4,10−12) with corre-
sponding colours (blue, orange, yellow, purple). i.e. decreasing εs corresponds
to a delayed perturbation growth and trajectory decorrelation.

Are statistical estimators influenced by the parameter εs? If εs > 0 but small

enough not to alter trajectories significantly on the lifetimes of trajectories, we

cannot expect to find transitions easily through algorithm iterations. For a given

computational effort, then, there doesn’t appear to be any certainty that the variance

of the probability estimator from DAMS will be superior to DNS unless care is taken

with the choice of εs. As for estimator bias, it’s supposed that the exploration close
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to some initial condition is enough to sample rare events in an unbiased manner, but

unbiasedness is yet to be proven rigorously for DAMS.

At first glance, it’s not immediately clear that the decorrelation considerations

above aren’t relevant to high dimensional AMS problems. For instance, it is not

clear that scores will decorrelate over trajectory lifetimes in QG2D if we have weak

forcing so that the system is dominated by advective terms. However, it is known

that AMS is unbiased regardless and has an upper limit on variance.

2.3.4 Scoring Function

As in QG2D, we may also look at Fourier coefficients of zonal flow in the two-layer

model to determine a scoring function. Since the jets are confined to an internal

region of the domain with a width related to the equilibrium profile width, we look

at coefficients U+
k defined as

U+
k =

1
2(Wc +2σ)

∫ Wc+2σ

−Wc−2σ

U+(y)exp
(
−ik

y+Wc +2σ

Wc +2σ

)
dy, (2.3.9)

recalling that Wc is the half width of the flat top region of the equilibrium profile and

σ = π is its exponential decay away from the flat top region. The U+
k are essentially

the modes of U+(y) on the ‘jet domain’ [Wc−2σ ,Wc +2σ ].

It is found that the values of |U+
1 | and |U+

2 | distinguish the single and double jet

states well across all the range of Wc tested. Figure 2.9 shows the Hovmöller contour

plot for a simulation with transitions, along with a graph for the corresponding values

of |U+
1 | and |U+

2 |. The abrupt transitions and their representation by modes share

resemblance to Figure 2.3 for QG2D.

It has been found that in the two-layer model the values of |U+
3 | are not very

distinct in each state, and we continue with a scoring function which only considers

the magnitude of the first two Fourier components. The fact that DAMS, as we shall

see, is found to work with a scoring function of only two variables is very reassuring

for the potential of future improvement.

The scoring function we will use is essentially the same as the scoring function

for the single layer model, i.e. (2.2.2), but in two dimensions. The sets are sensitive
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to the model parameters. When (Wc,κM) = (2.2π,0.01), the sets the single jet state,

set A, is defined by

|U+
1 | ∈ [0.5,∞), (2.3.10)

|U+
2 | ∈ [0,0.25], (2.3.11)

and the double jet state, set B, is defined by

|U+
1 | ∈ [0,0.2], (2.3.12)

|U+
2 | ∈ [0.55,∞). (2.3.13)

The sets for the parameter setting (Wc,κM) = (2.6π,0.028) are: set A;

|U+
1 | ∈ [0.3,∞), (2.3.14)

|U+
2 | ∈ [0,0.33], (2.3.15)

and set B;

|U+
1 | ∈ [0,0.15], (2.3.16)

|U+
2 | ∈ [0.5,∞). (2.3.17)

Starting with a primitive scoring function, it is possible to improve with little

extra knowledge of the system. As we shall see, a simple improvement on the

scoring function in this model could be devised by including the phase of the Fourier

components as well as the magnitude. This is because jet states are symmetric about

y = 0 which gives them a preferred location in y. This is a quality that is missing

in QG2D where the target states are translationally invariant in y from meridional

periodicity.

2.3.5 Results

We will begin by looking at results from DNS for the two-layer model. Dozens

of long integrations at the 128× 128 resolution have been undertaken across the
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Figure 2.9: Top: Hovmöller of U+(y, t) in a two-layer flow with parameters (Wc,κM) =
(3.25π,0.05). Below: |U+

1 | (blue) and |U+
2 | (orange) as defined in (2.3.9). The

clear flipping of magnitudes indicates that the low wavenumbers will make a
good scoring function.

(Wc,κM) parameter space, focusing mostly on regions of the parameter space near

to where transitions occur. Figure 2.10 shows the average jet number observed at

points in the parameter space.

A curve of interest in the parameter space is the curve where the average jet

number is 1.5, indicating the jet is equally likely to be a single or double jet state.

Figure 2.11 provides DNS data for the number of observed transitions and the

mean waiting times for various κM values with Wc = 2.6π fixed. The transition times

for each transition direction is plotted on a logarithmic axis with 95% confidence

intervals. The transitions times appear nearly linear with κM on these axes. This

indicates there may be an Arrhenius type law TA→B ∝ e∇V/κM . The deviation from

this relationship might be expected though when varying κM only, since if we don’t

also adjust Wc accordingly, the expected jet number changes as we change κM (and

hence the expected underlying transition times).

Following the data from DNS we apply DAMS to two parameter settings:

(Wc,κM) = (2.6π,0.028) and (Wc,κM) = (2.2π,0.01). The larger friction value has

frequent transitions, with ∼ 1.5 jets, and we’ve found accurate statistics from DNS.

The aim, since this is the first time DAMS has been used, is to check that DAMS

gives comparable results. The smaller friction setting is such that no transitions have
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Figure 2.10: Average jet number in the (Wc,κM) parameter space found through DNS. The
approximate 1.5 jet number locations are given by the black circled crosses.
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Figure 2.11: Results from DNS varying κM with Wc = 2.6π fixed (corresponding to the
vertical sweep in Figure 2.10). The upward pointing black triangles indicate
the mean waiting time to go from a single to double jet. Downwards pointing
arrows are the mean waiting time to go from a double to a single jet. Blue dots
mark the number of observed transitions per 105 time units, indicated by the
right hand side axis.
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been observed through DNS. However, both a steady single and double jet state have

been found with the small friction setting if we use suggestive initial conditions.

This has allowed us to define the sets A and B to apply DAMS.

We perform the algorithm on ten ensembles in each parameter setting with

results given in Table 2.2. The first group of ten contains the (Wc,κM)= (2.6π,0.028)

results and the second contains the (Wc,κM) = (2.2π,0.01) results. The first group

uses 500 ensemble members, the latter uses 1000 and the algorithm is run until the

entire ensemble reaches set B.

Ens. Wc κM N n p̂

1 500 1100 1.10559×10−1

2 500 1215 0.87822×10−1

3 500 1213 0.88175×10−1

4 500 1236 0.84207×10−1

5 2.6π 0.028 500 1148 1.00430×10−1

6 500 1140 1.02051×10−1

7 500 1226 0.85910×10−1

8 500 1266 0.79299×10−1

9 500 1081 1.14846×10−1

10 500 1057 1.20499×10−1

11 1000 9283 9.25608×10−5

12 1000 11344 1.17733×10−5

13 1000 12711 0.29986×10−5

14 1000 13018 0.22056×10−5

15 2.2π 0.01 1000 11332 1.19155×10−5

16 1000 9766 5.70897×10−5

17 1000 11591 0.91955×10−5

18 1000 11050 1.57996×10−5

19 1000 11277 1.25896×10−5

20 1000 12498 0.37108×10−5

Table 2.2: DAMS results for one to two jet transitions in the two-layer model. For each
implementation the algorithm stopped when all members transitioned (r = N).

For the large friction, the reset time is found, from 2000 simulations, as τ ∼ 450

with a confidence interval approximately 450± 25 (figure 2.12). The large reset

time was an oversight in implementation. Set A is larger than ideal, meaning τ (and

p) are larger than optimal. Much of the work in this DAMS example is therefore

is shifted towards the initialisation steps. To get an accurate waiting time we need

thousands of ‘reset observations’ which are expensive at ∼ 450 time units each.

Moreover, since the desired sample size of reset times is larger than 1/p for this

example, calculating τ provides a reasonable DNS estimate on p. It is found that

208 of the 2000 simulations transitioned to a two jet state.

Continuing with the value τ = 450 anyhow gives a wait time as 4.62× 103.
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Figure 2.12: Histogram of ‘reset times’ from 2000 simulations. (Wc,κM) = (2.6π,0.028).

Assuming a central limit theorem for p̂, the 95% confidence interval for the waiting

time (again, with τ = 450 assumed precise) is [4.23,5.09]×103. This is in agreement

with the DNS result in Figure 2.11. The confidence intervals have an overlap

region and cover a similar range in each case. The DNS result in Figure 2.11 took

approximately one week of computer time to find 66 transitions while DAMS took 8

weeks to find 5000 transitions. Further, about 10 days of DAMS was calculating τ ,

which is equivalent to a DNS sampling of 208 rare events which provides a smaller

confidence interval for p̂ from DNS than DAMS (about half the size), despite using

eight times less computer time.

In conclusion we can say that DAMS is more efficient at finding transitions at

the high friction parameter setting, whereas DNS provides a better estimate for the

transition waiting time.

For the low friction setting a direct comparison is not entirely possible since

DNS did not find any transitions (the simulation was stopped after 8 weeks)! The

mean p̂ value is 2.94×10−5 with relative variance 1.79. The mean reset time from

1000 simulations has been calculated as τ = 262. The implied waiting time from τ

and the mean p̂ value is of the order 1×107, which corresponds to around 10 weeks

of computer time for DNS. DAMS took a total of ∼ 15 weeks, but if we increased

the algorithm iterations, the statistics so far indicate that DAMS will perform better

than DNS at this friction value. While caution should be exercised reading too much

into these (high variance) statistics, it is clear that DAMS is orders of magnitude

more efficient at finding rare events than DNS. In the same amount of time that DNS

found zero transitions, DAMS found approximately 5000.

Figures 2.13–2.17 below show data from DAMS and some DAMS discovered

transitions. Figure 2.13 plots the variables U+
1 (red) and U+

2 (blue) on an Argand
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diagram, giving a clear indication of how to improve the scoring function. The

two distinct routes from set A to set B in the Argand diagrams also reveals the

approximately even split in the probability that the second jet will nucleate on the

north or south of the existing single jet. Such a split is not visible in the plots in the

(|U1|, |U2|) space. Figure 2.17 shows how the lower friction case allows for a jet

oscillation before reaching the two jet state (this behaviour is actually visible near

the figure ‘8’ shape made by the blue line plots in the right-most Argand diagram in

Figure 2.13). Most transitions however follow the more direct approach and don’t

oscillate, e.g. Figure 2.16. It is clear that DAMS has found a variety of transition

behaviours and jet dynamics far more efficiently than DNS would be able to in the

small friction regime.



2.3. Deterministic Adaptive Multilevel Splitting Algorithm (DAMS) 93

-0.6 -0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2.13: Transitions from a single to double jet for friction values κM = 0.028 (left) and
0.01 (right) found using DAMS. In each plot there are 200 transitions taken
randomly from an algorithm implementation. The top row is in (|U+

1 |, |U
+
2 |)-

space, and the bottom row is an Argand diagram with U+
1 plotted in red and

U+
2 plotted in blue. The grey boxes/coloured circles give the boundaries of sets

A and B.
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Figure 2.14: Example of a transition with κM = 0.028 where a second jet forms ‘south’ of
the single jet.
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Figure 2.15: Example of a transition with κM = 0.028 where a second jet forms ‘north’ of
the single jet.
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Figure 2.16: Example of a transition with κM = 0.01.
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Figure 2.17: Example of a transition with κM = 0.01 where the jet oscillates before a second
jet gains sufficient strength to reach set B.



Chapter 3

Second Order Closure Models

This Chapter provides an overview of the motivating idea of statistical truncations

for turbulence. A well-known statistical closure model of stochastically forced,

quasi-geostrophic β -plane turbulence is reviewed and introduced mathematically,

ready for theoretical analysis in Chapter 4.

3.1 Introduction

Previous Chapters have emphasised the difficulties of integrating turbulence nu-

merically over multiple eddy turnover times. The computational expense not only

limits the investigation into rare, transitional, weather events, but in general any

long-time study of the jet dynamics. For instance, gathering the statistics of turbulent

fluctuations about a fixed state requires integration over multiple eddy turnovers [58].

Recent decades, however, have seen the emergence of a statistical approach which

aims to access a turbulent flow’s statistics directly, rather than empirically averaging

a particular realisation of the flow. The resulting model (section 3.3) forms the basis

for the remaining Chapters of this thesis.

A key idea is that the statistics of the QG2D model are fully described by the

cumulants of its vorticity field, and the aim is to find equations for the cumulants.
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The first few cumulants are

C1 (xxx) = E [ζ (xxx)] , (3.1.1)

C2 (xxx1,xxx2) = E
[(

ζ (x1)−E [ζ (xxx1)]
)(

ζ (xxx2)−E [ζ (xxx2)]
)]

,

C3 (xxx1,xxx2,xxx3) = E
[(

ζ (xxx1)−E [ζ (xxx1)]
)(

ζ (xxx2)−E [ζ (xxx2)]
)(

ζ (xxx3)−E [ζ (xxx3)]
)]
,

where the expectation is specific to the problem at hand (Note that while the first three

cumulants are just centred moments, this is not the case from the fourth cumulant

onwards 1.

An equation for the first cumulant is easily found by taking the expectation

of the evolution equation for ζ (for example equation 1.1.21). The crux of turbu-

lence formation lays in the quadratic nonlinearity of the Navier-Stokes equations,

and generally the quadratic nonlinear term couples the first and second cumulant.

Continuing on to higher cumulants, the equation for the nth cumulant can be derived

through manipulation of the evolution equation and the previous cumulants. The

nonlinear quadrature introduces the (n+1)th cumulant into the nth cumulant’s equa-

tion, meaning we are left with an infinite hierarchy of cumulant equations. This

presents an immediate hurdle from a practical standpoint.

There are two main approaches to deal with the infinite hierarchy. The first

is to use ‘functional’ or ‘field-theoretic’ methods, pioneered by [59], which aim

to solve the entire probabilistic landscape. Whilst the functional approach has a

theoretical appeal it has received limited attention in the geophysical fluid dynamics

literature. It is, frankly, beyond the scope of this work, and the description of the

methods as being “mostly useless in understanding turbulence” [60], whether correct

of not, led the author to favour an alternative route. The second approach - which

is the focus for this Chapter and underpins the second half of this thesis - truncates,

or closes, the cumulant hierarchy. A brief overview of the literature aiming to

close the hierarchy of idealised isotropic, homogenous turbulence is presented in

[60]. The impression is that it is not clear that closure theories hold a promising

1This follows from the definition of the cumulant: the nth cumulant is the nth derivative of lnE(etX )
with respect to t, evaluated at t = 0)



3.1. Introduction 100

route forward for idealised turbulence, as non-linearity is such a crucial feature

that truncating the hierarchy at low order is insufficient, requiring higher order

cumulants to be artificially parameterised. It turns out however, mercifully, that

for strong turbulence-mean interaction problems (considered ‘less nonlinear’ than

idealised turbulence [29]), relatively simple closures have been found that offer, at

the minimum, qualitatively good results. It follows that a key motivator for closure

models is that many atmospheric flows exhibit strong wave-mean interaction, in

particular the upper atmospheres of giant planets Jupiter and Saturn [e.g. 5, and

references therein].

Retaining only the first and second cumulants, referred to as closing the hierar-

chy at the second order, has been studied extensively. The successful framework is

referred to as stochastic structural stability theory, or simply SSST/S3T (following

[61]), or CE2 (following [62]). CE2 was developed after S3T, and it is subtly dif-

ferent in the rationale, but the two theories result in a mathematically identical set

of equations when applied to the QG2D model. The CE2 approach is not limited to

QG2D, for example CE2 can be applied to two-layer baroclinic flow [63, 64, 65], the

Lorenz63 system [66], jets and vortices [67], and magnetohydrodynamics [68, 69].

Statistical truncation at the second order is closely related to a quasi-linear ap-

proximation (QL) – which is described in section 3.2 – with CE2 being interpreted as

modelling QL statistics. It has been proposed [17, 70] that the QL model is formally

asymptotic to the fully nonlinear QG2D model in the limit of large zonostrophy.

This claim is actually questioned in section 4.5, however, there is a large amount of

evidence supporting the practical use of the QL approximation and the CE2 model

for predicting seemingly accurate jet structures at large zonostrophy [see for instance

62, 71, 72, 73]. This is exciting as the QL/CE2 framework is particularly amenable

to theoretical analysis.

In this thesis we use CE2 in its original form for the specific problem of β -

plane turbulence (as in, say, [71]). Variations of CE2 that capture higher order

correlations have been formulated, taking names such as CE2*, CE2.5 and CE3

[72, 74]. Typically, these suffer from requiring extra model parameters or numerical
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intervention to avoid ‘negative probability densities’ [75]. In fact one of the brilliant

properties of CE2 is that quadratic quantities are conserved, providing a physical

realisability (non-negative probability densities). Another drawback with extensions

to the CE2 model is that they are prone to the ‘curse of dimensionality’ (they occupy

an increasing number of dimensions depending on complexity). An impressive

extension of CE2, which doesn’t suffer the aforementioned problems, is the promise

of a generalised CE2 model (e.g. the natural extension of the generalised QL model

[75]). Here, the closure permits the quasi-linear theory to include some of the

nonlinear eddy-eddy interactions which are discarded in QL theory. The model

needn’t be much more numerically demanding, but can achieve far greater accuracy

in simulations compared to CE2 in a variety of applications [68, 69, 76]. This is

specifically true in QG2D with zonostrophy values below which QL simulations

cope [75]. Similar to the generalised CE2 is a version of CE2 that uses a proper

orthogonal decomposition, whereby only the most relevant structures in the second

cumulant are retained [77].

