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Parametric analysis of an efficient 
boundary condition to control 
outlet flow rates in large arterial 
networks
Sharp C. Y. Lo1, Jon W. S. McCullough1 & Peter V. Coveney1,2,3*

Substantial effort is being invested in the creation of a virtual human—a model which will improve our 
understanding of human physiology and diseases and assist clinicians in the design of personalised 
medical treatments. A central challenge of achieving blood flow simulations at full-human scale is 
the development of an efficient and accurate approach to imposing boundary conditions on many 
outlets. A previous study proposed an efficient method for implementing the two-element Windkessel 
model to control the flow rate ratios at outlets. Here we clarify the general role of the resistance and 
capacitance in this approach and conduct a parametric sweep to examine how to choose their values 
for complex geometries. We show that the error of the flow rate ratios decreases exponentially as the 
resistance increases. The errors fall below 4% in a simple five-outlets model and 7% in a human artery 
model comprising ten outlets. Moreover, the flow rate ratios converge faster and suffer from weaker 
fluctuations as the capacitance decreases. Our findings also establish constraints on the parameters 
controlling the numerical stability of the simulations. The findings from this work are directly 
applicable to larger and more complex vascular domains encountered at full-human scale.

In recent years, the central goal of computational biomedicine to create a virtual human, also referred to as a 
human digital twin, has become increasingly tangible1–4. A virtual human is a detailed, digital representation 
of an individual’s biophysical processes5,6. Such a model will improve our understanding of human biology and 
pathology and assist clinicians in the design of personalised medical treatments. The development of a virtual 
human is an ongoing endeavour which requires many computational and algorithmic developments to accurately 
and efficiently capture human biology at all scales. This paper aims to bring us closer to achieving high-fidelity 
simulation of blood flow at full-human scale.

When studying a subset of an arterial network, the vessels beyond the smaller system are often truncated to 
reduce computational cost while boundary conditions are imposed at the inlets and outlets to close the system. 
A central challenge is the development of an efficient and accurate approach to impose boundary conditions 
on many outlets. This problem has received substantial interest7–13. The boundary conditions should accurately 
represent the flow in the truncated vessels as they generally affect the entire simulation domain14. In particular, 
outlet boundary conditions have greater influence on the internal flow than inlet ones15.

An accurate type of outlet boundary condition specifies the coupling of the simulation domain with so-called 
Windkessel models. These models relate the blood pressure (P) and the volumetric flow rate (Q) at the domain 
outlets to the interaction between the arterial compliance, peripheral resistance, and flow inertia in the truncated 
vessels16–18. While they have superior accuracy compared with other boundary conditions19–21, they suffer from 
the high cost in calibration required due to the large number of model parameters involved.

Grinberg and Karniadakis8 proposed an efficient strategy for the calibration concerning the two-element 
Windkessel (WK2) model, the simplest one-compartment description composed of a resistor and a capacitor17,18. 
They showed that the Q ratios between the outlets are inversely proportional to the resistance (R) in the WK2 
models under certain conditions, and because of this, the Q ratios can be controlled by tuning one single parame-
ter. This explicit and simple relation renders the strategy efficient when applied to large arterial networks and easy 
to implement. Nevertheless, it is difficult to articulate this approach in the context of irregular domains. In addi-
tion, the role of the capacitance (C) in the strategy and how to choose its value in practice remain unanswered.
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To relax these limitations, here we extend the theoretical framework of the strategy to more complex flows 
and study the effects of R and C on the accuracy of the Q ratios, the convergence and fluctuation of the flow 
variables, as well as the stability of the simulations. We conduct this study by a parametric sweep over the values 
of R and C in the simulations of fluid flows in two irregular domains solved by the lattice Boltzmann method 
(LBM)14. The additional understanding from our findings assists users of the approach in their selection of the 
model parameters for flows in complex geometries.

Methods
In this section, we describe the set-up of the numerical experiments performed in this study. We first introduce 
the implementation of the two-element Windkessel model. Next, we explain how we determine the model param-
eters and the desired flow rate ratios. After that, we address some implementation details. Lastly, we describe 
the two simulation domains used.

The two‑element Windkessel model.  The WK2 model is comprised of a resistor and a capacitor con-
nected in parallel17,18. The resistor describes the dissipation of small peripheral vessels including arterioles and 
capillaries, whereas the capacitor describes the storage properties of large arteries. This model has been used to 
capture some important features of the pulse waves in arterial networks22–25.

The strategy proposed by Grinberg and Karniadakis8 is based on the use of the WK2 model as the outlet 
boundary conditions. These boundary conditions are implemented as follows. At each outlet, the flow rate, Q, 
is first calculated by integrating the flow velocity U obtained during the simulation over the boundary plane:

where n̂ and A are, respectively, the normal vector and the area of the boundary plane pointing outwards from 
the domain. The pressure, P, is obtained by solving the differential equation

Here R and C are the resistance and the capacitance of the WK2 model respectively. Lastly, the outlet is imposed 
by a pressure condition with the calculated value of P. To solve Eq. (2) numerically, we discretise it with a semi-
implicit scheme8. One can alternatively use an explicit scheme26. Hence, we obtain

where �t is the time step size and n is the index of the time step.

Choice of resistance.  An attractive feature of the WK2 model is that the flow rate of multiple outlets can be 
set to the desired ratios by tuning one single parameter. Provided that R is sufficiently large at all outlets, the ratio 
of the flow rate in an arbitrary outlet j to that in the reference outlet ref satisfies the Q–R relation8:

where j = 1, . . . ,N if there are N outlets. The ratios between Rj are determined by the desired Q ratios, whereas 
the magnitudes of Rj are controlled by Rref  , the unique free parameter. It is possible to impose time-dependent 
Q ratios in order to incorporate in vivo or in vitro flow data8. In this study, we consider the time-independent 
case and choose the reference outlet to be the one with the largest Q so that ηj ≥ 1.

The key step of this strategy is to find an Rref  such that Rj is sufficiently large for all j. The condition for Poi-
seuille flow was derived8 to be Rj ≫ LjKj for all j. Here L is the length of the cylindrical pipe that the WK2 model 
is coupled with, and K is the flow resistance per length given by

where µ is the dynamic viscosity of the fluid and r is the radius of the pipe. However, the conditions for such 
flow in complex geometries have rarely been studied directly. In broad terms, this problem can be addressed 
as follows. A vessel of arbitrary shape can be conceived as a cylindrical pipe of length L and flow resistance per 
length K such that LK is equal to the total flow resistance of the vessel. When the vessel is coupled with the WK2 
model, the overall flow resistance is LK + R . Hence, a necessary condition for the Q–R relation to hold must be 
R ≫ LK at all outlets; otherwise, LK would appear in Eq. (4).

It is tempting to choose a very large Rref  to ensure R ≫ LK at the outlets, but this is not always feasible as the 
simulation may not stabilise; we show that in the Results section. Moreover, it is of interest to know the lower 
limit of Rref  for which the simulated Q ratios admit an acceptable error. To tackle this problem, we obtain a 
conservative estimate of the largest value of LK among the outlets, denoted by L̂K̂ , and assess different multiples 
of L̂K̂ for Rref  in the following way.

Let us first describe the estimation of L̂K̂ . In view of Eq. (5), the product LK has a stronger dependency on 
r than L. Therefore, when selecting vessels for the estimation, r should be prioritised over L. To simplify the 
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∫
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procedure, we use only the outlet vessel with the smallest r for the estimation. Here r is the equivalent radius 
of the circle that has the same area as the boundary plane; this area is obtained during the voxelisation of the 
geometry27. By substituting r into Eq. (5), K̂ is estimated. The length L̂ is approximated by the distance between 
the bifurcation point and the boundary plane of the vessel. We note that since a circle has the largest area among 
all the shapes of the same perimeter, using the equivalent radius gives the most conservative estimate and there-
fore K̂ will not be underestimated. For a more accurate estimation of K̂ , one can apply the formulae for boundary 
planes of special shapes28.

We expect that the simulated Q ratios will be accurate only if Rref ≥ L̂K̂ . We denote the multiple of the lower 
limit by γR so that Rref = γRL̂K̂ in a simulation. By performing simulations with different values of γR , we study 
the effects of R on the accuracy of the simulated Q ratios.