3.2 Quasi-Linear Approximation

The quasi-linear (QL) approximation to the QG2D vorticity equation (1.1.21), has as

its starting point the Reynolds decomposition

ϕ = ϕ̄ +ϕ
′,

where ϕ̄ denotes the zonal mean of a quantity ϕ , and ϕ ′ its non-zonal perturba-

tion. Decomposing the vorticity equation (1.1.21), and neglecting the non-zonal

terms given by J(ψ ′,ζ ′)− J(ψ ′,ζ ′) in the perturbation equation, results in the QL

equations

ζ̄t =−(v′ζ ′)y−µζ̄ +(−1)n+1
ν2n∂

2n
y ζ̄ +

√
εη̄ (3.2.1)

ζ
′
t =−ūζ

′
x− v′ζ̄y−βv′−µζ

′+(−1)n+1
ν2n∇

2n
ζ
′+
√

εη
′. (3.2.2)
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Note that we have used the dimensional QG2D model (1.1.21), rather the non-

dimensionalised form (1.1.61). This keeps consistency with the literature, and

all subsequent QL/CE2 equations and results can easily be interpreted under the

non-dimensionalisation used in Chapter 1.

The QL approximation is best understood in terms of wave mode interactions

in the zonal direction. Considering the zonal Fourier transform of the QG2D equa-

tion (1.1.21)

∂

∂ t
ζk =−{J (ψ,ζ )}k− iβkψk−µζk−ν2n(k2−∂

2
yy)

2n+2
ζk +
√

εηk, (3.2.3)

where a subscript k denotes the kth zonal Fourier component. Zonal eddy-eddy

interactions occur only in the quadratic nonlinearity. This can be decomposed into

triad interactions

{J (ψ,ζ )}k =
{
(uζ )x +(vζ )y

}
k
= ik(uζ )k +∂y(vζ )k = ∑

j+l=k

(
iku jζl +∂yv jζl

)
.

(3.2.4)

By construction, the QL approximation is equivalent to restricting the interactions to

only those with j, l or k equal to 0, i.e.

{J (ψ(y),ζ (y))}k =

ikuζk +∂yζ vk, if k 6= 0,

∂y ∑ j v jζ− j, if k = 0.
(3.2.5)

This is the same as saying the QL equations allow for nonlinear interactions only

between pairs of wave modes and the zonal mean flow, and not between triads of

wave modes (these restrictions are shown schematically in Figure 3.1). This excludes

the possibility of a spectrally local inverse cascade of energy, as in the classical

Kraichnan-Batchelor 2D turbulence theory, [3, 78, 4].

Aside from the advantages of the QL model’s theoretical accessibility compared

to its nonlinear counterpart, the QL model is also numerically much faster than

the nonlinear model. Using spectral methods the QL model only requires a one-

dimensional meridional Fourier transform to solve the nonlinear terms, whereas the



3.3. CE2/S3T: Theory, Derivation and Equations 103

fully nonlinear model must use two-dimensional Fourier transforms.

Figure 3.1: Diagram of triad interactions. From left to right: wave-mean interaction where
a wave interacts directly with the zonal flow, eddy-eddy interaction of equal and
opposite signed waves resulting in Reynolds stress on the mean flow, and lastly
all other eddy-eddy interactions not involving mean zonal flow. The first two
interactions are retained for QL theory while the final interaction on the right is
dropped.

3.3 CE2/S3T: Theory, Derivation and Equations

3.3.1 Derivation

Following e.g. [62], the CE2 equations are obtained by introducing an averaging

operator 〈·〉, which in different interpretations is an ensemble average over the noise

process η , or a zonal average [71], or a temporal average [17], or a more sophisticated

average over persistent coherent structures [77]. In any case, 〈·〉 satisfies the Reynolds

decomposition property 〈ϕ1ϕ2〉 = 〈ϕ1〉〈ϕ2〉− 〈ϕ ′1ϕ ′2〉, where ϕ ′i = ϕi−〈ϕi〉. The

CE2 equations are most conveniently formulated for the averaged zonal velocity

U = 〈u〉 and the second cumulant of vorticity

Z(xxx1,xxx2, t) = 〈ζ ′(xxx1, t)ζ ′(xxx2, t)〉. (3.3.1)

(Note that although its related, Z here is not the same as the enstrophy which uses

the same symbol in Chapter 1). To derive the CE2 equations, note that the time

derivative of Z is

∂tZ(xxx1,xxx2, t) = 〈∂tζ
′(xxx1)ζ

′(xxx2, t)+ζ
′(xxx1, t)∂tζ

′(xxx2)〉. (3.3.2)
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Now considering the non-zonal part of the QG2D equation (1.1.21)

ζ
′
t =−uζ

′
x− v′ζ y− (u′ζ ′)x− (v′ζ ′)y +

(
v′ζ ′
)

y

−βψ
′
x−µζ

′−ν2n(−∇
2)n

ζ
′+
√

εη , (3.3.3)

an equation for the second cumulant is found by:

• multiplying (3.3.3) at position xxx1 by ζ ′(xxx2),

• taking the 〈·〉 average, and

• adding the same result again with xxx1 and xxx2 interchanged.

The result is

∂

∂ t
Z(xxx1,xxx2) =

[
−U1∂x1− (β −U ′′1 )∂x1L1−µ−ν2n(∇

2
1)

n]Z(xxx1,xxx2)+[
−U2∂x2− (β −U ′′2 )∂x2L2−µ−ν2n(∇

2
2)

n]Z(xxx1,xxx2)+

{3rd order terms}+ εΠ(xxx1,xxx2), (3.3.4)

where subscripts n= 1,2 denote the reference variable,Ln =∇−2
n is the inverse Lapla-

cian acting on the nth variable (so that ψ(xxxn) =Lnq(xxxn), and Π = 〈η ′(xxx1, t)η ′(xxx2, t)〉

is the correlation matrix defining the stochastic forcing η . Also U ′′n denotes the sec-

ond derivative of U with respect to y at latitude yn.

A key point is that due to taking the stochastic average 〈·〉 the cumulant equa-

tions are deterministic. The CE2 equations are found by dropping the third order

terms (closing the hierarchy at the second order), and recognising that we can write

Z = Z(x,y1,y2) for x = x1− x2. The full CE2 equations are

Ut =−〈u′v′〉y−µU− (−1)n
ν2n∂

2n
y U, (3.3.5)

∂tZ+(U1−U2)∂xZ =−
((

β −U ′′1
)

∇
−2
1 −

(
β −U ′′2

)
∇
−2
2
)

∂xZ (3.3.6)

−2µZ− (−1)n
ν2n
(
∇

2n
1 +∇

2n
2
)
Z+ εΠ.

To close the equations it is necessary to evaluate the Reynolds stress term 〈u′v′〉
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appearing in (3.3.5) in terms of Z . From the relationship between relative vorticity

ζ ′ and velocity, the required result is

〈u′v′〉(y) =−
[
∂y1∂x∇

−2
1 ∇

−2
2 Z(x,y1,y2)

]
x→0, y1→y2=y . (3.3.7)

3.3.2 The Link Between CE2 and QL

We note that dropping the third order terms neglects terms which are cubic in primed

quantities, hence the CE2 model is often described as providing a model for the QL

statistics. It is difficult to discern what exactly this means. After all, a literal average

of QL realisations will be zero since there is no meridional preference in the system.

To understand how to interpret CE2, we point out that there are actually more

subtle third order terms which are neglected, e.g. for the first term on the right-hand

side of (3.3.4), we must make the approximation that

〈u′v′ζ ′〉 ' 〈u′〉〈v′ζ ′〉. (3.3.8)

This approximation neglects interactions between perturbations against the 〈·〉 mean.

The physical interpretation here really depends the definition of 〈·〉. One interpreta-

tion is that the 〈·〉 average captures the collective average action on the mean flow

from all possible turbulent realisations, without taking into account the individual

development of the mean flow from any particular individual realisation. To say CE2

is ‘a model for the QL statistics’, means that CE2 averages the QL processes over a

background flow profile that is (a) universal (to all the processes) and (b) develops

according to the averaged Reynolds stress from all QL processes.

3.3.3 CE2 in Zonal Fourier-Space

A useful practical tool is that the second cumulant equation (3.3.6) may be Fourier

transformed in x for

∂tZ̃k + ik (U1−U2) Z̃k =−ik
{(

β −U ′′1
)

∇
−2
1 −

(
β −U ′′2

)
∇
−2
2
}
Z̃k−2µZ̃k + εΠ̃k,

(3.3.9)
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and may be written in matrix form

∂t Z̃k +AkZ̃k + Z̃kA†
k = εΠ̃k, (3.3.10)

where † is the complex transpose and Ak is an operator which depends on U(y). For

clarity the tilde ( ·̃ ) has been introduced here to denote the zonal Fourier transform

(it has been unnecessary until now, but it provides helpful distinction in the following

Chapter). It is worth noting here that

Z̃k(y1,y2) = 〈ζ̃k(y1)ζ̃−k(y2)〉, (3.3.11)

where k > 0. In general the CE2 system is solved by integrating (3.3.5) and (3.3.10)

forward in time until an approximate equilibrium is reached. When CE2 is solved

in this thesis, we use MATLAB’s inbuilt ODE45 solver to integrate the first and

second cumulant equations (3.3.10) and (3.3.10). Spectral methods are used in the

zonal direction for numerical simulations, and standard finite difference methods in

the meridional. The QL approximation means the number of active zonal modes

is limited to the largest forced wavenumber. With caution that crucial mechanisms

at shorter zonal waves are not being missed (such as mean flow instabilities), there

is opportunity to save computation time by dropping the inactive modes from the

QL/CE2 calculations. The issues around mean flow instabilities are attended to in

detail in the following chapter.

We end by noting that the equilibrium equation

AkZ̃k + Z̃kA†
k = εΠ̃k, (3.3.12)

is a Lyapunov equation which can be solved readily numerically at each wave k with

MATLAB’s inbuilt Lyapunov solver. The solution provides the exact statistics of the

QL system over a fixed background flow U(y).
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3.4 Results
The CE2 equations have been shown to capture jet formation and maintenance,

predicting at least qualitatively the spacing and structure of jets [71, 62, 72, 73].

For a brief review, we report a single result from NL, QL and CE2 simulations

in Figure 3.2. In each set of results, the NL, QL and CE2 simulations predict the

same number of jets and feature east-west asymmetry. The zonal mean velocity U

at t = 5/µ is plotted in Figure 3.3, where the CE2, QL and NL results all agree

qualitatively well with each other. CE2 has been shown to break down for this

problem as zonostrophy is reduced and the physical justification of the closure is

broken [71]. The tendency seen in the Hovmöller plots for QL jets to be more

latitudinally steady than NL jets has been observed previously [79]. The physical

parameter settings are (µ,ε,β ,Ld,L f ) = (0.0002,0.0002/(2π)2,3,1,1/16), which

gives (Z,Q,F,α,β ′) = (5.1,4.3,1.7,0.00028,3). The forcing is an annulus centred

on the wavenumber k f = 16, and a 256×256 grid with ν4 = 2.5−8 was used.

Having introduced the CE2/QL framework, we are now in a position to move

on to Chapter 4 where we approach its solution theoretically.
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Figure 3.2: Top to bottom: Nonlinear, quasi-linear and CE2 Hovmöller contour plots of
U(y, t).

Figure 3.3: Line plots of U(y) at t = 5/µ for the nonlinear (nlue), quasi-linear (orange) and
CE2 (yellow) simulations. These are the same simulations as plotted in Figure
3.2.



Chapter 4

A Local Closure Theory for

Momentum Flux in the Limit of

Small Scale Forcing

In this Chapter zonal jet formation in β -plane turbulence is investigated with the

focus on whether an accurate closure can be developed for the eddy momentum

fluxes due to small-scale random forcing. The approach of Srinivasan and Young

[80] is developed to give a relatively simple expression for the local Reynolds stress

due to the random forcing in the QG2D model when the characteristic length scale

is much less than the jet spacing. In typical jet flows, however, it is demonstrated

that the Srinivasan-Young flux is not the full story because momentum fluxes due

to jet-scale waves, present as a result of distinct barotropic instabilities, also play a

key role in the momentum balance. The current Chapter provides a full theoretical

analysis of the Srinivasan-Young closure, setting the scene for its practical use as a

tool for parameterising small scale turbulence in Chapter 5.

4.1 Introduction

Recall that the QG2D takes the doubly-periodic domain of dimension 2πLd×2πLd ,

and the most physically significant nondimensional parameters characterising QG2D
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are (e.g. section 1.1.5)

Z =
LRh

Lβ

, Q =
Ld

LRh
, F =

L f

LRh
, (4.1.1)

where Z is zonostrophy, Q is a jet quantisation parameter, and F is a forcing number

(the alternative parameters α and β ′ used in Chapters 1 and 2 can be derived from Z

and Q as described in section 1.1.5). The focus is on the regime of most relevance to

the giant planets, Z� 1 and F � 1. In this regime, it has been suggested that F has

a subtle effect on the jet dynamics [see e.g. 15, where a range of different forcings

are considered], with an apparent stronger tendency to ‘potential vorticity staircase’

[24] formation at larger F . A more detailed examination of the role of F is provided

in [20] to the same conclusion. In the small F limit, the excited waves are short

compared to the scale of the jets, and will therefore only ‘see’ a linear shear flow

locally. It turns out that the exact solution for the second-order moments in the CE2

system, in the special case where the mean flow is a linear shear flow, is known [80,

SY14 hereafter]. Solutions following the SY14 approach appear to hold the promise

of a local closure for the ensemble average wave momentum flux 〈u′v′〉. Such a

closure – a long-time goal of researchers – would allow the cumulant hierarchy to

be closed at the first order. The result would be a single equation describing the

evolution of the ensemble mean zonal wind U(y, t).

Recently, using a different but essentially equivalent approach to SY14, [23,

WB19 hereafter] have shown that in the joint limits Z � 1, F � 1, under some

mild restrictions on the forcing η to be discussed below, the momentum flux closure

becomes independent of the details of η and is given by

〈u′v′〉= ε/Uy. (4.1.2)

A similar closure (modified slightly for polar geometry) has been postulated for the

related problem of vortex condensate formation in forced 2D Navier-Stokes turbu-

lence [81], and can be used to predict the radial structure of the vortex condensate,

thus demonstrating that a local closure theory can be successful in the right setting.
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However, in the β -plane jets problem – as WB19 recognised – it is clear that the

closure (4.1.2) is inadequate. First, (4.1.2) fails because the equilibrated flow must

include jet minima and maxima where Uy = 0, and where the predicted momentum

fluxes of (4.1.2) are therefore singular. Second, (4.1.2) does not depend on β , and

therefore it cannot possibly lead to equilibrated jets with spacing on the Rhines scale

LRh. These observations, however, do not necessarily preclude a local theory. An

extended local theory can be hypothesised, which could allow for higher order terms

in F to introduce dependency on β and the flow curvature Uyy, and which would

require a particular focus on boundary layer regions where |Uy|= O(F). In principle

such a theory might resolve both of the above issues and lead to a closure that is

valid everywhere in the flow.

Using a series of carefully designed CE2 and fully nonlinear numerical simula-

tions, the aim is to demonstrate the following:

• That in the right parameter regime (F � 1, Z� 1) the SY14 approach does

lead to accurate predictions for the Reynolds stresses 〈u′v′〉 due to the waves

induced by the small-scale forcing, including at jet maxima and minima where

(4.1.2) breaks down.

• That in a typical equilibrated state, both the eastward and westward jets

fluctuate around a state which is marginally unstable to barotropic instability.

Jet-scale barotropic waves due to these instabilities are present on both jets,

and these have a distinct characteristic structure on each jet. Momentum fluxes

due to these waves – which are here disentangled from momentum fluxes due

to the small-scale forcing – have a key role in the momentum balance of the

jets.

• Because the barotropic waves emerge on the jet scale, i.e. they are global, a

purely local closure for the jet profile of the type suggested above is doomed

to failure.

The plan of the current Chapter is to review the results of SY14 and reconcile

them with those of WB19, clarifying the limit in which (4.1.2) is valid. Then
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in section 4.3, CE2 and QL simulations designed to demonstrate the main points

above are described and the results are analysed. A careful study of the linear

stability properties of both the eastward and westward jets is performed to clarify

the role of the waves generated by barotropic instability in the momentum balance

of the equilibrated flow. The Chapter ends with sections 4.4 and 4.5 where further

extensions of the SY14 local theory are discussed such as introducing time variability

and considering the momentum flux components 〈u′u′〉 and 〈v′v′〉. The latter sections

highlight the key ideas the author would recommend for extending this work in the

future, while the former sections lay the ground-work for the final Chapter of this

thesis.

4.2 The SY14 local theory

4.2.1 The SY14 result for the momentum flux in a linear shear

flow

A re-working of the SY14 solution to the second cumulant equation (3.3.6), for

the special case in which U(y) = γy is a steady, constant shear flow, is presented.

The aim is to obtain a relatively simple and easy to evaluate formula for the steady

momentum flux 〈u′v′〉, obtained from the solution to (3.3.6) as t→ ∞, which will be

used to understand the outcome of the numerical calculations below.