Choice of capacitance.  Grinberg and Karniadakis8 showed that C is responsible for damping the high-
frequency waves in the simulation. This is an advantage for vascular simulations as high-frequency waves are 
not significant in blood flow29. They reported that choosing C such that RC = O(1) was favourable for their 
simulations. However, we find that such a choice is not suitable for simulations in general as it leads to instability 
in our simulations.

Indeed, the transient period at the beginning of the simulation is essential to the stability of the simulation. The 
transient period can be attributed to the solution of the homogeneous part of Eq. (2), i.e. P(t) = P(0) exp(−t/RC) . 
This solution has a characteristic decay time of RC8. Although it will fade out eventually, it can exhibit an immense 
magnitude at the beginning of the simulation. As a result, certain stability conditions may be violated, causing 
the simulation to become unstable. Therefore, the choice of C should be based on a suitable value of RC.

Since RC has dimensions of time, a natural choice is the order of the fundamental frequency ( ω0 ) of the flow 
being simulated. For example, a heartbeat with a period of T = 0.8 s has ω0 = 2π/T = 7.85 s-1. As the transient 
solution is not the target of the WK2 model, it should fade out in a reasonably short time. Therefore, RC ≫ 1/ω0 
should be avoided. This provides an upper limit to the appropriate range of RC. On the other hand, the lower limit 
can be found from the perspective of the frequency domain. By taking the Fourier transform of Eq. (2), we obtain

where ω is the angular frequency of a Fourier mode, Z is the impedance of the circuit analogue18 of the WK2 
model, and i = √−1 . According to Eq. (7), the phase difference between P̂(ω) and Q̂(ω) is given by tan−1(−ωRC) . 
This implies a time lag of Q(t) from P(t) in the time domain which decreases as RC approaches 0. Such time 
lag has been observed in several experiments8,29,30. To comply with these observations, RC ≪ 1/ω0 should be 
avoided, which in turn gives the lower limit.

Although the expected range of RC may prove unfeasible due to practical constraints such as stability, it 
circumscribes the range within which a suitable value of C can be found. Based on that range, we express C in 
an outlet j in terms of the parameter γRC such that Cj = γRC/(ω0Rj) . We use the same value of RjCj for all j to 
make the decay time scale consistent. In other words, γRC governs the value of C one should select for a given R. 
By varying the value of γRC used in the simulations, we can locate an optimal value of C for a given R.

Desired flow rate ratios.  One of the goals of this work is to demonstrate the applicability of our methods 
to simulations of actual medical importance, so we need Q ratios which reflect a physiological flow in the geom-
etry. Based on the principle of minimum work, Murray31 showed that Q is proportional to r3 in any section of a 
vessel. Invoking mass conservation, Murray’s law can be written as21

where j is the index of an outlet. It is known that Murray’s law does not hold true in general. For a more accurate 
description of the relation between Q and r, other powers of r can be used21,32.

Here we use the equivalent radius of the outlet vessels (see Choice of Resistance) for rj to compute Qj . By 
substituting Qj into Eq. (4), we obtain the ratios of the resistances, ηj , or equivalently the inverse of the desired Q 
ratios. This method is useful when data on physiological Q ratios is unavailable because only knowledge about 
the geometry is required. The voxeliser we use27 calculates the area of the outlets systematically and hence the 
equivalent radii of the outlet vessels. This allows us to apply the strategy efficiently when the geometry contains 
many outlets.

Model of internal flow.  The LBM14 is attractive for haemodynamic simulations as it is highly scalable33,34 
due to data locality and its applicability to complex geometries. We simulate the blood flow using HemeLB35,36, 
which is an open-source fluid flow solver based on the LBM. We use the D3Q19 velocity set and the Bhatnagar-
Gross-Krook collision operator as the LBM model for the three-dimensional blood flow37. We assume the vessels 
wall to be rigid with the use of the Bouzidi–Firdaouss–Lallemand wall boundary condition38. This assumption 
can be removed by using the elastic wall boundary condition available in HemeLB39. The solver describes the 
blood as a Newtonian fluid, while other rheology models are also available40,41.

(6)P̂(ω) = Z(ω)Q̂(ω),
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In this work, a simulation is considered unstable if any single particle distribution function of the LBM in the 
domain becomes non-positive and stable otherwise14. To ensure the compressibility error is small, the relaxa-
tion time of the collision operator is chosen such that the Mach number is maintained below 0.1 throughout 
the simulations14.

Inlet boundary condition.  For the inlet, we impose a velocity boundary condition using Ladd’s method38,42. 
We assume that U at the inlet is normal to the boundary plane. Hence, U can be separated into spatial and tem-
poral parts as U(ρ, t) = f (ρ) Umax(t) , where f is a function of the radial distance ρ from the geometric centre 
ρmax and Umax is the velocity at the centre. The separation has the advantage that U can be assigned before the 
simulation begins as f (ρ) depends solely on the geometry of the boundary plane. Regarding the spatial profile, 
we use the quadratic form pertaining to Poiseuille flow:

which is valid if the flow is quasi-static and laminar. It can be applied to boundary planes which are circular, 
where f (ρ) becomes a parabola, as well as those of irregular shapes43. Regarding the temporal profile, we impose 
a sinusoidal wave of frequency ω on top of a mean flow Umean such that Umax(t) = Umean[1+ 0.1 cos(ωt)] . The 
values of Umean and ω are calculated from the Womersley number, given by r

√
ω/ν , and the maximum Reynolds 

number, given by 2
∥∥Umax(0)

∥∥r/ν at the inlet, where ν is the kinematic viscosity of the fluid. In order that the 
spatial profile is valid in our simulations, we choose 2 and 10 for these numbers respectively.

Techniques to exploit data locality and adapt for complex geometries.  The computation of Q at 
the outlets in Eq. (1) requires data from all the boundary lattice sites which hinders the data locality feature of 
the LBM, and to overcome this we use the following method. We assume that U is normal to the boundary plane, 
i.e. U · n̂ =

∥∥U∥∥ , which is valid since the Reynolds number is small in our simulations. We further assume that 
U exhibits the profile f (ρ) in Eq. (9) as for the inlet, which is valid since the Womersley number is even smaller 
in the outlets than the inlet. Hence, Eq. (1) can be written as

In this equation, the fraction can be computed and stored locally before the simulation begins as it depends 
solely on the outlet geometry. Besides, U(ρ, t) can be obtained locally in the context of LBM. As a result, the data 
locality feature of the LBM can be exploited.

To implement the pressure condition in the WK2 model, we adopt the method of Nash et al.38 which is suit-
able for complex geometries. This method assumes that P is uniform over an outlet plane. A boundary lattice 
site close to the centre of the outlet plane is used for updating P during the simulation.

Simulation domains.  Two geometries are used as the simulation domain in our experiments. The first 
geometry is a five-outlets model which has a more regular shape. The other is a human artery model of a more 
complex shape. These models are publicly available at https://​doi.​org/​10.​5522/​04/c.​62232​32.​v1.

Five‑outlets model.  The five-outlets model, as shown in Fig. 1, is composed by joining five identical short pipes 
and a longer pipe all converging on a single point. It is a simplified model of the aortic arch with five branches 
reported by Ma et al.44. The short pipes have a length of 4.83 mm, and the longer pipe is twice the length of a 
short pipe. All of them are circular with a uniform radius of 1 mm and have an open boundary at their ends. One 
of the short pipes is a fluid inlet, whereas the others are fluid outlets. The geometry is voxelised27 to the three 

(9)f (ρ) = 1− ρ2

ρ2
max

,

(10)Q(t) =
∥∥U(ρ, t)

∥∥
∫
f (ρ) dA

f (ρ)
.

Figure 1.   The five-outlets model in the lateral view. It is composed by joining five identical short pipes and a 
longer pipe all converging on a single point. The longer pipe is twice the length of a short pipe.

https://doi.org/10.5522/04/c.6223232.v1
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resolutions 80 µm, 40 µm, and 20 µm such that there are about 13, 25, and 50 lattice sites along any pipe radii 
respectively.

This geometry is used to confirm the role of the various parameters described above with a focus on numerical 
aspects. Indeed, the desired Q ratios of the outlets can be chosen regardless of physiology. The ratios for outlets 
0 to 4 are set accordingly to be 3 : 4 : 5 : 6 : 7, translating into ηj = 7

3 ,
7
4 ,

7
5 ,

7
6 , 1 for j = 0, 1, 2, 3, 4 respectively. 