Recall that the focus is restricted to a time-independent homogeneous forcing

covariance Π(xxx), which takes the argument xxx = (x,y)T = xxx1− xxx2, and its Fourier

transform Π̂(kkk) defined by

Π̂(kkk) =
1

(2π)2

∫
R2

Π(xxx)e−ikkk···xxx dxxx, Π(xxx) =
∫
R2

Π̂(kkk)eikkk···xxx dkkk. (4.2.1)

(Here an infinite domain has been introduced for this set-up, and in a slight abuse

of notation a hat is used for both continuous and discrete Fourier transforms, with

the distinction being obvious depending on the set-up). The key points related to

the forcing (as described in Chapter 1) are that Π̂(kkk) = 〈η̂(kkk)η̂(−kkk)〉, where η̂ is

the Fourier transform of the stochastic forcing η in (1.1.21), and since η is real it
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has conjugate symmetry η̂(−kkk) = η̂∗(kkk), so it follows that Π̂ = 〈|η̂(kkk)|2〉 is real and

has the symmetry Π̂(kkk) = Π̂(−kkk). Further, η must be normalised so that ε is the

energy injection rate in (1.1.21), which in Fourier space corresponds to the constraint

(1.1.52), which in this context is

∫
R2

Π̂(kkk)
2|kkk|2

dkkk = 1. (4.2.2)

Appendix (A.1) provides an important result from SY14: the ‘sheared dis-

turbance’ solution for Ẑ at late times (t � µ−1). This is found in the appendix

as

Ẑkkk(t) =
∫

∞

0
Π̂(k, l + k∆(w, t)) , (4.2.3)

where

∆(w, t) =
∫ t

t−w
γ(τ) dτ, (4.2.4)

is a time-history integral of the background shear. The solution (4.2.3) is a slight

generalisation of the SY14 approach by introducing time-dependence for the back-

ground shear (we shall return to the time-independent case shortly, but keep the

generality for now as it is needed for section 4.5). SY14 realised that from the

solution (4.2.3), it is possible to calculate the Reynolds stress 〈u′v′〉 by exploiting

the linearity of (3.3.6) to separate the contributions to 〈u′v′〉 from forcing at each

wavevector kkk. The total Reynolds stress is found as

〈u′v′〉(t) =−
∫
R2

klẐ
(k2 + l2)

2 dkkk,

=−ε

∫
R2

∫
∞

0

kle−2µw

(k2 + l2)
2 Π̃(k, l + k∆(w, t))dwdkkk,

=−ε

∫
R2

∫
∞

0

k(l− k∆(w, t))e−2µw

(k2 +(l− k∆(w, t))2)
2 Π̃(k, l)dwdkkk,

= ε

∫
R2

{
Π̃kkk

2γ(t)|kkk|2
+

1
2

∫
∞

0

d
dw

(
e−2µw

γ(t−w)

)
Π̃(k, l)

k2 +(l− k∆(w, t))2)
dw
}

dkkk.

(4.2.5)

where the last line is found by parts and (k, l) are the components of kkk. Now let’s
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assume the background flow is time-independent, i.e.

∆(t,w) = wγ, (4.2.6)

so that (4.2.5) becomes

〈u′v′〉= ε

∫
R2

{
Π̃kkk

2γ|kkk|2
− µ

γ

∫
∞

0

Π̃(k, l)e−2µw

k2 +(l− kγ)2)
dw
}

dkkk. (4.2.7)

One of the original realisations that motivated the latter half of this thesis was

that expression (4.2.7) simplifies dramatically, with a full explanation detailed in

Appendix A.2.1. A fundamental point is that it can be shown that the amplitude of the

wavevector at which energy is injected is irrelevant in the SY14 analysis. Rather, for

forcing at each kkk, the SY14 result depends only on the phase angle φ = tan−1 (l/k).

Physically this is due to the fact that there is no intrinsic length scale associated with

a constant shear flow. Consequently it is possible to express the general result in

terms of an energy input density ρε(φ), which is defined to be

ρ
ε(φ) =

∫
∞

0

Π̂(keeek(φ))

k2 k dk, where eeek(φ) = (cosφ ,sinφ)T , −π

2 < φ ≤ π

2 .

(4.2.8)

The symmetry Π̂(kkk) = Π̂(−kkk) means that ρε(φ) = ρε(φ +π), which explains the

restriction to −π

2 < φ ≤ π

2 . The energy input constraint means that

∫
π/2

−π/2
ρ

ε(φ) dφ = 1, (4.2.9)

so ρε(φ) can be thought of as a density function describing the distribution of the

energy input with respect to the phase angle (c.f. a probability density). Notice that

the case of isotropic forcing, i.e. forcing on an annulus in wavenumber space in the

idealised limit of an infinite domain, corresponds to ρε(φ) = 1/π (constant).

The general result is that the momentum flux can be expressed as

〈u′v′〉= ε

γ

∫
π/2

−π/2
ρ

ε(φ)K(φ ,m)dφ , (4.2.10)
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where m = 2µ/γ is a parameter governed by the ratio of the Rayleigh friction rate µ

to the shear rate γ . The kernel function K(φ ,m) appearing in (4.2.10) quantifies the

contribution of a wave forced at phase angle φ to the momentum flux. It is given by

K(φ ,m) = 1+
1
m
|z|2Im{ezE1(z)} , (4.2.11)

where,

z(φ ,m) = m(− tanφ + i), (−π

2 < φ ≤ π

2 ). (4.2.12)

Here E1(z) is the complex exponential integral with the branch cut on the negative

real axis

E1(z) :=
∫

∞

z

e−t

t
dt, |Arg(z)|< π. (4.2.13)

(Note that for fixed m the branch cut of E1(z) is not crossed as φ varies, and that the

restriction φ < |π/2| ensures that tanφ is continuous.)

The result (4.2.10) is an alternative, more accessible presentation of the results

in equations B6-B9 of SY14 – the SY14 result B9 involves calculating an infinite

time integral of an infinite sum of Chebyshev polynomials. (Initially the result

(4.2.10) was actually derived from B9 using properties of Chebyshev polynomials

and various tricks in mathematical methods. This was a delightful, yet confusing

surprise, until the realisation that the integral in (4.2.7) can be manipulated directly).

Expression (4.2.10) has several advantages over those of SY14. First E1(z) is a

tabulated function which is implemented in most mathematical software packages

(e.g. as ExpIntegralE[z,1] in Mathematica, expint(z) in matlab, etc.), meaning that

(4.2.10) is relatively straightforward to evaluate. Also E1(z) has well-known series

expansions for both |z| � 1 and |z| � 1, which can be exploited to understand

more about the behaviour of 〈u′v′〉 for any forcing Π, allowing results obtained by

SY14 and [82] for rather specific forcings to be generalised to all ρε(φ). Finally,

the form (4.2.10) is particularly amenable to the case of forcing applied at discrete

wavenumbers, e.g. on the doubly-periodic domain typical for numerical simulations.
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In that case

Π̂(kkk) = ∑
kkk j

ρ
ε
j |kkk j|2δ (kkk− kkk j),

where the sum is over all of the discretised wavenumber vectors kkk j generated by the

domain, and ρε
j is the fraction of energy injected at wavenumber kkk j (with k > 0). By

construction ∑kkk j,k>0 ρε
j = 1. The result (4.2.10) then simplifies to

〈u′v′〉= ε

γ
∑

kkk j,k>0
ρ

ε
j K(φ j,m), (4.2.14)

which is a convenient form for accurate comparison with the numerical results below.

(A technical point related to the discretised domain is that forcing on the zonal

mean (i.e. with k = 0, or at φ = ±π/2) self-evidently does not contribute to the

wave-driven momentum flux 〈u′v′〉, and must be treated separately, which explains

why the sum over wavevectors with k > 0. In this case ε and ρε
j must be adjusted in

(4.2.14) to include only the total energy injected into the non-zonal modes, and the

fraction of this total associated with each kkk j, respectively, so that ∑kkk j,k>0 ρε
j = 1.)

Given a specific energy input density ρε(φ), a useful alternative form of (4.2.10)

is

〈u′v′〉= ε

2µ
G
(

2µ

γ

)
where G(m) := m

∫
π/2

−π/2
ρ

ε(φ)K(φ ,m)dφ . (4.2.15)

One reason (4.2.15) is useful is that it is natural to scale the momentum flux 〈u′v′〉

in terms of the expected equilibrium energy E = ε/2µ in the system. Also the

function G(m) is a non-dimensional function of m which is unique to each energy

input density ρε(φ). In general, considering the problem in terms of E and µ (e.g.

rather than ε explicitly) is the natural way to interpret the problem with regards to the

nondimensionalisation put forward in Chapter 1 (where essentially the parameters

are scaled to normalise the non-dimensional expected equilibrium energy). It is

not a difficult task to interpret the results going forward with the nondimensional

parameters from Chapter 1, but for the purpose of generality dimensional parameters

are retained.



4.2. The SY14 local theory 117

4.2.2 General Properties of the Momentum Flux Formula

In order to understand the general momentum flux formulae (4.2.10) and (4.2.15),

and to extend and place in context previous results by SY14, WB19 and others, it

is useful to understand the behaviour of the kernel function K(φ ,m). Figure 4.1

shows K(φ ,m) for several values of m, with the left panel showing the full range

(−π

2 < φ ≤ π

2 ) and the right panel a scaled region (around φ = π

2 ) to illustrate some

of the self-similar behaviours as m→ 0. Some key properties of K(φ ,m), established

in Appendix A.3 and presented here for the case m > 0, are:

(i) K(φ ,m)< 1 for all φ ∈ (−π

2 ,
π

2 ) and all m ∈ R\{0}.

(ii) The limiting values at the boundaries of the interval are K(±π

2 ,m) = 0.

(iii) K(φ ,m) has a single minimum K−(m) and in the limit m→ 0, the location is

asymptotically close to φ = π/2−m/2 and K−(m)∼−4πe−2/m.

(iv) In the limit m→ 0, K(φ ,m) = 1−m(φ + π

2 )sec2 φ +O(m2 logm). Note that

this formula applies to fixed φ , and therefore cannot be used to approximate

K(φ ,m) when |φ ±π/2| ∼ O(m), meaning that it cannot describe the minima

of K(φ ,m) seen in Figure 4.1.

(v) As m→ ∞, K(φ ,m) =−m−1 sin2φ +2m−2 cosφ cos3φ +O(m−3).

(vi)
∫ π/2
−π/2 K(φ ,m) dφ = 0.

Much of the structure of K(φ ,m) can be understood by considering the momen-

tum fluxes generated by plane waves with different φ , and how those plane waves

evolve in a linear shear flow, under the so-called Orr mechanism [83]. When friction

is large (m→ ∞), plane waves are dissipated before they evolve under the action of

the shear flow, and K(φ ,m) is an odd function of φ determined by the momentum

flux of waves at the local phase angle φ at which they are generated. Hence K(φ ,m)

is negative for positive φ and positive for negative φ [see explanation on pgs. 516-517

of 10]. When friction is low (m→ 0), by contrast, the waves generated at angle φ

will be long-lived and as time evolves their phase angle will decrease monotonically,
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Figure 4.1: Left: the function K(φ ,m) against φ ∈ [−π/2,π/2] for various values of m.
When m� 1, K is sinusoidal (blue). As m→ 0, K → 1 for all φ except an
O(m) region at φ = π/2, where an O(m−1) minimum is obtained. Right: the
same plot as the left with rescaled axes illustrates the self-similar behaviour of
K(φ ,m) about its minimum. Dotted black plots the m→ 0 solution mK(φ ,m) =
−π(m/θ)2 exp(−m/θ) found in the appendix.

as the wave is advected by the shear flow. Waves generated at an initial angle φ

close to π

2 , i.e. with an extreme tilt against the shear, undergo considerable transient

growth due to the Orr mechanism as their phase angle approaches zero. This transient

growth occurs on a timescale 1/γθ , where θ = π

2 −φ . As they evolve, these waves

are also damped on a timescale µ−1. The waves which generate the most extreme

negative momentum fluxes are therefore those with θ ≈ µ/γ , a value which allows

for strong transient growth prior to the wave being dissipated, but with sufficient

dissipation occurring that the wave is attenuated significantly by the time its phase

angle becomes negative, so that the positive momentum fluxes during this stage of

its life cycle are insufficient to cancel the earlier negative momentum fluxes.

Properties (i-vi) are useful as they make it relatively straightforward to prove

and extend previous results regarding 〈u′v′〉 in a simple setting. The most important

of these are:

1. Bounds on the momentum flux: Since K(φ ,m) is bounded on [−π

2 ,
π

2 ] exact

bounds on 〈u′v′〉 follow naturally, which apply to any choice of the energy
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Figure 4.2: A plot illustrating the range of K(φ ,m). Plotted are the φ -supremum and φ -
infimum, K+(m) (red) and K−(m) (blue) respectively. The shaded grey region
therefore is the range of K(φ ,m). The dashed black line corresponds to the
upper bound for Reynolds stress established in SY14.

input density ρε(φ), For positive shear (γ > 0) these are

ε

γ
K−(m)≤ 〈u′v′〉 ≤ ε

γ
K+(m), where K+(m) = sup

φ∈[−π

2 ,
π

2 ]

{K(φ ,m)},

(4.2.16)

and K− is the corresponding infimum. Note that property (i) ensures that

K+ < 1. Each bound can be attained exactly by setting ρε(φ) = δ (φ−φ±(m))

where φ = φ±(m) denotes the locations of the supremum and infimum re-

spectively. Interestingly, the upper bound improves only very slightly on the

bound 〈u′v′〉 ≤ ε/γ(1+m) found by SY14 from the energy power integral.

The lower bound, which satisfies K−(m)∼ 4πe−2m−1 when m→ 0, is only

useful when m is order unity. Equation (4.2.11) allows K± to be evaluated

numerically to high accuracy, and the results are shown in Figure 4.2 along

with the SY14 bound.

2. The low friction limit (WB19 result): A key question raised in the Introduc-
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tion is under what circumstances is the low friction approximation (4.1.2),

〈u′v′〉 ≈ ε/γ valid? It turns out that a simple necessary condition for (4.1.2) to

be valid in the limit m→ 0, is that there is a wave angle cut-off in the forcing

density ρε(φ). That is to say, it is necessary that there exists a cut-off angle φm

such that ρε(φ) = 0 for all φ satisfying φm < |φ |< π/2. For example, such a

cut-off occurs naturally for simulations in a finite domain when the forcing is

on an annulus in wavenumber space, because in this case k is bounded below

and l is bounded above. In this case (4.1.2) can be refined by inserting the

expansion in (iv) above into (4.2.10), to give (for m > 0)

〈u′v′〉= ε

γ

(
1−m

∫
φm

−φm

(
φ + π

2

)
sec2

φ ρ
ε(φ) dφ

)
+O(m2 logm). (4.2.17)

→ ε

γ
as m→ 0.

The phase angle cut-off is evidently necessary in (4.2.17) in order for the

leading order correction term to avoid the singularities in the integrand at

φ =±π/2 and consequently remain bounded.

In practice, while formally valid for m� 1, (4.2.17) will be an accurate

approximation to (4.2.10) only if |π2 − φm| � m, in order that the leading

correction term in (4.2.17) remains O(m). While this condition will always be

formally satisfied if φm is fixed and the limit m→ 0 is taken, long domains

which allow for forcing at wavenumbers with |k| � |l| will have |π2 −φm| � 1,

and will therefore require m to be very small before (4.2.17) becomes accurate.

A further practical point is that, when applied to slowly varying jets, (4.2.17)

cannot hold everywhere because no matter how small the friction, m will

not remain small in boundary layer regions around the jet extrema, where

|Uy|/µ . 1.

3. The high friction / low shear limit: The behaviour in the limit m→ ∞,

corresponding to high friction or weak shear, is always important in flows

with jets close to the jet extrema. The behaviour of 〈u′v′〉 in this limit can be



4.2. The SY14 local theory 121

investigated by inserting the expansion in (v) into (4.2.10). A cancellation of

leading terms follows and the result is

〈u′v′〉=− ε

2µ

(∫
π/2

−π/2
sin2φ ρ

ε(φ) dφ − 2
m

∫
π/2

−π/2
cosφ cos3φ ρ

ε(φ) dφ

)
+O(m−2). (4.2.18)

Reassuringly, (4.2.18) shows explicitly that 〈u′v′〉 is bounded as m → ∞

for all possible ρε(φ), consistent with the findings of SY14. The leading

term can be recognised as the momentum flux arising from the high friction

solution of (3.3.6), in which all terms involving the shear are neglected to give

Z = εΠ/2µ . If ρε(φ) is taken to be an even function of φ , as is typical in

simulations, the first term vanishes and the second term is dominant. In this

case 〈u′v′〉 is linear in the shear γ ≡Uy near to the jet extrema.

4. The isotropic forcing paradox: The property (vi) ensures that if the forcing

in (4.2.10) is isotropic, i.e. ρε(φ) = 1/π , then

〈u′v′〉= 0, for all m. (4.2.19)

This remarkable result, that an isotropic forcing leads to zero momentum flux,

was first discovered by [84]1 and was strongly emphasised by SY14. At first

glance, considering the limit m→ 0, (4.2.19) appears to be in contradiction

to the WB19 result (4.1.2). However, isotropic forcing with ρε(φ) = 1/π

does not satisfy the wave angle cut-off property which is required for (4.1.2)

to hold. The subtlety here is the remarkable structure of K(φ ,m) which

allows properties (i) and (vi) to hold simultaneously as m→ 0. Essentially,

an increasingly thin boundary layer close to φ = π/2, illustrated in the right

panel of Figure 4.1, allows the integral property (vi) (
∫ π/2
−π/2 K(φ ,m) dφ = 0)

1 The publication [84] builds on ideas from [85], both studying the evolution of small perturbations
in plane Couette flow. The set-up in these manuscripts do not involve friction, but essential insights
related to the Orr mechanism are discovered. In particular that the Reynolds stress of an (initial)
isotropic perturbation is identically zero for all time. Linear damping does not effect this property.
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to hold even as K(φ ,m)→ 1 for all φ ∈ (−π

2 ,
π

2 ). Physically, what is occuring

as m→ 0 is that only those waves with the most extreme tilt against the

shear (k� l) can contribute a negative momentum flux, but the momentum

flux for these waves becomes increasingly large in magnitude because they

become very long-lived when friction is low. In any finite domain, with forcing

confined to an annulus in wavenumber space, waves with such extreme tilts

will not exist and (4.1.2) holds as m→ 0. The above reasoning explains why

the many numerical experiments of β -plane turbulence [e.g. 82, 22, 16, 15]

which use a discretised ‘isotropic’ forcing in a finite domain, result in jet flows

with decidedly non-zero 〈u′v′〉. An alternative perspective on the same issue

is given in [86]. There, the focus is on the length of time required for the

negative momentum fluxes of the ‘extreme tilt’ waves to become established,

which becomes increasingly long as m→ 0. As a result, switching the order

of the limits m→ 0 and t → ∞ in the solution of (3.3.6) results in isotropic

forcing giving (4.1.2) instead of (4.2.19). Here the focus is on steady equilibria

and consequently the limit t→ ∞ is always taken first.