The relaxation time of the LBM model is set to be 0.8 for the coarse grid and 0.9082 for the other two grids, both 
in lattice units.

Profunda femoris model.  Another geometry is a model of an artery in the right thigh of humans, called the 
profunda femoris model (see Fig. 2). It is extracted from the computational anatomical model used in our previ-
ous work1,45. To meet the assumptions of the pressure BC used in our simulations, we modify some of the outlets 
such that the normal of the outlet planes is closer to the flow direction. This geometry is chosen for the following 
reasons: (i) it is a complex domain in which the vessels have arbitrary shapes; (ii) second, Murray’s law should 
be valid since the geometry is constructed from a human model; (iii) third, the number of outlets, being 10, is 
already substantial; (iv) fourth, complications arising from imposing multiple inlet boundary conditions are 
avoided given that our focus is on the outlets.

The equivalent radius, r, of the inlet plane is 1.67 mm, whereas that of the outlet planes range from 0.50 mm 
at outlet 8 to 1.12 mm at outlet 5. The outlet vessel with the smallest r has a length of 8.74 mm. The geometry is 
voxelised27 to the three different resolutions 49 µm, 35 µm, and 25 µm such that there are about 10, 14, and 20 lat-
tice sites along the equivalent radius of the narrowest vessel respectively. This results in around 16.3 M, 44.6 M, and 
122 M lattice sites in the entire domains respectively. The desired Q ratios are obtained by applying Murray’s law in 
Eq. (8). The resulting ratios of the resistances are ηj = 3.17 : 8.71 : 6.25 : 1.65 : 10.7 : 1 : 3.15 : 4.80 : 13.0 : 5.81 . 
The relaxation time of the LBM model is set to be 0.9082 in lattice units for all the grids.

Results
In this section, we first present the results from the simulations on the five-outlets domain and later those on the 
profunda femoris domain. The simulations were performed using 48 to 4608 Intel Xeon Platinum 8174 Processors 
on SuperMUC-NG at the Leibniz Supercomputing Centre. The analysis tools and parameters used to obtain the 
results are publicly available at https://​doi.​org/​10.​5522/​04/c.​62232​32.​v1.

Figure 2.   The profunda femoris model used in this study is constructed from the profunda femoris artery on the 
right thigh of a human subject, as shown in (a). The location of the inlet and the outlets are indicated in (b) with 
the index of the outlets labelled.

https://doi.org/10.5522/04/c.6223232.v1


6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19092  | https://doi.org/10.1038/s41598-022-21923-9

www.nature.com/scientificreports/

Simulations on the five‑outlets domain.  We will study different aspects of the simulation results: sta-
bility of the simulations, accuracy of the Q ratios, convergence and fluctuation of the flow variables.

Stability maps.  As mentioned, the simulations we perform do not admit an arbitrary choice of R and C due to 
numerical instabilities in the flow solver. To investigate what choices lead to stable simulations, we run simula-
tions on the five-outlets domain with different combinations of γR and γRC for one period of the inlet flow. The 
duration of one period is sufficient since instability always occurs within this period in these simulations. We 
display a stability map for each resolution (see Fig. 3) showing what combinations lead to a stable or an unstable 
simulation. Comparing between the three maps, we find that a finer grid can admit a larger collection of the 
parameters than a coarser grid. Nonetheless, all of them reveal the same pattern: for log2 γRC ≥ 0 , a larger γRC 
allows a larger γR ; for log2 γRC ≤ −3 , a smaller γRC requires a smaller γR.

Error of flow rate ratios.  Since it is not always possible to use an arbitrarily large R to achieve the desired Q 
ratios, we need to understand how the error of the simulated Q ratios changes with R and also C. We select a 
subset of cases from the stability maps and perform simulations for 10 periods of the inlet flow. The accuracy of 
the simulated Q ratios is evaluated by comparing their temporal average in the stationary state with the desired 
Q ratios; the average covers the fourth to the tenth period.

In all the selected cases, the error of the Q ratios at all the outlets decreases exponentially as γR increases with 
constant γRC/γR . A comparison between the simulated and the desired values on the fine grid is given in Fig. 4. 
In this case, the errors are within 4% when log2 γR = 5 . In addition, we observe that the ratios have no negligible 
difference when γRC changes with γR fixed (see Supplementary Fig. S1). The grid resolution has minor impact on 
the percentage errors (see Supplementary Fig. S3).

Convergence rate of flow variables.  Since γRC is proportional to the time scale RC, we expect it to affect the 
convergence of the flow variables. Indeed, the Q ratios take a longer time to converge to the stationary state with 
a larger γRC for a given γR , as demonstrated in Fig. 5. In the figure, the Q ratios change irregularly at the begin-
ning of both simulations which is the transient period mentioned above. The effect on the convergence rate also 
applies to P and U on the boundary planes, as can be observed in the upper panel of Fig. 6.

The convergence rate is found to be highest for the Q ratios, intermediate for U , and lowest for P for a given γR 
and γRC . Using γR = 4, γRC = 8 on the fine grid as an example, while the Q ratios are nearly stationary after 30,000 
time steps (see Fig. 5b), U and P still exhibit observable change after 60,000 and 120,000 time steps respectively 
(see Fig. 6b). Here 30,000 time steps correspond to about one period of the inlet flow.

Fluctuation of flow rate ratios.  When comparing between the two cases in Fig. 5, we also observe differences 
in the amplitude of the fluctuations. We observe stronger fluctuation in the Q ratios as γRC increases with γR 
fixed. Since Q is the integration of U and the ratios between outlets reflect the extent of synchronisation, this 
phenomenon implies that U at different outlets is more asynchronous as γRC increases. This in turn suggests that 
we look at the phase difference between P and U . Indeed, as shown in the lower panel of Fig. 6, the phase differ-
ence increases with γRC.

Simulations on the profunda femoris domain.  This subsection presents the results obtained from the 
simulations on the profunda femoris domain. Here we address the stability of the simulations, the convergence 
rate and the error of the Q ratios.

Stability maps.  We first run simulations with different combinations of γR and γRC for one period of the inlet 
flow to obtain the stability maps. The maps for the three resolutions are plotted in Fig. 7. They show that a larger 

(a) (b) (c)

Figure 3.   Stability map of the simulations on (a) the coarse grid, (b) the medium grid, and (c) the fine grid of 
the five-outlet domain. The three maps reveal the same pattern: for log2 γRC ≥ 0 , a larger γRC allows a larger γR ; 
for log2 γRC ≤ −3 , a smaller γRC requires a smaller γR.
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γR requires a larger γRC for the simulation to be stable. Furthermore, the stable and the unstable regions are sepa-
rated by a straight line of slope 1. By using the definition of γRC and γR we find that the line corresponds to a con-
stant C. The constant is smaller if the y-intercept is smaller. Thus, the constant is the smallest in the fine grid case.

Convergence rate of flow rate ratios.  Next, we select a subset of the stable cases and perform simulations for 
longer periods of the inlet flow (50 periods for the coarse grid cases and 20 periods for the medium grid cases). 
In many cases, the Q ratios have not reached the stationary state at the end of the simulations. Nevertheless, a 
smaller γRC for a given γR leads to faster convergence (see Supplementary Fig. S4). The convergence also increases 
when γR gets larger for a given γRC (see Supplementary Fig. S4). The combined effect is that the convergence is 
faster if the pair of γR and γRC is closer to the boundary line of the stable region, or equivalently if C is smaller. 

Figure 4.   Comparison between the simulated and the desired flow rate (Q) ratios as γR varies for a fixed 
γRC/γR . The results are obtained from the simulations on the fine grid of the five-outlets domain using 
γRC/γR = 1 . With the outlet 4 arbitrarily chosen as a reference, the Q ratios of the other four outlets are obtained 
for each γR . We observe that the percentage error of the Q ratios decreases exponentially as γR increases.