Given a specific energy input density ρε(φ), (4.2.15) shows that momentum

flux is determined by the function G(m). Figure 4.3 shows G(m) for some simple

examples of different wave forcings (WF1, WF2 and WF3 hereafter, see caption),

together with the corresponding limiting forms obtained from (4.1.2) and (4.2.17)

(valid as m→ 0) and (4.2.18) (valid as m→∞). The asymptotic expressions are seen

to do a good job of approximating G(m) for m < 10−1 and m > 101, with (4.2.17)

representing a significant improvement on (4.1.2). However, both the small m and

large m expressions are inaccurate in the range 10−1 . m . 101. In Figure 4.3 there

is a notable contrast between G(m) for forcings for which ρε(φ) is an even function

of φ (middle and lower panels) compared to otherwise (top panel). In the latter case,

G(m) tends towards a constant value as m→ ∞, consistent with the fact that the

forcing in this case generates a non-zero momentum flux even in the absence of a

shear flow (see the leading term in 4.2.18).
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Figure 4.3: Examples of the SY14 momentum flux function G(m) defined in (4.2.15) for
the wave forcings WF1, WF2 and WF3. The right panels show G(m)(purple),
the limiting forms (4.2.17) (red curves) and (4.2.18) (orange curves) and the
WB19 result (4.1.2, G(m) = m) (dashed blue). The left panels show the patterns
of the wave forcings WF1, WF2 and WF3 in wavenumber space. WF1: φ1 =
π/4, WF2: {φ1,φ2}= {−π/4,π/4} and ρε

j = 1/2, WF3: φ j = tan−1 ( j/8) for
j =−8, ...,0, ...,8 and ρε

j ∝ cos2 φ j.

4.2.3 The SY14 Momentum Flux Closure Applied to a Jet Flow

Up to this point the focus has been on constant shear flows with U(y) = γy. How

relevant is the SY14 expression for the momentum flux when U(y) is instead a

smooth jet flow? Intuitively when the parameter F , which determines the ratio of the

forcing scale to the jet scale, satisfies F � 1 one would expect that the eddies ‘see’

only a linear shear locally and SY14 will be accurate. A key question is how small

does F have to be in practice for the SY14 formula to hold.

The reason the above question is important is that if a regime exists in which

SY14 holds, the question of whether the equilibrium jet profile U(y) is ever deter-

mined by a purely zonal closure can be addressed. The SY14 zonal closure equation

is obtained by inserting (4.2.15) into (3.3.5) to give

µU =− ε

2µ
∂yG

(
2µ

Uy

)
−ν2n(−∂yy)

nU, (4.2.20)
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where the function G is defined in (4.2.15). In principal (4.2.20), which becomes a

second-order ordinary differential equation for U when hyperdiffusion is neglected,

can be solved numerically to obtain an equilibrium jet profile U(y), for any G.

A special case is G(m) = m, which corresponds to the WB19 situation in which

〈u′v′〉= ε/Uy (see 4.1.2). For this case the exact solution, neglecting hyperdiffusion,

can be given in terms of the inverse of the error function [86]

U(y) = 2
√
E erf−1(y/

√
A2πE) for −A

√
πE < y < A

√
πE , (4.2.21)

where E = ε/2µ . Here the existence of a latitude y = 0 where U = 0 is assumed,

and A = Uy(0) > 0 is the local (undetermined) shear there. The profile (4.2.21),

which becomes singular at y = ±A
√

πE has nevertheless been argued by WB19

to be a reasonable fit to the ‘between jet’ zonal wind profiles seen in simulations.

Obviously, however, the singularities in (4.2.21) mean that it cannot be accurate

everywhere. Replacing G(m) = m with the full SY14 expression in (4.2.20) avoids

singularites, but it is an important finding of this work that the SY14 expression

does not generally result in more accurate jet profiles. Much of what follows will be

dedicated to explaining why this is the case.

A good starting point for investigating the SY14 closure is to perform a scat-

tering experiment. That is, the CE2 equation (3.3.6) is solved numerically for a

fixed steady jet-like wind profile U(y), and the resulting momentum flux 〈u′v′〉 is

compared to the theoretical prediction (eqn. 4.2.15 with γ replaced with Uy). Note

that the CE2 solution is exactly equivalent to that obtained by solving (3.2.2) with

ū = U(y) held fixed and obtaining 〈u′v′〉 by statistical averaging, however CE2 is

clearly more efficient since statistical error is eliminated. Additionally, when U(y) is

held fixed, (3.3.6) becomes a Lyapunov equation (see 3.3.12), which is much cheaper

to solve numerically compared to the full time-dependent CE2 equations. High

resolution solutions of (3.3.6) can therefore be obtained, allowing for a numerical

investigation of the small F limit.

In a 2π-periodic domain, the scattering experiments are performed on a fixed

flow U(y) = 2siny, with quantisation and zonostrophy parameters Q = 1.22 and
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Z = 1.94 respectively. The value of Q is consistent with a single jet in the domain, and

the modest value of Z allows boundary layers2 near jet extrema to be resolved, which

becomes prohibitively expensive at higher Z. By varying the forcing wavenumber k f

across experiments, the effect of varying F in the range 0.04 to 0.84 is investigated.

Figure 4.4 shows the resulting momentum flux 〈u′v′〉 for the wave forcing patterns

WF2 and WF3, illustrated in the left panels, and described further in the Figure

4.3 caption. The middle panels show the main comparison and demonstrate that,

away from the jet extrema, in both cases there is good agreement between the

CE2 scattering experiments at all three values of F and the SY14 asymptotic result

(4.2.15), and to a lesser extent the simpler expression (4.1.2).

The right panels show a blow-up of the situation close to the jet extrema, where

〈u′v′〉 varies rapidly in thin boundary layers, in both the CE2 calculations and in the

theory (4.2.15). The theoretical expression (4.2.15) depends only on Uy and not β ,

and therefore is symmetric at both east and west jets. The CE2 solutions include the

effect of β and therefore the convergence to (4.2.15) as F → 0 is seen to be rather

different for each jet. In the upper panel, in which the forcing is concentrated on

just a few waves, even the sign of the momentum flux is opposite to the (4.2.15)

prediction for the larger values of F , showing that convergence is slow. When the

forcing is distributed over a wider range of wavenumbers, as seen in the lower panel,

convergence is more uniform. In both sets of calculations convergence is significantly

slower at the east jet, where the PV gradient β −Uyy is large and positive, compared

to the west jet where the magnitude of β −Uyy is smaller.

In summary, the scattering experiments show clearly that, for sufficiently small

but nevertheless physically reasonable (and numerically accessible) values of F , the

SY14 expression (4.2.15) can do a good job of predicting the momentum fluxes
2 The ‘boundary layers’ in question refer to the small latitudinal regions around extrema where

the momentum flux expression (4.2.10) regularises. This occurs for large (local) m = 2µ/Uy. The
scaling argument

2µ

Uy
∼ µLRh

E1/2 ∼
µ5/4

β 1/2ε1/4 = Z−1/5,

relates zonostrophy inversely to the (local) m as Z = m−5. Increasing zonostrophy means the (local)
m at any given latitude is reduced, and the regions of non-zero shear where the WB19 solution is
accurate expand, developing a thin boundary layer near to jet extrema where WB19 is inaccurate and
the SY14 formula regularises.
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Figure 4.4: Results from scattering experiments with U(y) = 2siny and Q = 1.22, Z =
1.94 and three different values of F (corresponding to forcing wavenumber
k f = (8,32,128) respectively, or F = (0.677,0.169,0.042) in the upper row,
and F = (0.844,0.211,0.053) in the lower row). The top and bottom rows show
the results for the wave forcings WF2 and WF3 respectively (see Figure 4.3
caption). The middle panels compare calculated and predicted 〈u′v′〉 across the
full domain, and the right panels show a close-up of the situation near the east
and west jet cores. The theoretical results (4.1.2, WB19, dashed purple), (4.2.15,
SY14, red dotted line) and (4.2.18, m→ ∞, dashed blue) are also plotted.

everywhere, for a steady, smooth and, crucially, stable zonal flow U(y). Why, then,

does the closure (4.2.20) not describe the equilibrium jets in β -plane turbulence

calculations? This question will be addressed next.

4.3 Momentum Balance in Equilibrated Jets
In this section the aim is to explain why purely zonal closures such as (4.2.20) cannot

by themselves describe the equilibrium jet profiles in β -plane turbulence. Evidence

from QL simulations, CE2 calculations and fully nonlinear simulations will be used
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to show that momentum fluxes due to waves arising from jet-scale instabilities also

have an essential role in the momentum balance. This is not a new observation

(see [87]), and it has been previously suggested that the westward jets in β -plane

turbulence are marginally stable to barotropic instability [e.g 22]. The aim here is

to demonstrate that the same is true at the eastward jets, and to quantify the role of

these secondary instabilities in the momentum balance. A specific choice of wave

forcing is used in the simulations to facilitate the analysis, which is described next.

4.3.1 Experimental Design: Separation of Momentum Flux

Contributions

A standard approach in β -plane simulations of jets is to use a (near) isotropic wave

forcing η , in which the forcing is applied only at wavevectors kkk which lie within an

annulus (k− < |kkk|< k+). However, for fixed Q and Z, the equilibrium jet structure in

simulations is known to be largely insensitive to the details of the forcing mechanism

[e.g. 15]. Here, the freedom to choose the forcing structure is exploited by instead

using the forcing WF3, which is concentrated on a single zonal wavenumber k = k f

(see discussion above). In all but one simulation, WF3 is augmented (slightly) by

also including an extremely weak forcing applied to waves with k 6= k f to allow for

the excitation of instabilities. The reason for this is twofold:

• To allow the momentum fluxes associated with waves directly forced by η and

those generated by secondary instabilities to be clearly distinguished. Exploit-

ing the properties of the Fourier transform in x, it is helpful to first decompose

the momentum fluxes into contributions from each zonal wavenumber k,

〈u′v′〉k(y) = 2Re(ũk(y) ṽ∗k(y)) , (4.3.1)

where ũk and ṽk denote the coefficient of the k term in the x-Fourier transform

of u′ and v′ respectively. This allows for the decomposition of the momentum

flux 〈u′v′〉= 〈u′v′〉D + 〈u′v′〉S into directly forced and secondary components
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defined to be

〈u′v′〉D = 〈u′v′〉k f (4.3.2)

〈u′v′〉S = ∑
k 6=k f

〈u′v′〉k. (4.3.3)

The above decomposition pre-supposes that no secondary instabilities will

occur at k = k f , which is the case in the simulations, because F � 1 and there

is a clear scale separation between the jet-scale secondary instabilities and the

forcing. Forcing on wavenumbers in an annulus does not allow for a clean

decomposition, because the zonal wavenumbers associated with the secondary

instabilities will also be forced directly. Below, it will also prove useful to

further decompose 〈u′v′〉S to help distinguish between instabilities on the east

and west jets.

• The second motivation for choice of forcing is to introduce a long wave

cut-off for the excitation of zonal wave modes. It is now widely accepted that

baroclinic instability is the primary mechanism driving the extratropical jets

on the giant planets [e.g. 88, 89, 90] and, if η is to represent this process, it

should have a long wave cut-off in the zonal direction [i.e. there should be no

stochastic excitation of waves with |kx|< kmin for some kmin > 0, c.f. the Eady

or Phillips model for baroclinic instability, e.g, 10]. As discussed above, the

existence of a long-wave cut-off is quantitatively important because very long

zonal waves can make a disproportionately large (and, if not treated carefully,

an unphysical) contribution to the momentum flux in the local theory [see also

86].

With the forcing described above, a reference simulation (REF) is performed at

parameter settings (Z,Q,F) = (5.05,2.91,1.01). (This value of F corresponds to

forcing at k f = 16). For the purposes of comparison and model validation, simulation

REF is repeated in the full nonlinear equations (1.1.21), the QL equations (3.2.1-

3.2.2) and the CE2 equations (3.3.5-3.3.6). The resolution in the nonlinear simulation

is 2562 Fourier modes, while for QL and CE2 it is 16× 256 since wavenumbers
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Figure 4.5: Left panels: Hovmöller plots of zonal mean flow U(y, t). (Top) QL simulation
with wave forcing WF3 with the ‘seed forcing’ omitted. (Second) QL simulation
with wave forcing WF3 including the seed forcing. (Third) CE2 simulation with
WF3 including the seed forcing. (Bottom) Fully nonlinear simulation with WF3.
Right panels: time average of U(y, t) over the last 0.5µ−1 time period. In all
simulations Z = 5.05, Q = 2.91 and F = 1.01

|k|> k f are not necessary. Hyper-diffusivity in all cases is ν4 = 2.5×10−8, which

is sufficient to remove enstrophy at small scales in the nonlinear simulation, but

remains insignificant in the energy balance. The results are reported next.

4.3.2 Momentum Flux Decomposition in an Equilibrated Jet

Flow

Figure 4.5 shows the spin-up and equilibration of jets in the QL, CE2 and nonlinear

(NL) simulations. The left panels are Hovmöller plots of the zonal mean wind U(y, t)

and the right panels show a time-mean taken over the final 0.5µ−1 time units in

each simulation. The QL and CE2 simulations result in very similar jet profiles, as

expected since the latter describes the statistics of the former. The jets in the NL

simulation are less symmetric, with a more rounded westward jet, reflecting the

fact that at Z ≈ 5 the NL simulation only approaches the high zonostrophy (Z� 1)

regime in which QL is expected to be a good approximation to (1.1.21). Nevertheless

Figure 4.5 confirms the usefulness of QL and CE2 as simplified models of the full

nonlinear behaviour.
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The top panel of Figure 4.5 shows a QL simulation which gives a simple

illustration of the importance of secondary instabilities for the equilibrated jet profiles.

In this simulation the ‘seed forcing’ in WF3 is switched off, meaning that waves

with zonal wavenumber k 6= k f cannot be excited. Despite the fact that, energetically

speaking, the forcing is effectively unchanged, since the fraction of energy input into

the seed forcing into waves with k 6= k f is less than 10−4 of the total, the outcome

of the simulation is radically different. Thin jets are formed with widths far less

than the Rhines scale seen in the other simulations. Further QL simulations (not

shown) demonstrate that the equilibrated jets in the QL simulation (second row) are

independent of the amplitude used for the seed forcing, providing further evidence

that the role of the seed forcing is to excite instability.

To understand the mechanisms at play it is informative to look first at the

momentum flux decomposition for the CE2 and QL simulations, shown in the top

two rows of Figure 4.6, because these are somewhat cleaner than their NL counterpart

and give near identical results. The left panels show the time-mean zonal wind U(y)

for reference, and the remaining panels show the contributions to the momentum

flux convergence - i.e. the wave induced force on the zonal flow - for different

zonal wavenumbers. Results for QL are obtained using a ‘jet-following’ averaging

procedure to compensate for any gradual evolution in jet position which would

otherwise smear out the results. The jet-following procedure resets in the origin in

the y-direction prior to averaging, by phase-shifting all quantities in Fourier space to

the phase of the jets, as determined by the second Fourier coefficient of U(y, t). Using

this method, averages are calculated over a long period (50µ−1) of equilibrium, to

obtain good statistical convergence. CE2 adopts an alternative averaging procedure,

since equilibrium solutions for CE2 undergo small oscillations [74] about a steady

jet configuration. In the solution presented the oscillations are relatively small, but a

temporal average is taken anyway once a steady state is reached (from t = 49µ−1 to

50µ−1).

The directly forced contribution to the momentum flux convergence −∂y〈u′v′〉D
(for k = k f = 16) is shown in the rightmost panels. The secondary instability
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Figure 4.6: Long-time equilibrium mean quantities from the CE2 (top), QL (middle) and NL
(bottom) simulations reported in Figure 4.5. The left panels show the average
mean wind profile U(y). The other panels plot −µ−1∂ 〈u′v′〉k for significant
modes k. The CE2 and QL results are similar, clearly identifying distinct in-
stabilities at the westward (shaded red) and eastward (shaded blue) jets which
counteract the jet-sharpening contribution from the forcing wave k = k f . Anal-
ysis of the NL simulation reveals wave ranges performing similar roles as the
QL and CE2 simulations: e.g. k = 1,2 damps westward jet growth, k = 3−7
all have a similar structure counteracting the eastward jet sharpening, and the
waves k > 13 perform the jet sharpening role of the forcing wave k f .



4.3. Momentum Balance in Equilibrated Jets 132

contribution −∂y〈u′v′〉S is found to be entirely dominated by zonal wavenumbers

k = 3,4 and 6 and these contributions are plotted in the middle panels. A striking

feature of Figure 4.6 is that at the jet cores there is a cancellation between two large

terms: the direct wave induced force which acts to accelerate both the westward

and eastward jets, and the contributions from the secondary instabilities which are

decelerating. At the westward jets in particular, the direct and secondary momentum

flux convergences are about an order of magnitude larger than the frictional force in

the momentum balance in equation (3.3.5). The main contributions at the eastward

and westward jets have somewhat different scales (k = 6 and k = 3,4 respectively),

which will be shown below is characteristic of the scale of barotropic instability on

each jet. The secondary instabilities are strictly meridionally non-local, however

their influence is not felt across the full domain, and there are wide regions in the

jet flanks where 〈u′v′〉S� 〈u′v′〉D. Figure 4.7 shows that, within these wide regions,

SY14 formula (4.2.10) is an excellent prediction for the Reynolds stress.