(a) (b)

Figure 5.   Time series of the flow rate (Q) ratios for the outlets in simulations with different γRC but the same γR . 
The results are obtained from the simulations on the fine grid of the five-outlets domain using (a) γRC = 0.125 
and (b) γRC = 8 with the same γR = 4 . The outlet 4 is used as the reference when computing the ratios. We 
observe a longer transient period and stronger fluctuations in (b) than (a).
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For γR = 1024 and γRC = 65, 536 , the Q ratios are nearly stationary after six periods of the inlet flow. We also 
observe a lower convergence rate in the amplitudes than the means of the Q ratios (see Supplementary Fig. S4).

Error of flow rate ratios.  We evaluate the accuracy of the simulated Q ratios by using the temporal average of 
these ratios over the last five periods of the inlet flow. Figure 8 shows the comparison between the simulated 

Figure 6.   Time series of the pressure (P) and the z-component of the flow velocity ( Uz ) at the centre of outlet 1 
in simulations with different γRC but the same γR . The results are obtained from the simulations on the fine grid 
of the five-outlets domain using (a) γRC = 0.125 and (b) γRC = 8 with the same γR = 4 . We observe that both P 
and Uz converge faster in (b) than (a); the phase lag of Uz from P is also larger in (b) than (a).

(a) (b) (c)

Figure 7.   Stability map of the simulations on (a) the coarse grid, (b) the medium grid, and (c) the fine grid of 
the profunda femoris domain. Notably, the stability and the instability region are separated by a straight line of 
slope 1 in the maps. The y-intercept of the line is the smallest for the fine grid.
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and the desired Q ratios on the coarse grid. They show that the errors reduce exponentially as γR increases with 
a fixed γRC/γR ; when log2 γR = 10 , the errors in all the outlets are within 7%. In addition, we observe that these 
errors depend slightly on γRC for a given γR (see Supplementary Fig. S2).

Discussion
By inspecting the stability map of the simulations, we have found that the higher the grid resolution, the larger 
the stable region. Moreover, the stable and unstable regions in γRC ≥ 1 are separated by a line of constant capaci-
tance, C, with the stable region being above the line. Since the constant is found to be smaller when a finer grid 
is used, we can conclude that a higher grid resolution requires a smaller C to be stable when γRC is larger than 
a threshold value.

Our results demonstrate that the flow rate (Q) ratios in the simulations approach the desired values as γR 
increases. This agrees with the proposed necessary condition for the resistances, R (see Choice of Resistance). A 
further novel finding is that C has a little impact on the Q ratios, although C does not appear in the Q–R relation 
in Eq. (4). However, the observed impact may be due to the fact that the Q ratios are not completely station-
ary. Moreover, we have observed that the percentage error of the ratios reduces as the grid resolution increases 
and that the reduction is more significant in a more complex domain. At the largest γR and the highest resolu-
tion tested, the percentage error of the ratios is within 4% for the five-outlets domain and 7% for the profunda 
femoris domain. We therefore conclude that the Q–R relation also holds in complex geometries. While testing 
the profunda femoris domain, we observed that the error was highly sensitive to the construction of the outlet 
shapes. Slight geometric deviations that violated the boundary condition assumptions were observed to generate 
errors of over 50%.

We have studied the time series of the flow variables in the simulations. The flow variables generally converge 
more slowly when γRC is larger. This supports the notion that RC is the characteristic time scale of the transient 
period (see “Choice of capacitance”). Another promising finding is that the flow variables converge faster with 
γR when γRC ≥ 1 . These observations suggest that a smaller C leads to faster convergence of flow variables when 
γRC is larger than a certain value.

The present findings demonstrate that the Q ratios exhibit stronger fluctuations as γRC increases. This can be 
explained as follows. Suppose there are phase differences in the pressure, P, between the outlets. Then a similar 
pattern can be revealed in Q according to Eq. (7). While the phase difference between Q and P is the same at 
each outlet because RC is constant, it is magnified in a non-linear manner (due to tan−1 in the equation) as RC 
increases. As a result, the phase differences in Q between the outlets will increase with RC. These differences 
manifest as fluctuations in the Q ratios.

The above insight enables us to find suitable values of R and C such that the simulation is stable and the 
desired Q–R relation is achieved. To rapidly ascertain if a pair of γR and γRC can lead to a stable simulation, we 
can perform simulations on a coarser grid to reduce the computational cost since the stable region for a finer 
grid is generally larger. If the simulation can stabilise for two different values of γR but the same value of γRC , the 
larger γR is preferred since the Q ratios will converge faster and be closer to the desired values. If the simulation 

Figure 8.   Comparison between the simulated and the desired flow rate (Q) ratios as γR varies for a fixed 
γRC/γR . The results are obtained from the simulations on the coarse grid of the profunda femoris domain using 
γRC/γR = 64 . The outlet 5 was arbitrarily selected as the reference when computing these ratios. We observe 
that the percentage error of the Q ratios reduces exponentially as γR increases; when log2 γR = 10 , the errors in 
all the outlets are within 7%.
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stabilises for two different values of γRC but the same value of γR , the smaller γRC should be chosen to reduce 
both the convergence time and the fluctuation of the Q ratios.

A limitation of our approach is the long simulation time required. We have shown that the flow variables need 
a significant time to reach the stationary state. It will be even longer if the desired Q ratios are widely spread: the 
condition R ≫ LK at all outlets may make R substantial at the outlet with the largest Q. Consequently, we will 
need a large γRC to yield a stable simulation. Then, the flow variables may take a long time to become stationary. 
According to Murray’s law in Eq. (8), the Q ratios have a smaller range if the radii of the outlet vessels have a 
smaller range. This implies that our method favours vascular models for which the outlet vessels have similar 
sizes.

The current strategy has limitations in capturing some important flow features due to the use of the WK2 
model. For example, the WK2 model may lead to non-physiological reflections of pulse waves because it lacks 
a resistance connected to the outlet vessel in series46. The addition of such a resistance gives rise to the popular 
three-element Windkessel model10,15,19,47–50. We note that such reflections occur in incompressible flows only if 
the wall motions are considered, but this study does not consider such motions.

While we tested our methods with an inlet flow of single frequency and time-independent Q ratios, the 
methods are designed for more general applications. When the waveform is composed of multiple frequencies, 
we can choose C based on the fundamental frequency of the waveform (see “Choice of capacitance”). When the 
desired Q ratios vary with time, we can use time-varying resistances8. The methodology we have described is 
directly applicable to these situations.

Conclusions
The strategy proposed by Grinberg and Karniadakis8 is attractive for controlling the flow rate (Q) ratios of many 
outlets. Here we study the conditions for this strategy to hold in complex geometries. Based on previous work, 
we argue that in general the resistance, R, in all the outlets should be larger than a threshold value. We propose 
a method to estimate the threshold and demonstrate it using a simple geometry with five-outlets and a human 
artery model with ten outlets. We show that the differences between the simulated and the desired Q ratios 
reduce exponentially as R increases above the threshold; the differences also reduce mildly as the grid resolution 
increases. At the largest R and the highest grid resolution tested, the differences are within 4% in the five-outlets 
model and 7% in the human artery model.

Hitherto, there has been limited understanding about the role of the capacitance, C, in the strategy as well as 
how to choose its value in practice. Based on some practical requirements, we derive a suitable order of magni-
tude for RC and parametrise it with γRC . By performing simulations with different values of γRC , we study the 
effects of C on the flow variables and the stability of the simulations. Our findings show that C has some impact 
on the Q ratios, even though the approach is formulated without C. Our results reveal that the smaller the value 
of γRC , the faster the convergence rate and the weaker the fluctuation of the flow variables. A further novel find-
ing is that when γRC ≥ 1 the simulation is stable if C is larger than a threshold value.

In conclusion, we have studied the effects of R and C on the accuracy of the Q ratios, the convergence and 
fluctuation of the flow variables, as well as the stability of the simulations. This additional understanding provides 
a basis for the calibration of the Windkessel models to achieve a stable simulation and the desired Q ratios in 
the outlets. The methods used in this work are designed for applications where there are many outlets and the 
inlet profile comprises multiple frequencies. These methods are directly applicable to larger and more complex 
vascular domains encountered at full-human scale. Future work will investigate the validity of such applications.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information available at https://​doi.​org/​10.​5522/​04/c.​62232​32.​v1. The code used for the simulations is publicly 
available at https://​github.​com/​hemelb-​codes/​HemeP​ure. The code used for the voxelisation of the geometries 
is publicly available at https://​github.​com/​UCL-​CCS/​HemeP​ure_​tools.
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