The momentum flux decomposition for the NL simulation is shown in the

bottom row of Figure 4.6. There are striking similarities between NL and QL/CE2

in the patterns of the momentum flux convergences at each jet, but also significant

differences in both the magnitudes and latitudinal scales, as well as the breakdown by

zonal wavenumber. The differences can be accounted for by the fact that Z is finite

in the NL simulation, and agreement between NL and QL is expected to improve at

higher Z. Finite Z affects the NL flow statistics in two important ways:

• First, there is significant wave-wave interaction in the nonlinear simulation,

which leads to wave energy being scattered in wavenumber space. This affects

the direct wave induced force −∂y〈u′v′〉D by spreading its contribution over

a range of wavenumbers centred on k = k f , and similarly the spectrum of

−∂y〈u′v′〉S is broadened to a larger range of k. This is clear from the bottom

panel of figure 4.6.

• Second, the average variance of the mean wind profile about its temporal

mean is roughly five times greater in the NL case compared to QL (both cases

are calculated using the ‘jet following’ procedure). The increased variance is
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Figure 4.7: A further analysis of the CE2 simulation in Figure 4.6. The half domain
[−π/4,3π/4] is reported to view a single eastward and westward jet. The
top panel shows the mean zonal wind profile (blue) and the potential vorticity
gradient (orange). The bottom panel shows momentum flux quantities scaled by
E . These are the CE2 results for 〈u′v′〉 (dotted blue), 〈u′v′〉D (black) and 〈u′v′〉S
(green) and the SY14 〈u′v′〉 (red dotted line). Sufficiently distant from the points
where β −Uyy ≈ 0 it is observed that 〈u′v′〉D ≈ 0 and the SY14 solution agrees
with the CE2.

exhibited as (a) less steady relative jet positions, which smears the statistics to

give weaker and broader patterns for the momentum flux convergence, and (b)

increased variance about some current jet state, which is conducive to a larger

likelihood that the RK condition for instability is met at any given latitude,

broadening the range of potential instabilities.

The above effects account for the difference between the CE2 /QL and NL

momentum flux decompositions in Figure 4.6, since the latter can be viewed as

a ‘smeared out’ version of the former, but is otherwise qualitatively similar. In

summary, momentum fluxes from the directly forced waves act to accelerate both the

eastward and westward jets, and opposing these are momentum fluxes from relatively

long (k = 1 to 7) jet-scale waves which appear to derive from secondary instabilities.

To investigate the origin of these long waves more thoroughly, a linear instability

analysis of the time-mean flow is conducted next.
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4.3.3 Linear Stability Analysis of the Equilibrium Jet Flow

To investigate the origin of the emergent long waves that drive the secondary mo-

mentum fluxes 〈u′v′〉S, a linear stability analysis of the time-mean flow in the CE2

simulation is presented next. The CE2 simulation is chosen for analysis because the

time-variability of U(y, t) is significantly lower than for the stochastic simulations,

meaning that its time average is an excellent statistical representation of the actual

state at any fixed time. One of the pitfalls of a single numerical linear stability

calculation of a time-mean state of a system near marginal stability is that the results

can return large number of wave modes with near-zero growth rates, making the

results hard to interpret. The goal of the linear stability analysis, therefore, is to

investigate whether there are states nearby to the time-mean state (in a sense to be

described) in which there are specific wave modes with significant growth rates. The

idea is that, as U(y, t) evolves it will spend a proportion of its time in these more

unstable states, exciting the strongly unstable wave modes, which will then persist

because they are relatively weakly damped when the system is outside the unstable

regime.

The linear stability problem is formulated by seeking a solution to (3.2.2) of the

form

ψ
′(x,y, t) = Re{Ψ(y) exp(ik(x− ct))} , (4.3.4)

resulting in the generalised eigenvalue problem

LΨ = cMΨ, (4.3.5)

for linear operators

L=
(

ikU +µ− (−1)n+1
ν2n
(
∂yy− k2)n

)(
∂yy− k2)+ ik

(
β̃ −Uyy

)
,

M= ik
(
∂yy− k2) .

Here β̃ = β + δβ , where δβ is a perturbation to the value of β used in the CE2

simulations, which has been introduced as a device to investigate the stability of
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‘nearby’ states to the CE2 time-mean flow. The assumption here is that the stability

properties of nearby states generated by varying δβ as a control parameter are

representative of those of the nearby states generated by fluctuations in U(y, t). It’s

believed this is reasonable as growth rates are largely determined by the width and

magnitude of the PV gradient reversal region in which β −Uyy changes sign, as

suggested by the Rayleigh-Kuo necessary criterion for instability [21], which states

that a sign change must be present for instability in the inviscid system. Note that the

reference time mean profile, with δβ = 0, just satisfies the Rayleigh-Kuo criterion,

with small regions of opposite sign PV gradient located at the westward jet extrema

and in flanks of the eastward jet.

The generalised eigenvalue problem (4.3.5) is discretised on a grid of 1024

points by replacing L andM with the matrices obtained when standard centred-

difference approximations replace y-derivatives. The calculated growth rate kci of

the fastest growing mode, obtained by taking the imaginary part of the computed

eigenvalues c of (4.3.5), is plotted in Figure 4.8 as a function of (k,δβ ). As δβ is

reduced and the system becomes more unstable, growing waves are seen to emerge

at around k ≈ 3.7 and k ≈ 6.1, which correspond to instabilities at the westward and

eastward jets respectively. Notably, there is a significant asymmetry between strong

positive growth rates at negative δβ and weak decay rates at positive δβ , supporting

the idea that the system need spend only a relatively small fraction of time in the

unstable regime to support the emergence of these waves.

The latitudinal structure of the momentum flux convergence associated with

each unstable wave can be calculated from the corresponding eigenvector Ψ. The

right panels show the calculations for a typical unstable wave on the westward jet

(green dot) and eastward jet (blue dot) respectively. The pattern of the latitudinal

structure in each case is seen to be close to those calculated in the equilibrium

QL / CE2 and NL simulations, shown in Figure 4.7. This correspondence in the

momentum flux structures at each jet, together with the close matches in the respec-

tive emergent zonal wavenumbers,(k = 3,4 for the westward jet and k = 6 for the

eastward jet), provides conclusive evidence that each jet is independently marginally
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Figure 4.8: Linear stability analysis for the CE2 profile in Figure 4.6. The contour plot
shows the maximum eigenmode growth rate kci as δβ and k are varied. Here,
δβ = β̃ −β measures the deviation of the Coriolis parameter β̃ used for the
stability analysis compared to the actual β value used in the CE2 simulation.
Two distinct unstable regions are visible at k = 3,4 and k = 6, corresponding
to instabilities at the westward and eastward jets as labelled. The unstable
wavenumbers agree with those identified in Figure 4.6. The right-hand side line
plots show the normalised momentum flux divergence (solid blue) of the most
unstable mode at the points indicated by the green and blue dots. For reference
the PV gradient β̃ −Uyy is also shown (dotted red).

stable to barotropic instability, and that these barotropic instabilities are the source of

the secondary instabilities which contribute to 〈u′v′〉S in the equilibrium simulations

reported above.

The marginally stable nature of the barotropic jets may explain the small oscilla-

tory behaviour of CE2 solutions (observed in the author’s private calculations, and in

the literature [74]). It is presumably the case that near to CE2 equilibria, cycles exist

where the mean flow is ‘over-sharpened’ by 〈u′v′〉D, meaning instabilities develop

and 〈u′v′〉S ‘over-damps’ the mean flow, and so on.

The results and discussion presented over the course of this Chapter so far brings

an end to the analysis of 〈u′v′〉 from the point of view of an equilibrium local closure

theory. The results are utilised in Chapter 5, where practical applications using the

SY14 formula (4.2.10) as a parameterisation small-scale forcing are considered. The

remaining sections of this Chapter present additional results from the local closure

theory.
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4.4 The Reynolds Stress Tensor

4.4.1 Reynolds Stress Tensor

The Reynolds stress 〈u′v′〉 appears in the mean flow equation (3.3.5), so has been the

natural mean eddy quadratic quantity to study. However, 〈u′v′〉 is just one component

of the more general Reynolds stress tensor, which is

RRR =

 〈u′u′〉 〈u′v′〉
〈v′u′〉 〈v′v′〉

 . (4.4.1)

In this section it’s shown that the local theory can be used to calculate all the

components of RRR. One motivation for this is to notice that over a fixed background

flow, the statistics of ζ are Gaussian. At any given point xxx in the domain the velocity

distribution is  u(xxx)

v(xxx)

∼N
 U(y)

0

 , RRR(xxx)

 (4.4.2)

In other words, RRR encodes a complete picture of the single-point flow statistics over

the background flow. The extent to which this holds for a dynamic background flow

as in the full CE2 system is an interesting avenue of exploration [58]. From here, the

properties of the bivariate normal distribution can be used to calculate the probability

distribution function of u′(xxx)v′(xxx). Obtaining a closed form for the distribution of the

product of two correlated normal random variables is a problem dating back to 1936,

with the closed form solution only being found recently [91].

In principle it is possible to calculate two-point flow statistics, such as the

distribution of u′(xxx, t)v′(xxx′, t) with the local closure theory. To do this, the SY14

formulation of Reynolds stress in (4.2.5) would contain a physical space exponential

term eil(y′−y) in the integrand to deal with the meridional separation (this term drops

out in the single-point correlation calculations presented since y′−y = 0). Any zonal

separation between two points gives a correlation which can be recovered from the

knowledge of the zonal wave mode decomposition, i.e. the components 〈u′v′〉k, from

the SY14 calculation as is.

Explicit calculations for the two-point correlations would provide knowledge of



4.4. The Reynolds Stress Tensor 138

the spatial structure and distribution of eddy fluctuations. This would be the natural

direction the author would take this work next for various reasons. For instance it

is known that CE2 tends to reach steady states [69] (although transitions in some

scenarios have been found [76]). It would be interesting to see if the higher order

moments of Z could provide a natural method to ‘re-introduced’ noise into the CE2

system that recovers the possibility of transitions.

The probability density function of u′v′ may even provide access to transitional

probabilities between turbulent attractors, like the rare events studied in Chapter 2,

through a large deviations principle [58]. A theoretical approach to rare events of

this sort does not rely on producing any individual realisation of the rare event, so

it will almost certainly be a more direct route than any rare event algorithm. This

is extremely exciting, but presumably goes beyond a local theory as the role of

secondary instabilities in jet transitions is unknown.

4.4.2 Formulae and Eddy Kinetic Energy Interpretation

Formulae for 〈u′u′〉 and 〈v′v′〉 are derived in Appendix A.2.2 and read

〈u′u′〉= ε

γ

∫
π/2

−π/2
ρ

ε |z|2

m

(
− 1

m
Im{ezE1(z)}−Re

{
ezE1(z)+

1
z∗

})
dφ , (4.4.3)

〈v′v′〉= ε

γ

∫
π/2

−π/2
ρ

ε |z|2

m

(
− 1

m
Im{ezE1(z)}+Re

{
ezE1(z)+

1
z∗

})
dφ . (4.4.4)

The interrelationship between the components of RRR is highlighted with the solutions

written in the above form, e.g. as

µ
(
〈u′u′〉+ 〈v′v′〉

)
= ε

∫
π/2

−π/2
ρ

ε(φ)
|z|2

m
Im{ezE1(z)}dφ ,

= ε− γ

(
ε

γ

∫
π/2

−π/2
ρ

ε(φ)

(
1− |z|

2

m
Im{ezE1(z)}

))
dφ ,

= ε− γ〈u′v′〉. (4.4.5)

This result can be derived directly by multiplying the vorticity equation by ψ ′ and

taking the average (e.g. SY14 [80] eqn 26). Note that equation (4.4.5) rearranges for



4.4. The Reynolds Stress Tensor 139

the nondimensional energy equation

E = 〈u
′v′〉
m

+EKE, (4.4.6)

where EKE is eddy kinetic energy. It is clear from the local theory, then, that

EKE = E
∫

π/2

−π/2
ρ

ε(φ)(1−K(φ ,m)) , (4.4.7)

with K(φ ,m) the kernel function defined by (4.2.11) and ρε(φ) the energy injection

rate distribution. The same analysis for 〈u′v′〉 can be neatly converted to an equivalent

expression or statement about EKE. For example, the isotropic forcing paradox,

where 〈u′v′〉= 0 is equivalent to all the expected equilibrium energy being made up

of eddy kinetic energy. The reason for relationship (4.4.6) can also be interpreted

from the equilibrium zonal energy equation (see [23], eqn 3.17),

∂y
(
U〈u′v′〉

)
= γ〈u′v′〉−2µ

U2

2
. (4.4.8)

Since the first term is a divergence, γ〈u′v′〉 can be interpreted as the energy injection

term into the zonal mean flow. The local theory implies that the second and third

terms balance so that 〈u′v′〉/m is the local zonal energy, i.e. recovering (4.4.6). It is

recognised in [23] that letting γ〈u′v′〉 equal ε (interpreted as all the small scale eddy

energy injection being transferred locally to the mean flow before being dissipated)

recovers the WB19 inverse shear result. An alternative view of the work in the early

sections of this Chapter, therefore, is that it has quantified the small reservoir of

eddy kinetic energy which is not transferred locally to the mean flow, but is in fact

dissipated.

4.4.3 Scattering Experiment Numerical Results

The expressions (4.4.3) and (4.4.4) above for 〈u′u′〉 and 〈v′v′〉 are confirmed in

the limit of small scale forcing by repeating the scattering experiment presented in

section 4.2.3 (Figure 4.4). To recall, a steady background flow profile U(y) = 2sin(y)

is specified and the second cumulant equation is solved for various forcing structures.
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Since the solutions are steady, the second cumulant equation is a Lyapunov equation

which can be solved at high resolution, gaining access to small F .

Figures 4.9 and 4.10 are analogous to Figure 4.4, but plot 〈u′u′〉 and 〈v′v′〉

respectively (rather than 〈u′v′〉). The conclusions are much the same as for 〈u′v′〉; all

RRR components:

(i) are accurately predicted by the local theory away from jet cores for all F in

the test range,

(ii) converge at the jet cores as F → 0, and

(iii) converge faster at the eastward jet core than the westward jet core.

Figure 4.11 shows the relationship between all RRR components (in this case the forcing

is WF3). Also plotted is EKE, showing the tendency for the small amount of eddy

energy in the model to concentrate at the jet extrema.
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Figure 4.9: As in Figure 4.4, but plotting 〈u′u′〉 instead of 〈u′v′〉
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Figure 4.10: As in Figure 4.4, but plotting 〈v′v′〉 instead of 〈u′v′〉
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Figure 4.11: All Reynolds stress components from the SY14 local closure theory. The
background flow is U(y) = 2siny and the forcing structure is WF3.
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4.5 Time-Variability of the Local Closure
The previous sections of this Chapter have convincingly shown that small scale

forcing over an equilibrium mean flow profile can be parameterised accurately using

a local theory. It is not obvious, however, why taking the background shear flow as

steady is valid.

4.5.1 Why Time-Variability Matters

Recall from the local theory that the time-dependent sheared-disturbance solution

for Z is

Ẑkkk(t) =
∫ t

−∞

e−2µw
Π̃(k, l + k∆(w, t)) dw. (4.5.1)

It is quite plain to see that this solution, which is derived from the CE2 framework,

will generally vary on the O(1/µ) frictional timescale, owing to the exponential

term. Since 〈u′v′〉 is encoded in Z , ignoring time-history in a dynamical zonal mean

equation could be disastrous. For instance, from (3.3.5), a zonal mean model for a

jet profile could be proposed as

∂U
∂ t

= F(U)−µU− (−1)ν4∂
4
y U, (4.5.2)

where the functional F parameterises the Reynolds stress term. By the above analysis,

an ideal F will vary on the frictional time scale. An essential observation is that the

background flow is dynamic on the frictional time-scale also (from the balance of

∂tU and µU), so the time-variability of F is generally important in (4.5.2). This is

a point which has been entirely missed in the ‘kinetic theory’ of jet dynamics put

forward in [17, 70], where, effectively the same equation as (4.5.2) appears in [17]

(their eqn. 88), with no recognition of time-variability. In fairness, an equation such

as (4.5.2) is justifiable as a practical tool to find equilibrium states, as we will see in

Chapter 5, where the background flow has limited dynamics. However, at the core

of the proof in [17] that the QL model is an asymptotic approximation to the fully

nonlinear model is the assumption (p. 586):

“...the fast non-zonal degrees of freedom instantaneously relax to their



4.5. Time-Variability of the Local Closure 145

stationary Gaussian distribution.”

The ‘stationary Gaussian distribution’ here refers to the eddy distribution over a

steady background flow (i.e. the solution of the steady Lyapunov equation 3.3.12).

Clearly it cannot be expected that this statement is correct in light of the sheared

disturbance solution (4.5.1). Whilst some hand-waving can be made for the prac-

ticality of such a statement to aid in approximating equilibria, it does not meet the

rigour required for a formal asymptotic proof of convergence between QL and the

nonlinear models.

Whilst on the topic of QL and nonlinear convergence, this thesis has con-

vincingly shown the existence of large scale non-zonal structures as crucial for jet

development and maintenance, and it is non-obvious where developing instabilities

fit within the time-scale separation analysis. It may well be that the time scale

associated with the non-zonal structures themselves can be considered on the slow

time-scale (in which case the non-zonal structures could be included in the mean

component, c.f. [74]), but the exponential nature of developing instabilities over a

dynamic profile suggests the overall picture is more complicated. Even if it is the

case that the non-zonal structures formally fit into a time-scale separation analysis,

why are their nonlinear eddy-eddy interactions not significant? If, as results from

[15] suggest, there is no decline in the O(1) gradients of the emergent non-zonal

waves as zonostrophy is increased, then it stands to reason that nonlinear processes

will remain indispensable to the overall jet dynamics.

4.5.2 Time-variable Momentum Flux Formulae

The general time-dependent solution for Reynolds stress from the local closure

theory is (from the penultimate line in 4.2.5)

〈u′v′〉(t) =−ε

∫
R2

∫
∞

0

k(l− k∆(w, t))e−2µw

(k2 +(l− k∆(w, t))2)
2 Π̃(k, l)dwdkkk. (4.5.3)
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Following many of the same details as in Appendix A.2.1 for the steady case, it’s a

simple exercise to convert the above expression into polar coordinates for

〈u′v′〉(t) =−2ε

∫
π/2

−π/2
ρ

ε(φ)sec2
φ

∫
∞

0

(tanφ −∆(w, t))e−2µw

(1+(tanφ −∆(w, t))2)
2 dwdφ . (4.5.4)

This formula is relatively straightforward to calculate numerically for some given

forcing structure and flow history U(y, t). The numerical calculation of (4.5.4) is

simplified further by noting that the time-integral can be computed recursively at

each time-step; if 〈u′v′〉(t0) is known then the calculation at the next time step,

〈u′v′〉(t0 + δ t), can utilise the result that 〈u′v′〉(t0)exp(−δ t) provides the relevant

integral for w≤ t0. With this trick, formula (4.5.4) is almost no more computationally

expensive to calculate on the fly than the instantaneous momentum flux formula

(4.2.10). The diagonal Reynolds stress tensor components are easily found under the

similar considerations. Starting with

〈u′u′〉(t) = ε

∫
R2

l2Ẑkkk(t)
(k2 + l2)2 dkkk, (4.5.5)

〈v′v′〉(t) = ε

∫
R2

k2Ẑkkk(t)
(k2 + l2)2 dkkk, (4.5.6)

and plugging in the sheared disturbance solution and converting to polars finds

〈u′u′〉(t) = 2ε

∫
π/2

−π/2

∫
∞

0
ρ

ε(φ)sec2
φ
(tanφ −∆(t,w))2e−2µw

(1+(tanφ −∆(t,w))2)2 dwdφ , (4.5.7)

〈v′v′〉(t) = 2ε

∫
π/2

−π/2

∫
∞

0
ρ

ε(φ)sec2
φ

e−2µw

(1+(tanφ −∆(t,w))2)2 dwdφ . (4.5.8)

4.5.3 Scattering Experiments Over Time-Variable Shear

To investigate the quantitative extent to which time-variability is important in the

local closure theory momentum flux predictions, similar experiments to that of the

scattering experiments in section 4.2.3 are performed. This time, however, a time-

varying background flow profile is used and a comparison is made between: the

time-dependent momentum flux formula (4.5.4), the momentum flux from direct

calculation of the second cumulant equation (3.3.6), and the ‘instantaneous’ SY14
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expression (4.2.10).

It happens that the results and conclusions for 〈u′u′〉 and 〈v′v′〉 are much the

same as those drawn for 〈u′v′〉, so only the results for the most relevant component

〈u′v′〉 are reported. Section 4.4 provides enough evidence that the local theory is

equally valid for all components of R, without labouring the point.

4.5.3.1 First Experiment

In the first experiment, the time variable profile is taken as U(y, t) = 2sin(µt)sin(y).

Figure 4.12 reports results significantly after spin up, once the initial conditions in

CE2 are irrelevant. The Hovmöller plots show that the CE2 result agrees far better

with the time-dependent formula than the the time-independent formula. In particular,

the time-dependent solution is accurate near to times where the profile amplitude,

sin(µt), is small or passes through zero. At these times, the time-independent

solution is clearly inaccurate. In particular, the effects of the profile amplitude passing

through zero have a markedly delayed impact on the momentum flux from CE2 which

is not ‘seen’ by the time-independent solution. Interestingly, all three solutions are

in good agreement (away from cusps) at times when the profile amplitude becomes

relatively large. Any comparison is useless near to the profile cusps y =±π/2, for

all the reasons previously discussed relating to finite F (these regions have also been

intentionally made large, by choosing Z small, to exaggerate deviations from the

WB19 solution - see discussion surrounding Figure 4.4).

A different perspective from the same experiment is provided in Figure 4.12.

Here, attention is restricted is to the latitude y = 0 where at any given time the

background shear attains a local maximum/minumum. This filters out the distractions

of the jet extrema and allows closer inspection of the quantities provided in the

Hovmöller plots. First of all, it is immediate that the time-independent SY14 formula

(yellow) completely misrepresents the situation whenever the local background

shear (dotted red) is small. More surprising is that although the time-dependent

SY14 solution offers an improvement, there is still a discrepancy compared to the

CE2 result. It is believed that this is due to the hyper-viscous effects which are not

modelled in the SY14 solution. By design, hyper-diffusion acts disproportionately on
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larger wavenumbers, meaning as eddies are sheared the effects become more or less

pronounced. As a result the effect of hyper-diffusion modulates with the shear, giving

an explanation why the time-dependent SY14 momentum flux plotted is similar to

the CE2 plot, but slightly distorted and time-lagged. In the case of constant shear,

the degree to which hyper-diffusion is noticeable is limited, since its overall effect is

not being changed. The small role of hyper-diffusion in equilibrium states is partly

hidden by calculating E empirically for the CE2 experiments. It would be interesting

to attempt an inclusion of hyper-diffusion in the SY14 framework (i.e. starting from

modifying the sheared-disturbance solution 4.2.3), but from a theoretical point of

view the interest is the limit of small F and negligible hyper-diffusion. As it is known

that CE2 is definitely accurate when a large enough resolution can be obtained to

accommodate small F and small ν4 for the case of a steady background flow (Figure

4.4), it is expected that the time-dependent local theory would agree with the CE2

results if the computational power was invested to replicate the experiment at an

increased resolution that can accommodate an accordingly small hyper-diffusion and

forcing wavelength.

4.5.3.2 Second Experiment

The observation that the time-independent solution is reasonably accurate when the

background shear profile has a relatively large amplitude, motivates studying the

profile U(y, t) = (2+ sin(µt))sin(y). At a given latitude, this profile has a shear that

undergoes significant variation on the frictional time-scale, but does not change sign.

This situation is arguably more typical for a jet system modelling, say, seasonal

amplification of an existing jet structure.

Hovmöller results from this experiment, which are provided in Figure 4.14,

offer a stark contrast to the previous example. The momentum flux predictions

from the time-dependent formula, time-independent formula, and the CE2 solutions

all agree relatively well. In fact, the momentum flux comparison at latitude y = 0,

reported in Figure 4.15, shows the difference between CE2 and the SY14 theory is

mostly due to issues unrelated to time-dependence (i.e. hyper-diffusion), since the

time-dependent and time-independent formulae agree better than they do with the
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Figure 4.12: Hovmöller plots for: (top panel) specified mean shear profile ∂yU(y, t) =
sin(µt)cos(yt), and (bottom panels) momentum flux 〈u′v′〉 from CE2 sim-
ulation, time-dependent SY14 formula (4.5.4), and the instantaneous SY14
formula (4.2.10).
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Figure 4.13: The results from Figure 4.12 at the latutude y = 0. The plots are local
shear Uy(0, t) (dotted red), and momentum flux 〈u′v′〉 from CE2 (blue), time-
dependent SY14 (red) and instantaneous SY14 (yellow).

CE2 solution. The small difference is that the time-dependent SY14 solution has a

small time-lag compared to the instantaneous SY14 solution.

4.5.3.3 Further Discussion

Why is the agreement in momentum flux results improved so dramatically in Figures

4.14 and 4.15 compared to the first experiment? The following provides an expla-

nation which argues taking the agreement between the time dependent/independent

results with, at the least, a pinch of salt.

Supposing, as is the case in the second experiment, that the profile shear does

not change sign and remains O(γ0), for γ0 a characteristic shear value. The time

history integral ∆(w, t) will grow monotonically and indefinitely the further back it’s

taken, i.e.

∆(w, t) =
∫ t

t−w
γ(τ)dτ = O(γ0w). (4.5.9)

The vector (k, l + k∆(w, t))T features in the sheared disturbance solution (4.2.3), but

it is noticeable given (4.5.9) that at some time w0, the vector (k, l + k∆(w, t))T will

escape the range of forcing vectors for all relevant (k, l), i.e., Π̃(k, l + k∆(w, t)) = 0

for all w≥ w0. In fact, w0 = O(lmax/γ0kmin) where kmin is the smallest zonal wave

being forced and lmax is the largest physically relevant meridional wavenumber. In

the simulations, for instance, lmax can be no greater than the wavelength at which

hyper-diffusion becomes important. Now solution (4.5.1) implies that second order

statistics vary significantly on a time scale of order min{O(lmax/γ0kmin),O(1/µ)}.

So provided lmax/kmin� γ0/µ , the integrand in equation (4.5.1) contributes only

for w < w0� 1/µ , and as the profile varies on an O(1/µ) time scale we can write
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Figure 4.14: As in Figure 4.12, but with the mean flow profile U(y, t) = (2+sin(µt))sin(yt).
Hovmöller plots for: (top panel) specified mean shear profile ∂U(y, t), and
(bottom panels) momentum flux 〈u′v′〉 from CE2 simulation, time-dependent
SY14 formula (4.5.4), and the instantaneous SY14 formula (4.2.10)
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Figure 4.15: The results from Figure 4.14 at the latutude y = 0. The plots are local
shear Uy(0, t) (dotted red), and momentum flux 〈u′v′〉 from CE2 (blue), time-
dependent SY14 (red) and instantaneous SY14 (yellow).

for w < w0

∆(w, t) =
∫ t

t−w
γ(τ)dτ =

∫ t

t−w
γ(t)+ γ

′(t)(τ− t)+ . . .dτ, (4.5.10)

= γ(t)w+O(1/µ)dτ. (4.5.11)

In this situation the second order cumulant convergence is on a faster time scale than

the mean flow dynamics and the steady shear approximation ∆(w, t) = γw is the first

order solution.

Note that this is only an explanation for the experiments presented. The above

argument does not hold if the typical profile shear does not satisfy γ0� (µlmax/kmin),

so if:

• F → 0 (since F → 0 requires lmax→ ∞), meaning time dependency must be

considered in a detailed theoretical study of the local closure theory.

• The profile shear passes through, or close to, zero. The case of shear passing

through zero is particularly interesting, as it means ∆(w, t) is non-monotonic

which allows a significant, delayed, contribution from the integrand in (4.2.3).

These considerations explain very clearly why in the first experiment the time-

independent solution is different from the CE2 solution near to the times when

the background shear flow passes through zero and why the difference is skewed

towards the times after the profile passes through zero. It is also put forward that the

maximum effective meridional wavenumber associated with numerical limitations

means that the solutions can agree well with each other once the (albeit dynamic)
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background profile attains a sufficient shear.

In conclusion, the time-variability of second-order cumulants is typically on

the same time-scale as the rate of change of the background zonal flow. This

must be true as the zonal flow controls the evolution of second cumulants. This

is true even in the limit of large zonostrophy. Notwithstanding, if the mean flow

is in a quasi-equilibrium state, where the background flow only undergoes small

fluctuations about it’s mean state, it might be that the local closure theory without time

dependence provides a good approximation to the QL dynamics in the zonostrophic

limit. It would be particularly interesting to investigate if the errors in the proof of

convergence between the QL and NL models [17, 70] can be adjusted in light of the

findings put forward here. This is left as a potential for future work.



Chapter 5

Applications of the Local Closure

Theory

In the previous Chapter it was established that the SY14 closure for the momentum

flux (4.2.15) can accurately predict the direct contribution 〈u′v′〉D due to stochastic

forcing, at least in the limit F → 0. In the equilibrated jet flows, however, an equally

important contribution 〈u′v′〉S is present due to barotropic instabilities at both the

eastward and westward jets. This Chapter address the question of whether, when and

how exactly the SY14 closure can practically be used to model stochastically forced

zonal flows, by exploring three settings of increasing complexity:

1. A stable monotonic zonal flow: For this class of flows the SY14 closure

and, because there are no turning points, the simple approximation (4.1.2) can

be used to predict 〈u′v′〉D. Provided the stochastic forcing is not too strong,

the equilibrium flow will remain in the stable regime and there will be no

secondary instabilities, i.e. 〈u′v′〉S = 0. This scenario is closely analogous to

the ‘vortex condensate’ situation, in which it has been shown [e.g. 81] that

zonal closures can be successful.

2. A stable zonal flow with alternating jets: In this scenario a strong ‘radiative’

damping is used to maintain the flow in a stable state consisting of an eastward

and westward jet. This is a tougher test of SY14 than the monotonic flow

above, since the flow must adjust to rapid changes in 〈u′v′〉D near the jet cusps.
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However, it remains simpler than the β -plane jet flows of set-up 3, because by

design the flow is stable and 〈u′v′〉S = 0. This regime is key to understanding

the mechanism by which the directly forced momentum fluxes 〈u′v′〉D lead to

the onset of secondary instability.

3. A typical equilibrated jet flow in β -plane turbulence: In this flow we know

from the previous Chapter that it is essential to include some representation

of barotropic instability so that 〈u′v′〉S is captured. Our approach below is

simply to replace the stochastic forcing with a deterministic term based on

SY14 to model 〈u′v′〉D, and to permit barotropically unstable waves to emerge

spontaneously in the flow, by including non-zonal perturbations in the initial

conditions. Therefore, our parametrisation in this case is not purely zonal, but

can still be useful when F � 1, i.e. there is a large scale separation between

the forcing scale and the jet scale, since the latter determines the scale of the

barotropic waves.

A practical consideration when implementing the SY14 closure concerns the

large gradients in the calculated 〈u′v′〉D which invariably emerge in thin boundary

layers near jet cusps. Numerically these boundary layers can always be resolved

with a sufficiently high resolution grid. However, it is often computationally more

practical to apply a smoother to the momentum flux 〈u′v′〉D calculated from (4.2.15).

Here we use a kernel smoother which acts on a function f (y) according to

fσ (y) =
∫

∞

−∞

f (y′)Kσ (y− y′) dy′, (5.0.1)

where Kσ (y) denotes a smoothing kernel with characteristic length scale σ . In

practice a Gaussian with variance σ2 is used. It turns out that, for a significant

range of σ , this modified closure (denoted SY14σ hereafter) actually improves the

comparison with our numerical results, for the simple reason that the smoothing in

(5.0.1) can replicate the effect of finite F (see Figure 4.4).

Results from the three different flow scenarios are reported next.
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5.1 A Stable Monotonic Zonal Flow

To generate a stable monotonic zonal flow, the Rayleigh friction term in the orig-

inal governing equation (1.1.21) is modified so that the flow is relaxed towards a

prescribed profile U0(y) = erf(y), modelling e.g. a wind stress term in an oceanic

flow. In the y-direction sidewall boundaries at y = ±π replace periodicity, and to

minimise wall effects, the stochastic excitation is confined to the shear zone, so the

governing equation becomes

ζt +uuu ·∇ζ +βv =−µ(ζ −ζ0)−ν4∇
4
ζ +

√
ε f (y)η , (5.1.1)

with ζ0 = −2exp(−y2)/
√

π . The local energy injection rate is now ε f (y) with

f (y) = exp
(
−y2/2σ2

n
)
/
√

2πσn and σn = π/8. Since the flow is monotonic it is

not necessary to use the smoothed closure (SY14σ described above), therefore

results from (5.1.1) can be compared with those from the unsmoothed SY14 closure

equation which is (c.f. 4.2.20)

∂tU =−µ(U−U0)−
ε

2µ
∂y

(
f (y)G

(
2µ

U ′(y)

))
+ν4∂

4
y U, (5.1.2)

with G(m) given by (4.2.15).

Figure 5.1 shows a comparison between the equilibrated states of the CE2

equations obtained from (5.1.1) with the equilibrated solution of the SY14 closure

equation (5.1.2). The parameters (µ,(2π)2ε/µ,β ) = (0.002,4,2) have here been

chosen in order that the stochastic forcing is rather weak, in the sense that the

equilibrated flow remains close to the relaxation profile U0(y). It is clear (see

middle panel) that SY14 does an excellent job of describing the deviation from U0(y)

induced by the stochastic forcing in the CE2 model (the small differences here can

be attributed to finite F effects).

Evidently, a class of channel flows exist in which zonal local closure theories are

entirely successful. This explains the success of local theories in vortex condensate

flows [81]. Here, the set-up is identical to the stochastically forced barotropic

vorticity dynamics governed by (1.1.21), but with β = 0. Without planetary rotation
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Figure 5.1: Left: U(y) from CE2 (blue) and the SY14 parameterised model (purple marked)
for the a channel flow linearly relaxed to U0 = erf(y) (red). Middle: similar
to left, but plots the difference U −U0. Right: the forcing profile f (y). The
forcing profile is also indicated on the two left-most panels with a blue gradient
indicating the forcing magnitude.

the large scale mean flow structures are domain sized vortex condensates. The WB19

inverse shear result (modified for polar geometry) has been shown to be accurate

near to the vortex core [81, 92] where the shear is largest. However, it is noticeable

that the solution is only accurate very close to the condensate core. It is expected

that the SY14 local closure theory can be modified to give an improvement over the

WB19 solution in this context as well, thus providing theoretical access to the profile

of the vortex condensate up to a larger radius.

We conclude the discussion on monotonic zonal flows by mentioning that further

experiments (not shown) reveal that, even in this simple setting, the regime in which

the SY14 local zonal closure theory remains accurate is rather restricted. Increasing

the forcing (higher ε) or broadening the forcing region (higher σn) tends to lead to

the formation of local extrema with Uy = 0, which lead to secondary instabilities by

a mechanism to be described in the next subsection. For the reasons described in

Chapter 4, SY14 is sensitive to finite F effects at local extrema, and consequently

local extrema deserve special attention, in the following flow scenario.
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5.2 A Stable Zonal Flow With Alternating Jets

5.2.1 Set-Up and Main Results

To generate a stable alternating jet flow, equation (1.1.21) is modified to include a

‘radiative relaxation’ term, as has been used by e.g. [93] to model the effect of large

scale radiative damping on the jets of the giant planets. The governing equation,

solved on the doubly-periodic domain, becomes

ζt +uuu ·∇ζ +βv = r (ψ̄−Ψrad)−µζ −ν4∇
4
ζ +
√

εη . (5.2.1)

Here the streamfunction ψ = ∇−2ζ , and Ψrad = cos(y) so that the zonal flow is

effectively relaxed towards a sinusoidal ‘deep jet’ profile [c.f. 94], given here by

U0(y) =
1

1+(µ/r)
sin(y). (5.2.2)

The reason for introducing the radiative relaxation term is that it selectively damps

large scale eddies, and to maintain the stability of the equilibrium flow, it was found

to be necessary to use a relatively strong relaxation and damping. This set-up thus

allows exploration of strongly relaxed jets without necessarily causing excessive

damping of eddy activity at the forcing scale.

The parameter settings for our main calculation, using the CE2 truncation of

(5.2.1) are (β ,µ,r,ε) = (22,0.05,0.05,0.05/(2π)2), solving numerically on a grid

of 256 points. The large value of β was found to be necessary to suppress secondary

instabilities. Useful insight into the expected behaviour at the jet cusps is provided

by the scattering experiments of section 4.2.3, where typical momentum fluxes for a

fixed sinusoidal jet were plotted for different values of the forcing scale parameter F .

Strong sensitivity to F is therefore expected, and since it is not computationally

feasible to explore the F → 0 limit in these interactive CE2 calculations, we take

k f = 16 and aim to compare our results with the SY14σ closure (i.e. equation (5.1.2)

modified for this system, with the smoother (5.0.1) applied), which can capture the

qualitative effects of finite F .
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Figure 5.2 shows the comparison between the CE2 calculation and solutions

obtained from the SY14σ closure equation (solved numerically on a 2048 grid).

The SY14σ results show sensitivity to the smoothing parameter σ , reflecting the

sensitivity to F in the CE2 momentum flux patterns seen in Figure 4.4. For the

present calculation, an optimal value of σ =σ∗= 0.237/k f results in good agreement

between CE2 and SY14σ throughout the domain. Admittedly this good agreement

requires a flow specific parameter fit for σ , and more research is required to determine

how best finite F effects can be captured in a modified or extended SY14.

The eddy induced changes to U seen in Figure 5.2 serve to illustrate why

the regime in which 〈u′v′〉S = 0, and the purely zonal closure based on SY14σ is

applicable, is restricted to a narrow region of parameter space in which the stochastic

forcing is weak and the relaxation of the jet is strong. Because −∂y〈u′v′〉D peaks

strongly near the jet cores, even rather modest eddy forcing, which has little impact

on the flow elsewhere, has a strong effect at the jet tips, acting to sharpen them. The

jet curvature |Uyy| at the jet tip and flanks increases rapidly with forcing strength,

leading to β −Uyy changing sign and thus to secondary instability. The effect is

more pronounced as F is reduced, or σ is reduced in SY14σ , as seen in Figure 5.2.

Through this sharpening mechanism, stochastic forcing at a jet cusp has a much

stronger tendency to lead to secondary instability than elsewhere, explaining why

the stable alternating jet regime discovered here occupies such a narrow region of

parameter space, especially so at low F .

5.2.2 Additional Numerical Results

We briefly report that additional parameters setting for the radiatively damped ex-

periment were explored, labelled A-E with values for µ , r, ε , β and σ∗ as given in

Table 5.1.

We first report the results from simulations A-D. In general, all the results from

A-D are similar, and the SY14σ and CE2 solutions agree well. Quantities from the

two most extreme experiments in this set, A and D, are plotted in Figure 5.3. Note

that experiment D is the ‘main’ parameter setting reported in the previous section.

In all cases the profiles become sharpened at both the eastward and westward jet
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Figure 5.2: CE2 and SY14σ quantities from the radiatively damped experiment. The top
panel compares the mean wind profile with U0 for CE2 and SY14σ (with the
optimal σ∗ = 0.237/k f ). The bottom panel investigates results in more detail
by plotting the profile deviation from the radiatively relaxed profile, U −U0.
SY14σ results are given for σ = [0.125/k f ,σ

∗,0.5/k f ]. In all cases k f = 16.

Reference µ r (2π)2ε/µ β k f σ∗ (3.s.f.)
A 0.05 0.05 0.05 4 0.207
B 0.05 0.05 0.20 8 0.215
C 0.05 0.05 0.40 12 0.226
D 0.05 0.05 1.00 18 0.237
E 0.01 0.01 0.05 6 0.223

Table 5.1: Parameter setting references for the radiatively damped model.

cores. As ε/µ is increased (A to D), the force from the parameterised term takes a

stronger role in the momentum balance and sharpens the profile to a greater degree.

In simulation A, the profile only differs no more than 5% from U0 at any latitude

and the small β value means there is very little difference between CE2 and SY14σ

results. The largest disparities are found in the regions surrounding the cusps. The

disagreement is east-west symmetric, implying it is not due to next order β effects,

but rather finite k f and the manner in which the smoothing function non-locally

distributes the large Reynolds stress divergence at the jet core to the surrounding

region in SY14σ . Moving from A through to D, the profile sharpening must be

balanced by increasing β , hence the large value for β reported for the main study

result. Surprisingly, the 4.5 times increase in β doesn’t change the picture that much
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between experiments A and D.

Experiment E has similar parameters to experiment A except with a reduced

friction. The results from experiment E are plotted in Figure 5.4 and offer a similar

analysis to the results from experiment A. That is, CE2 and SY14σ agree well except

with the same small disagreement in the flanks. Reducing µ means the profile from

experiment E has slightly sharper jets than experiment A as the boundary layer

regions around the jet extrema in which 〈u′v′〉D regularises the WB19 type solution

is narrowed. Consequently the required β is larger for experiment E than experiment

A. It is not expected that more experiments with µ = 0.01 will reveal qualitatively

different behaviour to the simulations A-D. Reducing ε/µ (as in experiments A-D)

would simply follow a similar pattern, except that β will need to be slightly larger in

the CE2 experiments to ensure stability.

Reassuringly the optimal smoothing parameter σ∗ (which is calculated by

minimising the l2–norm of the difference between the SY14σ solution and the

CE2 result) remains relatively consistent and O(1) throughout the experiments.

Practically, this meant that finding sensible β values was quite simple, since an

estimate for a minimum β could be made from examining an SY14σ solution with

a ball-park σ value. Going forwards, now that we have a method for dealing with

cusps, we are now ready to apply the SY14σ parameterisation in the more realistic

equilibrated jet flow to be studied next.
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Figure 5.3: CE2 and SY14σ quantities from the radiatively damped experiments A and D.
The top panel shows the solution U from CE2 and SY14σ when σ = σ∗. The
bottom panels give a closer inspection of the solutions by plotting the difference
with the equilibrium radiative solution, U−U0. In these panels solutions with
additional values of σ are also plotted (σ = [0.125/k f ,σ

∗,0.5/k f ], in all cases
k f = 16).
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Figure 5.4: CE2 and SY14σ quantities from the radiatively damped experiment E. The left
panel plots U from CE2 and SY14σ when σ = σ∗, and the right panel shows
the difference with the equilibrium radiative solution, U−U0. In the right panel
solutions are presented for σ = [0.125/k f ,σ

∗,0.5/k f ] (in all cases k f = 16).



5.3. A Typical Equilibrated Jet Flow in β -plane Turbulence 164

5.3 A Typical Equilibrated Jet Flow in β -plane

Turbulence

5.3.1 Set-Up and Main Results

Finally, we are ready to address the question of whether the SY14σ closure can

be adapted to parameterise the stochastic term in the canonical nonlinear β -plane

turbulence simulations. Recall that SY14σ can capture only the directly forced mo-

mentum flux 〈u′v′〉D, and not the secondary flux 〈u′v′〉S due to barotropic instability,

which we know from section 4.3 is equally important in the equilibrated momentum

balance. In the absence of a (known) means to parameterise 〈u′v′〉S, our approach is

simply to allow unstable waves to develop spontaneously in the parameterised flow,

by solving the deterministic nonlinear equation

ζt +uuu ·∇ζ +βv =−µζ +(−1)n+1
ν2n∇

2n
ζ − ε

2µ

[
∂yyG

(
2µ

ζ̄

)]
σ

, (5.3.1)

where the square brackets [·]σ denote that the smoother (5.0.1) is applied. Equation

(5.3.1) is simply (1.1.21) with the stochastic term replaced by the deterministic

SY14σ parameterisation.

Figure 5.5 compares PV and vorticity snapshots in the NL simulation of section

4.3.2 with those from a corresponding integration of the parameterised equation

(5.3.1). The parameter settings and numerical configurations are identical, and both

simulations are integrated for the same length of time until an equilibrated state is

reached. The value σ = 0.237/k f , found in the alternating jet experiment above, is

used for the smoothing parameter in SY14σ . The same WF3 forcing with k f = 16 is

being used, and the smoothing is performed on 2048 grid points.

There are several striking similarities between the two simulations apparent in

Figure 5.5:

• Excellent correspondence between the structure of the equilibrated jets in the

two simulations.

• Relatively short waves (kx =4-7) propagating on the PV barriers at the core
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of the eastward jets. These correspond to the eastward jet instability identified

in the linear analysis of Figure 4.8.

• Longer waves (kx =1-3) propagating on the PV barriers located at the flanks

of the westward jets. Note that, while these waves are only clearly visible in

snapshots of the parameterised run, their presence in the NL simulation is evi-

dent from the momentum flux decomposition of Figure 4.6. They correspond

to the waves generated by the westward jet instability identified in Figure 4.8.

Figure 5.5: Left: snapshots of potential vorticity ζ +βy and relative vorticity ζ from the
NL simulation reported in Figures 4.5 and 4.6. Right: snapshots of the same
quantities from an SY14σ simulation with the same parameters. In the SY14σ

model the stochastic forcing is replaced with the deterministic forcing term
described in the main text (σ = 0.237/k f , k f = 16).

From the evidence compiled above, it is clear that SY14σ is successful because

it captures the direct momentum flux 〈u′v′〉D sufficiently accurately to permit the

flow to reach a marginally stable equilibrium in which emergent waves generate

the correct secondary flux 〈u′v′〉S. Further analysis of the momentum budget is
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Figure 5.6: Hovmöller plot of the SY14σ model for fully developed barotropic β -plane jets
with σ = 0.23/k f . Plotted is energy against time (total energy (blue), mean flow
energy (orange), eddy kinetic energy (yellow)).

proveided in Figure 5.7, supporting this interpretation. Here, a time average, over the

final µ−1 time period of the simulation, for the components −∂y〈u′v′〉kx is reported

in the panels of Figure 5.7. In the left panel are waves kx = 1 and 2, and in the right

panel the waves 3–8. It is evident that the longest waves are working in symbiotic

manner similar to the NL simulation (e.g. Figure 4.6) so that their overall force on

the mean flow is to damp the westward jet extrema. Similarly the shorter waves

in the right hand panel concentrate their overall effect on the eastward jets. Waves

greater than 8 do not give a significant Reynolds stress contribution. Note that the

magnitude of the components is different in each of panels (so that the right-hand

panel details are visible), and the magnitudes typically lay between the equivalent

quantities in the NL and QL simulations (Figure 4.6).

The Hovmöller plot in Figure 5.6 reveals that the spin-up time for the SY14σ

simulation is on a significantly longer time-scale than the NL simulation (see Figure

4.5). This is remedied in the next subsection considering alternative values for σ .

Also plotted in Figure 5.6 is the energy against time during spin-up for SY14σ .

From an energetics point of view, the parameterised term is the energy source in this

model, injecting energy into the mean flow, and the instabilities emerge by drawing

energy from the mean flow. The smoothing process described reduces the energy

that the parameterisation supplies the SY14σ simulation. If the smoothing is set up

ideally, the ‘missing’ energy in the SY14σ model simply corresponds to the eddy
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Figure 5.7: Wavenumber decomposition for momentum flux in the SY14σ model with
σ = 0.237/k f .

kinetic energy associated with the (now parameterised) small scale perturbations.

It noticeable that there are small jumps in the total energy when jets merge, this is

because the smoothing process acts most severely at jet extrema, hence reducing the

number of jet extrema increases the energy injection from the parameterised forcing

term.

The main drawback of SY14σ is that it doesn’t give a computational saving

compared to the NL simulation, in fact the computational cost is almost identical

as both runs are on the same grid over the same time period. However, this need

not be true in general, particularly as F is reduced. This is because, as inspection
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of Figure 5.5 confirms, the length scale of waves in the parameterised simulation is

set by the jet spacing, not by the forcing scale. Therefore a scenario with F � 1 in

which the parameterised run is many orders of magnitude cheaper than NL would

not be difficult to set up.

5.3.2 Addition Numerical Results

Figure 5.8 shows vorticity contour plots of vorticity during spin-up from the same

SY14σ simulation in the previous section. Besides their pretty looks, these contour

plots reveal much about the spin-up and equilibration of the SY14σ model. It is

observed that in the first panel, when t = 0.02/µ , the flow is essentially a parallel

shear flow. At this point, the parameterised term has been providing energy to the

mean flow via the small initial zonal perturbation. The effect of the parameterisation

is to create, and sharpen, ‘jets’ at the smoothing scale (i.e. the forcing scale k f

by design). The initial, small, random non-zonal perturbations are negligible to

the dynamics until the second panel (t = 0.04/µ), where the background flow has

become sufficiently unstable, and enough time has elapsed that the perturbations

have excited secondary instabilities. By the third panel (t = 0.08/µ), it appears the

spin-up has entered a phase of nonlinear turbulent equilibration. Being careful not

to read too much into the spin-up and equilibration procedure, it is nevertheless

interesting to note that as time progresses, and the jets become wider, the typical

unstable zonal wave numbers decrease. This agrees with the interpretation that the

length scale of the emergent secondary instabilities scale in proportion to the jet

scale, and therefore that there is a length scale separation between the secondary

instabilities and the small forcing length scale.

We now report results from identical parameterised simulations as the above

SY14σ simulation except with different smoothing parameter values σ . The values

σ = 0.5/k f and σ = 0.125/k f are tested (in contrast with σ = σ∗= 0.237/k f in the

‘main’ experiment), the same as the test σ values reported in the radiatively damped

model of the previous section.

Figures 5.9 and 5.10 show the results from the simulation with σ = 0.5/k f .

In this situation, the parameterised term is being over-smoothed. The Hovmöller
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Figure 5.8: Contour plots showing the spin-up of the SY14σ simulation reported in Figure
5.5. Vorticity is contoured at times t = [0.02,0.04,0.08,10]/µ (left to right, top
to bottom).
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Figure 5.9: As Figure 5.5, but with σ = 0.5/k f for the right hand panels.

plot in Figure 5.10 reveals the haphazard and peculiar route the mean flow takes

to find the final structure shown in Figure 5.9. Without the sharp eastward jets

the eastward instabilities are at smaller wavenumbers (kx = 1,2). A westward jet

instability at wavenumber kx = 3 is particularly pronounced in Figure 5.9. Despite

the over-smoothing generating a relatively unrecognisable profile, it is clear that

qualitatively the same marginal stability processes are occurring.

Figures 5.11 and ?? are results from the simulation with σ = 0.125/k f which,

given the radiatively damped model’s results, we might have expected to be an

under-smoothing scenario. It happens however that dynamics from this simulation

are very similar to the σ = σ∗ simulation, implying that there’s quite a wide region

of viable smoothing parameters which may predict realistic equilibrium jet structures.

A significant difference is that the σ = 0.125/k f simulation reached the two jet state

on the same timescale as the NL simulation (c.f. Figure 4.5). This is due to the jets

being sharpened more readily by the parameterised term than in the simulation with

σ = σ∗.
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Figure 5.10: As Figure 5.6, but with σ = 0.5/k f . Plotted is energy against time (total energy
(blue), mean flow energy (orange), eddy kinetic energy (yellow)).

Figure 5.11: As Figure 5.5, but with σ = 0.125/k f for the right hand panels.



5.3. A Typical Equilibrated Jet Flow in β -plane Turbulence 172

Figure 5.12: As Figure 5.6, but with σ = 0.125/k f .



Chapter 6

General Conclusions

The initial, broad, objective of this work was to research planetary jets in β -plane

turbulence models. Over the course of the work, the aim has been refined into

two distinct and well-known topics related to the QG2D model: spontaneous jet

transitions, and statistical closure theories. We first give an overview of the former,

before discussing the latter and drawing the final conclusions.

An investigation into rare jet transitions is the subject of Chapter 2. This was

inspired by, and gives an in depth account of the work by Bouchet et. al. [18]. The

adaptive multilevel splitting (AMS) algorithm is introduced and verified to work in

the barotropic setting. Noting that similar rare jet transitions occur in a two-layer

(baroclinic) model, the original research of Chapter 2 begins with the design of a

new algorithm which can be applied to the two-layer set-up. The chief difference

here is that as the two-layer model is deterministic, and as the AMS algorithm relies

on stochasticity to ‘split’ flow trajectories, the AMS algorithm cannot systematically

find rare events in the deterministic setting. Considering the two-layer model from a

dynamical systems perspective, a modification of AMS to a deterministic adaptive

multilevel splitting (DAMS) algorithm is postulated. The idea is that the two-layer

model is chaotic, so a small random change in initial conditions provides a natural

‘perturbation’ to be added to make a ‘cloned’ trajectory ‘split’. The chaotic nature of

baroclinic turbulence is found to decorrelate the ‘clones’ rapidly enough that DAMS

successfully guides ensembles towards rare events. In fact, spontaneous transitions

between attractors are found using DAMS that are so rare that they were not found
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with comparable computational power by direct numerical simulation.

The application of AMS or DAMS comes with daunting numerical difficulties

such as large computation time and required memory. Both of these hurdles are

overcome, primarily using savvy storage techniques and realistic parameter regimes,

rather than state-of-the-art resources. It is therefore a wonderful prospect that these

ideas, with more adept tools, should be able to quantify rare events dramatically

more efficiently than direct numerical simulation.

The second main topic of the thesis starts with Chapter 3, where the QL approx-

imation and its related closure theory, CE2, are introduced and discussed. Chapter 4,

in which the solution to the CE2 equation is considered in the limit of small scale

forcing is arguably the theoretical pinnacle of the thesis. The idea that a small scale

forcing only ‘sees’ the local properties of the mean flow (borrowing heavily from

the work in Srinivasan & Young [80] and Woillez & Bouchet [23]), allows a ‘local

closure theory’ for momentum flux to be developed. Exact formulae for momentum

flux components are derived based on the local closure theory, with the physical

insight that the most important aspect of the forcing structure is the phase density of

its energy injection rate. The formulae are shown to be accurate in the limit of small

scale forcing through a series of numerical experiments. It is shown in this work that

the structure of the forcing in high zonostrophy flows is, typically, unimportant.

A fundamental mechanism in jet development and maintenance is made appar-

ent in Chapter 4 when it is shown that the QG2D model forced on a single (relatively

large) zonal wave mode generates symmetric, tightly packed, jets. The fact that

these jets break the Rayleigh-Kuo condition for instability, and that when small

perturbations on longer wave modes are introduced the asymmetry and classical

Rhines jet spacing return, implies that emergent barotropic instabilities are important.

This is not a new idea [i.e. 22, 23], but section 4.3 isolates the exact roles of the

emergent instabilities through careful experimental design. In particular, it is found

that there are instabilities associated with the westward and eastward jet extrema.

A successful model for the large-scale β -plane jet dynamics is presented in

Chapter 5 where the small scale turbulence in the QG2D model is accurately captured
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using a parameterisation based on the local closure theory. The mean flow in the

model is ‘driven’ towards sharp jets by the parameterised forcing, while emergent

instabilities are allowed to develop and regulate the growth of jets in a similar

manner to the full model. It is remarkable that the parameterised model - which is

derived assuming a quasi-linear approximation and allows no interaction between the

emergent instabilities and the small scale forcing - is in many respects comparable to

the equivalent fully nonlinear stochastically forced simulation at the same parameters.

The nonlinear barotropic dynamics, with persistent non-zonal coherent structures,

is a stringent test for the efficacy of a local closure parameterisation. The success

implies that there may be great benefit for the local closure theory parameterisation in

the expanding list of turbulence-mean interaction problems that the CE2 framework

is proving useful.

A critical message of this thesis is that the time-variability of eddy statistics

in closure models has been overlooked in the literature. It has previously been

believed that β -plane turbulence can be viewed as a time-scale separation problem

between the (slow) zonal mean flow and the (fast) turbulent fluctuations (Bouchet

et. al. [17]), with the claim that there is a formal asymptotic convergence of the

QL and NL models in the limit of time-scale separation (high zonostrophy). The

basis of the proof is found to be false in section 4.5 when it is shown theoretically,

and experimentally, that eddy statistics do not ‘instantaneously’ converge. Rather,

eddy statistics converge on the slow timescale and therefore the history of the mean

flow profile is important within the closure frameworks. This must be considered in

future studies. In particular, in works that attempt to approach rare events problems

in turbulence using a statistical closure approach. From the evidence presented, it is

almost certain that the rare events studied in the first half of the thesis exhibit mean

flow dynamics that will provide a significant time-variability of second order eddy

statistics.
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SY14 Local Closure Theory

A.1 Sheared Disturbance Solution

Using collective coordinates (as suggested in [16])

y = y1− y2, (A.1.1)

ȳ =
y1 + y2

2
, (A.1.2)

Laplacian operators are transformed for n = 1,2 by

∇
2
n = ∇

2− (−1)n
∂y∂ȳ +

1
4

∂
2
ȳ . (A.1.3)

If Uy = γ , Z̃k(y, ȳ) in 3.3.12 must be independent of ȳ. This is quite remarkable

given the β terms, but without curvature the Coriolis parameter is unimportant. The

second cumulant equation (3.3.9) in the collective coordinates reads simply

∂tZ̃k + ikyγZ̃k =−2µZ̃k + εΠ̃k. (A.1.4)

With a linear shear, U = γy, and the second cumulant equation above with a linear

shear is

∂tẐkkk + γ(t)k∂xẐkkk =−2µẐkkk + εΠ̂kkk. (A.1.5)
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This is a first order PDE subject to an initial condition

Zkkk(0) = Z0(kkk), (A.1.6)

which can be solved by the method of characteristics. The characteristics satisfy

dt
ds

= 1,
dk
ds

= 0,
dl
ds

=−γ(t)k,
dẐkkk

ds
=−2µZ+ εΠ̂. (A.1.7)

so characteristic projections are defined by

(t(s),k(s), l(s)) = (s,k0, l0−Γ(s)k0) , (A.1.8)

where Γ(s) =
∫ s

0 γ(u)du. Integrating along the projections

Ẑkkk(t) =
∫ t

0
εΠ̂(k(q), l(q))e−2µ(t−q)dq+ Ẑ0(k0, l0) (A.1.9)

=
∫ t

0
εΠ̂(k, l +(Γ(t)−Γ(t−w))k)e−2µwdw+ Ẑ0(k0, l0)e−2µt, (A.1.10)

where the change of variable w = t−q has been made for the final line. At late times

(t� µ−1)

Ẑkkk(t) = ε

∫
∞

0
Π̂(k, l + k∆(w, t)) , (A.1.11)

where we have introduced the time history integral

∆(w, t) =
∫ t

t−w
γ(τ) dτ. (A.1.12)
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A.2 Results for Reynolds Stress Tensor on Steady

Background Flow

A.2.1 Reynolds Stress 〈u′v′〉

Assuming a steady background flow ∆ = γw, the Reynolds stress found in the main

text (equation 4.2.7) is

〈u′v′〉=−ε

∫
R2

{
− Π̃kkk

2γ|kkk|2
+

µ

γ

∫
∞

0

e−2µw

k2 +(l− kwγ)2)
Π̃(k, l)dw

}
dkkk.

By (4.2.2) the first term is ε/γ (i.e. the inverse shear result).

For the latter term we proceed initially as in SY14, transforming the kkk integral

into polar form with (k, l) = (κ cosφ ,κ sinφ) for

〈u′v′〉= ε

γ
− εµ

γ

∫
π

−π

∫
∞

0

∫
∞

0

Π̂(κ cosφ ,κ sinφ)e−2µw

cos2 φ +(sinφ − γwcosφ)2
1
κ

dwdκdφ . (A.2.1)

Instead of specifying a radial structure of Π̂, we recognise that the κ integral serves

only to determine the energy injection at a given wave angle φ . The symmetry

Π̂(k) = Π̂(−k) implies the wave angles φ and φ +π have equal energy input. The

fact that the denominator of the integrand is also invariant under φ → φ +π means

we can let ρε(φ) represent the total energy injection of the wave angles φ and φ +π

(as given by 4.2.8) and consider the integral on the half domain φ ∈ (−π/2,π/2],

i.e.

〈u′v′〉= ε

γ
+

2εµ

γ

∫
π/2

−π/2

∫
∞

0
ρ

ε(φ)sec2
φ

e−2µw

1+(tanφ − γw)2 dwdφ , (A.2.2)

The change of variable s = γw− tanφ finds

〈u′v′〉= ε

γ

(
1− 2µ

γ

∫
π/2

−π/2
ρ

ε(φ)sec2
φe−2µ tanφ/γ

(∫
∞

− tanφ

e−2µs/γ

1+ s2 ds

)
dφ

)
.

(A.2.3)



A.2. Results for Reynolds Stress Tensor on Steady Background Flow 179

The inside s integral can be performed with the general result

∫
∞

−x

e−ms

1+ s2 ds =−Im
{

emiE (m(−x+ i))
}
, (A.2.4)

allowing us to write

〈u′v′〉= ε

γ

(
1+

1
m

∫
π/2

−π/2
ρ

ε(φ)m2 sec2(φ)Im
{

em(− tanφ+i)E (m(− tanφ + i))
}

dφ

)
,

(A.2.5)

where m = 2µ/γ . Equivalently, this can be written in the form in the main text

〈u′v′〉= ε

γ

∫
π/2

−π/2
ρ

ε(φ)K(φ ,m)dφ , K(φ ,m) = 1+
1
m
|z|2Im{ezE (z)} . (A.2.6)

where z(φ ,m) = m(− tanφ + i).

A.2.2 〈u′u′〉 and 〈v′v′〉

To derive formulae for 〈u′u′〉 and 〈v′v′〉, we can use analogous calculations to those

above for 〈u′v′〉. It is straightforward to show that the time-dependent solutions are

〈u′u′〉= 2ε

γ

∫
π/2

−π/2
ρ

ε(φ)sec2
φe−m tanφ

(∫
∞

− tanφ

s2e−ms

(1+ s2)2 ds
)

dφ (A.2.7)

〈v′v′〉= 2ε

γ

∫
π/2

−π/2
ρ

ε(φ)sec2
φe−m tanφ

(∫
∞

− tanφ

e−ms

(1+ s2)2 ds
)

dφ (A.2.8)

To analyse further, the following results are useful

4
∫

∞

−t

s2e−ms

(1+ s2)2 ds =
[
(m+ i)e−imE1(−m(s− i))+(m− i)eimE1(−m(s+ i))+

2se−ms

1+ s2

]−x

∞

,

=−(m+ i)e−imE1(−m(t + i))− (m− i)eimE1(m(−t + i))− 2temt

1+ t2 ,

4
∫

∞

−t

e−ms

(1+ s2)2 ds =
[
(m− i)e−imE1(m(s− i))+(m+ i)eimE1(m(s+ i))− 2se−ms

1+ s2

]−x

∞

,

= (m− i)e−imE1(−m(t + i))+(m+ i)eimE1(m(−t + i))+
2temt

1+ t2 .

(These are obtained by writing the denominator as partial fractions.)
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Again, letting z = m(− tanφ + i), we have

2e−m tanφ

∫
∞

− tanφ

s2e−ms

(1+ s2)2 ds =
−(m+ i)ez∗E1(z∗)− (m− i)ezE1(z)

2
− tanφ

sec2 φ
,

=−mRe
{

ezE1(z)+
1
z∗

}
− Im{ezE1(z)} ,

2e−m tanφ

∫
∞

− tanφ

e−ms

(1+ s2)2 ds =
(m− i)ez∗E1(z∗)+(m+ i)ezE1(z)

2
+

tanφ

sec2 φ
,

= mRe
{

ezE1(z)+
1
z∗

}
− Im{ezE1(z)} ,

so the solutions for 〈u′u′〉 and 〈v′v′〉 are

〈u′u′〉= ε

γ

∫
π/2

−π/2
ρ

ε |z|2

m

(
− 1

m
Im{ezE1(z)}−Re

{
ezE1(z)+

1
z∗

})
dφ ,

〈v′v′〉= ε

γ

∫
π/2

−π/2
ρ

ε |z|2

m

(
− 1

m
Im{ezE1(z)}+Re

{
ezE1(z)+

1
z∗

})
dφ .

A.3 Kernel Properties

Two useful expansions of the exponential integral are:

E1(z) = γ1− ln(z)−
∞

∑
n=1

(−z)n

nn!
, (A.3.1)

where γ1 is Euler’s constant [95, p. 229], and

ezE1(z) =
∞

∑
n=0

(−1)nn!
zn+1 , (A.3.2)

for large values of Re(z) [96, p. 3].

Proofs of the six properties of K(φ ,m) are as follows:

1. K(φ ,m)< 1 for all φ ∈ (−π/2,π/2) and all m ∈ R\{0}.
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The definition of K(φ ,m) (equation 4.2.11) prompts the observation

sgn
(

1
m
|z|2Im{ezE1(z)}

)
= sgn

(
1
m

Im
{

eim
∫

∞

m(− tanφ+i)

e−t

t
dt
})

,

= sgn
(

1
m

Im
{∫

∞

−m tanφ

s− im
s2 +m2 e−sds

})
,

= sgn
(
−
∫

∞

−m tanφ

e−s

s2 +m2 ds
)
,

=−1,

proving that K(φ ,m)< 1.

2. The limiting values at the boundaries of the interval are K(±π

2 ,m) = 0.

Corollary of property (v), see below.

3. K(φ ,m) has a single minimum K−(m). In the limit m → 0, K−(m) ∼

−4πe−2/m, and the location of the minimum is asymptotically close to

φ = π/2−m/2.

It can be shown K(φ ,m) solves the differential equation

cos2
φ

∂

∂φ
K(φ ,m) = (sin2φ −m)K(φ ,m)− sin2φ , (A.3.3)

so any minimum must solve

K−(m) =
sin(2φ−)

sin(2φ−)−m
. (A.3.4)

Seeking a minimum point φ− such that c = m/θ− = O(1), where θ− = π/2−

φ−, the leading order behaviour for K(φ−,m) as m→ 0 is found from (A.3.1)

as

K(φ−,m) =− 1
|m|

(
m
θ−

)2

πe−
m

θ− +O(1). (A.3.5)

If the minimum point exists, the leading order terms of (A.3.4) and (A.3.5)

balance, i.e.

− c2

|m|
π exp(−c) =

2
c−2

+O(m2), (A.3.6)
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which rearranges for

c = 2
(

1−|m|
(

1
c2πe−c

)
+O(m2)

)
= 2+O(m). (A.3.7)

Since c = O(1), the solution is self-consistent and in the small m limit

K−(m) =−4πe−2

m
+O(1), with φ− = π/2−m/2+O(m2). (A.3.8)

4. As m→ 0, K(φ ,m) = 1−m(π

2 +φ)sec2 φ +O(m2 logm).

For any fixed φ , the complex number z = m(− tanφ + i) has infinitesimal

magnitude in the limit m→ 0. Thus it follows from the expansion (A.3.1), and

the exponential series ez = ∑
∞
n=0

zn

n! , that we have

Im{ezE1(z)}=−Arg(z)+ Im{z ln(z)}+ . . . (A.3.9)

The argument of z is Arg(z) = φ + π

2 , so using the above in the definition of

K(φ ,m), and noting |z2|/m = sec2 φ , the approximation is found.

5. As m→ ∞, K(φ ,m) =−m−1 sin2φ +2m−2 cosφ cos3φ +O(m−3).

Plugging into the series expansion stated above for large Re(z), i.e. large

m tan(φ), we have

K(φ ,m) = 1+
1
m
|z|2Im{ezE1(z)}= 1+

1
m

Im

{
∞

∑
n=0

(−1)nn!(z∗)n+1

|z|2n

}

=
∞

∑
n=1

(−1)nn!cos2n φ

mn Im
{
(tanφ + i)n+1

}
(A.3.10)

For φ ∈ (−π/2,π/2) we can use that tan(φ)+ i = secφeiθ to show

cosn+1
φ Im

{
(tanφ + i)n+1

}
=sin((n+1)π/2)cos((n+1)φ) (A.3.11)

− sin((n+1)φ)cos((n+1)π/2) ,
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and depending on n odd or even one of the right-hand side terms vanishes.

Substituting (A.3.11) into (A.3.10), a little work finds that K(m,φ) can be

written

K(φ ,m)=
∞

∑
n=1

anm−n, an =

 (−1)
n+1

2 n! sin((n+1)φ)cosn−1(φ), if n odd,

(−1)
n
2+1n!cos((n+1)φ)cosn−1(φ), if n even.

(A.3.12)

The first few terms are

K(φ ,m) =− 1
m

sin(2φ)+
2

m2 cos(φ)cos(3φ)+
6

m3 cos2(φ)sin(4φ)+ . . .

(A.3.13)

Hence,

〈u′v′〉=− ε

2µ

∫
π

0
ρ

ε(φ)

(
sin(2φ)− 2

m
cos(φ)cos(3φ)+O(m−2)

)
dφ .

(A.3.14)

The series is valid for m tan(φ)→∞. This covers the case m→∞ with φ fixed,

but also the limit φ →±π/2 for any m 6= 0, concluding

lim
φ→±π/2

K(φ ,m) = 0. (A.3.15)

i.e. property (ii).

6.
∫ π/2
−π/2 K(φ ,m) dφ = 0.

By definition of K(φ ,m) (equation 4.2.11),

∫
π/2

−π/2
K(φ ,m) dφ = π +

1
m

∫
π/2

−π/2
|z|2Im{ezE1(z)}dφ , (A.3.16)

Changing the variable of integration to z (using dz/dφ =−|z|2/m) and using
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parts

∫
π/2

−π/2
K(φ ,m) dφ = π− lim

t→∞
Im
{∫ −mt+im

mt+im
ezE1(z)dz

}
, (A.3.17)

= π− lim
t→∞

Im
{
[ezE1(z)+ ln(z)] |−mt+im

mt+im

}
, (A.3.18)

= 0, (A.3.19)

where the ezE1(z) terms in the final evaluation are vanishingly small (by

expansion A.3.2) and the logarithms cancel the π .



Appendix B

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX,

composed with TEXShop. All numerical experiments were performed in MATLAB,

as well as almost all of the figures.
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